xref: /openbmc/linux/drivers/mmc/host/dw_mmc.c (revision c64d01b3ceba873aa8e8605598cec4a6bc6d1601)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Synopsys DesignWare Multimedia Card Interface driver
4  *  (Based on NXP driver for lpc 31xx)
5  *
6  * Copyright (C) 2009 NXP Semiconductors
7  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8  */
9 
10 #include <linux/blkdev.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/iopoll.h>
19 #include <linux/ioport.h>
20 #include <linux/ktime.h>
21 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/prandom.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/bitops.h>
36 #include <linux/regulator/consumer.h>
37 #include <linux/of.h>
38 #include <linux/of_gpio.h>
39 #include <linux/mmc/slot-gpio.h>
40 
41 #include "dw_mmc.h"
42 
43 /* Common flag combinations */
44 #define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
45 				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
46 				 SDMMC_INT_EBE | SDMMC_INT_HLE)
47 #define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
48 				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
49 #define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
50 				 DW_MCI_CMD_ERROR_FLAGS)
51 #define DW_MCI_SEND_STATUS	1
52 #define DW_MCI_RECV_STATUS	2
53 #define DW_MCI_DMA_THRESHOLD	16
54 
55 #define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
56 #define DW_MCI_FREQ_MIN	100000		/* unit: HZ */
57 
58 #define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
59 				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
60 				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
61 				 SDMMC_IDMAC_INT_TI)
62 
63 #define DESC_RING_BUF_SZ	PAGE_SIZE
64 
65 struct idmac_desc_64addr {
66 	u32		des0;	/* Control Descriptor */
67 #define IDMAC_OWN_CLR64(x) \
68 	!((x) & cpu_to_le32(IDMAC_DES0_OWN))
69 
70 	u32		des1;	/* Reserved */
71 
72 	u32		des2;	/*Buffer sizes */
73 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
74 	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
75 	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
76 
77 	u32		des3;	/* Reserved */
78 
79 	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
80 	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
81 
82 	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
83 	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
84 };
85 
86 struct idmac_desc {
87 	__le32		des0;	/* Control Descriptor */
88 #define IDMAC_DES0_DIC	BIT(1)
89 #define IDMAC_DES0_LD	BIT(2)
90 #define IDMAC_DES0_FD	BIT(3)
91 #define IDMAC_DES0_CH	BIT(4)
92 #define IDMAC_DES0_ER	BIT(5)
93 #define IDMAC_DES0_CES	BIT(30)
94 #define IDMAC_DES0_OWN	BIT(31)
95 
96 	__le32		des1;	/* Buffer sizes */
97 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
98 	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
99 
100 	__le32		des2;	/* buffer 1 physical address */
101 
102 	__le32		des3;	/* buffer 2 physical address */
103 };
104 
105 /* Each descriptor can transfer up to 4KB of data in chained mode */
106 #define DW_MCI_DESC_DATA_LENGTH	0x1000
107 
108 #if defined(CONFIG_DEBUG_FS)
109 static int dw_mci_req_show(struct seq_file *s, void *v)
110 {
111 	struct dw_mci_slot *slot = s->private;
112 	struct mmc_request *mrq;
113 	struct mmc_command *cmd;
114 	struct mmc_command *stop;
115 	struct mmc_data	*data;
116 
117 	/* Make sure we get a consistent snapshot */
118 	spin_lock_bh(&slot->host->lock);
119 	mrq = slot->mrq;
120 
121 	if (mrq) {
122 		cmd = mrq->cmd;
123 		data = mrq->data;
124 		stop = mrq->stop;
125 
126 		if (cmd)
127 			seq_printf(s,
128 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
129 				   cmd->opcode, cmd->arg, cmd->flags,
130 				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
131 				   cmd->resp[2], cmd->error);
132 		if (data)
133 			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
134 				   data->bytes_xfered, data->blocks,
135 				   data->blksz, data->flags, data->error);
136 		if (stop)
137 			seq_printf(s,
138 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
139 				   stop->opcode, stop->arg, stop->flags,
140 				   stop->resp[0], stop->resp[1], stop->resp[2],
141 				   stop->resp[2], stop->error);
142 	}
143 
144 	spin_unlock_bh(&slot->host->lock);
145 
146 	return 0;
147 }
148 DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
149 
150 static int dw_mci_regs_show(struct seq_file *s, void *v)
151 {
152 	struct dw_mci *host = s->private;
153 
154 	pm_runtime_get_sync(host->dev);
155 
156 	seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
157 	seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
158 	seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
159 	seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
160 	seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
161 	seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
162 
163 	pm_runtime_put_autosuspend(host->dev);
164 
165 	return 0;
166 }
167 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
168 
169 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
170 {
171 	struct mmc_host	*mmc = slot->mmc;
172 	struct dw_mci *host = slot->host;
173 	struct dentry *root;
174 
175 	root = mmc->debugfs_root;
176 	if (!root)
177 		return;
178 
179 	debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops);
180 	debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops);
181 	debugfs_create_u32("state", S_IRUSR, root, &host->state);
182 	debugfs_create_xul("pending_events", S_IRUSR, root,
183 			   &host->pending_events);
184 	debugfs_create_xul("completed_events", S_IRUSR, root,
185 			   &host->completed_events);
186 #ifdef CONFIG_FAULT_INJECTION
187 	fault_create_debugfs_attr("fail_data_crc", root, &host->fail_data_crc);
188 #endif
189 }
190 #endif /* defined(CONFIG_DEBUG_FS) */
191 
192 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
193 {
194 	u32 ctrl;
195 
196 	ctrl = mci_readl(host, CTRL);
197 	ctrl |= reset;
198 	mci_writel(host, CTRL, ctrl);
199 
200 	/* wait till resets clear */
201 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
202 				      !(ctrl & reset),
203 				      1, 500 * USEC_PER_MSEC)) {
204 		dev_err(host->dev,
205 			"Timeout resetting block (ctrl reset %#x)\n",
206 			ctrl & reset);
207 		return false;
208 	}
209 
210 	return true;
211 }
212 
213 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
214 {
215 	u32 status;
216 
217 	/*
218 	 * Databook says that before issuing a new data transfer command
219 	 * we need to check to see if the card is busy.  Data transfer commands
220 	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
221 	 *
222 	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
223 	 * expected.
224 	 */
225 	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
226 	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
227 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
228 					      status,
229 					      !(status & SDMMC_STATUS_BUSY),
230 					      10, 500 * USEC_PER_MSEC))
231 			dev_err(host->dev, "Busy; trying anyway\n");
232 	}
233 }
234 
235 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
236 {
237 	struct dw_mci *host = slot->host;
238 	unsigned int cmd_status = 0;
239 
240 	mci_writel(host, CMDARG, arg);
241 	wmb(); /* drain writebuffer */
242 	dw_mci_wait_while_busy(host, cmd);
243 	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
244 
245 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
246 				      !(cmd_status & SDMMC_CMD_START),
247 				      1, 500 * USEC_PER_MSEC))
248 		dev_err(&slot->mmc->class_dev,
249 			"Timeout sending command (cmd %#x arg %#x status %#x)\n",
250 			cmd, arg, cmd_status);
251 }
252 
253 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
254 {
255 	struct dw_mci_slot *slot = mmc_priv(mmc);
256 	struct dw_mci *host = slot->host;
257 	u32 cmdr;
258 
259 	cmd->error = -EINPROGRESS;
260 	cmdr = cmd->opcode;
261 
262 	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
263 	    cmd->opcode == MMC_GO_IDLE_STATE ||
264 	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
265 	    (cmd->opcode == SD_IO_RW_DIRECT &&
266 	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
267 		cmdr |= SDMMC_CMD_STOP;
268 	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
269 		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
270 
271 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
272 		u32 clk_en_a;
273 
274 		/* Special bit makes CMD11 not die */
275 		cmdr |= SDMMC_CMD_VOLT_SWITCH;
276 
277 		/* Change state to continue to handle CMD11 weirdness */
278 		WARN_ON(slot->host->state != STATE_SENDING_CMD);
279 		slot->host->state = STATE_SENDING_CMD11;
280 
281 		/*
282 		 * We need to disable low power mode (automatic clock stop)
283 		 * while doing voltage switch so we don't confuse the card,
284 		 * since stopping the clock is a specific part of the UHS
285 		 * voltage change dance.
286 		 *
287 		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
288 		 * unconditionally turned back on in dw_mci_setup_bus() if it's
289 		 * ever called with a non-zero clock.  That shouldn't happen
290 		 * until the voltage change is all done.
291 		 */
292 		clk_en_a = mci_readl(host, CLKENA);
293 		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
294 		mci_writel(host, CLKENA, clk_en_a);
295 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
296 			     SDMMC_CMD_PRV_DAT_WAIT, 0);
297 	}
298 
299 	if (cmd->flags & MMC_RSP_PRESENT) {
300 		/* We expect a response, so set this bit */
301 		cmdr |= SDMMC_CMD_RESP_EXP;
302 		if (cmd->flags & MMC_RSP_136)
303 			cmdr |= SDMMC_CMD_RESP_LONG;
304 	}
305 
306 	if (cmd->flags & MMC_RSP_CRC)
307 		cmdr |= SDMMC_CMD_RESP_CRC;
308 
309 	if (cmd->data) {
310 		cmdr |= SDMMC_CMD_DAT_EXP;
311 		if (cmd->data->flags & MMC_DATA_WRITE)
312 			cmdr |= SDMMC_CMD_DAT_WR;
313 	}
314 
315 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
316 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
317 
318 	return cmdr;
319 }
320 
321 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
322 {
323 	struct mmc_command *stop;
324 	u32 cmdr;
325 
326 	if (!cmd->data)
327 		return 0;
328 
329 	stop = &host->stop_abort;
330 	cmdr = cmd->opcode;
331 	memset(stop, 0, sizeof(struct mmc_command));
332 
333 	if (cmdr == MMC_READ_SINGLE_BLOCK ||
334 	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
335 	    cmdr == MMC_WRITE_BLOCK ||
336 	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
337 	    cmdr == MMC_SEND_TUNING_BLOCK ||
338 	    cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
339 		stop->opcode = MMC_STOP_TRANSMISSION;
340 		stop->arg = 0;
341 		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
342 	} else if (cmdr == SD_IO_RW_EXTENDED) {
343 		stop->opcode = SD_IO_RW_DIRECT;
344 		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
345 			     ((cmd->arg >> 28) & 0x7);
346 		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
347 	} else {
348 		return 0;
349 	}
350 
351 	cmdr = stop->opcode | SDMMC_CMD_STOP |
352 		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
353 
354 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
355 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
356 
357 	return cmdr;
358 }
359 
360 static inline void dw_mci_set_cto(struct dw_mci *host)
361 {
362 	unsigned int cto_clks;
363 	unsigned int cto_div;
364 	unsigned int cto_ms;
365 	unsigned long irqflags;
366 
367 	cto_clks = mci_readl(host, TMOUT) & 0xff;
368 	cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
369 	if (cto_div == 0)
370 		cto_div = 1;
371 
372 	cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
373 				  host->bus_hz);
374 
375 	/* add a bit spare time */
376 	cto_ms += 10;
377 
378 	/*
379 	 * The durations we're working with are fairly short so we have to be
380 	 * extra careful about synchronization here.  Specifically in hardware a
381 	 * command timeout is _at most_ 5.1 ms, so that means we expect an
382 	 * interrupt (either command done or timeout) to come rather quickly
383 	 * after the mci_writel.  ...but just in case we have a long interrupt
384 	 * latency let's add a bit of paranoia.
385 	 *
386 	 * In general we'll assume that at least an interrupt will be asserted
387 	 * in hardware by the time the cto_timer runs.  ...and if it hasn't
388 	 * been asserted in hardware by that time then we'll assume it'll never
389 	 * come.
390 	 */
391 	spin_lock_irqsave(&host->irq_lock, irqflags);
392 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
393 		mod_timer(&host->cto_timer,
394 			jiffies + msecs_to_jiffies(cto_ms) + 1);
395 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
396 }
397 
398 static void dw_mci_start_command(struct dw_mci *host,
399 				 struct mmc_command *cmd, u32 cmd_flags)
400 {
401 	host->cmd = cmd;
402 	dev_vdbg(host->dev,
403 		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
404 		 cmd->arg, cmd_flags);
405 
406 	mci_writel(host, CMDARG, cmd->arg);
407 	wmb(); /* drain writebuffer */
408 	dw_mci_wait_while_busy(host, cmd_flags);
409 
410 	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
411 
412 	/* response expected command only */
413 	if (cmd_flags & SDMMC_CMD_RESP_EXP)
414 		dw_mci_set_cto(host);
415 }
416 
417 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
418 {
419 	struct mmc_command *stop = &host->stop_abort;
420 
421 	dw_mci_start_command(host, stop, host->stop_cmdr);
422 }
423 
424 /* DMA interface functions */
425 static void dw_mci_stop_dma(struct dw_mci *host)
426 {
427 	if (host->using_dma) {
428 		host->dma_ops->stop(host);
429 		host->dma_ops->cleanup(host);
430 	}
431 
432 	/* Data transfer was stopped by the interrupt handler */
433 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
434 }
435 
436 static void dw_mci_dma_cleanup(struct dw_mci *host)
437 {
438 	struct mmc_data *data = host->data;
439 
440 	if (data && data->host_cookie == COOKIE_MAPPED) {
441 		dma_unmap_sg(host->dev,
442 			     data->sg,
443 			     data->sg_len,
444 			     mmc_get_dma_dir(data));
445 		data->host_cookie = COOKIE_UNMAPPED;
446 	}
447 }
448 
449 static void dw_mci_idmac_reset(struct dw_mci *host)
450 {
451 	u32 bmod = mci_readl(host, BMOD);
452 	/* Software reset of DMA */
453 	bmod |= SDMMC_IDMAC_SWRESET;
454 	mci_writel(host, BMOD, bmod);
455 }
456 
457 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
458 {
459 	u32 temp;
460 
461 	/* Disable and reset the IDMAC interface */
462 	temp = mci_readl(host, CTRL);
463 	temp &= ~SDMMC_CTRL_USE_IDMAC;
464 	temp |= SDMMC_CTRL_DMA_RESET;
465 	mci_writel(host, CTRL, temp);
466 
467 	/* Stop the IDMAC running */
468 	temp = mci_readl(host, BMOD);
469 	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
470 	temp |= SDMMC_IDMAC_SWRESET;
471 	mci_writel(host, BMOD, temp);
472 }
473 
474 static void dw_mci_dmac_complete_dma(void *arg)
475 {
476 	struct dw_mci *host = arg;
477 	struct mmc_data *data = host->data;
478 
479 	dev_vdbg(host->dev, "DMA complete\n");
480 
481 	if ((host->use_dma == TRANS_MODE_EDMAC) &&
482 	    data && (data->flags & MMC_DATA_READ))
483 		/* Invalidate cache after read */
484 		dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
485 				    data->sg,
486 				    data->sg_len,
487 				    DMA_FROM_DEVICE);
488 
489 	host->dma_ops->cleanup(host);
490 
491 	/*
492 	 * If the card was removed, data will be NULL. No point in trying to
493 	 * send the stop command or waiting for NBUSY in this case.
