1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Amlogic SD/eMMC driver for the GX/S905 family SoCs 4 * 5 * Copyright (c) 2016 BayLibre, SAS. 6 * Author: Kevin Hilman <khilman@baylibre.com> 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/iopoll.h> 14 #include <linux/of_device.h> 15 #include <linux/platform_device.h> 16 #include <linux/ioport.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/mmc/host.h> 19 #include <linux/mmc/mmc.h> 20 #include <linux/mmc/sdio.h> 21 #include <linux/mmc/slot-gpio.h> 22 #include <linux/io.h> 23 #include <linux/clk.h> 24 #include <linux/clk-provider.h> 25 #include <linux/regulator/consumer.h> 26 #include <linux/reset.h> 27 #include <linux/interrupt.h> 28 #include <linux/bitfield.h> 29 #include <linux/pinctrl/consumer.h> 30 31 #define DRIVER_NAME "meson-gx-mmc" 32 33 #define SD_EMMC_CLOCK 0x0 34 #define CLK_DIV_MASK GENMASK(5, 0) 35 #define CLK_SRC_MASK GENMASK(7, 6) 36 #define CLK_CORE_PHASE_MASK GENMASK(9, 8) 37 #define CLK_TX_PHASE_MASK GENMASK(11, 10) 38 #define CLK_RX_PHASE_MASK GENMASK(13, 12) 39 #define CLK_PHASE_0 0 40 #define CLK_PHASE_180 2 41 #define CLK_V2_TX_DELAY_MASK GENMASK(19, 16) 42 #define CLK_V2_RX_DELAY_MASK GENMASK(23, 20) 43 #define CLK_V2_ALWAYS_ON BIT(24) 44 #define CLK_V2_IRQ_SDIO_SLEEP BIT(25) 45 46 #define CLK_V3_TX_DELAY_MASK GENMASK(21, 16) 47 #define CLK_V3_RX_DELAY_MASK GENMASK(27, 22) 48 #define CLK_V3_ALWAYS_ON BIT(28) 49 #define CLK_V3_IRQ_SDIO_SLEEP BIT(29) 50 51 #define CLK_TX_DELAY_MASK(h) (h->data->tx_delay_mask) 52 #define CLK_RX_DELAY_MASK(h) (h->data->rx_delay_mask) 53 #define CLK_ALWAYS_ON(h) (h->data->always_on) 54 #define CLK_IRQ_SDIO_SLEEP(h) (h->data->irq_sdio_sleep) 55 56 #define SD_EMMC_DELAY 0x4 57 #define SD_EMMC_ADJUST 0x8 58 #define ADJUST_ADJ_DELAY_MASK GENMASK(21, 16) 59 #define ADJUST_DS_EN BIT(15) 60 #define ADJUST_ADJ_EN BIT(13) 61 62 #define SD_EMMC_DELAY1 0x4 63 #define SD_EMMC_DELAY2 0x8 64 #define SD_EMMC_V3_ADJUST 0xc 65 66 #define SD_EMMC_CALOUT 0x10 67 #define SD_EMMC_START 0x40 68 #define START_DESC_INIT BIT(0) 69 #define START_DESC_BUSY BIT(1) 70 #define START_DESC_ADDR_MASK GENMASK(31, 2) 71 72 #define SD_EMMC_CFG 0x44 73 #define CFG_BUS_WIDTH_MASK GENMASK(1, 0) 74 #define CFG_BUS_WIDTH_1 0x0 75 #define CFG_BUS_WIDTH_4 0x1 76 #define CFG_BUS_WIDTH_8 0x2 77 #define CFG_DDR BIT(2) 78 #define CFG_BLK_LEN_MASK GENMASK(7, 4) 79 #define CFG_RESP_TIMEOUT_MASK GENMASK(11, 8) 80 #define CFG_RC_CC_MASK GENMASK(15, 12) 81 #define CFG_STOP_CLOCK BIT(22) 82 #define CFG_CLK_ALWAYS_ON BIT(18) 83 #define CFG_CHK_DS BIT(20) 84 #define CFG_AUTO_CLK BIT(23) 85 #define CFG_ERR_ABORT BIT(27) 86 87 #define SD_EMMC_STATUS 0x48 88 #define STATUS_BUSY BIT(31) 89 #define STATUS_DESC_BUSY BIT(30) 90 #define STATUS_DATI GENMASK(23, 16) 91 92 #define SD_EMMC_IRQ_EN 0x4c 93 #define IRQ_RXD_ERR_MASK GENMASK(7, 0) 94 #define IRQ_TXD_ERR BIT(8) 95 #define IRQ_DESC_ERR BIT(9) 96 #define IRQ_RESP_ERR BIT(10) 97 #define IRQ_CRC_ERR \ 98 (IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR) 99 #define IRQ_RESP_TIMEOUT BIT(11) 100 #define IRQ_DESC_TIMEOUT BIT(12) 101 #define IRQ_TIMEOUTS \ 102 (IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT) 103 #define IRQ_END_OF_CHAIN BIT(13) 104 #define IRQ_RESP_STATUS BIT(14) 105 #define IRQ_SDIO BIT(15) 106 #define IRQ_EN_MASK \ 107 (IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN) 108 109 #define SD_EMMC_CMD_CFG 0x50 110 #define SD_EMMC_CMD_ARG 0x54 111 #define SD_EMMC_CMD_DAT 0x58 112 #define SD_EMMC_CMD_RSP 0x5c 113 #define SD_EMMC_CMD_RSP1 0x60 114 #define SD_EMMC_CMD_RSP2 0x64 115 #define SD_EMMC_CMD_RSP3 0x68 116 117 #define SD_EMMC_RXD 0x94 118 #define SD_EMMC_TXD 0x94 119 #define SD_EMMC_LAST_REG SD_EMMC_TXD 120 121 #define SD_EMMC_SRAM_DATA_BUF_LEN 1536 122 #define SD_EMMC_SRAM_DATA_BUF_OFF 0x200 123 124 #define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */ 125 #define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */ 126 #define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */ 127 #define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */ 128 #define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */ 129 #define SD_EMMC_DESC_BUF_LEN PAGE_SIZE 130 131 #define SD_EMMC_PRE_REQ_DONE BIT(0) 132 #define SD_EMMC_DESC_CHAIN_MODE BIT(1) 133 134 #define MUX_CLK_NUM_PARENTS 2 135 136 struct meson_mmc_data { 137 unsigned int tx_delay_mask; 138 unsigned int rx_delay_mask; 139 unsigned int always_on; 140 unsigned int adjust; 141 unsigned int irq_sdio_sleep; 142 }; 143 144 struct sd_emmc_desc { 145 u32 cmd_cfg; 146 u32 cmd_arg; 147 u32 cmd_data; 148 u32 cmd_resp; 149 }; 150 151 struct meson_host { 152 struct device *dev; 153 struct meson_mmc_data *data; 154 struct mmc_host *mmc; 155 struct mmc_command *cmd; 156 157 void __iomem *regs; 158 struct clk *core_clk; 159 struct clk *mux_clk; 160 struct clk *mmc_clk; 161 unsigned long req_rate; 162 bool ddr; 163 164 bool dram_access_quirk; 165 166 struct pinctrl *pinctrl; 167 struct pinctrl_state *pins_clk_gate; 168 169 unsigned int bounce_buf_size; 170 void *bounce_buf; 171 void __iomem *bounce_iomem_buf; 172 dma_addr_t bounce_dma_addr; 173 struct sd_emmc_desc *descs; 174 dma_addr_t descs_dma_addr; 175 176 int irq; 177 178 bool vqmmc_enabled; 179 bool needs_pre_post_req; 180 181 spinlock_t lock; 182 }; 183 184 #define CMD_CFG_LENGTH_MASK GENMASK(8, 0) 185 #define CMD_CFG_BLOCK_MODE BIT(9) 186 #define CMD_CFG_R1B BIT(10) 187 #define CMD_CFG_END_OF_CHAIN BIT(11) 188 #define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12) 189 #define CMD_CFG_NO_RESP BIT(16) 190 #define CMD_CFG_NO_CMD BIT(17) 191 #define CMD_CFG_DATA_IO BIT(18) 192 #define CMD_CFG_DATA_WR BIT(19) 193 #define CMD_CFG_RESP_NOCRC BIT(20) 194 #define CMD_CFG_RESP_128 BIT(21) 195 #define CMD_CFG_RESP_NUM BIT(22) 196 #define CMD_CFG_DATA_NUM BIT(23) 197 #define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24) 198 #define CMD_CFG_ERROR BIT(30) 199 #define CMD_CFG_OWNER BIT(31) 200 201 #define CMD_DATA_MASK GENMASK(31, 2) 202 #define CMD_DATA_BIG_ENDIAN BIT(1) 203 #define CMD_DATA_SRAM BIT(0) 204 #define CMD_RESP_MASK GENMASK(31, 1) 205 #define CMD_RESP_SRAM BIT(0) 206 207 static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data) 208 { 209 unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC; 210 211 if (!timeout) 212 return SD_EMMC_CMD_TIMEOUT_DATA; 213 214 timeout = roundup_pow_of_two(timeout); 215 216 return min(timeout, 32768U); /* max. 2^15 ms */ 217 } 218 219 static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd) 220 { 221 if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error) 222 return cmd->mrq->cmd; 223 else if (mmc_op_multi(cmd->opcode) && 224 (!cmd->mrq->sbc || cmd->error || cmd->data->error)) 225 return cmd->mrq->stop; 226 else 227 return NULL; 228 } 229 230 static void meson_mmc_get_transfer_mode(struct mmc_host *mmc, 231 struct mmc_request *mrq) 232 { 233 struct meson_host *host = mmc_priv(mmc); 234 struct mmc_data *data = mrq->data; 235 struct scatterlist *sg; 236 int i; 237 238 /* 239 * When Controller DMA cannot directly access DDR memory, disable 240 * support for Chain Mode to directly use the internal SRAM using 241 * the bounce buffer mode. 242 */ 243 if (host->dram_access_quirk) 244 return; 245 246 /* SD_IO_RW_EXTENDED (CMD53) can also use block mode under the hood */ 247 if (data->blocks > 1 || mrq->cmd->opcode == SD_IO_RW_EXTENDED) { 248 /* 249 * In block mode DMA descriptor format, "length" field indicates 250 * number of blocks and there is no way to pass DMA size that 251 * is not multiple of SDIO block size, making it impossible to 252 * tie more than one memory buffer with single SDIO block. 253 * Block mode sg buffer size should be aligned with SDIO block 254 * size, otherwise chain mode could not be used. 255 */ 256 for_each_sg(data->sg, sg, data->sg_len, i) { 257 if (sg->length % data->blksz) { 258 dev_warn_once(mmc_dev(mmc), 259 "unaligned sg len %u blksize %u, disabling descriptor DMA for transfer\n", 260 sg->length, data->blksz); 261 return; 262 } 263 } 264 } 265 266 for_each_sg(data->sg, sg, data->sg_len, i) { 267 /* check for 8 byte alignment */ 268 if (sg->offset % 8) { 269 dev_warn_once(mmc_dev(mmc), 270 "unaligned sg offset %u, disabling descriptor DMA for transfer\n", 271 sg->offset); 272 return; 273 } 274 } 275 276 data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE; 277 } 278 279 static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data) 280 { 281 return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE; 282 } 283 284 static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data) 285 { 286 return data && data->flags & MMC_DATA_READ && 287 !meson_mmc_desc_chain_mode(data); 288 } 289 290 static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq) 291 { 292 struct mmc_data *data = mrq->data; 293 294 if (!data) 295 return; 296 297 meson_mmc_get_transfer_mode(mmc, mrq); 298 data->host_cookie |= SD_EMMC_PRE_REQ_DONE; 299 300 if (!meson_mmc_desc_chain_mode(data)) 301 return; 302 303 data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len, 304 mmc_get_dma_dir(data)); 305 if (!data->sg_count) 306 dev_err(mmc_dev(mmc), "dma_map_sg failed"); 307 } 308 309 static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq, 310 int err) 311 { 312 struct mmc_data *data = mrq->data; 313 314 if (data && meson_mmc_desc_chain_mode(data) && data->sg_count) 315 dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len, 316 mmc_get_dma_dir(data)); 317 } 318 319 /* 320 * Gating the clock on this controller is tricky. It seems the mmc clock 321 * is also used by the controller. It may crash during some operation if the 322 * clock is stopped. The safest thing to do, whenever possible, is to keep 323 * clock running at stop it at the pad using the pinmux. 