xref: /openbmc/linux/drivers/mmc/host/meson-gx-mmc.c (revision 70a59dd8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Amlogic SD/eMMC driver for the GX/S905 family SoCs
4  *
5  * Copyright (c) 2016 BayLibre, SAS.
6  * Author: Kevin Hilman <khilman@baylibre.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/iopoll.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/ioport.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/mmc/host.h>
19 #include <linux/mmc/mmc.h>
20 #include <linux/mmc/sdio.h>
21 #include <linux/mmc/slot-gpio.h>
22 #include <linux/io.h>
23 #include <linux/clk.h>
24 #include <linux/clk-provider.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/reset.h>
27 #include <linux/interrupt.h>
28 #include <linux/bitfield.h>
29 #include <linux/pinctrl/consumer.h>
30 
31 #define DRIVER_NAME "meson-gx-mmc"
32 
33 #define SD_EMMC_CLOCK 0x0
34 #define   CLK_DIV_MASK GENMASK(5, 0)
35 #define   CLK_SRC_MASK GENMASK(7, 6)
36 #define   CLK_CORE_PHASE_MASK GENMASK(9, 8)
37 #define   CLK_TX_PHASE_MASK GENMASK(11, 10)
38 #define   CLK_RX_PHASE_MASK GENMASK(13, 12)
39 #define   CLK_PHASE_0 0
40 #define   CLK_PHASE_180 2
41 #define   CLK_V2_TX_DELAY_MASK GENMASK(19, 16)
42 #define   CLK_V2_RX_DELAY_MASK GENMASK(23, 20)
43 #define   CLK_V2_ALWAYS_ON BIT(24)
44 
45 #define   CLK_V3_TX_DELAY_MASK GENMASK(21, 16)
46 #define   CLK_V3_RX_DELAY_MASK GENMASK(27, 22)
47 #define   CLK_V3_ALWAYS_ON BIT(28)
48 
49 #define   CLK_TX_DELAY_MASK(h)		(h->data->tx_delay_mask)
50 #define   CLK_RX_DELAY_MASK(h)		(h->data->rx_delay_mask)
51 #define   CLK_ALWAYS_ON(h)		(h->data->always_on)
52 
53 #define SD_EMMC_DELAY 0x4
54 #define SD_EMMC_ADJUST 0x8
55 #define   ADJUST_ADJ_DELAY_MASK GENMASK(21, 16)
56 #define   ADJUST_DS_EN BIT(15)
57 #define   ADJUST_ADJ_EN BIT(13)
58 
59 #define SD_EMMC_DELAY1 0x4
60 #define SD_EMMC_DELAY2 0x8
61 #define SD_EMMC_V3_ADJUST 0xc
62 
63 #define SD_EMMC_CALOUT 0x10
64 #define SD_EMMC_START 0x40
65 #define   START_DESC_INIT BIT(0)
66 #define   START_DESC_BUSY BIT(1)
67 #define   START_DESC_ADDR_MASK GENMASK(31, 2)
68 
69 #define SD_EMMC_CFG 0x44
70 #define   CFG_BUS_WIDTH_MASK GENMASK(1, 0)
71 #define   CFG_BUS_WIDTH_1 0x0
72 #define   CFG_BUS_WIDTH_4 0x1
73 #define   CFG_BUS_WIDTH_8 0x2
74 #define   CFG_DDR BIT(2)
75 #define   CFG_BLK_LEN_MASK GENMASK(7, 4)
76 #define   CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
77 #define   CFG_RC_CC_MASK GENMASK(15, 12)
78 #define   CFG_STOP_CLOCK BIT(22)
79 #define   CFG_CLK_ALWAYS_ON BIT(18)
80 #define   CFG_CHK_DS BIT(20)
81 #define   CFG_AUTO_CLK BIT(23)
82 #define   CFG_ERR_ABORT BIT(27)
83 
84 #define SD_EMMC_STATUS 0x48
85 #define   STATUS_BUSY BIT(31)
86 #define   STATUS_DESC_BUSY BIT(30)
87 #define   STATUS_DATI GENMASK(23, 16)
88 
89 #define SD_EMMC_IRQ_EN 0x4c
90 #define   IRQ_RXD_ERR_MASK GENMASK(7, 0)
91 #define   IRQ_TXD_ERR BIT(8)
92 #define   IRQ_DESC_ERR BIT(9)
93 #define   IRQ_RESP_ERR BIT(10)
94 #define   IRQ_CRC_ERR \
95 	(IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR)
96 #define   IRQ_RESP_TIMEOUT BIT(11)
97 #define   IRQ_DESC_TIMEOUT BIT(12)
98 #define   IRQ_TIMEOUTS \
99 	(IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT)
100 #define   IRQ_END_OF_CHAIN BIT(13)
101 #define   IRQ_RESP_STATUS BIT(14)
102 #define   IRQ_SDIO BIT(15)
103 #define   IRQ_EN_MASK \
104 	(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN | IRQ_RESP_STATUS |\
105 	 IRQ_SDIO)
106 
107 #define SD_EMMC_CMD_CFG 0x50
108 #define SD_EMMC_CMD_ARG 0x54
109 #define SD_EMMC_CMD_DAT 0x58
110 #define SD_EMMC_CMD_RSP 0x5c
111 #define SD_EMMC_CMD_RSP1 0x60
112 #define SD_EMMC_CMD_RSP2 0x64
113 #define SD_EMMC_CMD_RSP3 0x68
114 
115 #define SD_EMMC_RXD 0x94
116 #define SD_EMMC_TXD 0x94
117 #define SD_EMMC_LAST_REG SD_EMMC_TXD
118 
119 #define SD_EMMC_SRAM_DATA_BUF_LEN 1536
120 #define SD_EMMC_SRAM_DATA_BUF_OFF 0x200
121 
122 #define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
123 #define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
124 #define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
125 #define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
126 #define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
127 #define SD_EMMC_DESC_BUF_LEN PAGE_SIZE
128 
129 #define SD_EMMC_PRE_REQ_DONE BIT(0)
130 #define SD_EMMC_DESC_CHAIN_MODE BIT(1)
131 
132 #define MUX_CLK_NUM_PARENTS 2
133 
134 struct meson_mmc_data {
135 	unsigned int tx_delay_mask;
136 	unsigned int rx_delay_mask;
137 	unsigned int always_on;
138 	unsigned int adjust;
139 };
140 
141 struct sd_emmc_desc {
142 	u32 cmd_cfg;
143 	u32 cmd_arg;
144 	u32 cmd_data;
145 	u32 cmd_resp;
146 };
147 
148 struct meson_host {
149 	struct	device		*dev;
150 	struct	meson_mmc_data *data;