494 	 */
495 	if (data) {
496 		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
497 		tasklet_schedule(&host->tasklet);
498 	}
499 }
500 
501 static int dw_mci_idmac_init(struct dw_mci *host)
502 {
503 	int i;
504 
505 	if (host->dma_64bit_address == 1) {
506 		struct idmac_desc_64addr *p;
507 		/* Number of descriptors in the ring buffer */
508 		host->ring_size =
509 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
510 
511 		/* Forward link the descriptor list */
512 		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
513 								i++, p++) {
514 			p->des6 = (host->sg_dma +
515 					(sizeof(struct idmac_desc_64addr) *
516 							(i + 1))) & 0xffffffff;
517 
518 			p->des7 = (u64)(host->sg_dma +
519 					(sizeof(struct idmac_desc_64addr) *
520 							(i + 1))) >> 32;
521 			/* Initialize reserved and buffer size fields to "0" */
522 			p->des0 = 0;
523 			p->des1 = 0;
524 			p->des2 = 0;
525 			p->des3 = 0;
526 		}
527 
528 		/* Set the last descriptor as the end-of-ring descriptor */
529 		p->des6 = host->sg_dma & 0xffffffff;
530 		p->des7 = (u64)host->sg_dma >> 32;
531 		p->des0 = IDMAC_DES0_ER;
532 
533 	} else {
534 		struct idmac_desc *p;
535 		/* Number of descriptors in the ring buffer */
536 		host->ring_size =
537 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
538 
539 		/* Forward link the descriptor list */
540 		for (i = 0, p = host->sg_cpu;
541 		     i < host->ring_size - 1;
542 		     i++, p++) {
543 			p->des3 = cpu_to_le32(host->sg_dma +
544 					(sizeof(struct idmac_desc) * (i + 1)));
545 			p->des0 = 0;
546 			p->des1 = 0;
547 		}
548 
549 		/* Set the last descriptor as the end-of-ring descriptor */
550 		p->des3 = cpu_to_le32(host->sg_dma);
551 		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
552 	}
553 
554 	dw_mci_idmac_reset(host);
555 
556 	if (host->dma_64bit_address == 1) {
557 		/* Mask out interrupts - get Tx & Rx complete only */
558 		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
559 		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
560 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
561 
562 		/* Set the descriptor base address */
563 		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
564 		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
565 
566 	} else {
567 		/* Mask out interrupts - get Tx & Rx complete only */
568 		mci_writel(host, IDSTS, IDMAC_INT_CLR);
569 		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
570 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
571 
572 		/* Set the descriptor base address */
573 		mci_writel(host, DBADDR, host->sg_dma);
574 	}
575 
576 	return 0;
577 }
578 
579 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
580 					 struct mmc_data *data,
581 					 unsigned int sg_len)
582 {
583 	unsigned int desc_len;
584 	struct idmac_desc_64addr *desc_first, *desc_last, *desc;
585 	u32 val;
586 	int i;
587 
588 	desc_first = desc_last = desc = host->sg_cpu;
589 
590 	for (i = 0; i < sg_len; i++) {
591 		unsigned int length = sg_dma_len(&data->sg[i]);
592 
593 		u64 mem_addr = sg_dma_address(&data->sg[i]);
594 
595 		for ( ; length ; desc++) {
596 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
597 				   length : DW_MCI_DESC_DATA_LENGTH;
598 
599 			length -= desc_len;
600 
601 			/*
602 			 * Wait for the former clear OWN bit operation
603 			 * of IDMAC to make sure that this descriptor
604 			 * isn't still owned by IDMAC as IDMAC's write
605 			 * ops and CPU's read ops are asynchronous.
606 			 */
607 			if (readl_poll_timeout_atomic(&desc->des0, val,
608 						!(val & IDMAC_DES0_OWN),
609 						10, 100 * USEC_PER_MSEC))
610 				goto err_own_bit;
611 
612 			/*
613 			 * Set the OWN bit and disable interrupts
614 			 * for this descriptor
615 			 */
616 			desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
617 						IDMAC_DES0_CH;
618 
619 			/* Buffer length */
620 			IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
621 
622 			/* Physical address to DMA to/from */
623 			desc->des4 = mem_addr & 0xffffffff;
624 			desc->des5 = mem_addr >> 32;
625 
626 			/* Update physical address for the next desc */
627 			mem_addr += desc_len;
628 
629 			/* Save pointer to the last descriptor */
630 			desc_last = desc;
631 		}
632 	}
633 
634 	/* Set first descriptor */
635 	desc_first->des0 |= IDMAC_DES0_FD;
636 
637 	/* Set last descriptor */
638 	desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
639 	desc_last->des0 |= IDMAC_DES0_LD;
640 
641 	return 0;
642 err_own_bit:
643 	/* restore the descriptor chain as it's polluted */
644 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
645 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
646 	dw_mci_idmac_init(host);
647 	return -EINVAL;
648 }
649 
650 
651 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
652 					 struct mmc_data *data,
653 					 unsigned int sg_len)
654 {
655 	unsigned int desc_len;
656 	struct idmac_desc *desc_first, *desc_last, *desc;
657 	u32 val;
658 	int i;
659 
660 	desc_first = desc_last = desc = host->sg_cpu;
661 
662 	for (i = 0; i < sg_len; i++) {
663 		unsigned int length = sg_dma_len(&data->sg[i]);
664 
665 		u32 mem_addr = sg_dma_address(&data->sg[i]);
666 
667 		for ( ; length ; desc++) {
668 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
669 				   length : DW_MCI_DESC_DATA_LENGTH;
670 
671 			length -= desc_len;
672 
673 			/*
674 			 * Wait for the former clear OWN bit operation
675 			 * of IDMAC to make sure that this descriptor
676 			 * isn't still owned by IDMAC as IDMAC's write
677 			 * ops and CPU's read ops are asynchronous.
678 			 */
679 			if (readl_poll_timeout_atomic(&desc->des0, val,
680 						      IDMAC_OWN_CLR64(val),
681 						      10,
682 						      100 * USEC_PER_MSEC))
683 				goto err_own_bit;
684 
685 			/*
686 			 * Set the OWN bit and disable interrupts
687 			 * for this descriptor
688 			 */
689 			desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
690 						 IDMAC_DES0_DIC |
691 						 IDMAC_DES0_CH);
692 
693 			/* Buffer length */
694 			IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
695 
696 			/* Physical address to DMA to/from */
697 			desc->des2 = cpu_to_le32(mem_addr);
698 
699 			/* Update physical address for the next desc */
700 			mem_addr += desc_len;
701 
702 			/* Save pointer to the last descriptor */
703 			desc_last = desc;
704 		}
705 	}
706 
707 	/* Set first descriptor */
708 	desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
709 
710 	/* Set last descriptor */
711 	desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
712 				       IDMAC_DES0_DIC));
713 	desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
714 
715 	return 0;
716 err_own_bit:
717 	/* restore the descriptor chain as it's polluted */
718 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
719 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
720 	dw_mci_idmac_init(host);
721 	return -EINVAL;
722 }
723 
724 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
725 {
726 	u32 temp;
727 	int ret;
728 
729 	if (host->dma_64bit_address == 1)
730 		ret = dw_mci_prepare_desc64(host, host->data, sg_len);
731 	else
732 		ret = dw_mci_prepare_desc32(host, host->data, sg_len);
733 
734 	if (ret)
735 		goto out;
736 
737 	/* drain writebuffer */
738 	wmb();
739 
740 	/* Make sure to reset DMA in case we did PIO before this */
741 	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
742 	dw_mci_idmac_reset(host);
743 
744 	/* Select IDMAC interface */
745 	temp = mci_readl(host, CTRL);
746 	temp |= SDMMC_CTRL_USE_IDMAC;
747 	mci_writel(host, CTRL, temp);
748 
749 	/* drain writebuffer */
750 	wmb();
751 
752 	/* Enable the IDMAC */
753 	temp = mci_readl(host, BMOD);
754 	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
755 	mci_writel(host, BMOD, temp);
756 
757 	/* Start it running */
758 	mci_writel(host, PLDMND, 1);
759 
760 out:
761 	return ret;
762 }
763 
764 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
765 	.init = dw_mci_idmac_init,
766 	.start = dw_mci_idmac_start_dma,
767 	.stop = dw_mci_idmac_stop_dma,
768 	.complete = dw_mci_dmac_complete_dma,
769 	.cleanup = dw_mci_dma_cleanup,
770 };
771 
772 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
773 {
774 	dmaengine_terminate_async(host->dms->ch);
775 }
776 
777 static int dw_mci_edmac_start_dma(struct dw_mci *host,
778 					    unsigned int sg_len)
779 {
780 	struct dma_slave_config cfg;
781 	struct dma_async_tx_descriptor *desc = NULL;
782 	struct scatterlist *sgl = host->data->sg;
783 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
784 	u32 sg_elems = host->data->sg_len;
785 	u32 fifoth_val;
786 	u32 fifo_offset = host->fifo_reg - host->regs;
787 	int ret = 0;
788 
789 	/* Set external dma config: burst size, burst width */
790 	memset(&cfg, 0, sizeof(cfg));
791 	cfg.dst_addr = host->phy_regs + fifo_offset;
792 	cfg.src_addr = cfg.dst_addr;
793 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
794 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
795 
796 	/* Match burst msize with external dma config */
797 	fifoth_val = mci_readl(host, FIFOTH);
798 	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
799 	cfg.src_maxburst = cfg.dst_maxburst;
800 
801 	if (host->data->flags & MMC_DATA_WRITE)
802 		cfg.direction = DMA_MEM_TO_DEV;
803 	else
804 		cfg.direction = DMA_DEV_TO_MEM;
805 
806 	ret = dmaengine_slave_config(host->dms->ch, &cfg);
807 	if (ret) {
808 		dev_err(host->dev, "Failed to config edmac.\n");
809 		return -EBUSY;
810 	}
811 
812 	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
813 				       sg_len, cfg.direction,
814 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
815 	if (!desc) {
816 		dev_err(host->dev, "Can't prepare slave sg.\n");
817 		return -EBUSY;
818 	}
819 
820 	/* Set dw_mci_dmac_complete_dma as callback */
821 	desc->callback = dw_mci_dmac_complete_dma;
822 	desc->callback_param = (void *)host;
823 	dmaengine_submit(desc);
824 
825 	/* Flush cache before write */
826 	if (host->data->flags & MMC_DATA_WRITE)
827 		dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
828 				       sg_elems, DMA_TO_DEVICE);
829 
830 	dma_async_issue_pending(host->dms->ch);
831 
832 	return 0;
833 }
834 
835 static int dw_mci_edmac_init(struct dw_mci *host)
836 {
837 	/* Request external dma channel */
838 	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
839 	if (!host->dms)
840 		return -ENOMEM;
841 
842 	host->dms->ch = dma_request_chan(host->dev, "rx-tx");
843 	if (IS_ERR(host->dms->ch)) {
844 		int ret = PTR_ERR(host->dms->ch);
845 
846 		dev_err(host->dev, "Failed to get external DMA channel.\n");
847 		kfree(host->dms);
848 		host->dms = NULL;
849 		return ret;
850 	}
851 
852 	return 0;
853 }
854 
855 static void dw_mci_edmac_exit(struct dw_mci *host)
856 {
857 	if (host->dms) {
858 		if (host->dms->ch) {
859 			dma_release_channel(host->dms->ch);
860 			host->dms->ch = NULL;
861 		}
862 		kfree(host->dms);
863 		host->dms = NULL;
864 	}
865 }
866 
867 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
868 	.init = dw_mci_edmac_init,
869 	.exit = dw_mci_edmac_exit,
870 	.start = dw_mci_edmac_start_dma,
871 	.stop = dw_mci_edmac_stop_dma,
872 	.complete = dw_mci_dmac_complete_dma,
873 	.cleanup = dw_mci_dma_cleanup,
874 };
875 
876 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
877 				   struct mmc_data *data,
878 				   int cookie)
879 {
880 	struct scatterlist *sg;
881 	unsigned int i, sg_len;
882 
883 	if (data->host_cookie == COOKIE_PRE_MAPPED)
884 		return data->sg_len;
885 
886 	/*
887 	 * We don't do DMA on "complex" transfers, i.e. with
888 	 * non-word-aligned buffers or lengths. Also, we don't bother
889 	 * with all the DMA setup overhead for short transfers.
