xref: /openbmc/linux/drivers/mmc/host/dw_mmc.c (revision c4c3c32d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Synopsys DesignWare Multimedia Card Interface driver
4  *  (Based on NXP driver for lpc 31xx)
5  *
6  * Copyright (C) 2009 NXP Semiconductors
7  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8  */
9 
10 #include <linux/blkdev.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/iopoll.h>
19 #include <linux/ioport.h>
20 #include <linux/ktime.h>
21 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/prandom.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/bitops.h>
36 #include <linux/regulator/consumer.h>
37 #include <linux/of.h>
38 #include <linux/of_gpio.h>
39 #include <linux/mmc/slot-gpio.h>
40 
41 #include "dw_mmc.h"
42 
43 /* Common flag combinations */
44 #define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
45 				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
46 				 SDMMC_INT_EBE | SDMMC_INT_HLE)
47 #define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
48 				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
49 #define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
50 				 DW_MCI_CMD_ERROR_FLAGS)
51 #define DW_MCI_SEND_STATUS	1
52 #define DW_MCI_RECV_STATUS	2
53 #define DW_MCI_DMA_THRESHOLD	16
54 
55 #define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
56 #define DW_MCI_FREQ_MIN	100000		/* unit: HZ */
57 
58 #define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
59 				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
60 				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
61 				 SDMMC_IDMAC_INT_TI)
62 
63 #define DESC_RING_BUF_SZ	PAGE_SIZE
64 
65 struct idmac_desc_64addr {
66 	u32		des0;	/* Control Descriptor */
67 #define IDMAC_OWN_CLR64(x) \
68 	!((x) & cpu_to_le32(IDMAC_DES0_OWN))
69 
70 	u32		des1;	/* Reserved */
71 
72 	u32		des2;	/*Buffer sizes */
73 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
74 	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
75 	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
76 
77 	u32		des3;	/* Reserved */
78 
79 	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
80 	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
81 
82 	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
83 	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
84 };
85 
86 struct idmac_desc {
87 	__le32		des0;	/* Control Descriptor */
88 #define IDMAC_DES0_DIC	BIT(1)
89 #define IDMAC_DES0_LD	BIT(2)
90 #define IDMAC_DES0_FD	BIT(3)
91 #define IDMAC_DES0_CH	BIT(4)
92 #define IDMAC_DES0_ER	BIT(5)
93 #define IDMAC_DES0_CES	BIT(30)
94 #define IDMAC_DES0_OWN	BIT(31)
95 
96 	__le32		des1;	/* Buffer sizes */
97 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
98 	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
99 
100 	__le32		des2;	/* buffer 1 physical address */
101 
102 	__le32		des3;	/* buffer 2 physical address */
103 };
104 
105 /* Each descriptor can transfer up to 4KB of data in chained mode */
106 #define DW_MCI_DESC_DATA_LENGTH	0x1000
107 
108 #if defined(CONFIG_DEBUG_FS)
109 static int dw_mci_req_show(struct seq_file *s, void *v)
110 {
111 	struct dw_mci_slot *slot = s->private;
112 	struct mmc_request *mrq;
113 	struct mmc_command *cmd;
114 	struct mmc_command *stop;
115 	struct mmc_data	*data;
116 
117 	/* Make sure we get a consistent snapshot */
118 	spin_lock_bh(&slot->host->lock);
119 	mrq = slot->mrq;
120 
121 	if (mrq) {
122 		cmd = mrq->cmd;
123 		data = mrq->data;
124 		stop = mrq->stop;
125 
126 		if (cmd)
127 			seq_printf(s,
128 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
129 				   cmd->opcode, cmd->arg, cmd->flags,
130 				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
131 				   cmd->resp[2], cmd->error);
132 		if (data)
133 			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
134 				   data->bytes_xfered, data->blocks,
135 				   data->blksz, data->flags, data->error);
136 		if (stop)
137 			seq_printf(s,
138 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
139 				   stop->opcode, stop->arg, stop->flags,
140 				   stop->resp[0], stop->resp[1], stop->resp[2],
141 				   stop->resp[2], stop->error);
142 	}
143 
144 	spin_unlock_bh(&slot->host->lock);
145 
146 	return 0;
147 }
148 DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
149 
150 static int dw_mci_regs_show(struct seq_file *s, void *v)
151 {
152 	struct dw_mci *host = s->private;
153 
154 	pm_runtime_get_sync(host->dev);
155 
156 	seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
157 	seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
158 	seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
159 	seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
160 	seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
161 	seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
162 
163 	pm_runtime_put_autosuspend(host->dev);
164 
165 	return 0;
166 }
167 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
168 
169 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
170 {
171 	struct mmc_host	*mmc = slot->mmc;
172 	struct dw_mci *host = slot->host;
173 	struct dentry *root;
174 
175 	root = mmc->debugfs_root;
176 	if (!root)
177 		return;
178 
179 	debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops);
180 	debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops);
181 	debugfs_create_u32("state", S_IRUSR, root, &host->state);
182 	debugfs_create_xul("pending_events", S_IRUSR, root,
183 			   &host->pending_events);
184 	debugfs_create_xul("completed_events", S_IRUSR, root,
185 			   &host->completed_events);
186 #ifdef CONFIG_FAULT_INJECTION
187 	fault_create_debugfs_attr("fail_data_crc", root, &host->fail_data_crc);
188 #endif
189 }
190 #endif /* defined(CONFIG_DEBUG_FS) */
191 
192 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
193 {
194 	u32 ctrl;
195 
196 	ctrl = mci_readl(host, CTRL);
197 	ctrl |= reset;
198 	mci_writel(host, CTRL, ctrl);
199 
200 	/* wait till resets clear */
201 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
202 				      !(ctrl & reset),
203 				      1, 500 * USEC_PER_MSEC)) {
204 		dev_err(host->dev,
205 			"Timeout resetting block (ctrl reset %#x)\n",
206 			ctrl & reset);
207 		return false;
208 	}
209 
210 	return true;
211 }
212 
213 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
214 {
215 	u32 status;
216 
217 	/*
218 	 * Databook says that before issuing a new data transfer command
219 	 * we need to check to see if the card is busy.  Data transfer commands
220 	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
221 	 *
222 	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
223 	 * expected.
224 	 */
225 	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
226 	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
227 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
228 					      status,
229 					      !(status & SDMMC_STATUS_BUSY),
230 					      10, 500 * USEC_PER_MSEC))
231 			dev_err(host->dev, "Busy; trying anyway\n");
232 	}
233 }
234 
235 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
236 {
237 	struct dw_mci *host = slot->host;
238 	unsigned int cmd_status = 0;
239 
240 	mci_writel(host, CMDARG, arg);
241 	wmb(); /* drain writebuffer */
242 	dw_mci_wait_while_busy(host, cmd);
243 	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
244 
245 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
246 				      !(cmd_status & SDMMC_CMD_START),
247 				      1, 500 * USEC_PER_MSEC))
248 		dev_err(&slot->mmc->class_dev,
249 			"Timeout sending command (cmd %#x arg %#x status %#x)\n",
250 			cmd, arg, cmd_status);
251 }
252 
253 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
254 {
255 	struct dw_mci_slot *slot = mmc_priv(mmc);
256 	struct dw_mci *host = slot->host;
257 	u32 cmdr;
258 
259 	cmd->error = -EINPROGRESS;
260 	cmdr = cmd->opcode;
261 
262 	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
263 	    cmd->opcode == MMC_GO_IDLE_STATE ||
264 	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
265 	    (cmd->opcode == SD_IO_RW_DIRECT &&
266 	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
267 		cmdr |= SDMMC_CMD_STOP;
268 	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
269 		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
270 
271 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
272 		u32 clk_en_a;
273 
274 		/* Special bit makes CMD11 not die */
275 		cmdr |= SDMMC_CMD_VOLT_SWITCH;
276 
277 		/* Change state to continue to handle CMD11 weirdness */
278 		WARN_ON(slot->host->state != STATE_SENDING_CMD);
279 		slot->host->state = STATE_SENDING_CMD11;
280 
281 		/*
282 		 * We need to disable low power mode (automatic clock stop)
283 		 * while doing voltage switch so we don't confuse the card,
284 		 * since stopping the clock is a specific part of the UHS
285 		 * voltage change dance.
286 		 *
287 		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
288 		 * unconditionally turned back on in dw_mci_setup_bus() if it's
289 		 * ever called with a non-zero clock.  That shouldn't happen
290 		 * until the voltage change is all done.
291 		 */
292 		clk_en_a = mci_readl(host, CLKENA);
293 		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
294 		mci_writel(host, CLKENA, clk_en_a);
295 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
296 			     SDMMC_CMD_PRV_DAT_WAIT, 0);
297 	}
298 
299 	if (cmd->flags & MMC_RSP_PRESENT) {
300 		/* We expect a response, so set this bit */
301 		cmdr |= SDMMC_CMD_RESP_EXP;
302 		if (cmd->flags & MMC_RSP_136)
303 			cmdr |= SDMMC_CMD_RESP_LONG;
304 	}
305 
306 	if (cmd->flags & MMC_RSP_CRC)
307 		cmdr |= SDMMC_CMD_RESP_CRC;
308 
309 	if (cmd->data) {
310 		cmdr |= SDMMC_CMD_DAT_EXP;
311 		if (cmd->data->flags & MMC_DATA_WRITE)
312 			cmdr |= SDMMC_CMD_DAT_WR;
313 	}
314 
315 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
316 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
317 
318 	return cmdr;
319 }
320 
321 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
322 {
323 	struct mmc_command *stop;
324 	u32 cmdr;
325 
326 	if (!cmd->data)
327 		return 0;
328 
329 	stop = &host->stop_abort;
330 	cmdr = cmd->opcode;
331 	memset(stop, 0, sizeof(struct mmc_command));
332 
333 	if (cmdr == MMC_READ_SINGLE_BLOCK ||
334 	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
335 	    cmdr == MMC_WRITE_BLOCK ||
336 	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
337 	    mmc_op_tuning(cmdr) ||
338 	    cmdr == MMC_GEN_CMD) {
339 		stop->opcode = MMC_STOP_TRANSMISSION;
340 		stop->arg = 0;
341 		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
342 	} else if (cmdr == SD_IO_RW_EXTENDED) {
343 		stop->opcode = SD_IO_RW_DIRECT;
344 		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
345 			     ((cmd->arg >> 28) & 0x7);
346 		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
347 	} else {
348 		return 0;
349 	}
350 
351 	cmdr = stop->opcode | SDMMC_CMD_STOP |
352 		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
353 
354 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
355 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
356 
357 	return cmdr;
358 }
359 
360 static inline void dw_mci_set_cto(struct dw_mci *host)
361 {
362 	unsigned int cto_clks;
363 	unsigned int cto_div;
364 	unsigned int cto_ms;
365 	unsigned long irqflags;
366 
367 	cto_clks = mci_readl(host, TMOUT) & 0xff;
368 	cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
369 	if (cto_div == 0)
370 		cto_div = 1;
371 
372 	cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
373 				  host->bus_hz);
374 
375 	/* add a bit spare time */
376 	cto_ms += 10;
377 
378 	/*
379 	 * The durations we're working with are fairly short so we have to be
380 	 * extra careful about synchronization here.  Specifically in hardware a
381 	 * command timeout is _at most_ 5.1 ms, so that means we expect an
382 	 * interrupt (either command done or timeout) to come rather quickly
383 	 * after the mci_writel.  ...but just in case we have a long interrupt
384 	 * latency let's add a bit of paranoia.
385 	 *
386 	 * In general we'll assume that at least an interrupt will be asserted
387 	 * in hardware by the time the cto_timer runs.  ...and if it hasn't
388 	 * been asserted in hardware by that time then we'll assume it'll never
389 	 * come.
390 	 */
391 	spin_lock_irqsave(&host->irq_lock, irqflags);
392 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
393 		mod_timer(&host->cto_timer,
394 			jiffies + msecs_to_jiffies(cto_ms) + 1);
395 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
396 }
397 
398 static void dw_mci_start_command(struct dw_mci *host,
399 				 struct mmc_command *cmd, u32 cmd_flags)
400 {
401 	host->cmd = cmd;
402 	dev_vdbg(host->dev,
403 		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
404 		 cmd->arg, cmd_flags);
405 
406 	mci_writel(host, CMDARG, cmd->arg);
407 	wmb(); /* drain writebuffer */
408 	dw_mci_wait_while_busy(host, cmd_flags);
409 
410 	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
411 
412 	/* response expected command only */
413 	if (cmd_flags & SDMMC_CMD_RESP_EXP)
414 		dw_mci_set_cto(host);
415 }
416 
417 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
418 {
419 	struct mmc_command *stop = &host->stop_abort;
420 
421 	dw_mci_start_command(host, stop, host->stop_cmdr);
422 }
423 
424 /* DMA interface functions */
425 static void dw_mci_stop_dma(struct dw_mci *host)
426 {
427 	if (host->using_dma) {
428 		host->dma_ops->stop(host);
429 		host->dma_ops->cleanup(host);
430 	}
431 
432 	/* Data transfer was stopped by the interrupt handler */
433 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
434 }
435 
436 static void dw_mci_dma_cleanup(struct dw_mci *host)
437 {
438 	struct mmc_data *data = host->data;
439 
440 	if (data && data->host_cookie == COOKIE_MAPPED) {
441 		dma_unmap_sg(host->dev,
442 			     data->sg,
443 			     data->sg_len,
444 			     mmc_get_dma_dir(data));
445 		data->host_cookie = COOKIE_UNMAPPED;
446 	}
447 }
448 
449 static void dw_mci_idmac_reset(struct dw_mci *host)
450 {
451 	u32 bmod = mci_readl(host, BMOD);
452 	/* Software reset of DMA */
453 	bmod |= SDMMC_IDMAC_SWRESET;
454 	mci_writel(host, BMOD, bmod);
455 }
456 
457 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
458 {
459 	u32 temp;
460 
461 	/* Disable and reset the IDMAC interface */
462 	temp = mci_readl(host, CTRL);
463 	temp &= ~SDMMC_CTRL_USE_IDMAC;
464 	temp |= SDMMC_CTRL_DMA_RESET;
465 	mci_writel(host, CTRL, temp);
466 
467 	/* Stop the IDMAC running */
468 	temp = mci_readl(host, BMOD);
469 	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
470 	temp |= SDMMC_IDMAC_SWRESET;
471 	mci_writel(host, BMOD, temp);
472 }
473 
474 static void dw_mci_dmac_complete_dma(void *arg)
475 {
476 	struct dw_mci *host = arg;
477 	struct mmc_data *data = host->data;
478 
479 	dev_vdbg(host->dev, "DMA complete\n");
480 
481 	if ((host->use_dma == TRANS_MODE_EDMAC) &&
482 	    data && (data->flags & MMC_DATA_READ))
483 		/* Invalidate cache after read */
484 		dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
485 				    data->sg,
486 				    data->sg_len,
487 				    DMA_FROM_DEVICE);
488 
489 	host->dma_ops->cleanup(host);
490 
491 	/*
492 	 * If the card was removed, data will be NULL. No point in trying to
493 	 * send the stop command or waiting for NBUSY in this case.