151 	struct	mmc_host	*mmc;
152 	struct	mmc_command	*cmd;
153 
154 	void __iomem *regs;
155 	struct clk *core_clk;
156 	struct clk *mux_clk;
157 	struct clk *mmc_clk;
158 	unsigned long req_rate;
159 	bool ddr;
160 
161 	bool dram_access_quirk;
162 
163 	struct pinctrl *pinctrl;
164 	struct pinctrl_state *pins_clk_gate;
165 
166 	unsigned int bounce_buf_size;
167 	void *bounce_buf;
168 	dma_addr_t bounce_dma_addr;
169 	struct sd_emmc_desc *descs;
170 	dma_addr_t descs_dma_addr;
171 
172 	int irq;
173 
174 	bool vqmmc_enabled;
175 };
176 
177 #define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
178 #define CMD_CFG_BLOCK_MODE BIT(9)
179 #define CMD_CFG_R1B BIT(10)
180 #define CMD_CFG_END_OF_CHAIN BIT(11)
181 #define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
182 #define CMD_CFG_NO_RESP BIT(16)
183 #define CMD_CFG_NO_CMD BIT(17)
184 #define CMD_CFG_DATA_IO BIT(18)
185 #define CMD_CFG_DATA_WR BIT(19)
186 #define CMD_CFG_RESP_NOCRC BIT(20)
187 #define CMD_CFG_RESP_128 BIT(21)
188 #define CMD_CFG_RESP_NUM BIT(22)
189 #define CMD_CFG_DATA_NUM BIT(23)
190 #define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
191 #define CMD_CFG_ERROR BIT(30)
192 #define CMD_CFG_OWNER BIT(31)
193 
194 #define CMD_DATA_MASK GENMASK(31, 2)
195 #define CMD_DATA_BIG_ENDIAN BIT(1)
196 #define CMD_DATA_SRAM BIT(0)
197 #define CMD_RESP_MASK GENMASK(31, 1)
198 #define CMD_RESP_SRAM BIT(0)
199 
200 static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
201 {
202 	unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;
203 
204 	if (!timeout)
205 		return SD_EMMC_CMD_TIMEOUT_DATA;
206 
207 	timeout = roundup_pow_of_two(timeout);
208 
209 	return min(timeout, 32768U); /* max. 2^15 ms */
210 }
211 
212 static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
213 {
214 	if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
215 		return cmd->mrq->cmd;
216 	else if (mmc_op_multi(cmd->opcode) &&
217 		 (!cmd->mrq->sbc || cmd->error || cmd->data->error))
218 		return cmd->mrq->stop;
219 	else
220 		return NULL;
221 }
222 
223 static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
224 					struct mmc_request *mrq)
225 {
226 	struct meson_host *host = mmc_priv(mmc);
227 	struct mmc_data *data = mrq->data;
228 	struct scatterlist *sg;
229 	int i;
230 	bool use_desc_chain_mode = true;
231 
232 	/*
233 	 * When Controller DMA cannot directly access DDR memory, disable
234 	 * support for Chain Mode to directly use the internal SRAM using
235 	 * the bounce buffer mode.
236 	 */
237 	if (host->dram_access_quirk)
238 		return;
239 
240 	/*
241 	 * Broken SDIO with AP6255-based WiFi on Khadas VIM Pro has been
242 	 * reported. For some strange reason this occurs in descriptor
243 	 * chain mode only. So let's fall back to bounce buffer mode
244 	 * for command SD_IO_RW_EXTENDED.
245 	 */
246 	if (mrq->cmd->opcode == SD_IO_RW_EXTENDED)
247 		return;
248 
249 	for_each_sg(data->sg, sg, data->sg_len, i)
250 		/* check for 8 byte alignment */
251 		if (sg->offset & 7) {
252 			WARN_ONCE(1, "unaligned scatterlist buffer\n");
253 			use_desc_chain_mode = false;
254 			break;
255 		}
256 
257 	if (use_desc_chain_mode)
258 		data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
259 }
260 
261 static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
262 {
263 	return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
264 }
265 
266 static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
267 {
268 	return data && data->flags & MMC_DATA_READ &&
269 	       !meson_mmc_desc_chain_mode(data);
270 }
271 
272 static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
273 {
274 	struct mmc_data *data = mrq->data;
275 
276 	if (!data)
277 		return;
278 
279 	meson_mmc_get_transfer_mode(mmc, mrq);
280 	data->host_cookie |= SD_EMMC_PRE_REQ_DONE;
281 
282 	if (!meson_mmc_desc_chain_mode(data))
283 		return;
284 
285 	data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
286                                    mmc_get_dma_dir(data));
287 	if (!data->sg_count)
288 		dev_err(mmc_dev(mmc), "dma_map_sg failed");
289 }
290 
291 static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
292 			       int err)
293 {
294 	struct mmc_data *data = mrq->data;
295 
296 	if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
297 		dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
298 			     mmc_get_dma_dir(data));
299 }
300 
301 /*
302  * Gating the clock on this controller is tricky.  It seems the mmc clock
303  * is also used by the controller.  It may crash during some operation if the
304  * clock is stopped.  The safest thing to do, whenever possible, is to keep
305  * clock running at stop it at the pad using the pinmux.