890 	 */
891 	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
892 		return -EINVAL;
893 
894 	if (data->blksz & 3)
895 		return -EINVAL;
896 
897 	for_each_sg(data->sg, sg, data->sg_len, i) {
898 		if (sg->offset & 3 || sg->length & 3)
899 			return -EINVAL;
900 	}
901 
902 	sg_len = dma_map_sg(host->dev,
903 			    data->sg,
904 			    data->sg_len,
905 			    mmc_get_dma_dir(data));
906 	if (sg_len == 0)
907 		return -EINVAL;
908 
909 	data->host_cookie = cookie;
910 
911 	return sg_len;
912 }
913 
914 static void dw_mci_pre_req(struct mmc_host *mmc,
915 			   struct mmc_request *mrq)
916 {
917 	struct dw_mci_slot *slot = mmc_priv(mmc);
918 	struct mmc_data *data = mrq->data;
919 
920 	if (!slot->host->use_dma || !data)
921 		return;
922 
923 	/* This data might be unmapped at this time */
924 	data->host_cookie = COOKIE_UNMAPPED;
925 
926 	if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
927 				COOKIE_PRE_MAPPED) < 0)
928 		data->host_cookie = COOKIE_UNMAPPED;
929 }
930 
931 static void dw_mci_post_req(struct mmc_host *mmc,
932 			    struct mmc_request *mrq,
933 			    int err)
934 {
935 	struct dw_mci_slot *slot = mmc_priv(mmc);
936 	struct mmc_data *data = mrq->data;
937 
938 	if (!slot->host->use_dma || !data)
939 		return;
940 
941 	if (data->host_cookie != COOKIE_UNMAPPED)
942 		dma_unmap_sg(slot->host->dev,
943 			     data->sg,
944 			     data->sg_len,
945 			     mmc_get_dma_dir(data));
946 	data->host_cookie = COOKIE_UNMAPPED;
947 }
948 
949 static int dw_mci_get_cd(struct mmc_host *mmc)
950 {
951 	int present;
952 	struct dw_mci_slot *slot = mmc_priv(mmc);
953 	struct dw_mci *host = slot->host;
954 	int gpio_cd = mmc_gpio_get_cd(mmc);
955 
956 	/* Use platform get_cd function, else try onboard card detect */
957 	if (((mmc->caps & MMC_CAP_NEEDS_POLL)
958 				|| !mmc_card_is_removable(mmc))) {
959 		present = 1;
960 
961 		if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
962 			if (mmc->caps & MMC_CAP_NEEDS_POLL) {
963 				dev_info(&mmc->class_dev,
964 					"card is polling.\n");
965 			} else {
966 				dev_info(&mmc->class_dev,
967 					"card is non-removable.\n");
968 			}
969 			set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
970 		}
971 
972 		return present;
973 	} else if (gpio_cd >= 0)
974 		present = gpio_cd;
975 	else
976 		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
977 			== 0 ? 1 : 0;
978 
979 	spin_lock_bh(&host->lock);
980 	if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
981 		dev_dbg(&mmc->class_dev, "card is present\n");
982 	else if (!present &&
983 			!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
984 		dev_dbg(&mmc->class_dev, "card is not present\n");
985 	spin_unlock_bh(&host->lock);
986 
987 	return present;
988 }
989 
990 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
991 {
992 	unsigned int blksz = data->blksz;
993 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
994 	u32 fifo_width = 1 << host->data_shift;
995 	u32 blksz_depth = blksz / fifo_width, fifoth_val;
996 	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
997 	int idx = ARRAY_SIZE(mszs) - 1;
998 
999 	/* pio should ship this scenario */
1000 	if (!host->use_dma)
1001 		return;
1002 
1003 	tx_wmark = (host->fifo_depth) / 2;
1004 	tx_wmark_invers = host->fifo_depth - tx_wmark;
1005 
1006 	/*
1007 	 * MSIZE is '1',
1008 	 * if blksz is not a multiple of the FIFO width
1009 	 */
1010 	if (blksz % fifo_width)
1011 		goto done;
1012 
1013 	do {
1014 		if (!((blksz_depth % mszs[idx]) ||
1015 		     (tx_wmark_invers % mszs[idx]))) {
1016 			msize = idx;
1017 			rx_wmark = mszs[idx] - 1;
1018 			break;
1019 		}
1020 	} while (--idx > 0);
1021 	/*
1022 	 * If idx is '0', it won't be tried
1023 	 * Thus, initial values are uesed
1024 	 */
1025 done:
1026 	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1027 	mci_writel(host, FIFOTH, fifoth_val);
1028 }
1029 
1030 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1031 {
1032 	unsigned int blksz = data->blksz;
1033 	u32 blksz_depth, fifo_depth;
1034 	u16 thld_size;
1035 	u8 enable;
1036 
1037 	/*
1038 	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1039 	 * in the FIFO region, so we really shouldn't access it).
1040 	 */
1041 	if (host->verid < DW_MMC_240A ||
1042 		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1043 		return;
1044 
1045 	/*
1046 	 * Card write Threshold is introduced since 2.80a
1047 	 * It's used when HS400 mode is enabled.
1048 	 */
1049 	if (data->flags & MMC_DATA_WRITE &&
1050 		host->timing != MMC_TIMING_MMC_HS400)
1051 		goto disable;
1052 
1053 	if (data->flags & MMC_DATA_WRITE)
1054 		enable = SDMMC_CARD_WR_THR_EN;
1055 	else
1056 		enable = SDMMC_CARD_RD_THR_EN;
1057 
1058 	if (host->timing != MMC_TIMING_MMC_HS200 &&
1059 	    host->timing != MMC_TIMING_UHS_SDR104 &&
1060 	    host->timing != MMC_TIMING_MMC_HS400)
1061 		goto disable;
1062 
1063 	blksz_depth = blksz / (1 << host->data_shift);
1064 	fifo_depth = host->fifo_depth;
1065 
1066 	if (blksz_depth > fifo_depth)
1067 		goto disable;
1068 
1069 	/*
1070 	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1071 	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1072 	 * Currently just choose blksz.
1073 	 */
1074 	thld_size = blksz;
1075 	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1076 	return;
1077 
1078 disable:
1079 	mci_writel(host, CDTHRCTL, 0);
1080 }
1081 
1082 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1083 {
1084 	unsigned long irqflags;
1085 	int sg_len;
1086 	u32 temp;
1087 
1088 	host->using_dma = 0;
1089 
1090 	/* If we don't have a channel, we can't do DMA */
1091 	if (!host->use_dma)
1092 		return -ENODEV;
1093 
1094 	sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1095 	if (sg_len < 0) {
1096 		host->dma_ops->stop(host);
1097 		return sg_len;
1098 	}
1099 
1100 	host->using_dma = 1;
1101 
1102 	if (host->use_dma == TRANS_MODE_IDMAC)
1103 		dev_vdbg(host->dev,
1104 			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1105 			 (unsigned long)host->sg_cpu,
1106 			 (unsigned long)host->sg_dma,
1107 			 sg_len);
1108 
1109 	/*
1110 	 * Decide the MSIZE and RX/TX Watermark.
1111 	 * If current block size is same with previous size,
1112 	 * no need to update fifoth.
1113 	 */
1114 	if (host->prev_blksz != data->blksz)
1115 		dw_mci_adjust_fifoth(host, data);
1116 
1117 	/* Enable the DMA interface */
1118 	temp = mci_readl(host, CTRL);
1119 	temp |= SDMMC_CTRL_DMA_ENABLE;
1120 	mci_writel(host, CTRL, temp);
1121 
1122 	/* Disable RX/TX IRQs, let DMA handle it */
1123 	spin_lock_irqsave(&host->irq_lock, irqflags);
1124 	temp = mci_readl(host, INTMASK);
1125 	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1126 	mci_writel(host, INTMASK, temp);
1127 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1128 
1129 	if (host->dma_ops->start(host, sg_len)) {
1130 		host->dma_ops->stop(host);
1131 		/* We can't do DMA, try PIO for this one */
1132 		dev_dbg(host->dev,
1133 			"%s: fall back to PIO mode for current transfer\n",
1134 			__func__);
1135 		return -ENODEV;
1136 	}
1137 
1138 	return 0;
1139 }
1140 
1141 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1142 {
1143 	unsigned long irqflags;
1144 	int flags = SG_MITER_ATOMIC;
1145 	u32 temp;
1146 
1147 	data->error = -EINPROGRESS;
1148 
1149 	WARN_ON(host->data);
1150 	host->sg = NULL;
1151 	host->data = data;
1152 
1153 	if (data->flags & MMC_DATA_READ)
1154 		host->dir_status = DW_MCI_RECV_STATUS;
1155 	else
1156 		host->dir_status = DW_MCI_SEND_STATUS;
1157 
1158 	dw_mci_ctrl_thld(host, data);
1159 
1160 	if (dw_mci_submit_data_dma(host, data)) {
1161 		if (host->data->flags & MMC_DATA_READ)
1162 			flags |= SG_MITER_TO_SG;
1163 		else
1164 			flags |= SG_MITER_FROM_SG;
1165 
1166 		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1167 		host->sg = data->sg;
1168 		host->part_buf_start = 0;
1169 		host->part_buf_count = 0;
1170 
1171 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1172 
1173 		spin_lock_irqsave(&host->irq_lock, irqflags);
1174 		temp = mci_readl(host, INTMASK);
1175 		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1176 		mci_writel(host, INTMASK, temp);
1177 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1178 
1179 		temp = mci_readl(host, CTRL);
1180 		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1181 		mci_writel(host, CTRL, temp);
1182 
1183 		/*
1184 		 * Use the initial fifoth_val for PIO mode. If wm_algined
1185 		 * is set, we set watermark same as data size.
1186 		 * If next issued data may be transfered by DMA mode,
1187 		 * prev_blksz should be invalidated.
1188 		 */
1189 		if (host->wm_aligned)
1190 			dw_mci_adjust_fifoth(host, data);
1191 		else
1192 			mci_writel(host, FIFOTH, host->fifoth_val);
1193 		host->prev_blksz = 0;
1194 	} else {
1195 		/*
1196 		 * Keep the current block size.
1197 		 * It will be used to decide whether to update
1198 		 * fifoth register next time.
1199 		 */
1200 		host->prev_blksz = data->blksz;
1201 	}
1202 }
1203 
1204 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1205 {
1206 	struct dw_mci *host = slot->host;
1207 	unsigned int clock = slot->clock;
1208 	u32 div;
1209 	u32 clk_en_a;
1210 	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1211 
1212 	/* We must continue to set bit 28 in CMD until the change is complete */
1213 	if (host->state == STATE_WAITING_CMD11_DONE)
1214 		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1215 
1216 	slot->mmc->actual_clock = 0;
1217 
1218 	if (!clock) {
1219 		mci_writel(host, CLKENA, 0);
1220 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1221 	} else if (clock != host->current_speed || force_clkinit) {
1222 		div = host->bus_hz / clock;
1223 		if (host->bus_hz % clock && host->bus_hz > clock)
1224 			/*
1225 			 * move the + 1 after the divide to prevent
1226 			 * over-clocking the card.
1227 			 */
1228 			div += 1;
1229 
1230 		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1231 
1232 		if ((clock != slot->__clk_old &&
1233 			!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1234 			force_clkinit) {
1235 			/* Silent the verbose log if calling from PM context */
1236 			if (!force_clkinit)
1237 				dev_info(&slot->mmc->class_dev,
1238 					 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1239 					 slot->id, host->bus_hz, clock,
1240 					 div ? ((host->bus_hz / div) >> 1) :
1241 					 host->bus_hz, div);
1242 
1243 			/*
1244 			 * If card is polling, display the message only
1245 			 * one time at boot time.
1246 			 */
1247 			if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1248 					slot->mmc->f_min == clock)
1249 				set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1250 		}
1251 
1252 		/* disable clock */
1253 		mci_writel(host, CLKENA, 0);
1254 		mci_writel(host, CLKSRC, 0);
1255 
1256 		/* inform CIU */
1257 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1258 
1259 		/* set clock to desired speed */
1260 		mci_writel(host, CLKDIV, div);
1261 
1262 		/* inform CIU */
1263 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1264 
1265 		/* enable clock; only low power if no SDIO */
1266 		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1267 		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1268 			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1269 		mci_writel(host, CLKENA, clk_en_a);
1270 
1271 		/* inform CIU */
1272 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1273 
1274 		/* keep the last clock value that was requested from core */
1275 		slot->__clk_old = clock;
1276 		slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
1277 					  host->bus_hz;
1278 	}
1279 
1280 	host->current_speed = clock;
1281 
1282 	/* Set the current slot bus width */
1283 	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1284 }
1285 
1286 static void __dw_mci_start_request(struct dw_mci *host,
1287 				   struct dw_mci_slot *slot,
1288 				   struct mmc_command *cmd)
1289 {
1290 	struct mmc_request *mrq;
1291 	struct mmc_data	*data;
1292 	u32 cmdflags;
1293 
1294 	mrq = slot->mrq;
1295 
1296 	host->mrq = mrq;
1297 
1298 	host->pending_events = 0;
1299 	host->completed_events = 0;
1300 	host->cmd_status = 0;
1301 	host->data_status = 0;
1302 	host->dir_status = 0;
1303 
1304 	data = cmd->data;
1305 	if (data) {
1306 		mci_writel(host, TMOUT, 0xFFFFFFFF);
1307 		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1308 		mci_writel(host, BLKSIZ, data->blksz);
1309 	}
1310 
1311 	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1312 
1313 	/* this is the first command, send the initialization clock */
1314 	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1315 		cmdflags |= SDMMC_CMD_INIT;
1316 
1317 	if (data) {
1318 		dw_mci_submit_data(host, data);
1319 		wmb(); /* drain writebuffer */
1320 	}
1321 
1322 	dw_mci_start_command(host, cmd, cmdflags);
1323 
1324 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1325 		unsigned long irqflags;
1326 
1327 		/*
1328 		 * Databook says to fail after 2ms w/ no response, but evidence
1329 		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1330 		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1331 		 * is just about to roll over.
1332 		 *
1333 		 * We do this whole thing under spinlock and only if the
1334 		 * command hasn't already completed (indicating the the irq
1335 		 * already ran so we don't want the timeout).
1336 		 */
1337 		spin_lock_irqsave(&host->irq_lock, irqflags);
1338 		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1339 			mod_timer(&host->cmd11_timer,
1340 				jiffies + msecs_to_jiffies(500) + 1);
1341 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1342 	}
1343 
1344 	host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1345 }
1346 
1347 static void dw_mci_start_request(struct dw_mci *host,
1348 				 struct dw_mci_slot *slot)
1349 {
1350 	struct mmc_request *mrq = slot->mrq;
1351 	struct mmc_command *cmd;
1352 
1353 	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1354 	__dw_mci_start_request(host, slot, cmd);
1355 }
1356 
1357 /* must be called with host->lock held */
1358 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1359 				 struct mmc_request *mrq)
1360 {
1361 	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1362 		 host->state);
1363 
1364 	slot->mrq = mrq;
1365 
1366 	if (host->state == STATE_WAITING_CMD11_DONE) {
1367 		dev_warn(&slot->mmc->class_dev,
1368 			 "Voltage change didn't complete\n");
1369 		/*
1370 		 * this case isn't expected to happen, so we can
1371 		 * either crash here or just try to continue on
1372 		 * in the closest possible state
1373 		 */
1374 		host->state = STATE_IDLE;
1375 	}
1376 
1377 	if (host->state == STATE_IDLE) {
1378 		host->state = STATE_SENDING_CMD;
1379 		dw_mci_start_request(host, slot);
1380 	} else {
1381 		list_add_tail(&slot->queue_node, &host->queue);
1382 	}
1383 }
1384 
1385 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1386 {
1387 	struct dw_mci_slot *slot = mmc_priv(mmc);
1388 	struct dw_mci *host = slot->host;
1389 
1390 	WARN_ON(slot->mrq);
1391 
1392 	/*
1393 	 * The check for card presence and queueing of the request must be
1394 	 * atomic, otherwise the card could be removed in between and the
1395 	 * request wouldn't fail until another card was inserted.