324 */ 325 static void meson_mmc_clk_gate(struct meson_host *host) 326 { 327 u32 cfg; 328 329 if (host->pins_clk_gate) { 330 pinctrl_select_state(host->pinctrl, host->pins_clk_gate); 331 } else { 332 /* 333 * If the pinmux is not provided - default to the classic and 334 * unsafe method 335 */ 336 cfg = readl(host->regs + SD_EMMC_CFG); 337 cfg |= CFG_STOP_CLOCK; 338 writel(cfg, host->regs + SD_EMMC_CFG); 339 } 340 } 341 342 static void meson_mmc_clk_ungate(struct meson_host *host) 343 { 344 u32 cfg; 345 346 if (host->pins_clk_gate) 347 pinctrl_select_default_state(host->dev); 348 349 /* Make sure the clock is not stopped in the controller */ 350 cfg = readl(host->regs + SD_EMMC_CFG); 351 cfg &= ~CFG_STOP_CLOCK; 352 writel(cfg, host->regs + SD_EMMC_CFG); 353 } 354 355 static int meson_mmc_clk_set(struct meson_host *host, unsigned long rate, 356 bool ddr) 357 { 358 struct mmc_host *mmc = host->mmc; 359 int ret; 360 u32 cfg; 361 362 /* Same request - bail-out */ 363 if (host->ddr == ddr && host->req_rate == rate) 364 return 0; 365 366 /* stop clock */ 367 meson_mmc_clk_gate(host); 368 host->req_rate = 0; 369 mmc->actual_clock = 0; 370 371 /* return with clock being stopped */ 372 if (!rate) 373 return 0; 374 375 /* Stop the clock during rate change to avoid glitches */ 376 cfg = readl(host->regs + SD_EMMC_CFG); 377 cfg |= CFG_STOP_CLOCK; 378 writel(cfg, host->regs + SD_EMMC_CFG); 379 380 if (ddr) { 381 /* DDR modes require higher module clock */ 382 rate <<= 1; 383 cfg |= CFG_DDR; 384 } else { 385 cfg &= ~CFG_DDR; 386 } 387 writel(cfg, host->regs + SD_EMMC_CFG); 388 host->ddr = ddr; 389 390 ret = clk_set_rate(host->mmc_clk, rate); 391 if (ret) { 392 dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n", 393 rate, ret); 394 return ret; 395 } 396 397 host->req_rate = rate; 398 mmc->actual_clock = clk_get_rate(host->mmc_clk); 399 400 /* We should report the real output frequency of the controller */ 401 if (ddr) { 402 host->req_rate >>= 1; 403 mmc->actual_clock >>= 1; 404 } 405 406 dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock); 407 if (rate != mmc->actual_clock) 408 dev_dbg(host->dev, "requested rate was %lu\n", rate); 409 410 /* (re)start clock */ 411 meson_mmc_clk_ungate(host); 412 413 return 0; 414 } 415 416 /* 417 * The SD/eMMC IP block has an internal mux and divider used for 418 * generating the MMC clock. Use the clock framework to create and 419 * manage these clocks. 420 */ 421 static int meson_mmc_clk_init(struct meson_host *host) 422 { 423 struct clk_init_data init; 424 struct clk_mux *mux; 425 struct clk_divider *div; 426 char clk_name[32]; 427 int i, ret = 0; 428 const char *mux_parent_names[MUX_CLK_NUM_PARENTS]; 429 const char *clk_parent[1]; 430 u32 clk_reg; 431 432 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */ 433 clk_reg = CLK_ALWAYS_ON(host); 434 clk_reg |= CLK_DIV_MASK; 435 clk_reg |= FIELD_PREP(CLK_CORE_PHASE_MASK, CLK_PHASE_180); 436 clk_reg |= FIELD_PREP(CLK_TX_PHASE_MASK, CLK_PHASE_0); 437 clk_reg |= FIELD_PREP(CLK_RX_PHASE_MASK, CLK_PHASE_0); 438 clk_reg |= CLK_IRQ_SDIO_SLEEP(host); 439 writel(clk_reg, host->regs + SD_EMMC_CLOCK); 440 441 /* get the mux parents */ 442 for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) { 443 struct clk *clk; 444 char name[16]; 445 446 snprintf(name, sizeof(name), "clkin%d", i); 447 clk = devm_clk_get(host->dev, name); 448 if (IS_ERR(clk)) 449 return dev_err_probe(host->dev, PTR_ERR(clk), 450 "Missing clock %s\n", name); 451 452 mux_parent_names[i] = __clk_get_name(clk); 453 } 454 455 /* create the mux */ 456 mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL); 457 if (!mux) 458 return -ENOMEM; 459 460 snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev)); 461 init.name = clk_name; 462 init.ops = &clk_mux_ops; 463 init.flags = 0; 464 init.parent_names = mux_parent_names; 465 init.num_parents = MUX_CLK_NUM_PARENTS; 466 467 mux->reg = host->regs + SD_EMMC_CLOCK; 468 mux->shift = __ffs(CLK_SRC_MASK); 469 mux->mask = CLK_SRC_MASK >> mux->shift; 470 mux->hw.init = &init; 471 472 host->mux_clk = devm_clk_register(host->dev, &mux->hw); 473 if (WARN_ON(IS_ERR(host->mux_clk))) 474 return PTR_ERR(host->mux_clk); 475 476 /* create the divider */ 477 div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL); 478 if (!div) 479 return -ENOMEM; 480 481 snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev)); 482 init.name = clk_name; 483 init.ops = &clk_divider_ops; 484 init.flags = CLK_SET_RATE_PARENT; 485 clk_parent[0] = __clk_get_name(host->mux_clk); 486 init.parent_names = clk_parent; 487 init.num_parents = 1; 488 489 div->reg = host->regs + SD_EMMC_CLOCK; 490 div->shift = __ffs(CLK_DIV_MASK); 491 div->width = __builtin_popcountl(CLK_DIV_MASK); 492 div->hw.init = &init; 493 div->flags = CLK_DIVIDER_ONE_BASED; 494 495 host->mmc_clk = devm_clk_register(host->dev, &div->hw); 496 if (WARN_ON(IS_ERR(host->mmc_clk))) 497 return PTR_ERR(host->mmc_clk); 498 499 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */ 500 host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000); 501 ret = clk_set_rate(host->mmc_clk, host->mmc->f_min); 502 if (ret) 503 return ret; 504 505 return clk_prepare_enable(host->mmc_clk); 506 } 507 508 static void meson_mmc_disable_resampling(struct meson_host *host) 509 { 510 unsigned int val = readl(host->regs + host->data->adjust); 511 512 val &= ~ADJUST_ADJ_EN; 513 writel(val, host->regs + host->data->adjust); 514 } 515 516 static void