494 	 */
495 	if (data) {
496 		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
497 		tasklet_schedule(&host->tasklet);
498 	}
499 }
500 
501 static int dw_mci_idmac_init(struct dw_mci *host)
502 {
503 	int i;
504 
505 	if (host->dma_64bit_address == 1) {
506 		struct idmac_desc_64addr *p;
507 		/* Number of descriptors in the ring buffer */
508 		host->ring_size =
509 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
510 
511 		/* Forward link the descriptor list */
512 		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
513 								i++, p++) {
514 			p->des6 = (host->sg_dma +
515 					(sizeof(struct idmac_desc_64addr) *
516 							(i + 1))) & 0xffffffff;
517 
518 			p->des7 = (u64)(host->sg_dma +
519 					(sizeof(struct idmac_desc_64addr) *
520 							(i + 1))) >> 32;
521 			/* Initialize reserved and buffer size fields to "0" */
522 			p->des0 = 0;
523 			p->des1 = 0;
524 			p->des2 = 0;
525 			p->des3 = 0;
526 		}
527 
528 		/* Set the last descriptor as the end-of-ring descriptor */
529 		p->des6 = host->sg_dma & 0xffffffff;
530 		p->des7 = (u64)host->sg_dma >> 32;
531 		p->des0 = IDMAC_DES0_ER;
532 
533 	} else {
534 		struct idmac_desc *p;
535 		/* Number of descriptors in the ring buffer */
536 		host->ring_size =
537 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
538 
539 		/* Forward link the descriptor list */
540 		for (i = 0, p = host->sg_cpu;
541 		     i < host->ring_size - 1;
542 		     i++, p++) {
543 			p->des3 = cpu_to_le32(host->sg_dma +
544 					(sizeof(struct idmac_desc) * (i + 1)));
545 			p->des0 = 0;
546 			p->des1 = 0;
547 		}
548 
549 		/* Set the last descriptor as the end-of-ring descriptor */
550 		p->des3 = cpu_to_le32(host->sg_dma);
551 		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
552 	}
553 
554 	dw_mci_idmac_reset(host);
555 
556 	if (host->dma_64bit_address == 1) {
557 		/* Mask out interrupts - get Tx & Rx complete only */
558 		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
559 		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
560 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
561 
562 		/* Set the descriptor base address */
563 		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
564 		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
565 
566 	} else {
567 		/* Mask out interrupts - get Tx & Rx complete only */
568 		mci_writel(host, IDSTS, IDMAC_INT_CLR);
569 		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
570 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
571 
572 		/* Set the descriptor base address */
573 		mci_writel(host, DBADDR, host->sg_dma);
574 	}
575 
576 	return 0;
577 }
578 
579 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
580 					 struct mmc_data *data,
581 					 unsigned int sg_len)
582 {
583 	unsigned int desc_len;
584 	struct idmac_desc_64addr *desc_first, *desc_last, *desc;
585 	u32 val;
586 	int i;
587 
588 	desc_first = desc_last = desc = host->sg_cpu;
589 
590 	for (i = 0; i < sg_len; i++) {
591 		unsigned int length = sg_dma_len(&data->sg[i]);
592 
593 		u64 mem_addr = sg_dma_address(&data->sg[i]);
594 
595 		for ( ; length ; desc++) {
596 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
597 				   length : DW_MCI_DESC_DATA_LENGTH;
598 
599 			length -= desc_len;
600 
601 			/*
602 			 * Wait for the former clear OWN bit operation
603 			 * of IDMAC to make sure that this descriptor
604 			 * isn't still owned by IDMAC as IDMAC's write
605 			 * ops and CPU's read ops are asynchronous.
606 			 */
607 			if (readl_poll_timeout_atomic(&desc->des0, val,
608 						!(val & IDMAC_DES0_OWN),
609 						10, 100 * USEC_PER_MSEC))
610 				goto err_own_bit;
611 
612 			/*
613 			 * Set the OWN bit and disable interrupts
614 			 * for this descriptor
615 			 */
616 			desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
617 						IDMAC_DES0_CH;
618 
619 			/* Buffer length */
620 			IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
621 
622 			/* Physical address to DMA to/from */
623 			desc->des4 = mem_addr & 0xffffffff;
624 			desc->des5 = mem_addr >> 32;
625 
626 			/* Update physical address for the next desc */
627 			mem_addr += desc_len;
628 
629 			/* Save pointer to the last descriptor */
630 			desc_last = desc;
631 		}
632 	}
633 
634 	/* Set first descriptor */
635 	desc_first->des0 |= IDMAC_DES0_FD;
636 
637 	/* Set last descriptor */
638 	desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
639 	desc_last->des0 |= IDMAC_DES0_LD;
640 
641 	return 0;
642 err_own_bit:
643 	/* restore the descriptor chain as it's polluted */
644 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
645 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
646 	dw_mci_idmac_init(host);
647 	return -EINVAL;
648 }
649 
650 
651 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
652 					 struct mmc_data *data,
653 					 unsigned int sg_len)
654 {
655 	unsigned int desc_len;
656 	struct idmac_desc *desc_first, *desc_last, *desc;
657 	u32 val;
658 	int i;
659 
660 	desc_first = desc_last = desc = host->sg_cpu;
661 
662 	for (i = 0; i < sg_len; i++) {
663 		unsigned int length = sg_dma_len(&data->sg[i]);
664 
665 		u32 mem_addr = sg_dma_address(&data->sg[i]);
666 
667 		for ( ; length ; desc++) {
668 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
669 				   length : DW_MCI_DESC_DATA_LENGTH;
670 
671 			length -= desc_len;
672 
673 			/*
674 			 * Wait for the former clear OWN bit operation
675 			 * of IDMAC to make sure that this descriptor
676 			 * isn't still owned by IDMAC as IDMAC's write
677 			 * ops and CPU's read ops are asynchronous.
678 			 */
679 			if (readl_poll_timeout_atomic(&desc->des0, val,
680 						      IDMAC_OWN_CLR64(val),
681 						      10,
682 						      100 * USEC_PER_MSEC))
683 				goto err_own_bit;
684 
685 			/*
686 			 * Set the OWN bit and disable interrupts
687 			 * for this descriptor
688 			 */
689 			desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
690 						 IDMAC_DES0_DIC |
691 						 IDMAC_DES0_CH);
692 
693 			/* Buffer length */
694 			IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
695 
696 			/* Physical address to DMA to/from */
697 			desc->des2 = cpu_to_le32(mem_addr);
698 
699 			/* Update physical address for the next desc */
700 			mem_addr += desc_len;
701 
702 			/* Save pointer to the last descriptor */
703 			desc_last = desc;
704 		}
705 	}
706 
707 	/* Set first descriptor */
708 	desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
709 
710 	/* Set last descriptor */
711 	desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
712 				       IDMAC_DES0_DIC));
713 	desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
714 
715 	return 0;
716 err_own_bit:
717 	/* restore the descriptor chain as it's polluted */
718 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
719 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
720 	dw_mci_idmac_init(host);
721 	return -EINVAL;
722 }
723 
724 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
725 {
726 	u32 temp;
727 	int ret;
728 
729 	if (host->dma_64bit_address == 1)
730 		ret = dw_mci_prepare_desc64(host, host->data, sg_len);
731 	else
732 		ret = dw_mci_prepare_desc32(host, host->data, sg_len);
733 
734 	if (ret)
735 		goto out;
736 
737 	/* drain writebuffer */
738 	wmb();
739 
740 	/* Make sure to reset DMA in case we did PIO before this */
741 	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
742 	dw_mci_idmac_reset(host);
743 
744 	/* Select IDMAC interface */
745 	temp = mci_readl(host, CTRL);
746 	temp |= SDMMC_CTRL_USE_IDMAC;
747 	mci_writel(host, CTRL, temp);
748 
749 	/* drain writebuffer */
750 	wmb();
751 
752 	/* Enable the IDMAC */
753 	temp = mci_readl(host, BMOD);
754 	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
755 	mci_writel(host, BMOD, temp);
756 
757 	/* Start it running */
758 	mci_writel(host, PLDMND, 1);
759 
760 out:
761 	return ret;
762 }
763 
764 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
765 	.init = dw_mci_idmac_init,
766 	.start = dw_mci_idmac_start_dma,
767 	.stop = dw_mci_idmac_stop_dma,
768 	.complete = dw_mci_dmac_complete_dma,
769 	.cleanup = dw_mci_dma_cleanup,
770 };
771 
772 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
773 {
774 	dmaengine_terminate_async(host->dms->ch);
775 }
776 
777 static int dw_mci_edmac_start_dma(struct dw_mci *host,
778 					    unsigned int sg_len)
779 {
780 	struct dma_slave_config cfg;
781 	struct dma_async_tx_descriptor *desc = NULL;
782 	struct scatterlist *sgl = host->data->sg;
783 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
784 	u32 sg_elems = host->data->sg_len;
785 	u32 fifoth_val;
786 	u32 fifo_offset = host->fifo_reg - host->regs;
787 	int ret = 0;
788 
789 	/* Set external dma config: burst size, burst width */
790 	memset(&cfg, 0, sizeof(cfg));
791 	cfg.dst_addr = host->phy_regs + fifo_offset;
792 	cfg.src_addr = cfg.dst_addr;
793 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
794 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
795 
796 	/* Match burst msize with external dma config */
797 	fifoth_val = mci_readl(host, FIFOTH);
798 	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
799 	cfg.src_maxburst = cfg.dst_maxburst;
800 
801 	if (host->data->flags & MMC_DATA_WRITE)
802 		cfg.direction = DMA_MEM_TO_DEV;
803 	else
804 		cfg.direction = DMA_DEV_TO_MEM;
805 
806 	ret = dmaengine_slave_config(host->dms->ch, &cfg);
807 	if (ret) {
808 		dev_err(host->dev, "Failed to config edmac.\n");
809 		return -EBUSY;
810 	}
811 
812 	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
813 				       sg_len, cfg.direction,
814 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
815 	if (!desc) {
816 		dev_err(host->dev, "Can't prepare slave sg.\n");
817 		return -EBUSY;
818 	}
819 
820 	/* Set dw_mci_dmac_complete_dma as callback */
821 	desc->callback = dw_mci_dmac_complete_dma;
822 	desc->callback_param = (void *)host;
823 	dmaengine_submit(desc);
824 
825 	/* Flush cache before write */
826 	if (host->data->flags & MMC_DATA_WRITE)
827 		dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
828 				       sg_elems, DMA_TO_DEVICE);
829 
830 	dma_async_issue_pending(host->dms->ch);
831 
832 	return 0;
833 }
834 
835 static int dw_mci_edmac_init(struct dw_mci *host)
836 {
837 	/* Request external dma channel */
838 	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
839 	if (!host->dms)
840 		return -ENOMEM;
841 
842 	host->dms->ch = dma_request_chan(host->dev, "rx-tx");
843 	if (IS_ERR(host->dms->ch)) {
844 		int ret = PTR_ERR(host->dms->ch);
845 
846 		dev_err(host->dev, "Failed to get external DMA channel.\n");
847 		kfree(host->dms);
848 		host->dms = NULL;
849 		return ret;
850 	}
851 
852 	return 0;
853 }
854 
855 static void dw_mci_edmac_exit(struct dw_mci *host)
856 {
857 	if (host->dms) {
858 		if (host->dms->ch) {
859 			dma_release_channel(host->dms->ch);
860 			host->dms->ch = NULL;
861 		}
862 		kfree(host->dms);
863 		host->dms = NULL;
864 	}
865 }
866 
867 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
868 	.init = dw_mci_edmac_init,
869 	.exit = dw_mci_edmac_exit,
870 	.start = dw_mci_edmac_start_dma,
871 	.stop = dw_mci_edmac_stop_dma,
872 	.complete = dw_mci_dmac_complete_dma,
873 	.cleanup = dw_mci_dma_cleanup,
874 };
875 
876 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
877 				   struct mmc_data *data,
878 				   int cookie)
879 {
880 	struct scatterlist *sg;
881 	unsigned int i, sg_len;
882 
883 	if (data->host_cookie == COOKIE_PRE_MAPPED)
884 		return data->sg_len;
885 
886 	/*
887 	 * We don't do DMA on "complex" transfers, i.e. with
888 	 * non-word-aligned buffers or lengths. Also, we don't bother
889 	 * with all the DMA setup overhead for short transfers.