1396 	 */
1397 
1398 	if (!dw_mci_get_cd(mmc)) {
1399 		mrq->cmd->error = -ENOMEDIUM;
1400 		mmc_request_done(mmc, mrq);
1401 		return;
1402 	}
1403 
1404 	spin_lock_bh(&host->lock);
1405 
1406 	dw_mci_queue_request(host, slot, mrq);
1407 
1408 	spin_unlock_bh(&host->lock);
1409 }
1410 
1411 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1412 {
1413 	struct dw_mci_slot *slot = mmc_priv(mmc);
1414 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1415 	u32 regs;
1416 	int ret;
1417 
1418 	switch (ios->bus_width) {
1419 	case MMC_BUS_WIDTH_4:
1420 		slot->ctype = SDMMC_CTYPE_4BIT;
1421 		break;
1422 	case MMC_BUS_WIDTH_8:
1423 		slot->ctype = SDMMC_CTYPE_8BIT;
1424 		break;
1425 	default:
1426 		/* set default 1 bit mode */
1427 		slot->ctype = SDMMC_CTYPE_1BIT;
1428 	}
1429 
1430 	regs = mci_readl(slot->host, UHS_REG);
1431 
1432 	/* DDR mode set */
1433 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1434 	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1435 	    ios->timing == MMC_TIMING_MMC_HS400)
1436 		regs |= ((0x1 << slot->id) << 16);
1437 	else
1438 		regs &= ~((0x1 << slot->id) << 16);
1439 
1440 	mci_writel(slot->host, UHS_REG, regs);
1441 	slot->host->timing = ios->timing;
1442 
1443 	/*
1444 	 * Use mirror of ios->clock to prevent race with mmc
1445 	 * core ios update when finding the minimum.
1446 	 */
1447 	slot->clock = ios->clock;
1448 
1449 	if (drv_data && drv_data->set_ios)
1450 		drv_data->set_ios(slot->host, ios);
1451 
1452 	switch (ios->power_mode) {
1453 	case MMC_POWER_UP:
1454 		if (!IS_ERR(mmc->supply.vmmc)) {
1455 			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1456 					ios->vdd);
1457 			if (ret) {
1458 				dev_err(slot->host->dev,
1459 					"failed to enable vmmc regulator\n");
1460 				/*return, if failed turn on vmmc*/
1461 				return;
1462 			}
1463 		}
1464 		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1465 		regs = mci_readl(slot->host, PWREN);
1466 		regs |= (1 << slot->id);
1467 		mci_writel(slot->host, PWREN, regs);
1468 		break;
1469 	case MMC_POWER_ON:
1470 		if (!slot->host->vqmmc_enabled) {
1471 			if (!IS_ERR(mmc->supply.vqmmc)) {
1472 				ret = regulator_enable(mmc->supply.vqmmc);
1473 				if (ret < 0)
1474 					dev_err(slot->host->dev,
1475 						"failed to enable vqmmc\n");
1476 				else
1477 					slot->host->vqmmc_enabled = true;
1478 
1479 			} else {
1480 				/* Keep track so we don't reset again */
1481 				slot->host->vqmmc_enabled = true;
1482 			}
1483 
1484 			/* Reset our state machine after powering on */
1485 			dw_mci_ctrl_reset(slot->host,
1486 					  SDMMC_CTRL_ALL_RESET_FLAGS);
1487 		}
1488 
1489 		/* Adjust clock / bus width after power is up */
1490 		dw_mci_setup_bus(slot, false);
1491 
1492 		break;
1493 	case MMC_POWER_OFF:
1494 		/* Turn clock off before power goes down */
1495 		dw_mci_setup_bus(slot, false);
1496 
1497 		if (!IS_ERR(mmc->supply.vmmc))
1498 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1499 
1500 		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1501 			regulator_disable(mmc->supply.vqmmc);
1502 		slot->host->vqmmc_enabled = false;
1503 
1504 		regs = mci_readl(slot->host, PWREN);
1505 		regs &= ~(1 << slot->id);
1506 		mci_writel(slot->host, PWREN, regs);
1507 		break;
1508 	default:
1509 		break;
1510 	}
1511 
1512 	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1513 		slot->host->state = STATE_IDLE;
1514 }
1515 
1516 static int dw_mci_card_busy(struct mmc_host *mmc)
1517 {
1518 	struct dw_mci_slot *slot = mmc_priv(mmc);
1519 	u32 status;
1520 
1521 	/*
1522 	 * Check the busy bit which is low when DAT[3:0]
1523 	 * (the data lines) are 0000
1524 	 */
1525 	status = mci_readl(slot->host, STATUS);
1526 
1527 	return !!(status & SDMMC_STATUS_BUSY);
1528 }
1529 
1530 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1531 {
1532 	struct dw_mci_slot *slot = mmc_priv(mmc);
1533 	struct dw_mci *host = slot->host;
1534 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1535 	u32 uhs;
1536 	u32 v18 = SDMMC_UHS_18V << slot->id;
1537 	int ret;
1538 
1539 	if (drv_data && drv_data->switch_voltage)
1540 		return drv_data->switch_voltage(mmc, ios);
1541 
1542 	/*
1543 	 * Program the voltage.  Note that some instances of dw_mmc may use
1544 	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1545 	 * does no harm but you need to set the regulator directly.  Try both.
1546 	 */
1547 	uhs = mci_readl(host, UHS_REG);
1548 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1549 		uhs &= ~v18;
1550 	else
1551 		uhs |= v18;
1552 
1553 	if (!IS_ERR(mmc->supply.vqmmc)) {
1554 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1555 		if (ret < 0) {
1556 			dev_dbg(&mmc->class_dev,
1557 					 "Regulator set error %d - %s V\n",
1558 					 ret, uhs & v18 ? "1.8" : "3.3");
1559 			return ret;
1560 		}
1561 	}
1562 	mci_writel(host, UHS_REG, uhs);
1563 
1564 	return 0;
1565 }
1566 
1567 static int dw_mci_get_ro(struct mmc_host *mmc)
1568 {
1569 	int read_only;
1570 	struct dw_mci_slot *slot = mmc_priv(mmc);
1571 	int gpio_ro = mmc_gpio_get_ro(mmc);
1572 
1573 	/* Use platform get_ro function, else try on board write protect */
1574 	if (gpio_ro >= 0)
1575 		read_only = gpio_ro;
1576 	else
1577 		read_only =
1578 			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1579 
1580 	dev_dbg(&mmc->class_dev, "card is %s\n",
1581 		read_only ? "read-only" : "read-write");
1582 
1583 	return read_only;
1584 }
1585 
1586 static void dw_mci_hw_reset(struct mmc_host *mmc)
1587 {
1588 	struct dw_mci_slot *slot = mmc_priv(mmc);
1589 	struct dw_mci *host = slot->host;
1590 	int reset;
1591 
1592 	if (host->use_dma == TRANS_MODE_IDMAC)
1593 		dw_mci_idmac_reset(host);
1594 
1595 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1596 				     SDMMC_CTRL_FIFO_RESET))
1597 		return;
1598 
1599 	/*
1600 	 * According to eMMC spec, card reset procedure:
1601 	 * tRstW >= 1us:   RST_n pulse width
1602 	 * tRSCA >= 200us: RST_n to Command time
1603 	 * tRSTH >= 1us:   RST_n high period
1604 	 */
1605 	reset = mci_readl(host, RST_N);
1606 	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1607 	mci_writel(host, RST_N, reset);
1608 	usleep_range(1, 2);
1609 	reset |= SDMMC_RST_HWACTIVE << slot->id;
1610 	mci_writel(host, RST_N, reset);
1611 	usleep_range(200, 300);
1612 }
1613 
1614 static void dw_mci_prepare_sdio_irq(struct dw_mci_slot *slot, bool prepare)
1615 {
1616 	struct dw_mci *host = slot->host;
1617 	const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1618 	u32 clk_en_a_old;
1619 	u32 clk_en_a;
1620 
1621 	/*
1622 	 * Low power mode will stop the card clock when idle.  According to the
1623 	 * description of the CLKENA register we should disable low power mode
1624 	 * for SDIO cards if we need SDIO interrupts to work.
1625 	 */
1626 
1627 	clk_en_a_old = mci_readl(host, CLKENA);
1628 	if (prepare) {
1629 		set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1630 		clk_en_a = clk_en_a_old & ~clken_low_pwr;
1631 	} else {
1632 		clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1633 		clk_en_a = clk_en_a_old | clken_low_pwr;
1634 	}
1635 
1636 	if (clk_en_a != clk_en_a_old) {
1637 		mci_writel(host, CLKENA, clk_en_a);
1638 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT,
1639 			     0);
1640 	}
1641 }
1642 
1643 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1644 {
1645 	struct dw_mci *host = slot->host;
1646 	unsigned long irqflags;
1647 	u32 int_mask;
1648 
1649 	spin_lock_irqsave(&host->irq_lock, irqflags);
1650 
1651 	/* Enable/disable Slot Specific SDIO interrupt */
1652 	int_mask = mci_readl(host, INTMASK);
1653 	if (enb)
1654 		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1655 	else
1656 		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1657 	mci_writel(host, INTMASK, int_mask);
1658 
1659 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1660 }
1661 
1662 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1663 {
1664 	struct dw_mci_slot *slot = mmc_priv(mmc);
1665 	struct dw_mci *host = slot->host;
1666 
1667 	dw_mci_prepare_sdio_irq(slot, enb);
1668 	__dw_mci_enable_sdio_irq(slot, enb);
1669 
1670 	/* Avoid runtime suspending the device when SDIO IRQ is enabled */
1671 	if (enb)
1672 		pm_runtime_get_noresume(host->dev);
1673 	else
1674 		pm_runtime_put_noidle(host->dev);
1675 }
1676 
1677 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1678 {
1679 	struct dw_mci_slot *slot = mmc_priv(mmc);
1680 
1681 	__dw_mci_enable_sdio_irq(slot, 1);
1682 }
1683 
1684 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1685 {
1686 	struct dw_mci_slot *slot = mmc_priv(mmc);
1687 	struct dw_mci *host = slot->host;
1688 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1689 	int err = -EINVAL;
1690 
1691 	if (drv_data && drv_data->execute_tuning)
1692 		err = drv_data->execute_tuning(slot, opcode);
1693 	return err;
1694 }
1695 
1696 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1697 				       struct mmc_ios *ios)
1698 {
1699 	struct dw_mci_slot *slot = mmc_priv(mmc);
1700 	struct dw_mci *host = slot->host;
1701 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1702 
1703 	if (drv_data && drv_data->prepare_hs400_tuning)
1704 		return drv_data->prepare_hs400_tuning(host, ios);
1705 
1706 	return 0;
1707 }
1708 
1709 static bool dw_mci_reset(struct dw_mci *host)
1710 {
1711 	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1712 	bool ret = false;
1713 	u32 status = 0;
1714 
1715 	/*
1716 	 * Resetting generates a block interrupt, hence setting
1717 	 * the scatter-gather pointer to NULL.
1718 	 */
1719 	if (host->sg) {
1720 		sg_miter_stop(&host->sg_miter);
1721 		host->sg = NULL;
1722 	}
1723 
1724 	if (host->use_dma)
1725 		flags |= SDMMC_CTRL_DMA_RESET;
1726 
1727 	if (dw_mci_ctrl_reset(host, flags)) {
1728 		/*
1729 		 * In all cases we clear the RAWINTS
1730 		 * register to clear any interrupts.
1731 		 */
1732 		mci_writel(host, RINTSTS, 0xFFFFFFFF);
1733 
1734 		if (!host->use_dma) {
1735 			ret = true;
1736 			goto ciu_out;
1737 		}
1738 
1739 		/* Wait for dma_req to be cleared */
1740 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1741 					      status,
1742 					      !(status & SDMMC_STATUS_DMA_REQ),
1743 					      1, 500 * USEC_PER_MSEC)) {
1744 			dev_err(host->dev,
1745 				"%s: Timeout waiting for dma_req to be cleared\n",
1746 				__func__);
1747 			goto ciu_out;
1748 		}
1749 
1750 		/* when using DMA next we reset the fifo again */
1751 		if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1752 			goto ciu_out;
1753 	} else {
1754 		/* if the controller reset bit did clear, then set clock regs */
1755 		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1756 			dev_err(host->dev,
1757 				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1758 				__func__);
1759 			goto ciu_out;
1760 		}
1761 	}
1762 
1763 	if (host->use_dma == TRANS_MODE_IDMAC)
1764 		/* It is also required that we reinit idmac */
1765 		dw_mci_idmac_init(host);
1766 
1767 	ret = true;
1768 
1769 ciu_out:
1770 	/* After a CTRL reset we need to have CIU set clock registers  */
1771 	mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1772 
1773 	return ret;
1774 }
1775 
1776 static const struct mmc_host_ops dw_mci_ops = {
1777 	.request		= dw_mci_request,
1778 	.pre_req		= dw_mci_pre_req,
1779 	.post_req		= dw_mci_post_req,
1780 	.set_ios		= dw_mci_set_ios,
1781 	.get_ro			= dw_mci_get_ro,
1782 	.get_cd			= dw_mci_get_cd,
1783 	.hw_reset               = dw_mci_hw_reset,
1784 	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1785 	.ack_sdio_irq		= dw_mci_ack_sdio_irq,
1786 	.execute_tuning		= dw_mci_execute_tuning,
1787 	.card_busy		= dw_mci_card_busy,
1788 	.start_signal_voltage_switch = dw_mci_switch_voltage,
1789 	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1790 };
1791 
1792 #ifdef CONFIG_FAULT_INJECTION
1793 static enum hrtimer_restart dw_mci_fault_timer(struct hrtimer *t)
1794 {
1795 	struct dw_mci *host = container_of(t, struct dw_mci, fault_timer);
1796 	unsigned long flags;
1797 
1798 	spin_lock_irqsave(&host->irq_lock, flags);
1799 
1800 	/*
1801 	 * Only inject an error if we haven't already got an error or data over
1802 	 * interrupt.