meson_mmc_reset_resampling(struct meson_host *host) 517 { 518 unsigned int val; 519 520 meson_mmc_disable_resampling(host); 521 522 val = readl(host->regs + host->data->adjust); 523 val &= ~ADJUST_ADJ_DELAY_MASK; 524 writel(val, host->regs + host->data->adjust); 525 } 526 527 static int meson_mmc_resampling_tuning(struct mmc_host *mmc, u32 opcode) 528 { 529 struct meson_host *host = mmc_priv(mmc); 530 unsigned int val, dly, max_dly, i; 531 int ret; 532 533 /* Resampling is done using the source clock */ 534 max_dly = DIV_ROUND_UP(clk_get_rate(host->mux_clk), 535 clk_get_rate(host->mmc_clk)); 536 537 val = readl(host->regs + host->data->adjust); 538 val |= ADJUST_ADJ_EN; 539 writel(val, host->regs + host->data->adjust); 540 541 if (mmc_doing_retune(mmc)) 542 dly = FIELD_GET(ADJUST_ADJ_DELAY_MASK, val) + 1; 543 else 544 dly = 0; 545 546 for (i = 0; i < max_dly; i++) { 547 val &= ~ADJUST_ADJ_DELAY_MASK; 548 val |= FIELD_PREP(ADJUST_ADJ_DELAY_MASK, (dly + i) % max_dly); 549 writel(val, host->regs + host->data->adjust); 550 551 ret = mmc_send_tuning(mmc, opcode, NULL); 552 if (!ret) { 553 dev_dbg(mmc_dev(mmc), "resampling delay: %u\n", 554 (dly + i) % max_dly); 555 return 0; 556 } 557 } 558 559 meson_mmc_reset_resampling(host); 560 return -EIO; 561 } 562 563 static int meson_mmc_prepare_ios_clock(struct meson_host *host, 564 struct mmc_ios *ios) 565 { 566 bool ddr; 567 568 switch (ios->timing) { 569 case MMC_TIMING_MMC_DDR52: 570 case MMC_TIMING_UHS_DDR50: 571 ddr = true; 572 break; 573 574 default: 575 ddr = false; 576 break; 577 } 578 579 return meson_mmc_clk_set(host, ios->clock, ddr); 580 } 581 582 static void meson_mmc_check_resampling(struct meson_host *host, 583 struct mmc_ios *ios) 584 { 585 switch (ios->timing) { 586 case MMC_TIMING_LEGACY: 587 case MMC_TIMING_MMC_HS: 588 case MMC_TIMING_SD_HS: 589 case MMC_TIMING_MMC_DDR52: 590 meson_mmc_disable_resampling(host); 591 break; 592 } 593 } 594 595 static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 596 { 597 struct meson_host *host = mmc_priv(mmc); 598 u32 bus_width, val; 599 int err; 600 601 /* 602 * GPIO regulator, only controls switching between 1v8 and 603 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON. 604 */ 605 switch (ios->power_mode) { 606 case MMC_POWER_OFF: 607 if (!IS_ERR(mmc->supply.vmmc)) 608 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 609 610 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) { 611 regulator_disable(mmc->supply.vqmmc); 612 host->vqmmc_enabled = false; 613 } 614 615 break; 616 617 case MMC_POWER_UP: 618 if (!IS_ERR(mmc->supply.vmmc)) 619 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); 620 621 break; 622 623 case MMC_POWER_ON: 624 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) { 625 int ret = regulator_enable(mmc->supply.vqmmc); 626 627 if (ret < 0) 628 dev_err(host->dev, 629 "failed to enable vqmmc regulator\n"); 630 else 631 host->vqmmc_enabled = true; 632 } 633 634 break; 635 } 636 637 /* Bus width */ 638 switch (ios->bus_width) { 639 case MMC_BUS_WIDTH_1: 640 bus_width = CFG_BUS_WIDTH_1; 641 break; 642 case MMC_BUS_WIDTH_4: 643 bus_width = CFG_BUS_WIDTH_4; 644 break; 645 case MMC_BUS_WIDTH_8: 646 bus_width = CFG_BUS_WIDTH_8; 647 break; 648 default: 649 dev_err(host->dev, "Invalid ios->bus_width: %u. Setting to 4.\n", 650 ios->bus_width); 651 bus_width = CFG_BUS_WIDTH_4; 652 } 653 654 val = readl(host->regs + SD_EMMC_CFG); 655 val &= ~CFG_BUS_WIDTH_MASK; 656 val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width); 657 writel(val, host->regs + SD_EMMC_CFG); 658 659 meson_mmc_check_resampling(host, ios); 660 err = meson_mmc_prepare_ios_clock(host, ios); 661 if (err) 662 dev_err(host->dev, "Failed to set clock: %d\n,", err); 663 664 dev_dbg(host->dev, "SD_EMMC_CFG: 0x%08x\n", val); 665 } 666 667 static void meson_mmc_request_done(struct mmc_host *mmc, 668 struct mmc_request *mrq) 669 { 670 struct meson_host *host = mmc_priv(mmc); 671 672 host->cmd = NULL; 673 if (host->needs_pre_post_req) 674 meson_mmc_post_req(mmc, mrq, 0); 675 mmc_request_done(host->mmc, mrq); 676 } 677 678 static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz) 679 { 680 struct meson_host *host = mmc_priv(mmc); 681 u32 cfg, blksz_old; 682 683 cfg = readl(host->regs + SD_EMMC_CFG); 684 blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg); 685 686 if (!is_power_of_2(blksz)) 687 dev_err(host->dev, "blksz %u is not a power of 2\n", blksz); 688 689 blksz = ilog2(blksz); 690 691 /* check if block-size matches, if not update */ 692 if (blksz == blksz_old) 693 return; 694 695 dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__, 696 blksz_old, blksz); 697 698 cfg &= ~CFG_BLK_LEN_MASK; 699 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz); 700 writel(cfg, host->regs + SD_EMMC_CFG); 701 } 702 703 static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg) 704 { 705 if (cmd->flags & MMC_RSP_PRESENT) { 706 if (cmd->flags & MMC_RSP_136) 707 *cmd_cfg |= CMD_CFG_RESP_128; 708 *cmd_cfg |= CMD_CFG_RESP_NUM; 709 710 if (!