890 	 */
891 	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
892 		return -EINVAL;
893 
894 	if (data->blksz & 3)
895 		return -EINVAL;
896 
897 	for_each_sg(data->sg, sg, data->sg_len, i) {
898 		if (sg->offset & 3 || sg->length & 3)
899 			return -EINVAL;
900 	}
901 
902 	sg_len = dma_map_sg(host->dev,
903 			    data->sg,
904 			    data->sg_len,
905 			    mmc_get_dma_dir(data));
906 	if (sg_len == 0)
907 		return -EINVAL;
908 
909 	data->host_cookie = cookie;
910 
911 	return sg_len;
912 }
913 
914 static void dw_mci_pre_req(struct mmc_host *mmc,
915 			   struct mmc_request *mrq)
916 {
917 	struct dw_mci_slot *slot = mmc_priv(mmc);
918 	struct mmc_data *data = mrq->data;
919 
920 	if (!slot->host->use_dma || !data)
921 		return;
922 
923 	/* This data might be unmapped at this time */
924 	data->host_cookie = COOKIE_UNMAPPED;
925 
926 	if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
927 				COOKIE_PRE_MAPPED) < 0)
928 		data->host_cookie = COOKIE_UNMAPPED;
929 }
930 
931 static void dw_mci_post_req(struct mmc_host *mmc,
932 			    struct mmc_request *mrq,
933 			    int err)
934 {
935 	struct dw_mci_slot *slot = mmc_priv(mmc);
936 	struct mmc_data *data = mrq->data;
937 
938 	if (!slot->host->use_dma || !data)
939 		return;
940 
941 	if (data->host_cookie != COOKIE_UNMAPPED)
942 		dma_unmap_sg(slot->host->dev,
943 			     data->sg,
944 			     data->sg_len,
945 			     mmc_get_dma_dir(data));
946 	data->host_cookie = COOKIE_UNMAPPED;
947 }
948 
949 static int dw_mci_get_cd(struct mmc_host *mmc)
950 {
951 	int present;
952 	struct dw_mci_slot *slot = mmc_priv(mmc);
953 	struct dw_mci *host = slot->host;
954 	int gpio_cd = mmc_gpio_get_cd(mmc);
955 
956 	/* Use platform get_cd function, else try onboard card detect */
957 	if (((mmc->caps & MMC_CAP_NEEDS_POLL)
958 				|| !mmc_card_is_removable(mmc))) {
959 		present = 1;
960 
961 		if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
962 			if (mmc->caps & MMC_CAP_NEEDS_POLL) {
963 				dev_info(&mmc->class_dev,
964 					"card is polling.\n");
965 			} else {
966 				dev_info(&mmc->class_dev,
967 					"card is non-removable.\n");
968 			}
969 			set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
970 		}
971 
972 		return present;
973 	} else if (gpio_cd >= 0)
974 		present = gpio_cd;
975 	else
976 		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
977 			== 0 ? 1 : 0;
978 
979 	spin_lock_bh(&host->lock);
980 	if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
981 		dev_dbg(&mmc->class_dev, "card is present\n");
982 	else if (!present &&
983 			!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
984 		dev_dbg(&mmc->class_dev, "card is not present\n");
985 	spin_unlock_bh(&host->lock);
986 
987 	return present;
988 }
989 
990 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
991 {
992 	unsigned int blksz = data->blksz;
993 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
994 	u32 fifo_width = 1 << host->data_shift;
995 	u32 blksz_depth = blksz / fifo_width, fifoth_val;
996 	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
997 	int idx = ARRAY_SIZE(mszs) - 1;
998 
999 	/* pio should ship this scenario */
1000 	if (!host->use_dma)
1001 		return;
1002 
1003 	tx_wmark = (host->fifo_depth) / 2;
1004 	tx_wmark_invers = host->fifo_depth - tx_wmark;
1005 
1006 	/*
1007 	 * MSIZE is '1',
1008 	 * if blksz is not a multiple of the FIFO width
1009 	 */
1010 	if (blksz % fifo_width)
1011 		goto done;
1012 
1013 	do {
1014 		if (!((blksz_depth % mszs[idx]) ||
1015 		     (tx_wmark_invers % mszs[idx]))) {
1016 			msize = idx;
1017 			rx_wmark = mszs[idx] - 1;
1018 			break;
1019 		}
1020 	} while (--idx > 0);
1021 	/*
1022 	 * If idx is '0', it won't be tried
1023 	 * Thus, initial values are uesed
1024 	 */
1025 done:
1026 	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1027 	mci_writel(host, FIFOTH, fifoth_val);
1028 }
1029 
1030 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1031 {
1032 	unsigned int blksz = data->blksz;
1033 	u32 blksz_depth, fifo_depth;
1034 	u16 thld_size;
1035 	u8 enable;
1036 
1037 	/*
1038 	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1039 	 * in the FIFO region, so we really shouldn't access it).
1040 	 */
1041 	if (host->verid < DW_MMC_240A ||
1042 		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1043 		return;
1044 
1045 	/*
1046 	 * Card write Threshold is introduced since 2.80a
1047 	 * It's used when HS400 mode is enabled.
1048 	 */
1049 	if (data->flags & MMC_DATA_WRITE &&
1050 		host->timing != MMC_TIMING_MMC_HS400)
1051 		goto disable;
1052 
1053 	if (data->flags & MMC_DATA_WRITE)
1054 		enable = SDMMC_CARD_WR_THR_EN;
1055 	else
1056 		enable = SDMMC_CARD_RD_THR_EN;
1057 
1058 	if (host->timing != MMC_TIMING_MMC_HS200 &&
1059 	    host->timing != MMC_TIMING_UHS_SDR104 &&
1060 	    host->timing != MMC_TIMING_MMC_HS400)
1061 		goto disable;
1062 
1063 	blksz_depth = blksz / (1 << host->data_shift);
1064 	fifo_depth = host->fifo_depth;
1065 
1066 	if (blksz_depth > fifo_depth)
1067 		goto disable;
1068 
1069 	/*
1070 	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1071 	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1072 	 * Currently just choose blksz.
1073 	 */
1074 	thld_size = blksz;
1075 	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1076 	return;
1077 
1078 disable:
1079 	mci_writel(host, CDTHRCTL, 0);
1080 }
1081 
1082 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1083 {
1084 	unsigned long irqflags;
1085 	int sg_len;
1086 	u32 temp;
1087 
1088 	host->using_dma = 0;
1089 
1090 	/* If we don't have a channel, we can't do DMA */
1091 	if (!host->use_dma)
1092 		return -ENODEV;
1093 
1094 	sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1095 	if (sg_len < 0) {
1096 		host->dma_ops->stop(host);
1097 		return sg_len;
1098 	}
1099 
1100 	host->using_dma = 1;
1101 
1102 	if (host->use_dma == TRANS_MODE_IDMAC)
1103 		dev_vdbg(host->dev,
1104 			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1105 			 (unsigned long)host->sg_cpu,
1106 			 (unsigned long)host->sg_dma,
1107 			 sg_len);
1108 
1109 	/*
1110 	 * Decide the MSIZE and RX/TX Watermark.
1111 	 * If current block size is same with previous size,
1112 	 * no need to update fifoth.
1113 	 */
1114 	if (host->prev_blksz != data->blksz)
1115 		dw_mci_adjust_fifoth(host, data);
1116 
1117 	/* Enable the DMA interface */
1118 	temp = mci_readl(host, CTRL);
1119 	temp |= SDMMC_CTRL_DMA_ENABLE;
1120 	mci_writel(host, CTRL, temp);
1121 
1122 	/* Disable RX/TX IRQs, let DMA handle it */
1123 	spin_lock_irqsave(&host->irq_lock, irqflags);
1124 	temp = mci_readl(host, INTMASK);
1125 	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1126 	mci_writel(host, INTMASK, temp);
1127 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1128 
1129 	if (host->dma_ops->start(host, sg_len)) {
1130 		host->dma_ops->stop(host);
1131 		/* We can't do DMA, try PIO for this one */
1132 		dev_dbg(host->dev,
1133 			"%s: fall back to PIO mode for current transfer\n",
1134 			__func__);
1135 		return -ENODEV;
1136 	}
1137 
1138 	return 0;
1139 }
1140 
1141 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1142 {
1143 	unsigned long irqflags;
1144 	int flags = SG_MITER_ATOMIC;
1145 	u32 temp;
1146 
1147 	data->error = -EINPROGRESS;
1148 
1149 	WARN_ON(host->data);
1150 	host->sg = NULL;
1151 	host->data = data;
1152 
1153 	if (data->flags & MMC_DATA_READ)
1154 		host->dir_status = DW_MCI_RECV_STATUS;
1155 	else
1156 		host->dir_status = DW_MCI_SEND_STATUS;
1157 
1158 	dw_mci_ctrl_thld(host, data);
1159 
1160 	if (dw_mci_submit_data_dma(host, data)) {
1161 		if (host->data->flags & MMC_DATA_READ)
1162 			flags |= SG_MITER_TO_SG;
1163 		else
1164 			flags |= SG_MITER_FROM_SG;
1165 
1166 		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1167 		host->sg = data->sg;
1168 		host->part_buf_start = 0;
1169 		host->part_buf_count = 0;
1170 
1171 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1172 
1173 		spin_lock_irqsave(&host->irq_lock, irqflags);
1174 		temp = mci_readl(host, INTMASK);
1175 		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1176 		mci_writel(host, INTMASK, temp);
1177 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1178 
1179 		temp = mci_readl(host, CTRL);
1180 		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1181 		mci_writel(host, CTRL, temp);
1182 
1183 		/*
1184 		 * Use the initial fifoth_val for PIO mode. If wm_algined
1185 		 * is set, we set watermark same as data size.
1186 		 * If next issued data may be transfered by DMA mode,
1187 		 * prev_blksz should be invalidated.
1188 		 */
1189 		if (host->wm_aligned)
1190 			dw_mci_adjust_fifoth(host, data);
1191 		else
1192 			mci_writel(host, FIFOTH, host->fifoth_val);
1193 		host->prev_blksz = 0;
1194 	} else {
1195 		/*
1196 		 * Keep the current block size.
1197 		 * It will be used to decide whether to update
1198 		 * fifoth register next time.
1199 		 */
1200 		host->prev_blksz = data->blksz;
1201 	}
1202 }
1203 
1204 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1205 {
1206 	struct dw_mci *host = slot->host;
1207 	unsigned int clock = slot->clock;
1208 	u32 div;
1209 	u32 clk_en_a;
1210 	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1211 
1212 	/* We must continue to set bit 28 in CMD until the change is complete */
1213 	if (host->state == STATE_WAITING_CMD11_DONE)
1214 		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1215 
1216 	slot->mmc->actual_clock = 0;
1217 
1218 	if (!clock) {
1219 		mci_writel(host, CLKENA, 0);
1220 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1221 	} else if (clock != host->current_speed || force_clkinit) {
1222 		div = host->bus_hz / clock;
1223 		if (host->bus_hz % clock && host->bus_hz > clock)
1224 			/*
1225 			 * move the + 1 after the divide to prevent
1226 			 * over-clocking the card.
1227 			 */
1228 			div += 1;
1229 
1230 		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1231 
1232 		if ((clock != slot->__clk_old &&
1233 			!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1234 			force_clkinit) {
1235 			/* Silent the verbose log if calling from PM context */
1236 			if (!force_clkinit)
1237 				dev_info(&slot->mmc->class_dev,
1238 					 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1239 					 slot->id, host->bus_hz, clock,
1240 					 div ? ((host->bus_hz / div) >> 1) :
1241 					 host->bus_hz, div);
1242 
1243 			/*
1244 			 * If card is polling, display the message only
1245 			 * one time at boot time.