306  */
307 static void meson_mmc_clk_gate(struct meson_host *host)
308 {
309 	u32 cfg;
310 
311 	if (host->pins_clk_gate) {
312 		pinctrl_select_state(host->pinctrl, host->pins_clk_gate);
313 	} else {
314 		/*
315 		 * If the pinmux is not provided - default to the classic and
316 		 * unsafe method
317 		 */
318 		cfg = readl(host->regs + SD_EMMC_CFG);
319 		cfg |= CFG_STOP_CLOCK;
320 		writel(cfg, host->regs + SD_EMMC_CFG);
321 	}
322 }
323 
324 static void meson_mmc_clk_ungate(struct meson_host *host)
325 {
326 	u32 cfg;
327 
328 	if (host->pins_clk_gate)
329 		pinctrl_select_default_state(host->dev);
330 
331 	/* Make sure the clock is not stopped in the controller */
332 	cfg = readl(host->regs + SD_EMMC_CFG);
333 	cfg &= ~CFG_STOP_CLOCK;
334 	writel(cfg, host->regs + SD_EMMC_CFG);
335 }
336 
337 static int meson_mmc_clk_set(struct meson_host *host, unsigned long rate,
338 			     bool ddr)
339 {
340 	struct mmc_host *mmc = host->mmc;
341 	int ret;
342 	u32 cfg;
343 
344 	/* Same request - bail-out */
345 	if (host->ddr == ddr && host->req_rate == rate)
346 		return 0;
347 
348 	/* stop clock */
349 	meson_mmc_clk_gate(host);
350 	host->req_rate = 0;
351 	mmc->actual_clock = 0;
352 
353 	/* return with clock being stopped */
354 	if (!rate)
355 		return 0;
356 
357 	/* Stop the clock during rate change to avoid glitches */
358 	cfg = readl(host->regs + SD_EMMC_CFG);
359 	cfg |= CFG_STOP_CLOCK;
360 	writel(cfg, host->regs + SD_EMMC_CFG);
361 
362 	if (ddr) {
363 		/* DDR modes require higher module clock */
364 		rate <<= 1;
365 		cfg |= CFG_DDR;
366 	} else {
367 		cfg &= ~CFG_DDR;
368 	}
369 	writel(cfg, host->regs + SD_EMMC_CFG);
370 	host->ddr = ddr;
371 
372 	ret = clk_set_rate(host->mmc_clk, rate);
373 	if (ret) {
374 		dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
375 			rate, ret);
376 		return ret;
377 	}
378 
379 	host->req_rate = rate;
380 	mmc->actual_clock = clk_get_rate(host->mmc_clk);
381 
382 	/* We should report the real output frequency of the controller */
383 	if (ddr) {
384 		host->req_rate >>= 1;
385 		mmc->actual_clock >>= 1;
386 	}
387 
388 	dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock);
389 	if (rate != mmc->actual_clock)
390 		dev_dbg(host->dev, "requested rate was %lu\n", rate);
391 
392 	/* (re)start clock */
393 	meson_mmc_clk_ungate(host);
394 
395 	return 0;
396 }
397 
398 /*
399  * The SD/eMMC IP block has an internal mux and divider used for
400  * generating the MMC clock.  Use the clock framework to create and
401  * manage these clocks.
402  */
403 static int meson_mmc_clk_init(struct meson_host *host)
404 {
405 	struct clk_init_data init;
406 	struct clk_mux *mux;
407 	struct clk_divider *div;
408 	char clk_name[32];
409 	int i, ret = 0;
410 	const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
411 	const char *clk_parent[1];
412 	u32 clk_reg;
413 
414 	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
415 	clk_reg = CLK_ALWAYS_ON(host);
416 	clk_reg |= CLK_DIV_MASK;
417 	clk_reg |= FIELD_PREP(CLK_CORE_PHASE_MASK, CLK_PHASE_180);
418 	clk_reg |= FIELD_PREP(CLK_TX_PHASE_MASK, CLK_PHASE_0);
419 	clk_reg |= FIELD_PREP(CLK_RX_PHASE_MASK, CLK_PHASE_0);
420 	writel(clk_reg, host->regs + SD_EMMC_CLOCK);
421 
422 	/* get the mux parents */
423 	for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
424 		struct clk *clk;
425 		char name[16];
426 
427 		snprintf(name, sizeof(name), "clkin%d", i);
428 		clk = devm_clk_get(host->dev, name);
429 		if (IS_ERR(clk))
430 			return dev_err_probe(host->dev, PTR_ERR(clk),
431 					     "Missing clock %s\n", name);
432 
433 		mux_parent_names[i] = __clk_get_name(clk);
434 	}
435 
436 	/* create the mux */
437 	mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL);
438 	if (!mux)
439 		return -ENOMEM;
440 
441 	snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
442 	init.name = clk_name;
443 	init.ops = &clk_mux_ops;
444 	init.flags = 0;
445 	init.parent_names = mux_parent_names;
446 	init.num_parents = MUX_CLK_NUM_PARENTS;
447 
448 	mux->reg = host->regs + SD_EMMC_CLOCK;
449 	mux->shift = __ffs(CLK_SRC_MASK);
450 	mux->mask = CLK_SRC_MASK >> mux->shift;
451 	mux->hw.init = &init;
452 
453 	host->mux_clk = devm_clk_register(host->dev, &mux->hw);
454 	if (WARN_ON(IS_ERR(host->mux_clk)))
455 		return PTR_ERR(host->mux_clk);
456 
457 	/* create the divider */
458 	div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL);
459 	if (!div)
460 		return -ENOMEM;
461 
462 	snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
463 	init.name = clk_name;
464 	init.ops = &clk_divider_ops;
465 	init.flags = CLK_SET_RATE_PARENT;
466 	clk_parent[0] = __clk_get_name(host->mux_clk);
467 	init.parent_names = clk_parent;
468 	init.num_parents = 1;
469 