(cmd->flags & MMC_RSP_CRC)) 711 *cmd_cfg |= CMD_CFG_RESP_NOCRC; 712 713 if (cmd->flags & MMC_RSP_BUSY) 714 *cmd_cfg |= CMD_CFG_R1B; 715 } else { 716 *cmd_cfg |= CMD_CFG_NO_RESP; 717 } 718 } 719 720 static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg) 721 { 722 struct meson_host *host = mmc_priv(mmc); 723 struct sd_emmc_desc *desc = host->descs; 724 struct mmc_data *data = host->cmd->data; 725 struct scatterlist *sg; 726 u32 start; 727 int i; 728 729 if (data->flags & MMC_DATA_WRITE) 730 cmd_cfg |= CMD_CFG_DATA_WR; 731 732 if (data->blocks > 1) { 733 cmd_cfg |= CMD_CFG_BLOCK_MODE; 734 meson_mmc_set_blksz(mmc, data->blksz); 735 } 736 737 for_each_sg(data->sg, sg, data->sg_count, i) { 738 unsigned int len = sg_dma_len(sg); 739 740 if (data->blocks > 1) 741 len /= data->blksz; 742 743 desc[i].cmd_cfg = cmd_cfg; 744 desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len); 745 if (i > 0) 746 desc[i].cmd_cfg |= CMD_CFG_NO_CMD; 747 desc[i].cmd_arg = host->cmd->arg; 748 desc[i].cmd_resp = 0; 749 desc[i].cmd_data = sg_dma_address(sg); 750 } 751 desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN; 752 753 dma_wmb(); /* ensure descriptor is written before kicked */ 754 start = host->descs_dma_addr | START_DESC_BUSY; 755 writel(start, host->regs + SD_EMMC_START); 756 } 757 758 /* local sg copy for dram_access_quirk */ 759 static void meson_mmc_copy_buffer(struct meson_host *host, struct mmc_data *data, 760 size_t buflen, bool to_buffer) 761 { 762 unsigned int sg_flags = SG_MITER_ATOMIC; 763 struct scatterlist *sgl = data->sg; 764 unsigned int nents = data->sg_len; 765 struct sg_mapping_iter miter; 766 unsigned int offset = 0; 767 768 if (to_buffer) 769 sg_flags |= SG_MITER_FROM_SG; 770 else 771 sg_flags |= SG_MITER_TO_SG; 772 773 sg_miter_start(&miter, sgl, nents, sg_flags); 774 775 while ((offset < buflen) && sg_miter_next(&miter)) { 776 unsigned int buf_offset = 0; 777 unsigned int len, left; 778 u32 *buf = miter.addr; 779 780 len = min(miter.length, buflen - offset); 781 left = len; 782 783 if (to_buffer) { 784 do { 785 writel(*buf++, host->bounce_iomem_buf + offset + buf_offset); 786 787 buf_offset += 4; 788 left -= 4; 789 } while (left); 790 } else { 791 do { 792 *buf++ = readl(host->bounce_iomem_buf + offset + buf_offset); 793 794 buf_offset += 4; 795 left -= 4; 796 } while (left); 797 } 798 799 offset += len; 800 } 801 802 sg_miter_stop(&miter); 803 } 804 805 static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd) 806 { 807 struct meson_host *host = mmc_priv(mmc); 808 struct mmc_data *data = cmd->data; 809 u32 cmd_cfg = 0, cmd_data = 0; 810 unsigned int xfer_bytes = 0; 811 812 /* Setup descriptors */ 813 dma_rmb(); 814 815 host->cmd = cmd; 816 817 cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode); 818 cmd_cfg |= CMD_CFG_OWNER; /* owned by CPU */ 819 cmd_cfg |= CMD_CFG_ERROR; /* stop in case of error */ 820 821 meson_mmc_set_response_bits(cmd, &cmd_cfg); 822 823 /* data? */ 824 if (data) { 825 data->bytes_xfered = 0; 826 cmd_cfg |= CMD_CFG_DATA_IO; 827 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK, 828 ilog2(meson_mmc_get_timeout_msecs(data))); 829 830 if (meson_mmc_desc_chain_mode(data)) { 831 meson_mmc_desc_chain_transfer(mmc, cmd_cfg); 832 return; 833 } 834 835 if (data->blocks > 1) { 836 cmd_cfg |= CMD_CFG_BLOCK_MODE; 837 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, 838 data->blocks); 839 meson_mmc_set_blksz(mmc, data->blksz); 840 } else { 841 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz); 842 } 843 844 xfer_bytes = data->blksz * data->blocks; 845 if (data->flags & MMC_DATA_WRITE) { 846 cmd_cfg |= CMD_CFG_DATA_WR; 847 WARN_ON(xfer_bytes > host->bounce_buf_size); 848 if (host->dram_access_quirk) 849 meson_mmc_copy_buffer(host, data, xfer_bytes, true); 850 else 851 sg_copy_to_buffer(data->sg, data->sg_len, 852 host->bounce_buf, xfer_bytes); 853 dma_wmb(); 854 } 855 856 cmd_data = host->bounce_dma_addr & CMD_DATA_MASK; 857 } else { 858 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK, 859 ilog2(SD_EMMC_CMD_TIMEOUT)); 860 } 861 862 /* Last descriptor */ 863 cmd_cfg |= CMD_CFG_END_OF_CHAIN; 864 writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG); 865 writel(cmd_data, host->regs + SD_EMMC_CMD_DAT); 866 writel(0, host->regs + SD_EMMC_CMD_RSP); 867 wmb(); /* ensure descriptor is written before kicked */ 868 writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG); 869 } 870 871 static int meson_mmc_validate_dram_access(struct mmc_host *mmc, struct mmc_data *data) 872 { 873 struct scatterlist *sg; 874 int i; 875 876 /* Reject request if any element offset or size is not 32bit aligned */ 877 for_each_sg(data->sg, sg, data->sg_len, i) { 878 if (!IS_ALIGNED(sg->offset, sizeof(u32)) || 879 !IS_ALIGNED(sg->length, sizeof(u32))) { 880 dev_err(mmc_dev(mmc), "unaligned sg offset %u len %u\n", 881 data->sg->offset, data->sg->length); 882 return -EINVAL; 883 } 884 } 885 886 return 0; 887 } 888 889 static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq) 890 { 891 struct meson_host *host = mmc_priv(mmc); 892 host->needs_pre_post_req = mrq->data && 893 !