1246 			 */
1247 			if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1248 					slot->mmc->f_min == clock)
1249 				set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1250 		}
1251 
1252 		/* disable clock */
1253 		mci_writel(host, CLKENA, 0);
1254 		mci_writel(host, CLKSRC, 0);
1255 
1256 		/* inform CIU */
1257 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1258 
1259 		/* set clock to desired speed */
1260 		mci_writel(host, CLKDIV, div);
1261 
1262 		/* inform CIU */
1263 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1264 
1265 		/* enable clock; only low power if no SDIO */
1266 		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1267 		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1268 			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1269 		mci_writel(host, CLKENA, clk_en_a);
1270 
1271 		/* inform CIU */
1272 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1273 
1274 		/* keep the last clock value that was requested from core */
1275 		slot->__clk_old = clock;
1276 		slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
1277 					  host->bus_hz;
1278 	}
1279 
1280 	host->current_speed = clock;
1281 
1282 	/* Set the current slot bus width */
1283 	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1284 }
1285 
1286 static void dw_mci_set_data_timeout(struct dw_mci *host,
1287 				    unsigned int timeout_ns)
1288 {
1289 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1290 	u32 clk_div, tmout;
1291 	u64 tmp;
1292 
1293 	if (drv_data && drv_data->set_data_timeout)
1294 		return drv_data->set_data_timeout(host, timeout_ns);
1295 
1296 	clk_div = (mci_readl(host, CLKDIV) & 0xFF) * 2;
1297 	if (clk_div == 0)
1298 		clk_div = 1;
1299 
1300 	tmp = DIV_ROUND_UP_ULL((u64)timeout_ns * host->bus_hz, NSEC_PER_SEC);
1301 	tmp = DIV_ROUND_UP_ULL(tmp, clk_div);
1302 
1303 	/* TMOUT[7:0] (RESPONSE_TIMEOUT) */
1304 	tmout = 0xFF; /* Set maximum */
1305 
1306 	/* TMOUT[31:8] (DATA_TIMEOUT) */
1307 	if (!tmp || tmp > 0xFFFFFF)
1308 		tmout |= (0xFFFFFF << 8);
1309 	else
1310 		tmout |= (tmp & 0xFFFFFF) << 8;
1311 
1312 	mci_writel(host, TMOUT, tmout);
1313 	dev_dbg(host->dev, "timeout_ns: %u => TMOUT[31:8]: %#08x",
1314 		timeout_ns, tmout >> 8);
1315 }
1316 
1317 static void __dw_mci_start_request(struct dw_mci *host,
1318 				   struct dw_mci_slot *slot,
1319 				   struct mmc_command *cmd)
1320 {
1321 	struct mmc_request *mrq;
1322 	struct mmc_data	*data;
1323 	u32 cmdflags;
1324 
1325 	mrq = slot->mrq;
1326 
1327 	host->mrq = mrq;
1328 
1329 	host->pending_events = 0;
1330 	host->completed_events = 0;
1331 	host->cmd_status = 0;
1332 	host->data_status = 0;
1333 	host->dir_status = 0;
1334 
1335 	data = cmd->data;
1336 	if (data) {
1337 		dw_mci_set_data_timeout(host, data->timeout_ns);
1338 		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1339 		mci_writel(host, BLKSIZ, data->blksz);
1340 	}
1341 
1342 	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1343 
1344 	/* this is the first command, send the initialization clock */
1345 	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1346 		cmdflags |= SDMMC_CMD_INIT;
1347 
1348 	if (data) {
1349 		dw_mci_submit_data(host, data);
1350 		wmb(); /* drain writebuffer */
1351 	}
1352 
1353 	dw_mci_start_command(host, cmd, cmdflags);
1354 
1355 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1356 		unsigned long irqflags;
1357 
1358 		/*
1359 		 * Databook says to fail after 2ms w/ no response, but evidence
1360 		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1361 		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1362 		 * is just about to roll over.
1363 		 *
1364 		 * We do this whole thing under spinlock and only if the
1365 		 * command hasn't already completed (indicating the irq
1366 		 * already ran so we don't want the timeout).
1367 		 */
1368 		spin_lock_irqsave(&host->irq_lock, irqflags);
1369 		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1370 			mod_timer(&host->cmd11_timer,
1371 				jiffies + msecs_to_jiffies(500) + 1);
1372 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1373 	}
1374 
1375 	host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1376 }
1377 
1378 static void dw_mci_start_request(struct dw_mci *host,
1379 				 struct dw_mci_slot *slot)
1380 {
1381 	struct mmc_request *mrq = slot->mrq;
1382 	struct mmc_command *cmd;
1383 
1384 	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1385 	__dw_mci_start_request(host, slot, cmd);
1386 }
1387 
1388 /* must be called with host->lock held */
1389 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1390 				 struct mmc_request *mrq)
1391 {
1392 	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1393 		 host->state);
1394 
1395 	slot->mrq = mrq;
1396 
1397 	if (host->state == STATE_WAITING_CMD11_DONE) {
1398 		dev_warn(&slot->mmc->class_dev,
1399 			 "Voltage change didn't complete\n");
1400 		/*
1401 		 * this case isn't expected to happen, so we can
1402 		 * either crash here or just try to continue on
1403 		 * in the closest possible state
1404 		 */
1405 		host->state = STATE_IDLE;
1406 	}
1407 
1408 	if (host->state == STATE_IDLE) {
1409 		host->state = STATE_SENDING_CMD;
1410 		dw_mci_start_request(host, slot);
1411 	} else {
1412 		list_add_tail(&slot->queue_node, &host->queue);
1413 	}
1414 }
1415 
1416 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1417 {
1418 	struct dw_mci_slot *slot = mmc_priv(mmc);
1419 	struct dw_mci *host = slot->host;
1420 
1421 	WARN_ON(slot->mrq);
1422 
1423 	/*
1424 	 * The check for card presence and queueing of the request must be
1425 	 * atomic, otherwise the card could be removed in between and the
1426 	 * request wouldn't fail until another card was inserted.
1427 	 */
1428 
1429 	if (!dw_mci_get_cd(mmc)) {
1430 		mrq->cmd->error = -ENOMEDIUM;
1431 		mmc_request_done(mmc, mrq);
1432 		return;
1433 	}
1434 
1435 	spin_lock_bh(&host->lock);
1436 
1437 	dw_mci_queue_request(host, slot, mrq);
1438 
1439 	spin_unlock_bh(&host->lock);
1440 }
1441 
1442 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1443 {
1444 	struct dw_mci_slot *slot = mmc_priv(mmc);
1445 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1446 	u32 regs;
1447 	int ret;
1448 
1449 	switch (ios->bus_width) {
1450 	case MMC_BUS_WIDTH_4:
1451 		slot->ctype = SDMMC_CTYPE_4BIT;
1452 		break;
1453 	case MMC_BUS_WIDTH_8:
1454 		slot->ctype = SDMMC_CTYPE_8BIT;
1455 		break;
1456 	default:
1457 		/* set default 1 bit mode */
1458 		slot->ctype = SDMMC_CTYPE_1BIT;
1459 	}
1460 
1461 	regs = mci_readl(slot->host, UHS_REG);
1462 
1463 	/* DDR mode set */
1464 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1465 	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1466 	    ios->timing == MMC_TIMING_MMC_HS400)
1467 		regs |= ((0x1 << slot->id) << 16);
1468 	else
1469 		regs &= ~((0x1 << slot->id) << 16);
1470 
1471 	mci_writel(slot->host, UHS_REG, regs);
1472 	slot->host->timing = ios->timing;
1473 
1474 	/*
1475 	 * Use mirror of ios->clock to prevent race with mmc
1476 	 * core ios update when finding the minimum.
1477 	 */
1478 	slot->clock = ios->clock;
1479 
1480 	if (drv_data && drv_data->set_ios)
1481 		drv_data->set_ios(slot->host, ios);
1482 
1483 	switch (ios->power_mode) {
1484 	case MMC_POWER_UP:
1485 		if (!IS_ERR(mmc->supply.vmmc)) {
1486 			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1487 					ios->vdd);
1488 			if (ret) {
1489 				dev_err(slot->host->dev,
1490 					"failed to enable vmmc regulator\n");
1491 				/*return, if failed turn on vmmc*/
1492 				return;
1493 			}
1494 		}
1495 		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1496 		regs = mci_readl(slot->host, PWREN);
1497 		regs |= (1 << slot->id);
1498 		mci_writel(slot->host, PWREN, regs);
1499 		break;
1500 	case MMC_POWER_ON:
1501 		if (!slot->host->vqmmc_enabled) {
1502 			if (!IS_ERR(mmc->supply.vqmmc)) {
1503 				ret = regulator_enable(mmc->supply.vqmmc);
1504 				if (ret < 0)
1505 					dev_err(slot->host->dev,
1506 						"failed to enable vqmmc\n");
1507 				else
1508 					slot->host->vqmmc_enabled = true;
1509 
1510 			} else {
1511 				/* Keep track so we don't reset again */
1512 				slot->host->vqmmc_enabled = true;
1513 			}
1514 
1515 			/* Reset our state machine after powering on */
1516 			dw_mci_ctrl_reset(slot->host,
1517 					  SDMMC_CTRL_ALL_RESET_FLAGS);
1518 		}
1519 
1520 		/* Adjust clock / bus width after power is up */
1521 		dw_mci_setup_bus(slot, false);
1522 
1523 		break;
1524 	case MMC_POWER_OFF:
1525 		/* Turn clock off before power goes down */
1526 		dw_mci_setup_bus(slot, false);
1527 
1528 		if (!IS_ERR(mmc->supply.vmmc))
1529 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1530 
1531 		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1532 			regulator_disable(mmc->supply.vqmmc);
1533 		slot->host->vqmmc_enabled = false;
1534 
1535 		regs = mci_readl(slot->host, PWREN);
1536 		regs &= ~(1 << slot->id);
1537 		mci_writel(slot->host, PWREN, regs);
1538 		break;
1539 	default:
1540 		break;
1541 	}
1542 
1543 	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1544 		slot->host->state = STATE_IDLE;
1545 }
1546 
1547 static int dw_mci_card_busy(struct mmc_host *mmc)
1548 {
1549 	struct dw_mci_slot *slot = mmc_priv(mmc);
1550 	u32 status;
1551 
1552 	/*
1553 	 * Check the busy bit which is low when DAT[3:0]
1554 	 * (the data lines) are 0000
1555 	 */
1556 	status = mci_readl(slot->host, STATUS);
1557 
1558 	return !!(status & SDMMC_STATUS_BUSY);
1559 }
1560 
1561 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1562 {
1563 	struct dw_mci_slot *slot = mmc_priv(mmc);
1564 	struct dw_mci *host = slot->host;
1565 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1566 	u32 uhs;
1567 	u32 v18 = SDMMC_UHS_18V << slot->id;
1568 	int ret;
1569 
1570 	if (drv_data && drv_data->switch_voltage)
1571 		return drv_data->switch_voltage(mmc, ios);
1572 
1573 	/*
1574 	 * Program the voltage.  Note that some instances of dw_mmc may use
1575 	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1576 	 * does no harm but you need to set the regulator directly.  Try both.
1577 	 */
1578 	uhs = mci_readl(host, UHS_REG);
1579 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1580 		uhs &= ~v18;
1581 	else
1582 		uhs |= v18;
1583 
1584 	if (!IS_ERR(mmc->supply.vqmmc)) {
1585 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1586 		if (ret < 0) {
1587 			dev_dbg(&mmc->class_dev,
1588 					 "Regulator set error %d - %s V\n",
1589 					 ret, uhs & v18 ? "1.8" : "3.3");
1590 			return ret;
1591 		}
1592 	}
1593 	mci_writel(host, UHS_REG, uhs);
1594 
1595 	return 0;
1596 }
1597 
1598 static int dw_mci_get_ro(struct mmc_host *mmc)
1599 {
1600 	int read_only;
1601 	struct dw_mci_slot *slot = mmc_priv(mmc);
1602 	int gpio_ro = mmc_gpio_get_ro(mmc);
1603 
1604 	/* Use platform get_ro function, else try on board write protect */
1605 	if (gpio_ro >= 0)
1606 		read_only = gpio_ro;
1607 	else
1608 		read_only =
1609 			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1610 
1611 	dev_dbg(&mmc->class_dev, "card is %s\n",
1612 		read_only ? "read-only" : "read-write");
1613 
1614 	return read_only;
1615 }
1616 
1617 static void dw_mci_hw_reset(struct mmc_host *mmc)
1618 {
1619 	struct dw_mci_slot *slot = mmc_priv(mmc);
1620 	struct dw_mci *host = slot->host;
1621 	int reset;
1622 
1623 	if (host->use_dma == TRANS_MODE_IDMAC)
1624 		dw_mci_idmac_reset(host);
1625 
1626 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1627 				     SDMMC_CTRL_FIFO_RESET))
1628 		return;
1629 
1630 	/*
1631 	 * According to eMMC spec, card reset procedure:
1632 	 * tRstW >= 1us:   RST_n pulse width
1633 	 * tRSCA >= 200us: RST_n to Command time
1634 	 * tRSTH >= 1us:   RST_n high period
1635 	 */
1636 	reset = mci_readl(host, RST_N);
1637 	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1638 	mci_writel(host, RST_N, reset);
1639 	usleep_range(1, 2);
1640 	reset |= SDMMC_RST_HWACTIVE << slot->id;
1641 	mci_writel(host, RST_N, reset);
1642 	usleep_range(200, 300);
1643 }
1644 
1645 static void dw_mci_prepare_sdio_irq(struct dw_mci_slot *slot, bool prepare)
1646 {
1647 	struct dw_mci *host = slot->host;
1648 	const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1649 	u32 clk_en_a_old;
1650 	u32 clk_en_a;
1651 
1652 	/*
1653 	 * Low power mode will stop the card clock when idle.  According to the
1654 	 * description of the CLKENA register we should disable low power mode
1655 	 * for SDIO cards if we need SDIO interrupts to work.