1803 	 */
1804 	if (!host->data_status) {
1805 		host->data_status = SDMMC_INT_DCRC;
1806 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
1807 		tasklet_schedule(&host->tasklet);
1808 	}
1809 
1810 	spin_unlock_irqrestore(&host->irq_lock, flags);
1811 
1812 	return HRTIMER_NORESTART;
1813 }
1814 
1815 static void dw_mci_start_fault_timer(struct dw_mci *host)
1816 {
1817 	struct mmc_data *data = host->data;
1818 
1819 	if (!data || data->blocks <= 1)
1820 		return;
1821 
1822 	if (!should_fail(&host->fail_data_crc, 1))
1823 		return;
1824 
1825 	/*
1826 	 * Try to inject the error at random points during the data transfer.
1827 	 */
1828 	hrtimer_start(&host->fault_timer,
1829 		      ms_to_ktime(prandom_u32() % 25),
1830 		      HRTIMER_MODE_REL);
1831 }
1832 
1833 static void dw_mci_stop_fault_timer(struct dw_mci *host)
1834 {
1835 	hrtimer_cancel(&host->fault_timer);
1836 }
1837 
1838 static void dw_mci_init_fault(struct dw_mci *host)
1839 {
1840 	host->fail_data_crc = (struct fault_attr) FAULT_ATTR_INITIALIZER;
1841 
1842 	hrtimer_init(&host->fault_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1843 	host->fault_timer.function = dw_mci_fault_timer;
1844 }
1845 #else
1846 static void dw_mci_init_fault(struct dw_mci *host)
1847 {
1848 }
1849 
1850 static void dw_mci_start_fault_timer(struct dw_mci *host)
1851 {
1852 }
1853 
1854 static void dw_mci_stop_fault_timer(struct dw_mci *host)
1855 {
1856 }
1857 #endif
1858 
1859 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1860 	__releases(&host->lock)
1861 	__acquires(&host->lock)
1862 {
1863 	struct dw_mci_slot *slot;
1864 	struct mmc_host	*prev_mmc = host->slot->mmc;
1865 
1866 	WARN_ON(host->cmd || host->data);
1867 
1868 	host->slot->mrq = NULL;
1869 	host->mrq = NULL;
1870 	if (!list_empty(&host->queue)) {
1871 		slot = list_entry(host->queue.next,
1872 				  struct dw_mci_slot, queue_node);
1873 		list_del(&slot->queue_node);
1874 		dev_vdbg(host->dev, "list not empty: %s is next\n",
1875 			 mmc_hostname(slot->mmc));
1876 		host->state = STATE_SENDING_CMD;
1877 		dw_mci_start_request(host, slot);
1878 	} else {
1879 		dev_vdbg(host->dev, "list empty\n");
1880 
1881 		if (host->state == STATE_SENDING_CMD11)
1882 			host->state = STATE_WAITING_CMD11_DONE;
1883 		else
1884 			host->state = STATE_IDLE;
1885 	}
1886 
1887 	spin_unlock(&host->lock);
1888 	mmc_request_done(prev_mmc, mrq);
1889 	spin_lock(&host->lock);
1890 }
1891 
1892 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1893 {
1894 	u32 status = host->cmd_status;
1895 
1896 	host->cmd_status = 0;
1897 
1898 	/* Read the response from the card (up to 16 bytes) */
1899 	if (cmd->flags & MMC_RSP_PRESENT) {
1900 		if (cmd->flags & MMC_RSP_136) {
1901 			cmd->resp[3] = mci_readl(host, RESP0);
1902 			cmd->resp[2] = mci_readl(host, RESP1);
1903 			cmd->resp[1] = mci_readl(host, RESP2);
1904 			cmd->resp[0] = mci_readl(host, RESP3);
1905 		} else {
1906 			cmd->resp[0] = mci_readl(host, RESP0);
1907 			cmd->resp[1] = 0;
1908 			cmd->resp[2] = 0;
1909 			cmd->resp[3] = 0;
1910 		}
1911 	}
1912 
1913 	if (status & SDMMC_INT_RTO)
1914 		cmd->error = -ETIMEDOUT;
1915 	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1916 		cmd->error = -EILSEQ;
1917 	else if (status & SDMMC_INT_RESP_ERR)
1918 		cmd->error = -EIO;
1919 	else
1920 		cmd->error = 0;
1921 
1922 	return cmd->error;
1923 }
1924 
1925 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1926 {
1927 	u32 status = host->data_status;
1928 
1929 	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1930 		if (status & SDMMC_INT_DRTO) {
1931 			data->error = -ETIMEDOUT;
1932 		} else if (status & SDMMC_INT_DCRC) {
1933 			data->error = -EILSEQ;
1934 		} else if (status & SDMMC_INT_EBE) {
1935 			if (host->dir_status ==
1936 				DW_MCI_SEND_STATUS) {
1937 				/*
1938 				 * No data CRC status was returned.
1939 				 * The number of bytes transferred
1940 				 * will be exaggerated in PIO mode.
1941 				 */
1942 				data->bytes_xfered = 0;
1943 				data->error = -ETIMEDOUT;
1944 			} else if (host->dir_status ==
1945 					DW_MCI_RECV_STATUS) {
1946 				data->error = -EILSEQ;
1947 			}
1948 		} else {
1949 			/* SDMMC_INT_SBE is included */
1950 			data->error = -EILSEQ;
1951 		}
1952 
1953 		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1954 
1955 		/*
1956 		 * After an error, there may be data lingering
1957 		 * in the FIFO
1958 		 */
1959 		dw_mci_reset(host);
1960 	} else {
1961 		data->bytes_xfered = data->blocks * data->blksz;
1962 		data->error = 0;
1963 	}
1964 
1965 	return data->error;
1966 }
1967 
1968 static void dw_mci_set_drto(struct dw_mci *host)
1969 {
1970 	unsigned int drto_clks;
1971 	unsigned int drto_div;
1972 	unsigned int drto_ms;
1973 	unsigned long irqflags;
1974 
1975 	drto_clks = mci_readl(host, TMOUT) >> 8;
1976 	drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
1977 	if (drto_div == 0)
1978 		drto_div = 1;
1979 
1980 	drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
1981 				   host->bus_hz);
1982 
1983 	/* add a bit spare time */
1984 	drto_ms += 10;
1985 
1986 	spin_lock_irqsave(&host->irq_lock, irqflags);
1987 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1988 		mod_timer(&host->dto_timer,
1989 			  jiffies + msecs_to_jiffies(drto_ms));
1990 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1991 }
1992 
1993 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
1994 {
1995 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1996 		return false;
1997 
1998 	/*
1999 	 * Really be certain that the timer has stopped.  This is a bit of
2000 	 * paranoia and could only really happen if we had really bad
2001 	 * interrupt latency and the interrupt routine and timeout were
2002 	 * running concurrently so that the del_timer() in the interrupt
2003 	 * handler couldn't run.
2004 	 */
2005 	WARN_ON(del_timer_sync(&host->cto_timer));
2006 	clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2007 
2008 	return true;
2009 }
2010 
2011 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
2012 {
2013 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2014 		return false;
2015 
2016 	/* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
2017 	WARN_ON(del_timer_sync(&host->dto_timer));
2018 	clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2019 
2020 	return true;
2021 }
2022 
2023 static void dw_mci_tasklet_func(struct tasklet_struct *t)
2024 {
2025 	struct dw_mci *host = from_tasklet(host, t, tasklet);
2026 	struct mmc_data	*data;
2027 	struct mmc_command *cmd;
2028 	struct mmc_request *mrq;
2029 	enum dw_mci_state state;
2030 	enum dw_mci_state prev_state;
2031 	unsigned int err;
2032 
2033 	spin_lock(&host->lock);
2034 
2035 	state = host->state;
2036 	data = host->data;
2037 	mrq = host->mrq;
2038 
2039 	do {
2040 		prev_state = state;
2041 
2042 		switch (state) {
2043 		case STATE_IDLE:
2044 		case STATE_WAITING_CMD11_DONE:
2045 			break;
2046 
2047 		case STATE_SENDING_CMD11:
2048 		case STATE_SENDING_CMD:
2049 			if (!dw_mci_clear_pending_cmd_complete(host))
2050 				break;
2051 
2052 			cmd = host->cmd;
2053 			host->cmd = NULL;
2054 			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
2055 			err = dw_mci_command_complete(host, cmd);
2056 			if (cmd == mrq->sbc && !err) {
2057 				__dw_mci_start_request(host, host->slot,
2058 						       mrq->cmd);
2059 				goto unlock;
2060 			}
2061 
2062 			if (cmd->data && err) {
2063 				/*
2064 				 * During UHS tuning sequence, sending the stop
2065 				 * command after the response CRC error would
2066 				 * throw the system into a confused state
2067 				 * causing all future tuning phases to report
2068 				 * failure.
2069 				 *
2070 				 * In such case controller will move into a data
2071 				 * transfer state after a response error or
2072 				 * response CRC error. Let's let that finish
2073 				 * before trying to send a stop, so we'll go to
2074 				 * STATE_SENDING_DATA.
2075 				 *
2076 				 * Although letting the data transfer take place
2077 				 * will waste a bit of time (we already know
2078 				 * the command was bad), it can't cause any
2079 				 * errors since it's possible it would have
2080 				 * taken place anyway if this tasklet got
2081 				 * delayed. Allowing the transfer to take place
2082 				 * avoids races and keeps things simple.
2083 				 */
2084 				if (err != -ETIMEDOUT &&
2085 				    host->dir_status == DW_MCI_RECV_STATUS) {
2086 					state = STATE_SENDING_DATA;
2087 					continue;
2088 				}
2089 
2090 				send_stop_abort(host, data);
2091 				dw_mci_stop_dma(host);
2092 				state = STATE_SENDING_STOP;
2093 				break;
2094 			}
2095 
2096 			if (!cmd->data || err) {
2097 				dw_mci_request_end(host, mrq);
2098 				goto unlock;
2099 			}
2100 
2101 			prev_state = state = STATE_SENDING_DATA;
2102 			fallthrough;
2103 
2104 		case STATE_SENDING_DATA:
2105 			/*
2106 			 * We could get a data error and never a transfer
2107 			 * complete so we'd better check for it here.
2108 			 *
2109 			 * Note that we don't really care if we also got a
2110 			 * transfer complete; stopping the DMA and sending an
2111 			 * abort won't hurt.
2112 			 */
2113 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2114 					       &host->pending_events)) {
2115 				if (!(host->data_status & (SDMMC_INT_DRTO |
2116 							   SDMMC_INT_EBE)))
2117 					send_stop_abort(host, data);
2118 				dw_mci_stop_dma(host);
2119 				state = STATE_DATA_ERROR;
2120 				break;
2121 			}
2122 
2123 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2124 						&host->pending_events)) {
2125 				/*
2126 				 * If all data-related interrupts don't come
2127 				 * within the given time in reading data state.
2128 				 */
2129 				if (host->dir_status == DW_MCI_RECV_STATUS)
2130 					dw_mci_set_drto(host);
2131 				break;
2132 			}
2133 
2134 			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2135 
2136 			/*
2137 			 * Handle an EVENT_DATA_ERROR that might have shown up
2138 			 * before the transfer completed.  This might not have
2139 			 * been caught by the check above because the interrupt
2140 			 * could have gone off between the previous check and
2141 			 * the check for transfer complete.
2142 			 *
2143 			 * Technically this ought not be needed assuming we
2144 			 * get a DATA_COMPLETE eventually (we'll notice the
2145 			 * error and end the request), but it shouldn't hurt.
2146 			 *
2147 			 * This has the advantage of sending the stop command.
2148 			 */
2149 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2150 					       &host->pending_events)) {
2151 				if (!(host->data_status & (SDMMC_INT_DRTO |
2152 							   SDMMC_INT_EBE)))
2153 					send_stop_abort(host, data);
2154 				dw_mci_stop_dma(host);
2155 				state = STATE_DATA_ERROR;
2156 				break;
2157 			}
2158 			prev_state = state = STATE_DATA_BUSY;
2159 
2160 			fallthrough;
2161 
2162 		case STATE_DATA_BUSY:
2163 			if (!dw_mci_clear_pending_data_complete(host)) {
2164 				/*
2165 				 * If data error interrupt comes but data over
2166 				 * interrupt doesn't come within the given time.
2167 				 * in reading data state.
2168 				 */
2169 				if (host->dir_status == DW_MCI_RECV_STATUS)
2170 					dw_mci_set_drto(host);
2171 				break;
2172 			}
2173 
2174 			dw_mci_stop_fault_timer(host);
2175 			host->data = NULL;
2176 			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2177 			err = dw_mci_data_complete(host, data);
2178 
2179 			if (!err) {
2180 				if (!data->stop || mrq->sbc) {
2181 					if (mrq->sbc && data->stop)
2182 						data->stop->error = 0;
2183 					dw_mci_request_end(host, mrq);
2184 					goto unlock;
2185 				}
2186 
2187 				/* stop command for open-ended transfer*/
2188 				if (data->stop)
2189 					send_stop_abort(host, data);
2190 			} else {
2191 				/*
2192 				 * If we don't have a command complete now we'll
2193 				 * never get one since we just reset everything;
2194 				 * better end the request.
2195 				 *
2196 				 * If we do have a command complete we'll fall
2197 				 * through to the SENDING_STOP command and
2198 				 * everything will be peachy keen.
2199 				 */
2200 				if (!test_bit(EVENT_CMD_COMPLETE,
2201 					      &host->pending_events)) {
2202 					host->cmd = NULL;
2203 					dw_mci_request_end(host, mrq);
2204 					goto unlock;
2205 				}
2206 			}
2207 
2208 			/*
2209 			 * If err has non-zero,
2210 			 * stop-abort command has been already issued.