470 	div->reg = host->regs + SD_EMMC_CLOCK;
471 	div->shift = __ffs(CLK_DIV_MASK);
472 	div->width = __builtin_popcountl(CLK_DIV_MASK);
473 	div->hw.init = &init;
474 	div->flags = CLK_DIVIDER_ONE_BASED;
475 
476 	host->mmc_clk = devm_clk_register(host->dev, &div->hw);
477 	if (WARN_ON(IS_ERR(host->mmc_clk)))
478 		return PTR_ERR(host->mmc_clk);
479 
480 	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
481 	host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000);
482 	ret = clk_set_rate(host->mmc_clk, host->mmc->f_min);
483 	if (ret)
484 		return ret;
485 
486 	return clk_prepare_enable(host->mmc_clk);
487 }
488 
489 static void meson_mmc_disable_resampling(struct meson_host *host)
490 {
491 	unsigned int val = readl(host->regs + host->data->adjust);
492 
493 	val &= ~ADJUST_ADJ_EN;
494 	writel(val, host->regs + host->data->adjust);
495 }
496 
497 static void meson_mmc_reset_resampling(struct meson_host *host)
498 {
499 	unsigned int val;
500 
501 	meson_mmc_disable_resampling(host);
502 
503 	val = readl(host->regs + host->data->adjust);
504 	val &= ~ADJUST_ADJ_DELAY_MASK;
505 	writel(val, host->regs + host->data->adjust);
506 }
507 
508 static int meson_mmc_resampling_tuning(struct mmc_host *mmc, u32 opcode)
509 {
510 	struct meson_host *host = mmc_priv(mmc);
511 	unsigned int val, dly, max_dly, i;
512 	int ret;
513 
514 	/* Resampling is done using the source clock */
515 	max_dly = DIV_ROUND_UP(clk_get_rate(host->mux_clk),
516 			       clk_get_rate(host->mmc_clk));
517 
518 	val = readl(host->regs + host->data->adjust);
519 	val |= ADJUST_ADJ_EN;
520 	writel(val, host->regs + host->data->adjust);
521 
522 	if (mmc_doing_retune(mmc))
523 		dly = FIELD_GET(ADJUST_ADJ_DELAY_MASK, val) + 1;
524 	else
525 		dly = 0;
526 
527 	for (i = 0; i < max_dly; i++) {
528 		val &= ~ADJUST_ADJ_DELAY_MASK;
529 		val |= FIELD_PREP(ADJUST_ADJ_DELAY_MASK, (dly + i) % max_dly);
530 		writel(val, host->regs + host->data->adjust);
531 
532 		ret = mmc_send_tuning(mmc, opcode, NULL);
533 		if (!ret) {
534 			dev_dbg(mmc_dev(mmc), "resampling delay: %u\n",
535 				(dly + i) % max_dly);
536 			return 0;
537 		}
538 	}
539 
540 	meson_mmc_reset_resampling(host);
541 	return -EIO;
542 }
543 
544 static int meson_mmc_prepare_ios_clock(struct meson_host *host,
545 				       struct mmc_ios *ios)
546 {
547 	bool ddr;
548 
549 	switch (ios->timing) {
550 	case MMC_TIMING_MMC_DDR52:
551 	case MMC_TIMING_UHS_DDR50:
552 		ddr = true;
553 		break;
554 
555 	default:
556 		ddr = false;
557 		break;
558 	}
559 
560 	return meson_mmc_clk_set(host, ios->clock, ddr);
561 }
562 
563 static void meson_mmc_check_resampling(struct meson_host *host,
564 				       struct mmc_ios *ios)
565 {
566 	switch (ios->timing) {
567 	case MMC_TIMING_LEGACY:
568 	case MMC_TIMING_MMC_HS:
569 	case MMC_TIMING_SD_HS:
570 	case MMC_TIMING_MMC_DDR52:
571 		meson_mmc_disable_resampling(host);
572 		break;
573 	}
574 }
575 
576 static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
577 {
578 	struct meson_host *host = mmc_priv(mmc);
579 	u32 bus_width, val;
580 	int err;
581 
582 	/*
583 	 * GPIO regulator, only controls switching between 1v8 and
584 	 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
585 	 */
586 	switch (ios->power_mode) {
587 	case MMC_POWER_OFF:
588 		if (!IS_ERR(mmc->supply.vmmc))
589 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
590 
591 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
592 			regulator_disable(mmc->supply.vqmmc);
593 			host->vqmmc_enabled = false;
594 		}
595 
596 		break;
597 
598 	case MMC_POWER_UP:
599 		if (!IS_ERR(mmc->supply.vmmc))
600 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
601 
602 		break;
603 
604 	case MMC_POWER_ON:
605 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
606 			int ret = regulator_enable(mmc->supply.vqmmc);
607 
608 			if (ret < 0)
609 				dev_err(host->dev,
610 					"failed to enable vqmmc regulator\n");
611 			else
612 				host->vqmmc_enabled = true;
613 		}
614 
615 		break;
616 	}
617 
618 	/* Bus width */
619 	switch (ios->bus_width) {
620 	case MMC_BUS_WIDTH_1:
621 		bus_width = CFG_BUS_WIDTH_1;
622 		break;
623 	case MMC_BUS_WIDTH_4:
624 		bus_width = CFG_BUS_WIDTH_4;
625 		break;
626 	case MMC_BUS_WIDTH_8:
627 		bus_width = CFG_BUS_WIDTH_8;
628 		break;
629 	default:
630 		dev_err(host->dev, "Invalid ios->bus_width: %u.  Setting to 4.\n",
631 			ios->bus_width);
632 		bus_width = CFG_BUS_WIDTH_4;
633 	}
634 
635 	val = readl(host->regs + SD_EMMC_CFG);
636 	val &= ~CFG_BUS_WIDTH_MASK;
637 	val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
638 	writel(val, host->regs + SD_EMMC_CFG);
639 
640 	meson_mmc_check_resampling(host, ios);
641 	err = meson_mmc_prepare_ios_clock(host, ios);
642 	if (err)