1656 	 */
1657 
1658 	clk_en_a_old = mci_readl(host, CLKENA);
1659 	if (prepare) {
1660 		set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1661 		clk_en_a = clk_en_a_old & ~clken_low_pwr;
1662 	} else {
1663 		clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1664 		clk_en_a = clk_en_a_old | clken_low_pwr;
1665 	}
1666 
1667 	if (clk_en_a != clk_en_a_old) {
1668 		mci_writel(host, CLKENA, clk_en_a);
1669 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT,
1670 			     0);
1671 	}
1672 }
1673 
1674 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1675 {
1676 	struct dw_mci *host = slot->host;
1677 	unsigned long irqflags;
1678 	u32 int_mask;
1679 
1680 	spin_lock_irqsave(&host->irq_lock, irqflags);
1681 
1682 	/* Enable/disable Slot Specific SDIO interrupt */
1683 	int_mask = mci_readl(host, INTMASK);
1684 	if (enb)
1685 		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1686 	else
1687 		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1688 	mci_writel(host, INTMASK, int_mask);
1689 
1690 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1691 }
1692 
1693 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1694 {
1695 	struct dw_mci_slot *slot = mmc_priv(mmc);
1696 	struct dw_mci *host = slot->host;
1697 
1698 	dw_mci_prepare_sdio_irq(slot, enb);
1699 	__dw_mci_enable_sdio_irq(slot, enb);
1700 
1701 	/* Avoid runtime suspending the device when SDIO IRQ is enabled */
1702 	if (enb)
1703 		pm_runtime_get_noresume(host->dev);
1704 	else
1705 		pm_runtime_put_noidle(host->dev);
1706 }
1707 
1708 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1709 {
1710 	struct dw_mci_slot *slot = mmc_priv(mmc);
1711 
1712 	__dw_mci_enable_sdio_irq(slot, 1);
1713 }
1714 
1715 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1716 {
1717 	struct dw_mci_slot *slot = mmc_priv(mmc);
1718 	struct dw_mci *host = slot->host;
1719 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1720 	int err = -EINVAL;
1721 
1722 	if (drv_data && drv_data->execute_tuning)
1723 		err = drv_data->execute_tuning(slot, opcode);
1724 	return err;
1725 }
1726 
1727 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1728 				       struct mmc_ios *ios)
1729 {
1730 	struct dw_mci_slot *slot = mmc_priv(mmc);
1731 	struct dw_mci *host = slot->host;
1732 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1733 
1734 	if (drv_data && drv_data->prepare_hs400_tuning)
1735 		return drv_data->prepare_hs400_tuning(host, ios);
1736 
1737 	return 0;
1738 }
1739 
1740 static bool dw_mci_reset(struct dw_mci *host)
1741 {
1742 	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1743 	bool ret = false;
1744 	u32 status = 0;
1745 
1746 	/*
1747 	 * Resetting generates a block interrupt, hence setting
1748 	 * the scatter-gather pointer to NULL.
1749 	 */
1750 	if (host->sg) {
1751 		sg_miter_stop(&host->sg_miter);
1752 		host->sg = NULL;
1753 	}
1754 
1755 	if (host->use_dma)
1756 		flags |= SDMMC_CTRL_DMA_RESET;
1757 
1758 	if (dw_mci_ctrl_reset(host, flags)) {
1759 		/*
1760 		 * In all cases we clear the RAWINTS
1761 		 * register to clear any interrupts.
1762 		 */
1763 		mci_writel(host, RINTSTS, 0xFFFFFFFF);
1764 
1765 		if (!host->use_dma) {
1766 			ret = true;
1767 			goto ciu_out;
1768 		}
1769 
1770 		/* Wait for dma_req to be cleared */
1771 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1772 					      status,
1773 					      !(status & SDMMC_STATUS_DMA_REQ),
1774 					      1, 500 * USEC_PER_MSEC)) {
1775 			dev_err(host->dev,
1776 				"%s: Timeout waiting for dma_req to be cleared\n",
1777 				__func__);
1778 			goto ciu_out;
1779 		}
1780 
1781 		/* when using DMA next we reset the fifo again */
1782 		if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1783 			goto ciu_out;
1784 	} else {
1785 		/* if the controller reset bit did clear, then set clock regs */
1786 		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1787 			dev_err(host->dev,
1788 				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1789 				__func__);
1790 			goto ciu_out;
1791 		}
1792 	}
1793 
1794 	if (host->use_dma == TRANS_MODE_IDMAC)
1795 		/* It is also required that we reinit idmac */
1796 		dw_mci_idmac_init(host);
1797 
1798 	ret = true;
1799 
1800 ciu_out:
1801 	/* After a CTRL reset we need to have CIU set clock registers  */
1802 	mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1803 
1804 	return ret;
1805 }
1806 
1807 static const struct mmc_host_ops dw_mci_ops = {
1808 	.request		= dw_mci_request,
1809 	.pre_req		= dw_mci_pre_req,
1810 	.post_req		= dw_mci_post_req,
1811 	.set_ios		= dw_mci_set_ios,
1812 	.get_ro			= dw_mci_get_ro,
1813 	.get_cd			= dw_mci_get_cd,
1814 	.card_hw_reset          = dw_mci_hw_reset,
1815 	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1816 	.ack_sdio_irq		= dw_mci_ack_sdio_irq,
1817 	.execute_tuning		= dw_mci_execute_tuning,
1818 	.card_busy		= dw_mci_card_busy,
1819 	.start_signal_voltage_switch = dw_mci_switch_voltage,
1820 	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1821 };
1822 
1823 #ifdef CONFIG_FAULT_INJECTION
1824 static enum hrtimer_restart dw_mci_fault_timer(struct hrtimer *t)
1825 {
1826 	struct dw_mci *host = container_of(t, struct dw_mci, fault_timer);
1827 	unsigned long flags;
1828 
1829 	spin_lock_irqsave(&host->irq_lock, flags);
1830 
1831 	/*
1832 	 * Only inject an error if we haven't already got an error or data over
1833 	 * interrupt.
1834 	 */
1835 	if (!host->data_status) {
1836 		host->data_status = SDMMC_INT_DCRC;
1837 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
1838 		tasklet_schedule(&host->tasklet);
1839 	}
1840 
1841 	spin_unlock_irqrestore(&host->irq_lock, flags);
1842 
1843 	return HRTIMER_NORESTART;
1844 }
1845 
1846 static void dw_mci_start_fault_timer(struct dw_mci *host)
1847 {
1848 	struct mmc_data *data = host->data;
1849 
1850 	if (!data || data->blocks <= 1)
1851 		return;
1852 
1853 	if (!should_fail(&host->fail_data_crc, 1))
1854 		return;
1855 
1856 	/*
1857 	 * Try to inject the error at random points during the data transfer.
1858 	 */
1859 	hrtimer_start(&host->fault_timer,
1860 		      ms_to_ktime(get_random_u32_below(25)),
1861 		      HRTIMER_MODE_REL);
1862 }
1863 
1864 static void dw_mci_stop_fault_timer(struct dw_mci *host)
1865 {
1866 	hrtimer_cancel(&host->fault_timer);
1867 }
1868 
1869 static void dw_mci_init_fault(struct dw_mci *host)
1870 {
1871 	host->fail_data_crc = (struct fault_attr) FAULT_ATTR_INITIALIZER;
1872 
1873 	hrtimer_init(&host->fault_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1874 	host->fault_timer.function = dw_mci_fault_timer;
1875 }
1876 #else
1877 static void dw_mci_init_fault(struct dw_mci *host)
1878 {
1879 }
1880 
1881 static void dw_mci_start_fault_timer(struct dw_mci *host)
1882 {
1883 }
1884 
1885 static void dw_mci_stop_fault_timer(struct dw_mci *host)
1886 {
1887 }
1888 #endif
1889 
1890 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1891 	__releases(&host->lock)
1892 	__acquires(&host->lock)
1893 {
1894 	struct dw_mci_slot *slot;
1895 	struct mmc_host	*prev_mmc = host->slot->mmc;
1896 
1897 	WARN_ON(host->cmd || host->data);
1898 
1899 	host->slot->mrq = NULL;
1900 	host->mrq = NULL;
1901 	if (!list_empty(&host->queue)) {
1902 		slot = list_entry(host->queue.next,
1903 				  struct dw_mci_slot, queue_node);
1904 		list_del(&slot->queue_node);
1905 		dev_vdbg(host->dev, "list not empty: %s is next\n",
1906 			 mmc_hostname(slot->mmc));
1907 		host->state = STATE_SENDING_CMD;
1908 		dw_mci_start_request(host, slot);
1909 	} else {
1910 		dev_vdbg(host->dev, "list empty\n");
1911 
1912 		if (host->state == STATE_SENDING_CMD11)
1913 			host->state = STATE_WAITING_CMD11_DONE;
1914 		else
1915 			host->state = STATE_IDLE;
1916 	}
1917 
1918 	spin_unlock(&host->lock);
1919 	mmc_request_done(prev_mmc, mrq);
1920 	spin_lock(&host->lock);
1921 }
1922 
1923 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1924 {
1925 	u32 status = host->cmd_status;
1926 
1927 	host->cmd_status = 0;
1928 
1929 	/* Read the response from the card (up to 16 bytes) */
1930 	if (cmd->flags & MMC_RSP_PRESENT) {
1931 		if (cmd->flags & MMC_RSP_136) {
1932 			cmd->resp[3] = mci_readl(host, RESP0);
1933 			cmd->resp[2] = mci_readl(host, RESP1);
1934 			cmd->resp[1] = mci_readl(host, RESP2);
1935 			cmd->resp[0] = mci_readl(host, RESP3);
1936 		} else {
1937 			cmd->resp[0] = mci_readl(host, RESP0);
1938 			cmd->resp[1] = 0;
1939 			cmd->resp[2] = 0;
1940 			cmd->resp[3] = 0;
1941 		}
1942 	}
1943 
1944 	if (status & SDMMC_INT_RTO)
1945 		cmd->error = -ETIMEDOUT;
1946 	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1947 		cmd->error = -EILSEQ;
1948 	else if (status & SDMMC_INT_RESP_ERR)
1949 		cmd->error = -EIO;
1950 	else
1951 		cmd->error = 0;
1952 
1953 	return cmd->error;
1954 }
1955 
1956 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1957 {
1958 	u32 status = host->data_status;
1959 
1960 	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1961 		if (status & SDMMC_INT_DRTO) {
1962 			data->error = -ETIMEDOUT;
1963 		} else if (status & SDMMC_INT_DCRC) {
1964 			data->error = -EILSEQ;
1965 		} else if (status & SDMMC_INT_EBE) {
1966 			if (host->dir_status ==
1967 				DW_MCI_SEND_STATUS) {
1968 				/*
1969 				 * No data CRC status was returned.
1970 				 * The number of bytes transferred
1971 				 * will be exaggerated in PIO mode.
1972 				 */
1973 				data->bytes_xfered = 0;
1974 				data->error = -ETIMEDOUT;
1975 			} else if (host->dir_status ==
1976 					DW_MCI_RECV_STATUS) {
1977 				data->error = -EILSEQ;
1978 			}
1979 		} else {
1980 			/* SDMMC_INT_SBE is included */
1981 			data->error = -EILSEQ;
1982 		}
1983 
1984 		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1985 
1986 		/*
1987 		 * After an error, there may be data lingering
1988 		 * in the FIFO
1989 		 */
1990 		dw_mci_reset(host);
1991 	} else {
1992 		data->bytes_xfered = data->blocks * data->blksz;
1993 		data->error = 0;
1994 	}
1995 
1996 	return data->error;
1997 }
1998 
1999 static void dw_mci_set_drto(struct dw_mci *host)
2000 {
2001 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2002 	unsigned int drto_clks;
2003 	unsigned int drto_div;
2004 	unsigned int drto_ms;
2005 	unsigned long irqflags;
2006 
2007 	if (drv_data && drv_data->get_drto_clks)
2008 		drto_clks = drv_data->get_drto_clks(host);
2009 	else
2010 		drto_clks = mci_readl(host, TMOUT) >> 8;
2011 	drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
2012 	if (drto_div == 0)
2013 		drto_div = 1;
2014 
2015 	drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
2016 				   host->bus_hz);
2017 
2018 	dev_dbg(host->dev, "drto_ms: %u\n", drto_ms);
2019 
2020 	/* add a bit spare time */
2021 	drto_ms += 10;
2022 
2023 	spin_lock_irqsave(&host->irq_lock, irqflags);
2024 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2025 		mod_timer(&host->dto_timer,
2026 			  jiffies + msecs_to_jiffies(drto_ms));
2027 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
2028 }
2029 
2030 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
2031 {
2032 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
2033 		return false;
2034 
2035 	/*
2036 	 * Really be certain that the timer has stopped.  This is a bit of
2037 	 * paranoia and could only really happen if we had really bad
2038 	 * interrupt latency and the interrupt routine and timeout were
2039 	 * running concurrently so that the del_timer() in the interrupt
2040 	 * handler couldn't run.
2041 	 */
2042 	WARN_ON(del_timer_sync(&host->cto_timer));
2043 	clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2044 
2045 	return true;
2046 }
2047 
2048 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
2049 {
2050 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2051 		return false;
2052 
2053 	/* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
2054 	WARN_ON(del_timer_sync(&host->dto_timer));
2055 	clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2056 
2057 	return true;
2058 }
2059 
2060 static void dw_mci_tasklet_func(struct tasklet_struct *t)
2061 {
2062 	struct dw_mci *host = from_tasklet(host, t, tasklet);
2063 	struct mmc_data	*data;
2064 	struct mmc_command *cmd;
2065 	struct mmc_request *mrq;
2066 	enum dw_mci_state state;
2067 	enum dw_mci_state prev_state;
2068 	unsigned int err;
2069 
2070 	spin_lock(&host->lock);
2071 
2072 	state = host->state;
2073 	data = host->data;
2074 	mrq = host->mrq;
2075 
2076 	do {
2077 		prev_state = state;
2078 
2079 		switch (state) {
2080 		case STATE_IDLE:
2081 		case STATE_WAITING_CMD11_DONE:
2082 			break;
2083 
2084 		case STATE_SENDING_CMD11:
2085 		case STATE_SENDING_CMD:
2086 			if (!dw_mci_clear_pending_cmd_complete(host))
2087 				break;
2088 
2089 			cmd = host->cmd;
2090 			host->cmd = NULL;
2091 			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
2092 			err = dw_mci_command_complete(host, cmd);
2093 			if (cmd == mrq->sbc && !err) {
2094 				__dw_mci_start_request(host, host->slot,
2095 						       mrq->cmd);
2096 				goto unlock;
2097 			}
2098 
2099 			if (cmd->data && err) {
2100 				/*
2101 				 * During UHS tuning sequence, sending the stop
2102 				 * command after the response CRC error would
2103 				 * throw the system into a confused state
2104 				 * causing all future tuning phases to report
2105 				 * failure.