2211 			 */
2212 			prev_state = state = STATE_SENDING_STOP;
2213 
2214 			fallthrough;
2215 
2216 		case STATE_SENDING_STOP:
2217 			if (!dw_mci_clear_pending_cmd_complete(host))
2218 				break;
2219 
2220 			/* CMD error in data command */
2221 			if (mrq->cmd->error && mrq->data)
2222 				dw_mci_reset(host);
2223 
2224 			dw_mci_stop_fault_timer(host);
2225 			host->cmd = NULL;
2226 			host->data = NULL;
2227 
2228 			if (!mrq->sbc && mrq->stop)
2229 				dw_mci_command_complete(host, mrq->stop);
2230 			else
2231 				host->cmd_status = 0;
2232 
2233 			dw_mci_request_end(host, mrq);
2234 			goto unlock;
2235 
2236 		case STATE_DATA_ERROR:
2237 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2238 						&host->pending_events))
2239 				break;
2240 
2241 			state = STATE_DATA_BUSY;
2242 			break;
2243 		}
2244 	} while (state != prev_state);
2245 
2246 	host->state = state;
2247 unlock:
2248 	spin_unlock(&host->lock);
2249 
2250 }
2251 
2252 /* push final bytes to part_buf, only use during push */
2253 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2254 {
2255 	memcpy((void *)&host->part_buf, buf, cnt);
2256 	host->part_buf_count = cnt;
2257 }
2258 
2259 /* append bytes to part_buf, only use during push */
2260 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2261 {
2262 	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2263 	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2264 	host->part_buf_count += cnt;
2265 	return cnt;
2266 }
2267 
2268 /* pull first bytes from part_buf, only use during pull */
2269 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2270 {
2271 	cnt = min_t(int, cnt, host->part_buf_count);
2272 	if (cnt) {
2273 		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2274 		       cnt);
2275 		host->part_buf_count -= cnt;
2276 		host->part_buf_start += cnt;
2277 	}
2278 	return cnt;
2279 }
2280 
2281 /* pull final bytes from the part_buf, assuming it's just been filled */
2282 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2283 {
2284 	memcpy(buf, &host->part_buf, cnt);
2285 	host->part_buf_start = cnt;
2286 	host->part_buf_count = (1 << host->data_shift) - cnt;
2287 }
2288 
2289 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2290 {
2291 	struct mmc_data *data = host->data;
2292 	int init_cnt = cnt;
2293 
2294 	/* try and push anything in the part_buf */
2295 	if (unlikely(host->part_buf_count)) {
2296 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2297 
2298 		buf += len;
2299 		cnt -= len;
2300 		if (host->part_buf_count == 2) {
2301 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2302 			host->part_buf_count = 0;
2303 		}
2304 	}
2305 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2306 	if (unlikely((unsigned long)buf & 0x1)) {
2307 		while (cnt >= 2) {
2308 			u16 aligned_buf[64];
2309 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2310 			int items = len >> 1;
2311 			int i;
2312 			/* memcpy from input buffer into aligned buffer */
2313 			memcpy(aligned_buf, buf, len);
2314 			buf += len;
2315 			cnt -= len;
2316 			/* push data from aligned buffer into fifo */
2317 			for (i = 0; i < items; ++i)
2318 				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2319 		}
2320 	} else
2321 #endif
2322 	{
2323 		u16 *pdata = buf;
2324 
2325 		for (; cnt >= 2; cnt -= 2)
2326 			mci_fifo_writew(host->fifo_reg, *pdata++);
2327 		buf = pdata;
2328 	}
2329 	/* put anything remaining in the part_buf */
2330 	if (cnt) {
2331 		dw_mci_set_part_bytes(host, buf, cnt);
2332 		 /* Push data if we have reached the expected data length */
2333 		if ((data->bytes_xfered + init_cnt) ==
2334 		    (data->blksz * data->blocks))
2335 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2336 	}
2337 }
2338 
2339 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2340 {
2341 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2342 	if (unlikely((unsigned long)buf & 0x1)) {
2343 		while (cnt >= 2) {
2344 			/* pull data from fifo into aligned buffer */
2345 			u16 aligned_buf[64];
2346 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2347 			int items = len >> 1;
2348 			int i;
2349 
2350 			for (i = 0; i < items; ++i)
2351 				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2352 			/* memcpy from aligned buffer into output buffer */
2353 			memcpy(buf, aligned_buf, len);
2354 			buf += len;
2355 			cnt -= len;
2356 		}
2357 	} else
2358 #endif
2359 	{
2360 		u16 *pdata = buf;
2361 
2362 		for (; cnt >= 2; cnt -= 2)
2363 			*pdata++ = mci_fifo_readw(host->fifo_reg);
2364 		buf = pdata;
2365 	}
2366 	if (cnt) {
2367 		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2368 		dw_mci_pull_final_bytes(host, buf, cnt);
2369 	}
2370 }
2371 
2372 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2373 {
2374 	struct mmc_data *data = host->data;
2375 	int init_cnt = cnt;
2376 
2377 	/* try and push anything in the part_buf */
2378 	if (unlikely(host->part_buf_count)) {
2379 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2380 
2381 		buf += len;
2382 		cnt -= len;
2383 		if (host->part_buf_count == 4) {
2384 			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2385 			host->part_buf_count = 0;
2386 		}
2387 	}
2388 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2389 	if (unlikely((unsigned long)buf & 0x3)) {
2390 		while (cnt >= 4) {
2391 			u32 aligned_buf[32];
2392 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2393 			int items = len >> 2;
2394 			int i;
2395 			/* memcpy from input buffer into aligned buffer */
2396 			memcpy(aligned_buf, buf, len);
2397 			buf += len;
2398 			cnt -= len;
2399 			/* push data from aligned buffer into fifo */
2400 			for (i = 0; i < items; ++i)
2401 				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2402 		}
2403 	} else
2404 #endif
2405 	{
2406 		u32 *pdata = buf;
2407 
2408 		for (; cnt >= 4; cnt -= 4)
2409 			mci_fifo_writel(host->fifo_reg, *pdata++);
2410 		buf = pdata;
2411 	}
2412 	/* put anything remaining in the part_buf */
2413 	if (cnt) {
2414 		dw_mci_set_part_bytes(host, buf, cnt);
2415 		 /* Push data if we have reached the expected data length */
2416 		if ((data->bytes_xfered + init_cnt) ==
2417 		    (data->blksz * data->blocks))
2418 			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2419 	}
2420 }
2421 
2422 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2423 {
2424 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2425 	if (unlikely((unsigned long)buf & 0x3)) {
2426 		while (cnt >= 4) {
2427 			/* pull data from fifo into aligned buffer */
2428 			u32 aligned_buf[32];
2429 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2430 			int items = len >> 2;
2431 			int i;
2432 
2433 			for (i = 0; i < items; ++i)
2434 				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2435 			/* memcpy from aligned buffer into output buffer */
2436 			memcpy(buf, aligned_buf, len);
2437 			buf += len;
2438 			cnt -= len;
2439 		}
2440 	} else
2441 #endif
2442 	{
2443 		u32 *pdata = buf;
2444 
2445 		for (; cnt >= 4; cnt -= 4)
2446 			*pdata++ = mci_fifo_readl(host->fifo_reg);
2447 		buf = pdata;
2448 	}
2449 	if (cnt) {
2450 		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2451 		dw_mci_pull_final_bytes(host, buf, cnt);
2452 	}
2453 }
2454 
2455 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2456 {
2457 	struct mmc_data *data = host->data;
2458 	int init_cnt = cnt;
2459 
2460 	/* try and push anything in the part_buf */
2461 	if (unlikely(host->part_buf_count)) {
2462 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2463 
2464 		buf += len;
2465 		cnt -= len;
2466 
2467 		if (host->part_buf_count == 8) {
2468 			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2469 			host->part_buf_count = 0;
2470 		}
2471 	}
2472 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2473 	if (unlikely((unsigned long)buf & 0x7)) {
2474 		while (cnt >= 8) {
2475 			u64 aligned_buf[16];
2476 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2477 			int items = len >> 3;
2478 			int i;
2479 			/* memcpy from input buffer into aligned buffer */
2480 			memcpy(aligned_buf, buf, len);
2481 			buf += len;
2482 			cnt -= len;
2483 			/* push data from aligned buffer into fifo */
2484 			for (i = 0; i < items; ++i)
2485 				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2486 		}
2487 	} else
2488 #endif
2489 	{
2490 		u64 *pdata = buf;
2491 
2492 		for (; cnt >= 8; cnt -= 8)
2493 			mci_fifo_writeq(host->fifo_reg, *pdata++);
2494 		buf = pdata;
2495 	}
2496 	/* put anything remaining in the part_buf */
2497 	if (cnt) {
2498 		dw_mci_set_part_bytes(host, buf, cnt);
2499 		/* Push data if we have reached the expected data length */
2500 		if ((data->bytes_xfered + init_cnt) ==
2501 		    (data->blksz * data->blocks))
2502 			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2503 	}
2504 }
2505 
2506 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2507 {
2508 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2509 	if (unlikely((unsigned long)buf & 0x7)) {
2510 		while (cnt >= 8) {
2511 			/* pull data from fifo into aligned buffer */
2512 			u64 aligned_buf[16];
2513 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2514 			int items = len >> 3;
2515 			int i;
2516 
2517 			for (i = 0; i < items; ++i)
2518 				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2519 
2520 			/* memcpy from aligned buffer into output buffer */
2521 			memcpy(buf, aligned_buf, len);
2522 			buf += len;
2523 			cnt -= len;
2524 		}
2525 	} else
2526 #endif
2527 	{
2528 		u64 *pdata = buf;
2529 
2530 		for (; cnt >= 8; cnt -= 8)
2531 			*pdata++ = mci_fifo_readq(host->fifo_reg);
2532 		buf = pdata;
2533 	}
2534 	if (cnt) {
2535 		host->part_buf = mci_fifo_readq(host->fifo_reg);
2536 		dw_mci_pull_final_bytes(host, buf, cnt);
2537 	}
2538 }
2539 
2540 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2541 {
2542 	int len;
2543 
2544 	/* get remaining partial bytes */
2545 	len = dw_mci_pull_part_bytes(host, buf, cnt);
2546 	if (unlikely(len == cnt))
2547 		return;
2548 	buf += len;
2549 	cnt -= len;
2550 
2551 	/* get the rest of the data */
2552 	host->pull_data(host, buf, cnt);
2553 }
2554 
2555 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2556 {
2557 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2558 	void *buf;
2559 	unsigned int offset;
2560 	struct mmc_data	*data = host->data;
2561 	int shift = host->data_shift;
2562 	u32 status;
2563 	unsigned int len;
2564 	unsigned int remain, fcnt;
2565 
2566 	do {
2567 		if (!sg_miter_next(sg_miter))
2568 			goto done;
2569 
2570 		host->sg = sg_miter->piter.sg;
2571 		buf = sg_miter->addr;
2572 		remain = sg_miter->length;
2573 		offset = 0;
2574 
2575 		do {
2576 			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2577 					<< shift) + host->part_buf_count;
2578 			len = min(remain, fcnt);
2579 			if (!len)
2580 				break;
2581 			dw_mci_pull_data(host, (void *)(buf + offset), len);
2582 			data->bytes_xfered += len;
2583 			offset += len;
2584 			remain -= len;
2585 		} while (remain);
2586 
2587 		sg_miter->consumed = offset;
2588 		status = mci_readl(host, MINTSTS);
2589 		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2590 	/* if the RXDR is ready read again */
2591 	} while ((status & SDMMC_INT_RXDR) ||
2592 		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2593 
2594 	if (!remain) {
2595 		if (!sg_miter_next(sg_miter))
2596 			goto done;
2597 		sg_miter->consumed = 0;
2598 	}
2599 	sg_miter_stop(sg_miter);
2600 	return;
2601 
2602 done:
2603 	sg_miter_stop(sg_miter);
2604 	host->sg = NULL;
2605 	smp_wmb(); /* drain writebuffer */
2606 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2607 }
2608 
2609 static void dw_mci_write_data_pio(struct dw_mci *host)
2610 {
2611 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2612 	void *buf;
2613 	unsigned int offset;
2614 	struct mmc_data	*data = host->data;
2615 	int shift = host->data_shift;
2616 	u32 status;
2617 	unsigned int len;
2618 	unsigned int fifo_depth = host->fifo_depth;
2619 	unsigned int remain, fcnt;
2620 
2621 	do {
2622 		if (!sg_miter_next(sg_miter))
2623 			goto done;
2624 
2625 		host->sg = sg_miter->piter.sg;
2626 		buf = sg_miter->addr;
2627 		remain = sg_miter->length;
2628 		offset = 0;
2629 
2630 		do {
2631 			fcnt = ((fifo_depth -
2632 				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2633 					<< shift) - host->part_buf_count;
2634 			len = min(remain, fcnt);
2635 			if (!len)
2636 				break;
2637 			host->push_data(host, (void *)(buf + offset), len);
2638 			data->bytes_xfered += len;
2639 			offset += len;
2640 			remain -= len;
2641 		} while (remain);
2642 
2643 		sg_miter->consumed = offset;
2644 		status = mci_readl(host, MINTSTS);
2645 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2646 	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2647 
2648 	if (!remain) {
2649 		if (!sg_miter_next(sg_miter))
2650 			goto done;
2651 		sg_miter->consumed = 0;
2652 	}
2653 	sg_miter_stop(sg_miter);
2654 	return;
2655 
2656 done:
2657 	sg_miter_stop(sg_miter);
2658 	host->sg = NULL;
2659 	smp_wmb(); /* drain writebuffer */
2660 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2661 }
2662 
2663 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2664 {
2665 	del_timer(&host->cto_timer);
2666 
2667 	if (!host->cmd_status)
2668 		host->cmd_status = status;
2669 
2670 	smp_wmb(); /* drain writebuffer */
2671 
2672 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2673 	tasklet_schedule(&host->tasklet);
2674 
2675 	dw_mci_start_fault_timer(host);
2676 }
2677 
2678 static void dw_mci_handle_cd(struct dw_mci *host)
2679 {
2680 	struct dw_mci_slot *slot = host->slot;
2681 
2682 	mmc_detect_change(slot->mmc,
2683 		msecs_to_jiffies(host->pdata->detect_delay_ms));
2684 }
2685 
2686 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2687 {
2688 	struct dw_mci *host = dev_id;
2689 	u32 pending;
2690 	struct dw_mci_slot *slot = host->slot;
2691 
2692 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2693 
2694 	if (pending) {
2695 		/* Check volt switch first, since it can look like an error */
2696 		if ((host->state == STATE_SENDING_CMD11) &&
2697 		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2698 			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2699 			pending &= ~SDMMC_INT_VOLT_SWITCH;
2700 
2701 			/*
2702 			 * Hold the lock; we know cmd11_timer can't be kicked
2703 			 * off after the lock is released, so safe to delete.