(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE); 894 895 /* 896 * The memory at the end of the controller used as bounce buffer for 897 * the dram_access_quirk only accepts 32bit read/write access, 898 * check the aligment and length of the data before starting the request. 899 */ 900 if (host->dram_access_quirk && mrq->data) { 901 mrq->cmd->error = meson_mmc_validate_dram_access(mmc, mrq->data); 902 if (mrq->cmd->error) { 903 mmc_request_done(mmc, mrq); 904 return; 905 } 906 } 907 908 if (host->needs_pre_post_req) { 909 meson_mmc_get_transfer_mode(mmc, mrq); 910 if (!meson_mmc_desc_chain_mode(mrq->data)) 911 host->needs_pre_post_req = false; 912 } 913 914 if (host->needs_pre_post_req) 915 meson_mmc_pre_req(mmc, mrq); 916 917 /* Stop execution */ 918 writel(0, host->regs + SD_EMMC_START); 919 920 meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd); 921 } 922 923 static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd) 924 { 925 struct meson_host *host = mmc_priv(mmc); 926 927 if (cmd->flags & MMC_RSP_136) { 928 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3); 929 cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2); 930 cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1); 931 cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP); 932 } else if (cmd->flags & MMC_RSP_PRESENT) { 933 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP); 934 } 935 } 936 937 static void __meson_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable) 938 { 939 struct meson_host *host = mmc_priv(mmc); 940 u32 reg_irqen = IRQ_EN_MASK; 941 942 if (enable) 943 reg_irqen |= IRQ_SDIO; 944 writel(reg_irqen, host->regs + SD_EMMC_IRQ_EN); 945 } 946 947 static irqreturn_t meson_mmc_irq(int irq, void *dev_id) 948 { 949 struct meson_host *host = dev_id; 950 struct mmc_command *cmd; 951 u32 status, raw_status; 952 irqreturn_t ret = IRQ_NONE; 953 954 raw_status = readl(host->regs + SD_EMMC_STATUS); 955 status = raw_status & (IRQ_EN_MASK | IRQ_SDIO); 956 957 if (!status) { 958 dev_dbg(host->dev, 959 "Unexpected IRQ! irq_en 0x%08lx - status 0x%08x\n", 960 IRQ_EN_MASK | IRQ_SDIO, raw_status); 961 return IRQ_NONE; 962 } 963 964 if (WARN_ON(!host)) 965 return IRQ_NONE; 966 967 /* ack all raised interrupts */ 968 writel(status, host->regs + SD_EMMC_STATUS); 969 970 cmd = host->cmd; 971 972 if (status & IRQ_SDIO) { 973 spin_lock(&host->lock); 974 __meson_mmc_enable_sdio_irq(host->mmc, 0); 975 sdio_signal_irq(host->mmc); 976 spin_unlock(&host->lock); 977 status &= ~IRQ_SDIO; 978 if (!status) 979 return IRQ_HANDLED; 980 } 981 982 if (WARN_ON(!cmd)) 983 return IRQ_NONE; 984 985 cmd->error = 0; 986 if (status & IRQ_CRC_ERR) { 987 dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status); 988 cmd->error = -EILSEQ; 989 ret = IRQ_WAKE_THREAD; 990 goto out; 991 } 992 993 if (status & IRQ_TIMEOUTS) { 994 dev_dbg(host->dev, "Timeout - status 0x%08x\n", status); 995 cmd->error = -ETIMEDOUT; 996 ret = IRQ_WAKE_THREAD; 997 goto out; 998 } 999 1000 meson_mmc_read_resp(host->mmc, cmd); 1001 1002 if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) { 1003 struct mmc_data *data = cmd->data; 1004 1005 if (data && !cmd->error) 1006 data->bytes_xfered = data->blksz * data->blocks; 1007 if (meson_mmc_bounce_buf_read(data) || 1008 meson_mmc_get_next_command(cmd)) 1009 ret = IRQ_WAKE_THREAD; 1010 else 1011 ret = IRQ_HANDLED; 1012 } 1013 1014 out: 1015 if (cmd->error) { 1016 /* Stop desc in case of errors */ 1017 u32 start = readl(host->regs + SD_EMMC_START); 1018 1019 start &= ~START_DESC_BUSY; 1020 writel(start, host->regs + SD_EMMC_START); 1021 } 1022 1023 if (ret == IRQ_HANDLED) 1024 meson_mmc_request_done(host->mmc, cmd->mrq); 1025 1026 return ret; 1027 } 1028 1029 static int meson_mmc_wait_desc_stop(struct meson_host *host) 1030 { 1031 u32 status; 1032 1033 /* 1034 * It may sometimes take a while for it to actually halt. Here, we 1035 * are giving it 5ms to comply 1036 * 1037 * If we don't confirm the descriptor is stopped, it might raise new 1038 * IRQs after we have called mmc_request_done() which is bad. 1039 */ 1040 1041 return readl_poll_timeout(host->regs + SD_EMMC_STATUS, status, 1042 !(status & (STATUS_BUSY | STATUS_DESC_BUSY)), 1043 100, 5000); 1044 } 1045 1046 static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id) 1047 { 1048 struct meson_host *host = dev_id; 1049 struct mmc_command *next_cmd, *cmd = host->cmd; 1050 struct mmc_data *data; 1051 unsigned int xfer_bytes; 1052 1053 if (WARN_ON(!cmd)) 1054 return IRQ_NONE; 1055 1056 if (cmd->error) { 1057 meson_mmc_wait_desc_stop(host); 1058 meson_mmc_request_done(host->mmc, cmd->mrq); 1059 1060 return IRQ_HANDLED; 1061 } 1062 1063 data = cmd->data; 1064 if (meson_mmc_bounce_buf_read(data)) { 1065 xfer_bytes = data->blksz * data->blocks; 1066 WARN_ON(xfer_bytes > host->bounce_buf_size); 1067 if (host->dram_access_quirk) 1068 meson_mmc_copy_buffer(host, data, xfer_bytes, false); 1069 else 1070 sg_copy_from_buffer(data->sg, data->sg_len, 1071 host->bounce_buf, xfer_bytes); 1072 } 1073 1074 next_cmd = meson_mmc_get_next_command(cmd); 1075 if (next_cmd) 1076 meson_mmc_start_cmd(host->mmc, next_cmd); 1077 else 1078 meson_mmc_request_done(host->mmc, cmd->mrq); 1079 1080 return IRQ_HANDLED; 1081 } 1082 1083 /* 1084 * NOTE: we only need this until the GPIO/pinctrl driver can handle 1085 * interrupts. For now, the MMC core will use this for polling. 