2106 				 *
2107 				 * In such case controller will move into a data
2108 				 * transfer state after a response error or
2109 				 * response CRC error. Let's let that finish
2110 				 * before trying to send a stop, so we'll go to
2111 				 * STATE_SENDING_DATA.
2112 				 *
2113 				 * Although letting the data transfer take place
2114 				 * will waste a bit of time (we already know
2115 				 * the command was bad), it can't cause any
2116 				 * errors since it's possible it would have
2117 				 * taken place anyway if this tasklet got
2118 				 * delayed. Allowing the transfer to take place
2119 				 * avoids races and keeps things simple.
2120 				 */
2121 				if (err != -ETIMEDOUT &&
2122 				    host->dir_status == DW_MCI_RECV_STATUS) {
2123 					state = STATE_SENDING_DATA;
2124 					continue;
2125 				}
2126 
2127 				send_stop_abort(host, data);
2128 				dw_mci_stop_dma(host);
2129 				state = STATE_SENDING_STOP;
2130 				break;
2131 			}
2132 
2133 			if (!cmd->data || err) {
2134 				dw_mci_request_end(host, mrq);
2135 				goto unlock;
2136 			}
2137 
2138 			prev_state = state = STATE_SENDING_DATA;
2139 			fallthrough;
2140 
2141 		case STATE_SENDING_DATA:
2142 			/*
2143 			 * We could get a data error and never a transfer
2144 			 * complete so we'd better check for it here.
2145 			 *
2146 			 * Note that we don't really care if we also got a
2147 			 * transfer complete; stopping the DMA and sending an
2148 			 * abort won't hurt.
2149 			 */
2150 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2151 					       &host->pending_events)) {
2152 				if (!(host->data_status & (SDMMC_INT_DRTO |
2153 							   SDMMC_INT_EBE)))
2154 					send_stop_abort(host, data);
2155 				dw_mci_stop_dma(host);
2156 				state = STATE_DATA_ERROR;
2157 				break;
2158 			}
2159 
2160 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2161 						&host->pending_events)) {
2162 				/*
2163 				 * If all data-related interrupts don't come
2164 				 * within the given time in reading data state.
2165 				 */
2166 				if (host->dir_status == DW_MCI_RECV_STATUS)
2167 					dw_mci_set_drto(host);
2168 				break;
2169 			}
2170 
2171 			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2172 
2173 			/*
2174 			 * Handle an EVENT_DATA_ERROR that might have shown up
2175 			 * before the transfer completed.  This might not have
2176 			 * been caught by the check above because the interrupt
2177 			 * could have gone off between the previous check and
2178 			 * the check for transfer complete.
2179 			 *
2180 			 * Technically this ought not be needed assuming we
2181 			 * get a DATA_COMPLETE eventually (we'll notice the
2182 			 * error and end the request), but it shouldn't hurt.
2183 			 *
2184 			 * This has the advantage of sending the stop command.
2185 			 */
2186 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2187 					       &host->pending_events)) {
2188 				if (!(host->data_status & (SDMMC_INT_DRTO |
2189 							   SDMMC_INT_EBE)))
2190 					send_stop_abort(host, data);
2191 				dw_mci_stop_dma(host);
2192 				state = STATE_DATA_ERROR;
2193 				break;
2194 			}
2195 			prev_state = state = STATE_DATA_BUSY;
2196 
2197 			fallthrough;
2198 
2199 		case STATE_DATA_BUSY:
2200 			if (!dw_mci_clear_pending_data_complete(host)) {
2201 				/*
2202 				 * If data error interrupt comes but data over
2203 				 * interrupt doesn't come within the given time.
2204 				 * in reading data state.
2205 				 */
2206 				if (host->dir_status == DW_MCI_RECV_STATUS)
2207 					dw_mci_set_drto(host);
2208 				break;
2209 			}
2210 
2211 			dw_mci_stop_fault_timer(host);
2212 			host->data = NULL;
2213 			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2214 			err = dw_mci_data_complete(host, data);
2215 
2216 			if (!err) {
2217 				if (!data->stop || mrq->sbc) {
2218 					if (mrq->sbc && data->stop)
2219 						data->stop->error = 0;
2220 					dw_mci_request_end(host, mrq);
2221 					goto unlock;
2222 				}
2223 
2224 				/* stop command for open-ended transfer*/
2225 				if (data->stop)
2226 					send_stop_abort(host, data);
2227 			} else {
2228 				/*
2229 				 * If we don't have a command complete now we'll
2230 				 * never get one since we just reset everything;
2231 				 * better end the request.
2232 				 *
2233 				 * If we do have a command complete we'll fall
2234 				 * through to the SENDING_STOP command and
2235 				 * everything will be peachy keen.
2236 				 */
2237 				if (!test_bit(EVENT_CMD_COMPLETE,
2238 					      &host->pending_events)) {
2239 					host->cmd = NULL;
2240 					dw_mci_request_end(host, mrq);
2241 					goto unlock;
2242 				}
2243 			}
2244 
2245 			/*
2246 			 * If err has non-zero,
2247 			 * stop-abort command has been already issued.
2248 			 */
2249 			prev_state = state = STATE_SENDING_STOP;
2250 
2251 			fallthrough;
2252 
2253 		case STATE_SENDING_STOP:
2254 			if (!dw_mci_clear_pending_cmd_complete(host))
2255 				break;
2256 
2257 			/* CMD error in data command */
2258 			if (mrq->cmd->error && mrq->data)
2259 				dw_mci_reset(host);
2260 
2261 			dw_mci_stop_fault_timer(host);
2262 			host->cmd = NULL;
2263 			host->data = NULL;
2264 
2265 			if (!mrq->sbc && mrq->stop)
2266 				dw_mci_command_complete(host, mrq->stop);
2267 			else
2268 				host->cmd_status = 0;
2269 
2270 			dw_mci_request_end(host, mrq);
2271 			goto unlock;
2272 
2273 		case STATE_DATA_ERROR:
2274 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2275 						&host->pending_events))
2276 				break;
2277 
2278 			state = STATE_DATA_BUSY;
2279 			break;
2280 		}
2281 	} while (state != prev_state);
2282 
2283 	host->state = state;
2284 unlock:
2285 	spin_unlock(&host->lock);
2286 
2287 }
2288 
2289 /* push final bytes to part_buf, only use during push */
2290 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2291 {
2292 	memcpy((void *)&host->part_buf, buf, cnt);
2293 	host->part_buf_count = cnt;
2294 }
2295 
2296 /* append bytes to part_buf, only use during push */
2297 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2298 {
2299 	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2300 	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2301 	host->part_buf_count += cnt;
2302 	return cnt;
2303 }
2304 
2305 /* pull first bytes from part_buf, only use during pull */
2306 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2307 {
2308 	cnt = min_t(int, cnt, host->part_buf_count);
2309 	if (cnt) {
2310 		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2311 		       cnt);
2312 		host->part_buf_count -= cnt;
2313 		host->part_buf_start += cnt;
2314 	}
2315 	return cnt;
2316 }
2317 
2318 /* pull final bytes from the part_buf, assuming it's just been filled */
2319 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2320 {
2321 	memcpy(buf, &host->part_buf, cnt);
2322 	host->part_buf_start = cnt;
2323 	host->part_buf_count = (1 << host->data_shift) - cnt;
2324 }
2325 
2326 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2327 {
2328 	struct mmc_data *data = host->data;
2329 	int init_cnt = cnt;
2330 
2331 	/* try and push anything in the part_buf */
2332 	if (unlikely(host->part_buf_count)) {
2333 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2334 
2335 		buf += len;
2336 		cnt -= len;
2337 		if (host->part_buf_count == 2) {
2338 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2339 			host->part_buf_count = 0;
2340 		}
2341 	}
2342 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2343 	if (unlikely((unsigned long)buf & 0x1)) {
2344 		while (cnt >= 2) {
2345 			u16 aligned_buf[64];
2346 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2347 			int items = len >> 1;
2348 			int i;
2349 			/* memcpy from input buffer into aligned buffer */
2350 			memcpy(aligned_buf, buf, len);
2351 			buf += len;
2352 			cnt -= len;
2353 			/* push data from aligned buffer into fifo */
2354 			for (i = 0; i < items; ++i)
2355 				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2356 		}
2357 	} else
2358 #endif
2359 	{
2360 		u16 *pdata = buf;
2361 
2362 		for (; cnt >= 2; cnt -= 2)
2363 			mci_fifo_writew(host->fifo_reg, *pdata++);
2364 		buf = pdata;
2365 	}
2366 	/* put anything remaining in the part_buf */
2367 	if (cnt) {
2368 		dw_mci_set_part_bytes(host, buf, cnt);
2369 		 /* Push data if we have reached the expected data length */
2370 		if ((data->bytes_xfered + init_cnt) ==
2371 		    (data->blksz * data->blocks))
2372 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2373 	}
2374 }
2375 
2376 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2377 {
2378 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2379 	if (unlikely((unsigned long)buf & 0x1)) {
2380 		while (cnt >= 2) {
2381 			/* pull data from fifo into aligned buffer */
2382 			u16 aligned_buf[64];
2383 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2384 			int items = len >> 1;
2385 			int i;
2386 
2387 			for (i = 0; i < items; ++i)
2388 				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2389 			/* memcpy from aligned buffer into output buffer */
2390 			memcpy(buf, aligned_buf, len);
2391 			buf += len;
2392 			cnt -= len;
2393 		}
2394 	} else
2395 #endif
2396 	{
2397 		u16 *pdata = buf;
2398 
2399 		for (; cnt >= 2; cnt -= 2)
2400 			*pdata++ = mci_fifo_readw(host->fifo_reg);
2401 		buf = pdata;
2402 	}
2403 	if (cnt) {
2404 		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2405 		dw_mci_pull_final_bytes(host, buf, cnt);
2406 	}
2407 }
2408 
2409 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2410 {
2411 	struct mmc_data *data = host->data;
2412 	int init_cnt = cnt;
2413 
2414 	/* try and push anything in the part_buf */
2415 	if (unlikely(host->part_buf_count)) {
2416 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2417 
2418 		buf += len;
2419 		cnt -= len;
2420 		if (host->part_buf_count == 4) {
2421 			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2422 			host->part_buf_count = 0;
2423 		}
2424 	}
2425 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2426 	if (unlikely((unsigned long)buf & 0x3)) {
2427 		while (cnt >= 4) {
2428 			u32 aligned_buf[32];
2429 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2430 			int items = len >> 2;
2431 			int i;
2432 			/* memcpy from input buffer into aligned buffer */
2433 			memcpy(aligned_buf, buf, len);
2434 			buf += len;
2435 			cnt -= len;
2436 			/* push data from aligned buffer into fifo */
2437 			for (i = 0; i < items; ++i)
2438 				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2439 		}
2440 	} else
2441 #endif
2442 	{
2443 		u32 *pdata = buf;
2444 
2445 		for (; cnt >= 4; cnt -= 4)
2446 			mci_fifo_writel(host->fifo_reg, *pdata++);
2447 		buf = pdata;
2448 	}
2449 	/* put anything remaining in the part_buf */
2450 	if (cnt) {
2451 		dw_mci_set_part_bytes(host, buf, cnt);
2452 		 /* Push data if we have reached the expected data length */
2453 		if ((data->bytes_xfered + init_cnt) ==
2454 		    (data->blksz * data->blocks))
2455 			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2456 	}
2457 }
2458 
2459 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2460 {
2461 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2462 	if (unlikely((unsigned long)buf & 0x3)) {
2463 		while (cnt >= 4) {
2464 			/* pull data from fifo into aligned buffer */
2465 			u32 aligned_buf[32];
2466 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2467 			int items = len >> 2;
2468 			int i;
2469 
2470 			for (i = 0; i < items; ++i)
2471 				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2472 			/* memcpy from aligned buffer into output buffer */
2473 			memcpy(buf, aligned_buf, len);
2474 			buf += len;
2475 			cnt -= len;
2476 		}
2477 	} else
2478 #endif
2479 	{
2480 		u32 *pdata = buf;
2481 
2482 		for (; cnt >= 4; cnt -= 4)
2483 			*pdata++ = mci_fifo_readl(host->fifo_reg);
2484 		buf = pdata;
2485 	}
2486 	if (cnt) {
2487 		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2488 		dw_mci_pull_final_bytes(host, buf, cnt);
2489 	}
2490 }
2491 
2492 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2493 {
2494 	struct mmc_data *data = host->data;
2495 	int init_cnt = cnt;
2496 
2497 	/* try and push anything in the part_buf */
2498 	if (unlikely(host->part_buf_count)) {
2499 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2500 
2501 		buf += len;
2502 		cnt -= len;
2503 
2504 		if (host->part_buf_count == 8) {
2505 			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2506 			host->part_buf_count = 0;
2507 		}
2508 	}
2509 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2510 	if (unlikely((unsigned long)buf & 0x7)) {
2511 		while (cnt >= 8) {
2512 			u64 aligned_buf[16];
2513 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2514 			int items = len >> 3;
2515 			int i;
2516 			/* memcpy from input buffer into aligned buffer */
2517 			memcpy(aligned_buf, buf, len);
2518 			buf += len;
2519 			cnt -= len;
2520 			/* push data from aligned buffer into fifo */
2521 			for (i = 0; i < items; ++i)
2522 				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2523 		}
2524 	} else
2525 #endif
2526 	{
2527 		u64 *pdata = buf;
2528 
2529 		for (; cnt >= 8; cnt -= 8)
2530 			mci_fifo_writeq(host->fifo_reg, *pdata++);
2531 		buf = pdata;
2532 	}
2533 	/* put anything remaining in the part_buf */
2534 	if (cnt) {
2535 		dw_mci_set_part_bytes(host, buf, cnt);
2536 		/* Push data if we have reached the expected data length */
2537 		if ((data->bytes_xfered + init_cnt) ==
2538 		    (data->blksz * data->blocks))
2539 			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2540 	}
2541 }
2542 
2543 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2544 {
2545 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2546 	if (unlikely((unsigned long)buf & 0x7)) {
2547 		while (cnt >= 8) {
2548 			/* pull data from fifo into aligned buffer */