643 		dev_err(host->dev, "Failed to set clock: %d\n,", err);
644 
645 	dev_dbg(host->dev, "SD_EMMC_CFG:  0x%08x\n", val);
646 }
647 
648 static void meson_mmc_request_done(struct mmc_host *mmc,
649 				   struct mmc_request *mrq)
650 {
651 	struct meson_host *host = mmc_priv(mmc);
652 
653 	host->cmd = NULL;
654 	mmc_request_done(host->mmc, mrq);
655 }
656 
657 static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
658 {
659 	struct meson_host *host = mmc_priv(mmc);
660 	u32 cfg, blksz_old;
661 
662 	cfg = readl(host->regs + SD_EMMC_CFG);
663 	blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);
664 
665 	if (!is_power_of_2(blksz))
666 		dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);
667 
668 	blksz = ilog2(blksz);
669 
670 	/* check if block-size matches, if not update */
671 	if (blksz == blksz_old)
672 		return;
673 
674 	dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
675 		blksz_old, blksz);
676 
677 	cfg &= ~CFG_BLK_LEN_MASK;
678 	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
679 	writel(cfg, host->regs + SD_EMMC_CFG);
680 }
681 
682 static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
683 {
684 	if (cmd->flags & MMC_RSP_PRESENT) {
685 		if (cmd->flags & MMC_RSP_136)
686 			*cmd_cfg |= CMD_CFG_RESP_128;
687 		*cmd_cfg |= CMD_CFG_RESP_NUM;
688 
689 		if (!(cmd->flags & MMC_RSP_CRC))
690 			*cmd_cfg |= CMD_CFG_RESP_NOCRC;
691 
692 		if (cmd->flags & MMC_RSP_BUSY)
693 			*cmd_cfg |= CMD_CFG_R1B;
694 	} else {
695 		*cmd_cfg |= CMD_CFG_NO_RESP;
696 	}
697 }
698 
699 static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
700 {
701 	struct meson_host *host = mmc_priv(mmc);
702 	struct sd_emmc_desc *desc = host->descs;
703 	struct mmc_data *data = host->cmd->data;
704 	struct scatterlist *sg;
705 	u32 start;
706 	int i;
707 
708 	if (data->flags & MMC_DATA_WRITE)
709 		cmd_cfg |= CMD_CFG_DATA_WR;
710 
711 	if (data->blocks > 1) {
712 		cmd_cfg |= CMD_CFG_BLOCK_MODE;
713 		meson_mmc_set_blksz(mmc, data->blksz);
714 	}
715 
716 	for_each_sg(data->sg, sg, data->sg_count, i) {
717 		unsigned int len = sg_dma_len(sg);
718 
719 		if (data->blocks > 1)
720 			len /= data->blksz;
721 
722 		desc[i].cmd_cfg = cmd_cfg;
723 		desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
724 		if (i > 0)
725 			desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
726 		desc[i].cmd_arg = host->cmd->arg;
727 		desc[i].cmd_resp = 0;
728 		desc[i].cmd_data = sg_dma_address(sg);
729 	}
730 	desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;
731 
732 	dma_wmb(); /* ensure descriptor is written before kicked */
733 	start = host->descs_dma_addr | START_DESC_BUSY;
734 	writel(start, host->regs + SD_EMMC_START);
735 }
736 
737 static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
738 {
739 	struct meson_host *host = mmc_priv(mmc);
740 	struct mmc_data *data = cmd->data;
741 	u32 cmd_cfg = 0, cmd_data = 0;
742 	unsigned int xfer_bytes = 0;
743 
744 	/* Setup descriptors */
745 	dma_rmb();
746 
747 	host->cmd = cmd;
748 
749 	cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
750 	cmd_cfg |= CMD_CFG_OWNER;  /* owned by CPU */
751 	cmd_cfg |= CMD_CFG_ERROR; /* stop in case of error */
752 
753 	meson_mmc_set_response_bits(cmd, &cmd_cfg);
754 
755 	/* data? */
756 	if (data) {
757 		data->bytes_xfered = 0;
758 		cmd_cfg |= CMD_CFG_DATA_IO;
759 		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
760 				      ilog2(meson_mmc_get_timeout_msecs(data)));
761 
762 		if (meson_mmc_desc_chain_mode(data)) {
763 			meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
764 			return;
765 		}
766 
767 		if (data->blocks > 1) {
768 			cmd_cfg |= CMD_CFG_BLOCK_MODE;
769 			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
770 					      data->blocks);
771 			meson_mmc_set_blksz(mmc, data->blksz);
772 		} else {
773 			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
774 		}
775 
776 		xfer_bytes = data->blksz * data->blocks;
777 		if (data->flags & MMC_DATA_WRITE) {
778 			cmd_cfg |= CMD_CFG_DATA_WR;
779 			WARN_ON(xfer_bytes > host->bounce_buf_size);
780 			sg_copy_to_buffer(data->sg, data->sg_len,
781 					  host->bounce_buf, xfer_bytes);
782 			dma_wmb();
783 		}
784 
785 		cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
786 	} else {
787 		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
788 				      ilog2(SD_EMMC_CMD_TIMEOUT));
789 	}
790 
791 	/* Last descriptor */
792 	cmd_cfg |= CMD_CFG_END_OF_CHAIN;
793 	writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
794 	writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
795 	writel(0, host->regs + SD_EMMC_CMD_RSP);
796 	wmb(); /* ensure descriptor is written before kicked */
797 	writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
798 }
799 