1086 */ 1087 static int meson_mmc_get_cd(struct mmc_host *mmc) 1088 { 1089 int status = mmc_gpio_get_cd(mmc); 1090 1091 if (status == -ENOSYS) 1092 return 1; /* assume present */ 1093 1094 return status; 1095 } 1096 1097 static void meson_mmc_cfg_init(struct meson_host *host) 1098 { 1099 u32 cfg = 0; 1100 1101 cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK, 1102 ilog2(SD_EMMC_CFG_RESP_TIMEOUT)); 1103 cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP)); 1104 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE)); 1105 1106 /* abort chain on R/W errors */ 1107 cfg |= CFG_ERR_ABORT; 1108 1109 writel(cfg, host->regs + SD_EMMC_CFG); 1110 } 1111 1112 static int meson_mmc_card_busy(struct mmc_host *mmc) 1113 { 1114 struct meson_host *host = mmc_priv(mmc); 1115 u32 regval; 1116 1117 regval = readl(host->regs + SD_EMMC_STATUS); 1118 1119 /* We are only interrested in lines 0 to 3, so mask the other ones */ 1120 return !(FIELD_GET(STATUS_DATI, regval) & 0xf); 1121 } 1122 1123 static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios) 1124 { 1125 int ret; 1126 1127 /* vqmmc regulator is available */ 1128 if (!IS_ERR(mmc->supply.vqmmc)) { 1129 /* 1130 * The usual amlogic setup uses a GPIO to switch from one 1131 * regulator to the other. While the voltage ramp up is 1132 * pretty fast, care must be taken when switching from 3.3v 1133 * to 1.8v. Please make sure the regulator framework is aware 1134 * of your own regulator constraints 1135 */ 1136 ret = mmc_regulator_set_vqmmc(mmc, ios); 1137 return ret < 0 ? ret : 0; 1138 } 1139 1140 /* no vqmmc regulator, assume fixed regulator at 3/3.3V */ 1141 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) 1142 return 0; 1143 1144 return -EINVAL; 1145 } 1146 1147 static void meson_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable) 1148 { 1149 struct meson_host *host = mmc_priv(mmc); 1150 unsigned long flags; 1151 1152 spin_lock_irqsave(&host->lock, flags); 1153 __meson_mmc_enable_sdio_irq(mmc, enable); 1154 spin_unlock_irqrestore(&host->lock, flags); 1155 } 1156 1157 static void meson_mmc_ack_sdio_irq(struct mmc_host *mmc) 1158 { 1159 meson_mmc_enable_sdio_irq(mmc, 1); 1160 } 1161 1162 static const struct mmc_host_ops meson_mmc_ops = { 1163 .request = meson_mmc_request, 1164 .set_ios = meson_mmc_set_ios, 1165 .get_cd = meson_mmc_get_cd, 1166 .pre_req = meson_mmc_pre_req, 1167 .post_req = meson_mmc_post_req, 1168 .execute_tuning = meson_mmc_resampling_tuning, 1169 .card_busy = meson_mmc_card_busy, 1170 .start_signal_voltage_switch = meson_mmc_voltage_switch, 1171 .enable_sdio_irq = meson_mmc_enable_sdio_irq, 1172 .ack_sdio_irq = meson_mmc_ack_sdio_irq, 1173 }; 1174 1175 static int meson_mmc_probe(struct platform_device *pdev) 1176 { 1177 struct resource *res; 1178 struct meson_host *host; 1179 struct mmc_host *mmc; 1180 int ret; 1181 1182 mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev); 1183 if (!mmc) 1184 return -ENOMEM; 1185 host = mmc_priv(mmc); 1186 host->mmc = mmc; 1187 host->dev = &pdev->dev; 1188 dev_set_drvdata(&pdev->dev, host); 1189 1190 /* The G12A SDIO Controller needs an SRAM bounce buffer */ 1191 host->dram_access_quirk = device_property_read_bool(&pdev->dev, 1192 "amlogic,dram-access-quirk"); 1193 1194 /* Get regulators and the supported OCR mask */ 1195 host->vqmmc_enabled = false; 1196 ret = mmc_regulator_get_supply(mmc); 1197 if (ret) 1198 goto free_host; 1199 1200 ret = mmc_of_parse(mmc); 1201 if (ret) { 1202 if (ret != -EPROBE_DEFER) 1203 dev_warn(&pdev->dev, "error parsing DT: %d\n", ret); 1204 goto free_host; 1205 } 1206 1207 host->data = (struct meson_mmc_data *) 1208 of_device_get_match_data(&pdev->dev); 1209 if (!host->data) { 1210 ret = -EINVAL; 1211 goto free_host; 1212 } 1213 1214 ret = device_reset_optional(&pdev->dev); 1215 if (ret) { 1216 dev_err_probe(&pdev->dev, ret, "device reset failed\n"); 1217 goto free_host; 1218 } 1219 1220 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1221 host->regs = devm_ioremap_resource(&pdev->dev, res); 1222 if (IS_ERR(host->regs)) { 1223 ret = PTR_ERR(host->regs); 1224 goto free_host; 1225 } 1226 1227 host->irq = platform_get_irq(pdev, 0); 1228 if (host->irq <= 0) { 1229 ret = -EINVAL; 1230 goto free_host; 1231 } 1232 1233 host->pinctrl = devm_pinctrl_get(&pdev->dev); 1234 if (IS_ERR(host->pinctrl)) { 1235 ret = PTR_ERR(host->pinctrl); 1236 goto free_host; 1237 } 1238 1239 host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl, 1240 "clk-gate"); 1241 if (IS_ERR(host->pins_clk_gate)) { 1242 dev_warn(&pdev->dev, 1243 "can't get clk-gate pinctrl, using clk_stop bit\n"); 1244 host->pins_clk_gate = NULL; 1245 } 1246 1247 host->core_clk = devm_clk_get(&pdev->dev, "core"); 1248 if (IS_ERR(host->core_clk)) { 1249 ret = PTR_ERR(host->core_clk); 