2549 			u64 aligned_buf[16];
2550 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2551 			int items = len >> 3;
2552 			int i;
2553 
2554 			for (i = 0; i < items; ++i)
2555 				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2556 
2557 			/* memcpy from aligned buffer into output buffer */
2558 			memcpy(buf, aligned_buf, len);
2559 			buf += len;
2560 			cnt -= len;
2561 		}
2562 	} else
2563 #endif
2564 	{
2565 		u64 *pdata = buf;
2566 
2567 		for (; cnt >= 8; cnt -= 8)
2568 			*pdata++ = mci_fifo_readq(host->fifo_reg);
2569 		buf = pdata;
2570 	}
2571 	if (cnt) {
2572 		host->part_buf = mci_fifo_readq(host->fifo_reg);
2573 		dw_mci_pull_final_bytes(host, buf, cnt);
2574 	}
2575 }
2576 
2577 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2578 {
2579 	int len;
2580 
2581 	/* get remaining partial bytes */
2582 	len = dw_mci_pull_part_bytes(host, buf, cnt);
2583 	if (unlikely(len == cnt))
2584 		return;
2585 	buf += len;
2586 	cnt -= len;
2587 
2588 	/* get the rest of the data */
2589 	host->pull_data(host, buf, cnt);
2590 }
2591 
2592 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2593 {
2594 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2595 	void *buf;
2596 	unsigned int offset;
2597 	struct mmc_data	*data = host->data;
2598 	int shift = host->data_shift;
2599 	u32 status;
2600 	unsigned int len;
2601 	unsigned int remain, fcnt;
2602 
2603 	do {
2604 		if (!sg_miter_next(sg_miter))
2605 			goto done;
2606 
2607 		host->sg = sg_miter->piter.sg;
2608 		buf = sg_miter->addr;
2609 		remain = sg_miter->length;
2610 		offset = 0;
2611 
2612 		do {
2613 			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2614 					<< shift) + host->part_buf_count;
2615 			len = min(remain, fcnt);
2616 			if (!len)
2617 				break;
2618 			dw_mci_pull_data(host, (void *)(buf + offset), len);
2619 			data->bytes_xfered += len;
2620 			offset += len;
2621 			remain -= len;
2622 		} while (remain);
2623 
2624 		sg_miter->consumed = offset;
2625 		status = mci_readl(host, MINTSTS);
2626 		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2627 	/* if the RXDR is ready read again */
2628 	} while ((status & SDMMC_INT_RXDR) ||
2629 		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2630 
2631 	if (!remain) {
2632 		if (!sg_miter_next(sg_miter))
2633 			goto done;
2634 		sg_miter->consumed = 0;
2635 	}
2636 	sg_miter_stop(sg_miter);
2637 	return;
2638 
2639 done:
2640 	sg_miter_stop(sg_miter);
2641 	host->sg = NULL;
2642 	smp_wmb(); /* drain writebuffer */
2643 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2644 }
2645 
2646 static void dw_mci_write_data_pio(struct dw_mci *host)
2647 {
2648 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2649 	void *buf;
2650 	unsigned int offset;
2651 	struct mmc_data	*data = host->data;
2652 	int shift = host->data_shift;
2653 	u32 status;
2654 	unsigned int len;
2655 	unsigned int fifo_depth = host->fifo_depth;
2656 	unsigned int remain, fcnt;
2657 
2658 	do {
2659 		if (!sg_miter_next(sg_miter))
2660 			goto done;
2661 
2662 		host->sg = sg_miter->piter.sg;
2663 		buf = sg_miter->addr;
2664 		remain = sg_miter->length;
2665 		offset = 0;
2666 
2667 		do {
2668 			fcnt = ((fifo_depth -
2669 				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2670 					<< shift) - host->part_buf_count;
2671 			len = min(remain, fcnt);
2672 			if (!len)
2673 				break;
2674 			host->push_data(host, (void *)(buf + offset), len);
2675 			data->bytes_xfered += len;
2676 			offset += len;
2677 			remain -= len;
2678 		} while (remain);
2679 
2680 		sg_miter->consumed = offset;
2681 		status = mci_readl(host, MINTSTS);
2682 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2683 	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2684 
2685 	if (!remain) {
2686 		if (!sg_miter_next(sg_miter))
2687 			goto done;
2688 		sg_miter->consumed = 0;
2689 	}
2690 	sg_miter_stop(sg_miter);
2691 	return;
2692 
2693 done:
2694 	sg_miter_stop(sg_miter);
2695 	host->sg = NULL;
2696 	smp_wmb(); /* drain writebuffer */
2697 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2698 }
2699 
2700 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2701 {
2702 	del_timer(&host->cto_timer);
2703 
2704 	if (!host->cmd_status)
2705 		host->cmd_status = status;
2706 
2707 	smp_wmb(); /* drain writebuffer */
2708 
2709 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2710 	tasklet_schedule(&host->tasklet);
2711 
2712 	dw_mci_start_fault_timer(host);
2713 }
2714 
2715 static void dw_mci_handle_cd(struct dw_mci *host)
2716 {
2717 	struct dw_mci_slot *slot = host->slot;
2718 
2719 	mmc_detect_change(slot->mmc,
2720 		msecs_to_jiffies(host->pdata->detect_delay_ms));
2721 }
2722 
2723 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2724 {
2725 	struct dw_mci *host = dev_id;
2726 	u32 pending;
2727 	struct dw_mci_slot *slot = host->slot;
2728 
2729 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2730 
2731 	if (pending) {
2732 		/* Check volt switch first, since it can look like an error */
2733 		if ((host->state == STATE_SENDING_CMD11) &&
2734 		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2735 			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2736 			pending &= ~SDMMC_INT_VOLT_SWITCH;
2737 
2738 			/*
2739 			 * Hold the lock; we know cmd11_timer can't be kicked
2740 			 * off after the lock is released, so safe to delete.
2741 			 */
2742 			spin_lock(&host->irq_lock);
2743 			dw_mci_cmd_interrupt(host, pending);
2744 			spin_unlock(&host->irq_lock);
2745 
2746 			del_timer(&host->cmd11_timer);
2747 		}
2748 
2749 		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2750 			spin_lock(&host->irq_lock);
2751 
2752 			del_timer(&host->cto_timer);
2753 			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2754 			host->cmd_status = pending;
2755 			smp_wmb(); /* drain writebuffer */
2756 			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2757 
2758 			spin_unlock(&host->irq_lock);
2759 		}
2760 
2761 		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2762 			spin_lock(&host->irq_lock);
2763 
2764 			if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
2765 				del_timer(&host->dto_timer);
2766 
2767 			/* if there is an error report DATA_ERROR */
2768 			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2769 			host->data_status = pending;
2770 			smp_wmb(); /* drain writebuffer */
2771 			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2772 
2773 			if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
2774 				/* In case of error, we cannot expect a DTO */
2775 				set_bit(EVENT_DATA_COMPLETE,
2776 					&host->pending_events);
2777 
2778 			tasklet_schedule(&host->tasklet);
2779 
2780 			spin_unlock(&host->irq_lock);
2781 		}
2782 
2783 		if (pending & SDMMC_INT_DATA_OVER) {
2784 			spin_lock(&host->irq_lock);
2785 
2786 			del_timer(&host->dto_timer);
2787 
2788 			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2789 			if (!host->data_status)
2790 				host->data_status = pending;
2791 			smp_wmb(); /* drain writebuffer */
2792 			if (host->dir_status == DW_MCI_RECV_STATUS) {
2793 				if (host->sg != NULL)
2794 					dw_mci_read_data_pio(host, true);
2795 			}
2796 			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2797 			tasklet_schedule(&host->tasklet);
2798 
2799 			spin_unlock(&host->irq_lock);
2800 		}
2801 
2802 		if (pending & SDMMC_INT_RXDR) {
2803 			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2804 			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2805 				dw_mci_read_data_pio(host, false);
2806 		}
2807 
2808 		if (pending & SDMMC_INT_TXDR) {
2809 			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2810 			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2811 				dw_mci_write_data_pio(host);
2812 		}
2813 
2814 		if (pending & SDMMC_INT_CMD_DONE) {
2815 			spin_lock(&host->irq_lock);
2816 
2817 			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2818 			dw_mci_cmd_interrupt(host, pending);
2819 
2820 			spin_unlock(&host->irq_lock);
2821 		}
2822 
2823 		if (pending & SDMMC_INT_CD) {
2824 			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2825 			dw_mci_handle_cd(host);
2826 		}
2827 
2828 		if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2829 			mci_writel(host, RINTSTS,
2830 				   SDMMC_INT_SDIO(slot->sdio_id));
2831 			__dw_mci_enable_sdio_irq(slot, 0);
2832 			sdio_signal_irq(slot->mmc);
2833 		}
2834 
2835 	}
2836 
2837 	if (host->use_dma != TRANS_MODE_IDMAC)
2838 		return IRQ_HANDLED;
2839 
2840 	/* Handle IDMA interrupts */
2841 	if (host->dma_64bit_address == 1) {
2842 		pending = mci_readl(host, IDSTS64);
2843 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2844 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2845 							SDMMC_IDMAC_INT_RI);
2846 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2847 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2848 				host->dma_ops->complete((void *)host);
2849 		}
2850 	} else {
2851 		pending = mci_readl(host, IDSTS);
2852 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2853 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2854 							SDMMC_IDMAC_INT_RI);
2855 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2856 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2857 				host->dma_ops->complete((void *)host);
2858 		}
2859 	}
2860 
2861 	return IRQ_HANDLED;
2862 }
2863 
2864 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2865 {
2866 	struct dw_mci *host = slot->host;
2867 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2868 	struct mmc_host *mmc = slot->mmc;
2869 	int ctrl_id;
2870 
2871 	if (host->pdata->caps)
2872 		mmc->caps = host->pdata->caps;
2873 
2874 	if (host->pdata->pm_caps)
2875 		mmc->pm_caps = host->pdata->pm_caps;
2876 
2877 	if (drv_data)
2878 		mmc->caps |= drv_data->common_caps;
2879 
2880 	if (host->dev->of_node) {
2881 		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2882 		if (ctrl_id < 0)
2883 			ctrl_id = 0;
2884 	} else {
2885 		ctrl_id = to_platform_device(host->dev)->id;
2886 	}
2887 
2888 	if (drv_data && drv_data->caps) {
2889 		if (ctrl_id >= drv_data->num_caps) {
2890 			dev_err(host->dev, "invalid controller id %d\n",
2891 				ctrl_id);
2892 			return -EINVAL;
2893 		}
2894 		mmc->caps |= drv_data->caps[ctrl_id];
2895 	}
2896 
2897 	if (host->pdata->caps2)
2898 		mmc->caps2 = host->pdata->caps2;
2899 
2900 	/* if host has set a minimum_freq, we should respect it */
2901 	if (host->minimum_speed)
2902 		mmc->f_min = host->minimum_speed;
2903 	else
2904 		mmc->f_min = DW_MCI_FREQ_MIN;
2905 
2906 	if (!mmc->f_max)
2907 		mmc->f_max = DW_MCI_FREQ_MAX;
2908 
2909 	/* Process SDIO IRQs through the sdio_irq_work. */
2910 	if (mmc->caps & MMC_CAP_SDIO_IRQ)
2911 		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2912 
2913 	return 0;
2914 }
2915 
2916 static int dw_mci_init_slot(struct dw_mci *host)
2917 {
2918 	struct mmc_host *mmc;
2919 	struct dw_mci_slot *slot;
2920 	int ret;
2921 
2922 	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2923 	if (!mmc)
2924 		return -ENOMEM;
2925 
2926 	slot = mmc_priv(mmc);
2927 	slot->id = 0;
2928 	slot->sdio_id = host->sdio_id0 + slot->id;
2929 	slot->mmc = mmc;
2930 	slot->host = host;
2931 	host->slot = slot;
2932 
2933 	mmc->ops = &dw_mci_ops;
2934 
2935 	/*if there are external regulators, get them*/
2936 	ret = mmc_regulator_get_supply(mmc);
2937 	if (ret)
2938 		goto err_host_allocated;
2939 
2940 	if (!mmc->ocr_avail)
2941 		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2942 
2943 	ret = mmc_of_parse(mmc);
2944 	if (ret)
2945 		goto err_host_allocated;
2946 
2947 	ret = dw_mci_init_slot_caps(slot);
2948 	if (ret)
2949 		goto err_host_allocated;
2950 
2951 	/* Useful defaults if platform data is unset. */
2952 	if (host->use_dma == TRANS_MODE_IDMAC) {
2953 		mmc->max_segs = host->ring_size;
2954 		mmc->max_blk_size = 65535;
2955 		mmc->max_seg_size = 0x1000;
2956 		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2957 		mmc->max_blk_count = mmc->max_req_size / 512;
2958 	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2959 		mmc->max_segs = 64;
2960 		mmc->max_blk_size = 65535;
2961 		mmc->max_blk_count = 65535;
2962 		mmc->max_req_size =
2963 				mmc->max_blk_size * mmc->max_blk_count;
2964 		mmc->max_seg_size = mmc->max_req_size;
2965 	} else {
2966 		/* TRANS_MODE_PIO */
2967 		mmc->max_segs = 64;
2968 		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2969 		mmc->max_blk_count = 512;
2970 		mmc->max_req_size = mmc->max_blk_size *
2971 				    mmc->max_blk_count;
2972 		mmc->max_seg_size = mmc->max_req_size;
2973 	}
2974 
2975 	dw_mci_get_cd(mmc);
2976 
2977 	ret = mmc_add_host(mmc);
2978 	if (ret)
2979 		goto err_host_allocated;
2980 
2981 #if defined(CONFIG_DEBUG_FS)
2982 	dw_mci_init_debugfs(slot);
2983 #endif
2984 
2985 	return 0;
2986 
2987 err_host_allocated:
2988 	mmc_free_host(mmc);
2989 	return ret;
2990 }
2991 
2992 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2993 {
2994 	/* Debugfs stuff is cleaned up by mmc core */
2995 	mmc_remove_host(slot->mmc);
2996 	slot->host->slot = NULL;
2997 	mmc_free_host(slot->mmc);
2998 }
2999 
3000 static void dw_mci_init_dma(struct dw_mci *host)
3001 {
3002 	int addr_config;
3003 	struct device *dev = host->dev;
3004 
3005 	/*
3006 	* Check tansfer mode from HCON[17:16]
3007 	* Clear the ambiguous description of dw_mmc databook:
3008 	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
3009 	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
3010 	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
3011 	* 2b'11: Non DW DMA Interface -> pio only
3012 	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
3013 	* simpler request/acknowledge handshake mechanism and both of them
3014 	* are regarded as external dma master for dw_mmc.