800 static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
801 {
802 	struct meson_host *host = mmc_priv(mmc);
803 	bool needs_pre_post_req = mrq->data &&
804 			!(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);
805 
806 	if (needs_pre_post_req) {
807 		meson_mmc_get_transfer_mode(mmc, mrq);
808 		if (!meson_mmc_desc_chain_mode(mrq->data))
809 			needs_pre_post_req = false;
810 	}
811 
812 	if (needs_pre_post_req)
813 		meson_mmc_pre_req(mmc, mrq);
814 
815 	/* Stop execution */
816 	writel(0, host->regs + SD_EMMC_START);
817 
818 	meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);
819 
820 	if (needs_pre_post_req)
821 		meson_mmc_post_req(mmc, mrq, 0);
822 }
823 
824 static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
825 {
826 	struct meson_host *host = mmc_priv(mmc);
827 
828 	if (cmd->flags & MMC_RSP_136) {
829 		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
830 		cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
831 		cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
832 		cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
833 	} else if (cmd->flags & MMC_RSP_PRESENT) {
834 		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
835 	}
836 }
837 
838 static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
839 {
840 	struct meson_host *host = dev_id;
841 	struct mmc_command *cmd;
842 	struct mmc_data *data;
843 	u32 irq_en, status, raw_status;
844 	irqreturn_t ret = IRQ_NONE;
845 
846 	irq_en = readl(host->regs + SD_EMMC_IRQ_EN);
847 	raw_status = readl(host->regs + SD_EMMC_STATUS);
848 	status = raw_status & irq_en;
849 
850 	if (!status) {
851 		dev_dbg(host->dev,
852 			"Unexpected IRQ! irq_en 0x%08x - status 0x%08x\n",
853 			 irq_en, raw_status);
854 		return IRQ_NONE;
855 	}
856 
857 	if (WARN_ON(!host) || WARN_ON(!host->cmd))
858 		return IRQ_NONE;
859 
860 	/* ack all raised interrupts */
861 	writel(status, host->regs + SD_EMMC_STATUS);
862 
863 	cmd = host->cmd;
864 	data = cmd->data;
865 	cmd->error = 0;
866 	if (status & IRQ_CRC_ERR) {
867 		dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status);
868 		cmd->error = -EILSEQ;
869 		ret = IRQ_WAKE_THREAD;
870 		goto out;
871 	}
872 
873 	if (status & IRQ_TIMEOUTS) {
874 		dev_dbg(host->dev, "Timeout - status 0x%08x\n", status);
875 		cmd->error = -ETIMEDOUT;
876 		ret = IRQ_WAKE_THREAD;
877 		goto out;
878 	}
879 
880 	meson_mmc_read_resp(host->mmc, cmd);
881 
882 	if (status & IRQ_SDIO) {
883 		dev_dbg(host->dev, "IRQ: SDIO TODO.\n");
884 		ret = IRQ_HANDLED;
885 	}
886 
887 	if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
888 		if (data && !cmd->error)
889 			data->bytes_xfered = data->blksz * data->blocks;
890 		if (meson_mmc_bounce_buf_read(data) ||
891 		    meson_mmc_get_next_command(cmd))
892 			ret = IRQ_WAKE_THREAD;
893 		else
894 			ret = IRQ_HANDLED;
895 	}
896 
897 out:
898 	if (cmd->error) {
899 		/* Stop desc in case of errors */
900 		u32 start = readl(host->regs + SD_EMMC_START);
901 
902 		start &= ~START_DESC_BUSY;
903 		writel(start, host->regs + SD_EMMC_START);
904 	}
905 
906 	if (ret == IRQ_HANDLED)
907 		meson_mmc_request_done(host->mmc, cmd->mrq);
908 
909 	return ret;
910 }
911 
912 static int meson_mmc_wait_desc_stop(struct meson_host *host)
913 {
914 	u32 status;
915 
916 	/*
917 	 * It may sometimes take a while for it to actually halt. Here, we
918 	 * are giving it 5ms to comply
919 	 *
920 	 * If we don't confirm the descriptor is stopped, it might raise new
921 	 * IRQs after we have called mmc_request_done() which is bad.
922 	 */
923 
924 	return readl_poll_timeout(host->regs + SD_EMMC_STATUS, status,
925 				  !(status & (STATUS_BUSY | STATUS_DESC_BUSY)),
926 				  100, 5000);
927 }
928 
929 static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
930 {
931 	struct meson_host *host = dev_id;
932 	struct mmc_command *next_cmd, *cmd = host->cmd;
933 	struct mmc_data *data;
934 	unsigned int xfer_bytes;
935 
936 	if (WARN_ON(!cmd))
937 		return IRQ_NONE;
938 
939 	if (cmd->error) {
940 		meson_mmc_wait_desc_stop(host);
941 		meson_mmc_request_done(host->mmc, cmd->mrq);
942 
943 		return IRQ_HANDLED;
944 	}
945 
946 	data = cmd->data;
947 	if (meson_mmc_bounce_buf_read(data)) {
948 		xfer_bytes = data->blksz * data->blocks;
949 		WARN_ON(xfer_bytes > host->bounce_buf_size);
950 		sg_copy_from_buffer(data->sg, data->sg_len,
951 				    host->bounce_buf, xfer_bytes);
952 	}
953 
954 	next_cmd = meson_mmc_get_next_command(cmd);
955 	if (next_cmd)
956 		meson_mmc_start_cmd(host->mmc, next_cmd);
957 	else
958 		meson_mmc_request_done(host->mmc, cmd->mrq);
959 
960 	return IRQ_HANDLED;
961 }
962 
963 /*
964  * NOTE: we only need this until the GPIO/pinctrl driver can handle
965  * interrupts.  For now, the MMC core will use this for polling.