2704 			 */
2705 			spin_lock(&host->irq_lock);
2706 			dw_mci_cmd_interrupt(host, pending);
2707 			spin_unlock(&host->irq_lock);
2708 
2709 			del_timer(&host->cmd11_timer);
2710 		}
2711 
2712 		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2713 			spin_lock(&host->irq_lock);
2714 
2715 			del_timer(&host->cto_timer);
2716 			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2717 			host->cmd_status = pending;
2718 			smp_wmb(); /* drain writebuffer */
2719 			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2720 
2721 			spin_unlock(&host->irq_lock);
2722 		}
2723 
2724 		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2725 			spin_lock(&host->irq_lock);
2726 
2727 			/* if there is an error report DATA_ERROR */
2728 			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2729 			host->data_status = pending;
2730 			smp_wmb(); /* drain writebuffer */
2731 			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2732 			tasklet_schedule(&host->tasklet);
2733 
2734 			spin_unlock(&host->irq_lock);
2735 		}
2736 
2737 		if (pending & SDMMC_INT_DATA_OVER) {
2738 			spin_lock(&host->irq_lock);
2739 
2740 			del_timer(&host->dto_timer);
2741 
2742 			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2743 			if (!host->data_status)
2744 				host->data_status = pending;
2745 			smp_wmb(); /* drain writebuffer */
2746 			if (host->dir_status == DW_MCI_RECV_STATUS) {
2747 				if (host->sg != NULL)
2748 					dw_mci_read_data_pio(host, true);
2749 			}
2750 			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2751 			tasklet_schedule(&host->tasklet);
2752 
2753 			spin_unlock(&host->irq_lock);
2754 		}
2755 
2756 		if (pending & SDMMC_INT_RXDR) {
2757 			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2758 			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2759 				dw_mci_read_data_pio(host, false);
2760 		}
2761 
2762 		if (pending & SDMMC_INT_TXDR) {
2763 			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2764 			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2765 				dw_mci_write_data_pio(host);
2766 		}
2767 
2768 		if (pending & SDMMC_INT_CMD_DONE) {
2769 			spin_lock(&host->irq_lock);
2770 
2771 			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2772 			dw_mci_cmd_interrupt(host, pending);
2773 
2774 			spin_unlock(&host->irq_lock);
2775 		}
2776 
2777 		if (pending & SDMMC_INT_CD) {
2778 			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2779 			dw_mci_handle_cd(host);
2780 		}
2781 
2782 		if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2783 			mci_writel(host, RINTSTS,
2784 				   SDMMC_INT_SDIO(slot->sdio_id));
2785 			__dw_mci_enable_sdio_irq(slot, 0);
2786 			sdio_signal_irq(slot->mmc);
2787 		}
2788 
2789 	}
2790 
2791 	if (host->use_dma != TRANS_MODE_IDMAC)
2792 		return IRQ_HANDLED;
2793 
2794 	/* Handle IDMA interrupts */
2795 	if (host->dma_64bit_address == 1) {
2796 		pending = mci_readl(host, IDSTS64);
2797 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2798 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2799 							SDMMC_IDMAC_INT_RI);
2800 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2801 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2802 				host->dma_ops->complete((void *)host);
2803 		}
2804 	} else {
2805 		pending = mci_readl(host, IDSTS);
2806 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2807 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2808 							SDMMC_IDMAC_INT_RI);
2809 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2810 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2811 				host->dma_ops->complete((void *)host);
2812 		}
2813 	}
2814 
2815 	return IRQ_HANDLED;
2816 }
2817 
2818 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2819 {
2820 	struct dw_mci *host = slot->host;
2821 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2822 	struct mmc_host *mmc = slot->mmc;
2823 	int ctrl_id;
2824 
2825 	if (host->pdata->caps)
2826 		mmc->caps = host->pdata->caps;
2827 
2828 	if (host->pdata->pm_caps)
2829 		mmc->pm_caps = host->pdata->pm_caps;
2830 
2831 	if (host->dev->of_node) {
2832 		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2833 		if (ctrl_id < 0)
2834 			ctrl_id = 0;
2835 	} else {
2836 		ctrl_id = to_platform_device(host->dev)->id;
2837 	}
2838 
2839 	if (drv_data && drv_data->caps) {
2840 		if (ctrl_id >= drv_data->num_caps) {
2841 			dev_err(host->dev, "invalid controller id %d\n",
2842 				ctrl_id);
2843 			return -EINVAL;
2844 		}
2845 		mmc->caps |= drv_data->caps[ctrl_id];
2846 	}
2847 
2848 	if (host->pdata->caps2)
2849 		mmc->caps2 = host->pdata->caps2;
2850 
2851 	mmc->f_min = DW_MCI_FREQ_MIN;
2852 	if (!mmc->f_max)
2853 		mmc->f_max = DW_MCI_FREQ_MAX;
2854 
2855 	/* Process SDIO IRQs through the sdio_irq_work. */
2856 	if (mmc->caps & MMC_CAP_SDIO_IRQ)
2857 		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2858 
2859 	return 0;
2860 }
2861 
2862 static int dw_mci_init_slot(struct dw_mci *host)
2863 {
2864 	struct mmc_host *mmc;
2865 	struct dw_mci_slot *slot;
2866 	int ret;
2867 
2868 	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2869 	if (!mmc)
2870 		return -ENOMEM;
2871 
2872 	slot = mmc_priv(mmc);
2873 	slot->id = 0;
2874 	slot->sdio_id = host->sdio_id0 + slot->id;
2875 	slot->mmc = mmc;
2876 	slot->host = host;
2877 	host->slot = slot;
2878 
2879 	mmc->ops = &dw_mci_ops;
2880 
2881 	/*if there are external regulators, get them*/
2882 	ret = mmc_regulator_get_supply(mmc);
2883 	if (ret)
2884 		goto err_host_allocated;
2885 
2886 	if (!mmc->ocr_avail)
2887 		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2888 
2889 	ret = mmc_of_parse(mmc);
2890 	if (ret)
2891 		goto err_host_allocated;
2892 
2893 	ret = dw_mci_init_slot_caps(slot);
2894 	if (ret)
2895 		goto err_host_allocated;
2896 
2897 	/* Useful defaults if platform data is unset. */
2898 	if (host->use_dma == TRANS_MODE_IDMAC) {
2899 		mmc->max_segs = host->ring_size;
2900 		mmc->max_blk_size = 65535;
2901 		mmc->max_seg_size = 0x1000;
2902 		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2903 		mmc->max_blk_count = mmc->max_req_size / 512;
2904 	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2905 		mmc->max_segs = 64;
2906 		mmc->max_blk_size = 65535;
2907 		mmc->max_blk_count = 65535;
2908 		mmc->max_req_size =
2909 				mmc->max_blk_size * mmc->max_blk_count;
2910 		mmc->max_seg_size = mmc->max_req_size;
2911 	} else {
2912 		/* TRANS_MODE_PIO */
2913 		mmc->max_segs = 64;
2914 		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2915 		mmc->max_blk_count = 512;
2916 		mmc->max_req_size = mmc->max_blk_size *
2917 				    mmc->max_blk_count;
2918 		mmc->max_seg_size = mmc->max_req_size;
2919 	}
2920 
2921 	dw_mci_get_cd(mmc);
2922 
2923 	ret = mmc_add_host(mmc);
2924 	if (ret)
2925 		goto err_host_allocated;
2926 
2927 #if defined(CONFIG_DEBUG_FS)
2928 	dw_mci_init_debugfs(slot);
2929 #endif
2930 
2931 	return 0;
2932 
2933 err_host_allocated:
2934 	mmc_free_host(mmc);
2935 	return ret;
2936 }
2937 
2938 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2939 {
2940 	/* Debugfs stuff is cleaned up by mmc core */
2941 	mmc_remove_host(slot->mmc);
2942 	slot->host->slot = NULL;
2943 	mmc_free_host(slot->mmc);
2944 }
2945 
2946 static void dw_mci_init_dma(struct dw_mci *host)
2947 {
2948 	int addr_config;
2949 	struct device *dev = host->dev;
2950 
2951 	/*
2952 	* Check tansfer mode from HCON[17:16]
2953 	* Clear the ambiguous description of dw_mmc databook:
2954 	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
2955 	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2956 	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2957 	* 2b'11: Non DW DMA Interface -> pio only
2958 	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
2959 	* simpler request/acknowledge handshake mechanism and both of them
2960 	* are regarded as external dma master for dw_mmc.
2961 	*/
2962 	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2963 	if (host->use_dma == DMA_INTERFACE_IDMA) {
2964 		host->use_dma = TRANS_MODE_IDMAC;
2965 	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2966 		   host->use_dma == DMA_INTERFACE_GDMA) {
2967 		host->use_dma = TRANS_MODE_EDMAC;
2968 	} else {
2969 		goto no_dma;
2970 	}
2971 
2972 	/* Determine which DMA interface to use */
2973 	if (host->use_dma == TRANS_MODE_IDMAC) {
2974 		/*
2975 		* Check ADDR_CONFIG bit in HCON to find
2976 		* IDMAC address bus width
2977 		*/
2978 		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2979 
2980 		if (addr_config == 1) {
2981 			/* host supports IDMAC in 64-bit address mode */
2982 			host->dma_64bit_address = 1;
2983 			dev_info(host->dev,
2984 				 "IDMAC supports 64-bit address mode.\n");
2985 			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2986 				dma_set_coherent_mask(host->dev,
2987 						      DMA_BIT_MASK(64));
2988 		} else {
2989 			/* host supports IDMAC in 32-bit address mode */
2990 			host->dma_64bit_address = 0;
2991 			dev_info(host->dev,
2992 				 "IDMAC supports 32-bit address mode.\n");
2993 		}
2994 
2995 		/* Alloc memory for sg translation */
2996 		host->sg_cpu = dmam_alloc_coherent(host->dev,
2997 						   DESC_RING_BUF_SZ,
2998 						   &host->sg_dma, GFP_KERNEL);
2999 		if (!host->sg_cpu) {
3000 			dev_err(host->dev,
3001 				"%s: could not alloc DMA memory\n",
3002 				__func__);
3003 			goto no_dma;
3004 		}
3005 
3006 		host->dma_ops = &dw_mci_idmac_ops;
3007 		dev_info(host->dev, "Using internal DMA controller.\n");
3008 	} else {
3009 		/* TRANS_MODE_EDMAC: check dma bindings again */
3010 		if ((device_property_read_string_array(dev, "dma-names",
3011 						       NULL, 0) < 0) ||
3012 		    !device_property_present(dev, "dmas")) {
3013 			goto no_dma;
3014 		}
3015 		host->dma_ops = &dw_mci_edmac_ops;
3016 		dev_info(host->dev, "Using external DMA controller.\n");
3017 	}
3018 
3019 	if (host->dma_ops->init && host->dma_ops->start &&
3020 	    host->dma_ops->stop && host->dma_ops->cleanup) {
3021 		if (host->dma_ops->init(host)) {
3022 			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
3023 				__func__);
3024 			goto no_dma;
3025 		}
3026 	} else {
3027 		dev_err(host->dev, "DMA initialization not found.\n");
3028 		goto no_dma;
3029 	}
3030 
3031 	return;
3032 
3033 no_dma:
3034 	dev_info(host->dev, "Using PIO mode.\n");
3035 	host->use_dma = TRANS_MODE_PIO;
3036 }
3037 
3038 static void dw_mci_cmd11_timer(struct timer_list *t)
3039 {
3040 	struct dw_mci *host = from_timer(host, t, cmd11_timer);
3041 
3042 	if (host->state != STATE_SENDING_CMD11) {
3043 		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
3044 		return;
3045 	}
3046 
3047 	host->cmd_status = SDMMC_INT_RTO;
3048 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3049 	tasklet_schedule(&host->tasklet);
3050 }
3051 
3052 static void dw_mci_cto_timer(struct timer_list *t)
3053 {
3054 	struct dw_mci *host = from_timer(host, t, cto_timer);
3055 	unsigned long irqflags;
3056 	u32 pending;
3057 
3058 	spin_lock_irqsave(&host->irq_lock, irqflags);
3059 
3060 	/*
3061 	 * If somehow we have very bad interrupt latency it's remotely possible
3062 	 * that the timer could fire while the interrupt is still pending or
3063 	 * while the interrupt is midway through running.  Let's be paranoid
3064 	 * and detect those two cases.  Note that this is paranoia is somewhat
3065 	 * justified because in this function we don't actually cancel the
3066 	 * pending command in the controller--we just assume it will never come.
3067 	 */
3068 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3069 	if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
3070 		/* The interrupt should fire; no need to act but we can warn */
3071 		dev_warn(host->dev, "Unexpected interrupt latency\n");
3072 		goto exit;
3073 	}
3074 	if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3075 		/* Presumably interrupt handler couldn't delete the timer */
3076 		dev_warn(host->dev, "CTO timeout when already completed\n");
3077 		goto exit;
3078 	}
3079 
3080 	/*
3081 	 * Continued paranoia to make sure we're in the state we expect.
3082 	 * This paranoia isn't really justified but it seems good to be safe.
3083 	 */
3084 	switch (host->state) {
3085 	case STATE_SENDING_CMD11:
3086 	case STATE_SENDING_CMD:
3087 	case STATE_SENDING_STOP:
3088 		/*
3089 		 * If CMD_DONE interrupt does NOT come in sending command
3090 		 * state, we should notify the driver to terminate current
3091 		 * transfer and report a command timeout to the core.
3092 		 */
3093 		host->cmd_status = SDMMC_INT_RTO;
3094 		set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3095 		tasklet_schedule(&host->tasklet);
3096 		break;
3097 	default:
3098 		dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3099 			 host->state);
3100 		break;
3101 	}
3102 
3103 exit:
3104 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3105 }
3106 
3107 static void dw_mci_dto_timer(struct timer_list *t)
3108 {
3109 	struct dw_mci *host = from_timer(host, t, dto_timer);
3110 	unsigned long irqflags;
3111 	u32 pending;
3112 
3113 	spin_lock_irqsave(&host->irq_lock, irqflags);
3114 
3115 	/*
3116 	 * The DTO timer is much longer than the CTO timer, so it's even less
3117 	 * likely that we'll these cases, but it pays to be paranoid.