1250 goto free_host; 1251 } 1252 1253 ret = clk_prepare_enable(host->core_clk); 1254 if (ret) 1255 goto free_host; 1256 1257 ret = meson_mmc_clk_init(host); 1258 if (ret) 1259 goto err_core_clk; 1260 1261 /* set config to sane default */ 1262 meson_mmc_cfg_init(host); 1263 1264 /* Stop execution */ 1265 writel(0, host->regs + SD_EMMC_START); 1266 1267 /* clear, ack and enable interrupts */ 1268 writel(0, host->regs + SD_EMMC_IRQ_EN); 1269 writel(IRQ_EN_MASK, host->regs + SD_EMMC_STATUS); 1270 writel(IRQ_EN_MASK, host->regs + SD_EMMC_IRQ_EN); 1271 1272 ret = request_threaded_irq(host->irq, meson_mmc_irq, 1273 meson_mmc_irq_thread, IRQF_ONESHOT, 1274 dev_name(&pdev->dev), host); 1275 if (ret) 1276 goto err_init_clk; 1277 1278 spin_lock_init(&host->lock); 1279 1280 mmc->caps |= MMC_CAP_CMD23; 1281 1282 if (mmc->caps & MMC_CAP_SDIO_IRQ) 1283 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD; 1284 1285 if (host->dram_access_quirk) { 1286 /* Limit segments to 1 due to low available sram memory */ 1287 mmc->max_segs = 1; 1288 /* Limit to the available sram memory */ 1289 mmc->max_blk_count = SD_EMMC_SRAM_DATA_BUF_LEN / 1290 mmc->max_blk_size; 1291 } else { 1292 mmc->max_blk_count = CMD_CFG_LENGTH_MASK; 1293 mmc->max_segs = SD_EMMC_DESC_BUF_LEN / 1294 sizeof(struct sd_emmc_desc); 1295 } 1296 mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size; 1297 mmc->max_seg_size = mmc->max_req_size; 1298 1299 /* 1300 * At the moment, we don't know how to reliably enable HS400. 1301 * From the different datasheets, it is not even clear if this mode 1302 * is officially supported by any of the SoCs 1303 */ 1304 mmc->caps2 &= ~MMC_CAP2_HS400; 1305 1306 if (host->dram_access_quirk) { 1307 /* 1308 * The MMC Controller embeds 1,5KiB of internal SRAM 1309 * that can be used to be used as bounce buffer. 1310 * In the case of the G12A SDIO controller, use these 1311 * instead of the DDR memory 1312 */ 1313 host->bounce_buf_size = SD_EMMC_SRAM_DATA_BUF_LEN; 1314 host->bounce_iomem_buf = host->regs + SD_EMMC_SRAM_DATA_BUF_OFF; 1315 host->bounce_dma_addr = res->start + SD_EMMC_SRAM_DATA_BUF_OFF; 1316 } else { 1317 /* data bounce buffer */ 1318 host->bounce_buf_size = mmc->max_req_size; 1319 host->bounce_buf = 1320 dmam_alloc_coherent(host->dev, host->bounce_buf_size, 1321 &host->bounce_dma_addr, GFP_KERNEL); 1322 if (host->bounce_buf == NULL) { 1323 dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n"); 1324 ret = -ENOMEM; 1325 goto err_free_irq; 1326 } 1327 } 1328 1329 host->descs = dmam_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN, 1330 &host->descs_dma_addr, GFP_KERNEL); 1331 if (!host->descs) { 1332 dev_err(host->dev, "Allocating descriptor DMA buffer failed\n"); 1333 ret = -ENOMEM; 1334 goto err_free_irq; 1335 } 1336 1337 mmc->ops = &meson_mmc_ops; 1338 mmc_add_host(mmc); 1339 1340 return 0; 1341 1342 err_free_irq: 1343 free_irq(host->irq, host); 1344 err_init_clk: 1345 clk_disable_unprepare(host->mmc_clk); 1346 err_core_clk: 1347 clk_disable_unprepare(host->core_clk); 1348 free_host: 1349 mmc_free_host(mmc); 1350 return ret; 1351 } 1352 1353 static int meson_mmc_remove(struct platform_device *pdev) 1354 { 1355 struct meson_host *host = dev_get_drvdata(&pdev->dev); 1356 1357 mmc_remove_host(host->mmc); 1358 1359 /* disable interrupts */ 1360 writel(0, host->regs + SD_EMMC_IRQ_EN); 1361 free_irq(host->irq, host); 1362 1363 clk_disable_unprepare(host->mmc_clk); 1364 clk_disable_unprepare(host->core_clk); 1365 1366 mmc_free_host(host->mmc); 1367 return 0; 1368 } 1369 1370 static const struct meson_mmc_data meson_gx_data = { 1371 .tx_delay_mask = CLK_V2_TX_DELAY_MASK, 1372 .rx_delay_mask = CLK_V2_RX_DELAY_MASK, 1373 .always_on = CLK_V2_ALWAYS_ON, 1374 .adjust = SD_EMMC_ADJUST, 1375 .irq_sdio_sleep = CLK_V2_IRQ_SDIO_SLEEP, 1376 }; 1377 1378 static const struct meson_mmc_data meson_axg_data = { 1379 .tx_delay_mask = CLK_V3_TX_DELAY_MASK, 1380 .rx_delay_mask = CLK_V3_RX_DELAY_MASK, 1381 .always_on = CLK_V3_ALWAYS_ON, 1382 .adjust = SD_EMMC_V3_ADJUST, 1383 .irq_sdio_sleep = CLK_V3_IRQ_SDIO_SLEEP, 1384 }; 1385 1386 static const struct of_device_id meson_mmc_of_match[] = { 1387 { .compatible = "amlogic,meson-gx-mmc", .data = &meson_gx_data }, 1388 { .compatible = "amlogic,meson-gxbb-mmc", .data = &meson_gx_data }, 1389 { .compatible = "amlogic,meson-gxl-mmc", .data = &meson_gx_data }, 1390 { .compatible = "amlogic,meson-gxm-mmc", .data = &meson_gx_data }, 1391 { .compatible = "amlogic,meson-axg-mmc", .data = &meson_axg_data }, 1392 {} 1393 }; 1394 MODULE_DEVICE_TABLE(of, meson_mmc_of_match); 1395 1396 static struct platform_driver meson_mmc_driver = { 1397 .probe = meson_mmc_probe, 1398 .remove = meson_mmc_remove, 1399 .driver = { 1400 .name = DRIVER_NAME, 1401 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 1402 .of_match_table = meson_mmc_of_match, 1403 }, 1404 }; 1405 1406 module_platform_driver(meson_mmc_driver); 1407 1408 MODULE_DESCRIPTION("Amlogic S905*/GX*/AXG SD/eMMC driver"); 1409 MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>"); 1410 MODULE_LICENSE("GPL v2"); 1411