966  */
967 static int meson_mmc_get_cd(struct mmc_host *mmc)
968 {
969 	int status = mmc_gpio_get_cd(mmc);
970 
971 	if (status == -ENOSYS)
972 		return 1; /* assume present */
973 
974 	return status;
975 }
976 
977 static void meson_mmc_cfg_init(struct meson_host *host)
978 {
979 	u32 cfg = 0;
980 
981 	cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
982 			  ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
983 	cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
984 	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
985 
986 	/* abort chain on R/W errors */
987 	cfg |= CFG_ERR_ABORT;
988 
989 	writel(cfg, host->regs + SD_EMMC_CFG);
990 }
991 
992 static int meson_mmc_card_busy(struct mmc_host *mmc)
993 {
994 	struct meson_host *host = mmc_priv(mmc);
995 	u32 regval;
996 
997 	regval = readl(host->regs + SD_EMMC_STATUS);
998 
999 	/* We are only interrested in lines 0 to 3, so mask the other ones */
1000 	return !(FIELD_GET(STATUS_DATI, regval) & 0xf);
1001 }
1002 
1003 static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1004 {
1005 	int ret;
1006 
1007 	/* vqmmc regulator is available */
1008 	if (!IS_ERR(mmc->supply.vqmmc)) {
1009 		/*
1010 		 * The usual amlogic setup uses a GPIO to switch from one
1011 		 * regulator to the other. While the voltage ramp up is
1012 		 * pretty fast, care must be taken when switching from 3.3v
1013 		 * to 1.8v. Please make sure the regulator framework is aware
1014 		 * of your own regulator constraints
1015 		 */
1016 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1017 		return ret < 0 ? ret : 0;
1018 	}
1019 
1020 	/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
1021 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1022 		return 0;
1023 
1024 	return -EINVAL;
1025 }
1026 
1027 static const struct mmc_host_ops meson_mmc_ops = {
1028 	.request	= meson_mmc_request,
1029 	.set_ios	= meson_mmc_set_ios,
1030 	.get_cd         = meson_mmc_get_cd,
1031 	.pre_req	= meson_mmc_pre_req,
1032 	.post_req	= meson_mmc_post_req,
1033 	.execute_tuning = meson_mmc_resampling_tuning,
1034 	.card_busy	= meson_mmc_card_busy,
1035 	.start_signal_voltage_switch = meson_mmc_voltage_switch,
1036 };
1037 
1038 static int meson_mmc_probe(struct platform_device *pdev)
1039 {
1040 	struct resource *res;
1041 	struct meson_host *host;
1042 	struct mmc_host *mmc;
1043 	int ret;
1044 
1045 	mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
1046 	if (!mmc)
1047 		return -ENOMEM;
1048 	host = mmc_priv(mmc);
1049 	host->mmc = mmc;
1050 	host->dev = &pdev->dev;
1051 	dev_set_drvdata(&pdev->dev, host);
1052 
1053 	/* The G12A SDIO Controller needs an SRAM bounce buffer */
1054 	host->dram_access_quirk = device_property_read_bool(&pdev->dev,
1055 					"amlogic,dram-access-quirk");
1056 
1057 	/* Get regulators and the supported OCR mask */
1058 	host->vqmmc_enabled = false;
1059 	ret = mmc_regulator_get_supply(mmc);
1060 	if (ret)
1061 		goto free_host;
1062 
1063 	ret = mmc_of_parse(mmc);
1064 	if (ret) {
1065 		if (ret != -EPROBE_DEFER)
1066 			dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
1067 		goto free_host;
1068 	}
1069 
1070 	host->data = (struct meson_mmc_data *)
1071 		of_device_get_match_data(&pdev->dev);
1072 	if (!host->data) {
1073 		ret = -EINVAL;
1074 		goto free_host;
1075 	}
1076 
1077 	ret = device_reset_optional(&pdev->dev);
1078 	if (ret)
1079 		return dev_err_probe(&pdev->dev, ret, "device reset failed\n");
1080 
1081 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1082 	host->regs = devm_ioremap_resource(&pdev->dev, res);
1083 	if (IS_ERR(host->regs)) {
1084 		ret = PTR_ERR(host->regs);
1085 		goto free_host;
1086 	}
1087 
1088 	host->irq = platform_get_irq(pdev, 0);
1089 	if (host->irq <= 0) {
1090 		ret = -EINVAL;
1091 		goto free_host;
1092 	}
1093 
1094 	host->pinctrl = devm_pinctrl_get(&pdev->dev);
1095 	if (IS_ERR(host->pinctrl)) {
1096 		ret = PTR_ERR(host->pinctrl);
1097 		goto free_host;
1098 	}
1099 
1100 	host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl,
1101 						   "clk-gate");
1102 	if (IS_ERR(host->pins_clk_gate)) {
1103 		dev_warn(&pdev->dev,
1104 			 "can't get clk-gate pinctrl, using clk_stop bit\n");
1105 		host->pins_clk_gate = NULL;
1106 	}
1107 
1108 	host->core_clk = devm_clk_get(&pdev->dev, "core");
1109 	if (IS_ERR(host->core_clk)) {
1110 		ret = PTR_ERR(host->core_clk);
1111 		goto free_host;
1112 	}
1113 
1114 	ret = clk_prepare_enable(host->core_clk);
1115 	if (ret)
1116 		goto free_host;
1117 
1118 	ret = meson_mmc_clk_init(host);
1119 	if (ret)
1120 		goto err_core_clk;
1121 
1122 	/* set config to sane default */
1123 	meson_mmc_cfg_init(host);
1124 
1125 	/* Stop execution */
1126 	writel(0, host->regs + SD_EMMC_START);
1127 
1128 	/* clear, ack and enable interrupts */
1129 	writel(0, host->regs + SD_EMMC_IRQ_EN);
1130 	writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1131 	       host->regs + SD_EMMC_STATUS);
1132 	writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1133 	       host->regs + SD_EMMC_IRQ_EN);
1134 
1135 	ret = request_threaded_irq(host->irq, meson_mmc_irq,
1136 				   meson_mmc_irq_thread, IRQF_ONESHOT,
1137 				   dev_name(&pdev->dev), host);
1138 	if (ret)
1139 		goto err_init_clk;
1140 
1141 	mmc->caps |= MMC_CAP_CMD23;
1142 	if (host->dram_access_quirk) {
1143 		/* Limit segments to 1 due to low available sram memory */
1144 		mmc->max_segs = 1;
1145 		/* Limit to the available sram memory */
1146 		mmc->max_blk_count = SD_EMMC_SRAM_DATA_BUF_LEN /
1147 				     mmc->max_blk_size;
1148 	} else {
1149 		mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
1150 		mmc->max_segs = SD_EMMC_DESC_BUF_LEN /
1151 				sizeof(struct sd_emmc_desc);
1152 	}
1153 	mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
1154 	mmc->max_seg_size = mmc->max_req_size;
1155 
1156 	/*
1157 	 * At the moment, we don't know how to reliably enable HS400.