3118 	 */
3119 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3120 	if (pending & SDMMC_INT_DATA_OVER) {
3121 		/* The interrupt should fire; no need to act but we can warn */
3122 		dev_warn(host->dev, "Unexpected data interrupt latency\n");
3123 		goto exit;
3124 	}
3125 	if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3126 		/* Presumably interrupt handler couldn't delete the timer */
3127 		dev_warn(host->dev, "DTO timeout when already completed\n");
3128 		goto exit;
3129 	}
3130 
3131 	/*
3132 	 * Continued paranoia to make sure we're in the state we expect.
3133 	 * This paranoia isn't really justified but it seems good to be safe.
3134 	 */
3135 	switch (host->state) {
3136 	case STATE_SENDING_DATA:
3137 	case STATE_DATA_BUSY:
3138 		/*
3139 		 * If DTO interrupt does NOT come in sending data state,
3140 		 * we should notify the driver to terminate current transfer
3141 		 * and report a data timeout to the core.
3142 		 */
3143 		host->data_status = SDMMC_INT_DRTO;
3144 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
3145 		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3146 		tasklet_schedule(&host->tasklet);
3147 		break;
3148 	default:
3149 		dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3150 			 host->state);
3151 		break;
3152 	}
3153 
3154 exit:
3155 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3156 }
3157 
3158 #ifdef CONFIG_OF
3159 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3160 {
3161 	struct dw_mci_board *pdata;
3162 	struct device *dev = host->dev;
3163 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3164 	int ret;
3165 	u32 clock_frequency;
3166 
3167 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3168 	if (!pdata)
3169 		return ERR_PTR(-ENOMEM);
3170 
3171 	/* find reset controller when exist */
3172 	pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3173 	if (IS_ERR(pdata->rstc))
3174 		return ERR_CAST(pdata->rstc);
3175 
3176 	if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3177 		dev_info(dev,
3178 			 "fifo-depth property not found, using value of FIFOTH register as default\n");
3179 
3180 	device_property_read_u32(dev, "card-detect-delay",
3181 				 &pdata->detect_delay_ms);
3182 
3183 	device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3184 
3185 	if (device_property_present(dev, "fifo-watermark-aligned"))
3186 		host->wm_aligned = true;
3187 
3188 	if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3189 		pdata->bus_hz = clock_frequency;
3190 
3191 	if (drv_data && drv_data->parse_dt) {
3192 		ret = drv_data->parse_dt(host);
3193 		if (ret)
3194 			return ERR_PTR(ret);
3195 	}
3196 
3197 	return pdata;
3198 }
3199 
3200 #else /* CONFIG_OF */
3201 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3202 {
3203 	return ERR_PTR(-EINVAL);
3204 }
3205 #endif /* CONFIG_OF */
3206 
3207 static void dw_mci_enable_cd(struct dw_mci *host)
3208 {
3209 	unsigned long irqflags;
3210 	u32 temp;
3211 
3212 	/*
3213 	 * No need for CD if all slots have a non-error GPIO
3214 	 * as well as broken card detection is found.
3215 	 */
3216 	if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3217 		return;
3218 
3219 	if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3220 		spin_lock_irqsave(&host->irq_lock, irqflags);
3221 		temp = mci_readl(host, INTMASK);
3222 		temp  |= SDMMC_INT_CD;
3223 		mci_writel(host, INTMASK, temp);
3224 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
3225 	}
3226 }
3227 
3228 int dw_mci_probe(struct dw_mci *host)
3229 {
3230 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3231 	int width, i, ret = 0;
3232 	u32 fifo_size;
3233 
3234 	if (!host->pdata) {
3235 		host->pdata = dw_mci_parse_dt(host);
3236 		if (IS_ERR(host->pdata))
3237 			return dev_err_probe(host->dev, PTR_ERR(host->pdata),
3238 					     "platform data not available\n");
3239 	}
3240 
3241 	host->biu_clk = devm_clk_get(host->dev, "biu");
3242 	if (IS_ERR(host->biu_clk)) {
3243 		dev_dbg(host->dev, "biu clock not available\n");
3244 	} else {
3245 		ret = clk_prepare_enable(host->biu_clk);
3246 		if (ret) {
3247 			dev_err(host->dev, "failed to enable biu clock\n");
3248 			return ret;
3249 		}
3250 	}
3251 
3252 	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3253 	if (IS_ERR(host->ciu_clk)) {
3254 		dev_dbg(host->dev, "ciu clock not available\n");
3255 		host->bus_hz = host->pdata->bus_hz;
3256 	} else {
3257 		ret = clk_prepare_enable(host->ciu_clk);
3258 		if (ret) {
3259 			dev_err(host->dev, "failed to enable ciu clock\n");
3260 			goto err_clk_biu;
3261 		}
3262 
3263 		if (host->pdata->bus_hz) {
3264 			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3265 			if (ret)
3266 				dev_warn(host->dev,
3267 					 "Unable to set bus rate to %uHz\n",
3268 					 host->pdata->bus_hz);
3269 		}
3270 		host->bus_hz = clk_get_rate(host->ciu_clk);
3271 	}
3272 
3273 	if (!host->bus_hz) {
3274 		dev_err(host->dev,
3275 			"Platform data must supply bus speed\n");
3276 		ret = -ENODEV;
3277 		goto err_clk_ciu;
3278 	}
3279 
3280 	if (host->pdata->rstc) {
3281 		reset_control_assert(host->pdata->rstc);
3282 		usleep_range(10, 50);
3283 		reset_control_deassert(host->pdata->rstc);
3284 	}
3285 
3286 	if (drv_data && drv_data->init) {
3287 		ret = drv_data->init(host);
3288 		if (ret) {
3289 			dev_err(host->dev,
3290 				"implementation specific init failed\n");
3291 			goto err_clk_ciu;
3292 		}
3293 	}
3294 
3295 	timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3296 	timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3297 	timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3298 
3299 	spin_lock_init(&host->lock);
3300 	spin_lock_init(&host->irq_lock);
3301 	INIT_LIST_HEAD(&host->queue);
3302 
3303 	dw_mci_init_fault(host);
3304 
3305 	/*
3306 	 * Get the host data width - this assumes that HCON has been set with
3307 	 * the correct values.
3308 	 */
3309 	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3310 	if (!i) {
3311 		host->push_data = dw_mci_push_data16;
3312 		host->pull_data = dw_mci_pull_data16;
3313 		width = 16;
3314 		host->data_shift = 1;
3315 	} else if (i == 2) {
3316 		host->push_data = dw_mci_push_data64;
3317 		host->pull_data = dw_mci_pull_data64;
3318 		width = 64;
3319 		host->data_shift = 3;
3320 	} else {
3321 		/* Check for a reserved value, and warn if it is */
3322 		WARN((i != 1),
3323 		     "HCON reports a reserved host data width!\n"
3324 		     "Defaulting to 32-bit access.\n");
3325 		host->push_data = dw_mci_push_data32;
3326 		host->pull_data = dw_mci_pull_data32;
3327 		width = 32;
3328 		host->data_shift = 2;
3329 	}
3330 
3331 	/* Reset all blocks */
3332 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3333 		ret = -ENODEV;
3334 		goto err_clk_ciu;
3335 	}
3336 
3337 	host->dma_ops = host->pdata->dma_ops;
3338 	dw_mci_init_dma(host);
3339 
3340 	/* Clear the interrupts for the host controller */
3341 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3342 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3343 
3344 	/* Put in max timeout */
3345 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3346 
3347 	/*
3348 	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3349 	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3350 	 */
3351 	if (!host->pdata->fifo_depth) {
3352 		/*
3353 		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3354 		 * have been overwritten by the bootloader, just like we're
3355 		 * about to do, so if you know the value for your hardware, you
3356 		 * should put it in the platform data.
3357 		 */
3358 		fifo_size = mci_readl(host, FIFOTH);
3359 		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3360 	} else {
3361 		fifo_size = host->pdata->fifo_depth;
3362 	}
3363 	host->fifo_depth = fifo_size;
3364 	host->fifoth_val =
3365 		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3366 	mci_writel(host, FIFOTH, host->fifoth_val);
3367 
3368 	/* disable clock to CIU */
3369 	mci_writel(host, CLKENA, 0);
3370 	mci_writel(host, CLKSRC, 0);
3371 
3372 	/*
3373 	 * In 2.40a spec, Data offset is changed.
3374 	 * Need to check the version-id and set data-offset for DATA register.
3375 	 */
3376 	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3377 	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3378 
3379 	if (host->data_addr_override)
3380 		host->fifo_reg = host->regs + host->data_addr_override;
3381 	else if (host->verid < DW_MMC_240A)
3382 		host->fifo_reg = host->regs + DATA_OFFSET;
3383 	else
3384 		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3385 
3386 	tasklet_setup(&host->tasklet, dw_mci_tasklet_func);
3387 	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3388 			       host->irq_flags, "dw-mci", host);
3389 	if (ret)
3390 		goto err_dmaunmap;
3391 
3392 	/*
3393 	 * Enable interrupts for command done, data over, data empty,
3394 	 * receive ready and error such as transmit, receive timeout, crc error
3395 	 */
3396 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3397 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3398 		   DW_MCI_ERROR_FLAGS);
3399 	/* Enable mci interrupt */
3400 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3401 
3402 	dev_info(host->dev,
3403 		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3404 		 host->irq, width, fifo_size);
3405 
3406 	/* We need at least one slot to succeed */
3407 	ret = dw_mci_init_slot(host);
3408 	if (ret) {
3409 		dev_dbg(host->dev, "slot %d init failed\n", i);
3410 		goto err_dmaunmap;
3411 	}
3412 
3413 	/* Now that slots are all setup, we can enable card detect */
3414 	dw_mci_enable_cd(host);
3415 
3416 	return 0;
3417 
3418 err_dmaunmap:
3419 	if (host->use_dma && host->dma_ops->exit)
3420 		host->dma_ops->exit(host);
3421 
3422 	reset_control_assert(host->pdata->rstc);
3423 
3424 err_clk_ciu:
3425 	clk_disable_unprepare(host->ciu_clk);
3426 
3427 err_clk_biu:
3428 	clk_disable_unprepare(host->biu_clk);
3429 
3430 	return ret;
3431 }
3432 EXPORT_SYMBOL(dw_mci_probe);
3433 
3434 void dw_mci_remove(struct dw_mci *host)
3435 {
3436 	dev_dbg(host->dev, "remove slot\n");
3437 	if (host->slot)
3438 		dw_mci_cleanup_slot(host->slot);
3439 
3440 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3441 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3442 
3443 	/* disable clock to CIU */
3444 	mci_writel(host, CLKENA, 0);
3445 	mci_writel(host, CLKSRC, 0);
3446 
3447 	if (host->use_dma && host->dma_ops->exit)
3448 		host->dma_ops->exit(host);
3449 
3450 	reset_control_assert(host->pdata->rstc);
3451 
3452 	clk_disable_unprepare(host->ciu_clk);
3453 	clk_disable_unprepare(host->biu_clk);
3454 }
3455 EXPORT_SYMBOL(dw_mci_remove);
3456 
3457 
3458 
3459 #ifdef CONFIG_PM
3460 int dw_mci_runtime_suspend(struct device *dev)
3461 {
3462 	struct dw_mci *host = dev_get_drvdata(dev);
3463 
3464 	if (host->use_dma && host->dma_ops->exit)
3465 		host->dma_ops->exit(host);
3466 
3467 	clk_disable_unprepare(host->ciu_clk);
3468 
3469 	if (host->slot &&
3470 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3471 	     !mmc_card_is_removable(host->slot->mmc)))
3472 		clk_disable_unprepare(host->biu_clk);
3473 
3474 	return 0;
3475 }
3476 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3477 
3478 int dw_mci_runtime_resume(struct device *dev)
3479 {
3480 	int ret = 0;
3481 	struct dw_mci *host = dev_get_drvdata(dev);
3482 
3483 	if (host->slot &&
3484 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3485 	     !mmc_card_is_removable(host->slot->mmc))) {
3486 		ret = clk_prepare_enable(host->biu_clk);
3487 		if (ret)
3488 			return ret;
3489 	}
3490 
3491 	ret = clk_prepare_enable(host->ciu_clk);
3492 	if (ret)
3493 		goto err;
3494 
3495 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3496 		clk_disable_unprepare(host->ciu_clk);
3497 		ret = -ENODEV;
3498 		goto err;
3499 	}
3500 
3501 	if (host->use_dma && host->dma_ops->init)
3502 		host->dma_ops->init(host);
3503 
3504 	/*
3505 	 * Restore the initial value at FIFOTH register
3506 	 * And Invalidate the prev_blksz with zero
3507 	 */
3508 	mci_writel(host, FIFOTH, host->fifoth_val);
3509 	host->prev_blksz = 0;
3510 
3511 	/* Put in max timeout */
3512 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3513 
3514 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3515 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3516 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3517 		   DW_MCI_ERROR_FLAGS);
3518 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3519 
3520 
3521 	if (host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3522 		dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3523 
3524 	/* Force setup bus to guarantee available clock output */
3525 	dw_mci_setup_bus(host->slot, true);
3526 
3527 	/* Re-enable SDIO interrupts. */
3528 	if (sdio_irq_claimed(host->slot->mmc))
3529 		__dw_mci_enable_sdio_irq(host->slot, 1);
3530 
3531 	/* Now that slots are all setup, we can enable card detect */
3532 	dw_mci_enable_cd(host);
3533 
3534 	return 0;
3535 
3536 err:
3537 	if (host->slot &&
3538 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3539 	     !mmc_card_is_removable(host->slot->mmc)))
3540 		clk_disable_unprepare(host->biu_clk);
3541 
3542 	return ret;
3543 }
3544 EXPORT_SYMBOL(dw_mci_runtime_resume);
3545 #endif /* CONFIG_PM */
3546 
3547 static int __init dw_mci_init(void)
3548 {
3549 	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3550 	return 0;
3551 }
3552 
3553 static void __exit dw_mci_exit(void)
3554 {
3555 }
3556 
3557 module_init(dw_mci_init);
3558 module_exit(dw_mci_exit);
3559 
3560 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3561 MODULE_AUTHOR("NXP Semiconductor VietNam");
3562 MODULE_AUTHOR("Imagination Technologies Ltd");
3563 MODULE_LICENSE("GPL v2");
3564