1158 	 * From the different datasheets, it is not even clear if this mode
1159 	 * is officially supported by any of the SoCs
1160 	 */
1161 	mmc->caps2 &= ~MMC_CAP2_HS400;
1162 
1163 	if (host->dram_access_quirk) {
1164 		/*
1165 		 * The MMC Controller embeds 1,5KiB of internal SRAM
1166 		 * that can be used to be used as bounce buffer.
1167 		 * In the case of the G12A SDIO controller, use these
1168 		 * instead of the DDR memory
1169 		 */
1170 		host->bounce_buf_size = SD_EMMC_SRAM_DATA_BUF_LEN;
1171 		host->bounce_buf = host->regs + SD_EMMC_SRAM_DATA_BUF_OFF;
1172 		host->bounce_dma_addr = res->start + SD_EMMC_SRAM_DATA_BUF_OFF;
1173 	} else {
1174 		/* data bounce buffer */
1175 		host->bounce_buf_size = mmc->max_req_size;
1176 		host->bounce_buf =
1177 			dma_alloc_coherent(host->dev, host->bounce_buf_size,
1178 					   &host->bounce_dma_addr, GFP_KERNEL);
1179 		if (host->bounce_buf == NULL) {
1180 			dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
1181 			ret = -ENOMEM;
1182 			goto err_free_irq;
1183 		}
1184 	}
1185 
1186 	host->descs = dma_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1187 		      &host->descs_dma_addr, GFP_KERNEL);
1188 	if (!host->descs) {
1189 		dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
1190 		ret = -ENOMEM;
1191 		goto err_bounce_buf;
1192 	}
1193 
1194 	mmc->ops = &meson_mmc_ops;
1195 	mmc_add_host(mmc);
1196 
1197 	return 0;
1198 
1199 err_bounce_buf:
1200 	if (!host->dram_access_quirk)
1201 		dma_free_coherent(host->dev, host->bounce_buf_size,
1202 				  host->bounce_buf, host->bounce_dma_addr);
1203 err_free_irq:
1204 	free_irq(host->irq, host);
1205 err_init_clk:
1206 	clk_disable_unprepare(host->mmc_clk);
1207 err_core_clk:
1208 	clk_disable_unprepare(host->core_clk);
1209 free_host:
1210 	mmc_free_host(mmc);
1211 	return ret;
1212 }
1213 
1214 static int meson_mmc_remove(struct platform_device *pdev)
1215 {
1216 	struct meson_host *host = dev_get_drvdata(&pdev->dev);
1217 
1218 	mmc_remove_host(host->mmc);
1219 
1220 	/* disable interrupts */
1221 	writel(0, host->regs + SD_EMMC_IRQ_EN);
1222 	free_irq(host->irq, host);
1223 
1224 	dma_free_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1225 			  host->descs, host->descs_dma_addr);
1226 
1227 	if (!host->dram_access_quirk)
1228 		dma_free_coherent(host->dev, host->bounce_buf_size,
1229 				  host->bounce_buf, host->bounce_dma_addr);
1230 
1231 	clk_disable_unprepare(host->mmc_clk);
1232 	clk_disable_unprepare(host->core_clk);
1233 
1234 	mmc_free_host(host->mmc);
1235 	return 0;
1236 }
1237 
1238 static const struct meson_mmc_data meson_gx_data = {
1239 	.tx_delay_mask	= CLK_V2_TX_DELAY_MASK,
1240 	.rx_delay_mask	= CLK_V2_RX_DELAY_MASK,
1241 	.always_on	= CLK_V2_ALWAYS_ON,
1242 	.adjust		= SD_EMMC_ADJUST,
1243 };
1244 
1245 static const struct meson_mmc_data meson_axg_data = {
1246 	.tx_delay_mask	= CLK_V3_TX_DELAY_MASK,
1247 	.rx_delay_mask	= CLK_V3_RX_DELAY_MASK,
1248 	.always_on	= CLK_V3_ALWAYS_ON,
1249 	.adjust		= SD_EMMC_V3_ADJUST,
1250 };
1251 
1252 static const struct of_device_id meson_mmc_of_match[] = {
1253 	{ .compatible = "amlogic,meson-gx-mmc",		.data = &meson_gx_data },
1254 	{ .compatible = "amlogic,meson-gxbb-mmc", 	.data = &meson_gx_data },
1255 	{ .compatible = "amlogic,meson-gxl-mmc",	.data = &meson_gx_data },
1256 	{ .compatible = "amlogic,meson-gxm-mmc",	.data = &meson_gx_data },
1257 	{ .compatible = "amlogic,meson-axg-mmc",	.data = &meson_axg_data },
1258 	{}
1259 };
1260 MODULE_DEVICE_TABLE(of, meson_mmc_of_match);
1261 
1262 static struct platform_driver meson_mmc_driver = {
1263 	.probe		= meson_mmc_probe,
1264 	.remove		= meson_mmc_remove,
1265 	.driver		= {
1266 		.name = DRIVER_NAME,
1267 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1268 		.of_match_table = of_match_ptr(meson_mmc_of_match),
1269 	},
1270 };
1271 
1272 module_platform_driver(meson_mmc_driver);
1273 
1274 MODULE_DESCRIPTION("Amlogic S905*/GX*/AXG SD/eMMC driver");
1275 MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
1276 MODULE_LICENSE("GPL v2");
1277