3015 	*/
3016 	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
3017 	if (host->use_dma == DMA_INTERFACE_IDMA) {
3018 		host->use_dma = TRANS_MODE_IDMAC;
3019 	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
3020 		   host->use_dma == DMA_INTERFACE_GDMA) {
3021 		host->use_dma = TRANS_MODE_EDMAC;
3022 	} else {
3023 		goto no_dma;
3024 	}
3025 
3026 	/* Determine which DMA interface to use */
3027 	if (host->use_dma == TRANS_MODE_IDMAC) {
3028 		/*
3029 		* Check ADDR_CONFIG bit in HCON to find
3030 		* IDMAC address bus width
3031 		*/
3032 		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
3033 
3034 		if (addr_config == 1) {
3035 			/* host supports IDMAC in 64-bit address mode */
3036 			host->dma_64bit_address = 1;
3037 			dev_info(host->dev,
3038 				 "IDMAC supports 64-bit address mode.\n");
3039 			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
3040 				dma_set_coherent_mask(host->dev,
3041 						      DMA_BIT_MASK(64));
3042 		} else {
3043 			/* host supports IDMAC in 32-bit address mode */
3044 			host->dma_64bit_address = 0;
3045 			dev_info(host->dev,
3046 				 "IDMAC supports 32-bit address mode.\n");
3047 		}
3048 
3049 		/* Alloc memory for sg translation */
3050 		host->sg_cpu = dmam_alloc_coherent(host->dev,
3051 						   DESC_RING_BUF_SZ,
3052 						   &host->sg_dma, GFP_KERNEL);
3053 		if (!host->sg_cpu) {
3054 			dev_err(host->dev,
3055 				"%s: could not alloc DMA memory\n",
3056 				__func__);
3057 			goto no_dma;
3058 		}
3059 
3060 		host->dma_ops = &dw_mci_idmac_ops;
3061 		dev_info(host->dev, "Using internal DMA controller.\n");
3062 	} else {
3063 		/* TRANS_MODE_EDMAC: check dma bindings again */
3064 		if ((device_property_string_array_count(dev, "dma-names") < 0) ||
3065 		    !device_property_present(dev, "dmas")) {
3066 			goto no_dma;
3067 		}
3068 		host->dma_ops = &dw_mci_edmac_ops;
3069 		dev_info(host->dev, "Using external DMA controller.\n");
3070 	}
3071 
3072 	if (host->dma_ops->init && host->dma_ops->start &&
3073 	    host->dma_ops->stop && host->dma_ops->cleanup) {
3074 		if (host->dma_ops->init(host)) {
3075 			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
3076 				__func__);
3077 			goto no_dma;
3078 		}
3079 	} else {
3080 		dev_err(host->dev, "DMA initialization not found.\n");
3081 		goto no_dma;
3082 	}
3083 
3084 	return;
3085 
3086 no_dma:
3087 	dev_info(host->dev, "Using PIO mode.\n");
3088 	host->use_dma = TRANS_MODE_PIO;
3089 }
3090 
3091 static void dw_mci_cmd11_timer(struct timer_list *t)
3092 {
3093 	struct dw_mci *host = from_timer(host, t, cmd11_timer);
3094 
3095 	if (host->state != STATE_SENDING_CMD11) {
3096 		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
3097 		return;
3098 	}
3099 
3100 	host->cmd_status = SDMMC_INT_RTO;
3101 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3102 	tasklet_schedule(&host->tasklet);
3103 }
3104 
3105 static void dw_mci_cto_timer(struct timer_list *t)
3106 {
3107 	struct dw_mci *host = from_timer(host, t, cto_timer);
3108 	unsigned long irqflags;
3109 	u32 pending;
3110 
3111 	spin_lock_irqsave(&host->irq_lock, irqflags);
3112 
3113 	/*
3114 	 * If somehow we have very bad interrupt latency it's remotely possible
3115 	 * that the timer could fire while the interrupt is still pending or
3116 	 * while the interrupt is midway through running.  Let's be paranoid
3117 	 * and detect those two cases.  Note that this is paranoia is somewhat
3118 	 * justified because in this function we don't actually cancel the
3119 	 * pending command in the controller--we just assume it will never come.
3120 	 */
3121 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3122 	if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
3123 		/* The interrupt should fire; no need to act but we can warn */
3124 		dev_warn(host->dev, "Unexpected interrupt latency\n");
3125 		goto exit;
3126 	}
3127 	if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3128 		/* Presumably interrupt handler couldn't delete the timer */
3129 		dev_warn(host->dev, "CTO timeout when already completed\n");
3130 		goto exit;
3131 	}
3132 
3133 	/*
3134 	 * Continued paranoia to make sure we're in the state we expect.
3135 	 * This paranoia isn't really justified but it seems good to be safe.
3136 	 */
3137 	switch (host->state) {
3138 	case STATE_SENDING_CMD11:
3139 	case STATE_SENDING_CMD:
3140 	case STATE_SENDING_STOP:
3141 		/*
3142 		 * If CMD_DONE interrupt does NOT come in sending command
3143 		 * state, we should notify the driver to terminate current
3144 		 * transfer and report a command timeout to the core.
3145 		 */
3146 		host->cmd_status = SDMMC_INT_RTO;
3147 		set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3148 		tasklet_schedule(&host->tasklet);
3149 		break;
3150 	default:
3151 		dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3152 			 host->state);
3153 		break;
3154 	}
3155 
3156 exit:
3157 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3158 }
3159 
3160 static void dw_mci_dto_timer(struct timer_list *t)
3161 {
3162 	struct dw_mci *host = from_timer(host, t, dto_timer);
3163 	unsigned long irqflags;
3164 	u32 pending;
3165 
3166 	spin_lock_irqsave(&host->irq_lock, irqflags);
3167 
3168 	/*
3169 	 * The DTO timer is much longer than the CTO timer, so it's even less
3170 	 * likely that we'll these cases, but it pays to be paranoid.
3171 	 */
3172 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3173 	if (pending & SDMMC_INT_DATA_OVER) {
3174 		/* The interrupt should fire; no need to act but we can warn */
3175 		dev_warn(host->dev, "Unexpected data interrupt latency\n");
3176 		goto exit;
3177 	}
3178 	if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3179 		/* Presumably interrupt handler couldn't delete the timer */
3180 		dev_warn(host->dev, "DTO timeout when already completed\n");
3181 		goto exit;
3182 	}
3183 
3184 	/*
3185 	 * Continued paranoia to make sure we're in the state we expect.
3186 	 * This paranoia isn't really justified but it seems good to be safe.
3187 	 */
3188 	switch (host->state) {
3189 	case STATE_SENDING_DATA:
3190 	case STATE_DATA_BUSY:
3191 		/*
3192 		 * If DTO interrupt does NOT come in sending data state,
3193 		 * we should notify the driver to terminate current transfer
3194 		 * and report a data timeout to the core.
3195 		 */
3196 		host->data_status = SDMMC_INT_DRTO;
3197 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
3198 		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3199 		tasklet_schedule(&host->tasklet);
3200 		break;
3201 	default:
3202 		dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3203 			 host->state);
3204 		break;
3205 	}
3206 
3207 exit:
3208 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3209 }
3210 
3211 #ifdef CONFIG_OF
3212 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3213 {
3214 	struct dw_mci_board *pdata;
3215 	struct device *dev = host->dev;
3216 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3217 	int ret;
3218 	u32 clock_frequency;
3219 
3220 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3221 	if (!pdata)
3222 		return ERR_PTR(-ENOMEM);
3223 
3224 	/* find reset controller when exist */
3225 	pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3226 	if (IS_ERR(pdata->rstc))
3227 		return ERR_CAST(pdata->rstc);
3228 
3229 	if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3230 		dev_info(dev,
3231 			 "fifo-depth property not found, using value of FIFOTH register as default\n");
3232 
3233 	device_property_read_u32(dev, "card-detect-delay",
3234 				 &pdata->detect_delay_ms);
3235 
3236 	device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3237 
3238 	if (device_property_present(dev, "fifo-watermark-aligned"))
3239 		host->wm_aligned = true;
3240 
3241 	if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3242 		pdata->bus_hz = clock_frequency;
3243 
3244 	if (drv_data && drv_data->parse_dt) {
3245 		ret = drv_data->parse_dt(host);
3246 		if (ret)
3247 			return ERR_PTR(ret);
3248 	}
3249 
3250 	return pdata;
3251 }
3252 
3253 #else /* CONFIG_OF */
3254 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3255 {
3256 	return ERR_PTR(-EINVAL);
3257 }
3258 #endif /* CONFIG_OF */
3259 
3260 static void dw_mci_enable_cd(struct dw_mci *host)
3261 {
3262 	unsigned long irqflags;
3263 	u32 temp;
3264 
3265 	/*
3266 	 * No need for CD if all slots have a non-error GPIO
3267 	 * as well as broken card detection is found.
3268 	 */
3269 	if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3270 		return;
3271 
3272 	if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3273 		spin_lock_irqsave(&host->irq_lock, irqflags);
3274 		temp = mci_readl(host, INTMASK);
3275 		temp  |= SDMMC_INT_CD;
3276 		mci_writel(host, INTMASK, temp);
3277 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
3278 	}
3279 }
3280 
3281 int dw_mci_probe(struct dw_mci *host)
3282 {
3283 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3284 	int width, i, ret = 0;
3285 	u32 fifo_size;
3286 
3287 	if (!host->pdata) {
3288 		host->pdata = dw_mci_parse_dt(host);
3289 		if (IS_ERR(host->pdata))
3290 			return dev_err_probe(host->dev, PTR_ERR(host->pdata),
3291 					     "platform data not available\n");
3292 	}
3293 
3294 	host->biu_clk = devm_clk_get(host->dev, "biu");
3295 	if (IS_ERR(host->biu_clk)) {
3296 		dev_dbg(host->dev, "biu clock not available\n");
3297 	} else {
3298 		ret = clk_prepare_enable(host->biu_clk);
3299 		if (ret) {
3300 			dev_err(host->dev, "failed to enable biu clock\n");
3301 			return ret;
3302 		}
3303 	}
3304 
3305 	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3306 	if (IS_ERR(host->ciu_clk)) {
3307 		dev_dbg(host->dev, "ciu clock not available\n");
3308 		host->bus_hz = host->pdata->bus_hz;
3309 	} else {
3310 		ret = clk_prepare_enable(host->ciu_clk);
3311 		if (ret) {
3312 			dev_err(host->dev, "failed to enable ciu clock\n");
3313 			goto err_clk_biu;
3314 		}
3315 
3316 		if (host->pdata->bus_hz) {
3317 			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3318 			if (ret)
3319 				dev_warn(host->dev,
3320 					 "Unable to set bus rate to %uHz\n",
3321 					 host->pdata->bus_hz);
3322 		}
3323 		host->bus_hz = clk_get_rate(host->ciu_clk);
3324 	}
3325 
3326 	if (!host->bus_hz) {
3327 		dev_err(host->dev,
3328 			"Platform data must supply bus speed\n");
3329 		ret = -ENODEV;
3330 		goto err_clk_ciu;
3331 	}
3332 
3333 	if (host->pdata->rstc) {
3334 		reset_control_assert(host->pdata->rstc);
3335 		usleep_range(10, 50);
3336 		reset_control_deassert(host->pdata->rstc);
3337 	}
3338 
3339 	if (drv_data && drv_data->init) {
3340 		ret = drv_data->init(host);
3341 		if (ret) {
3342 			dev_err(host->dev,
3343 				"implementation specific init failed\n");
3344 			goto err_clk_ciu;
3345 		}
3346 	}
3347 
3348 	timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3349 	timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3350 	timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3351 
3352 	spin_lock_init(&host->lock);
3353 	spin_lock_init(&host->irq_lock);
3354 	INIT_LIST_HEAD(&host->queue);
3355 
3356 	dw_mci_init_fault(host);
3357 
3358 	/*
3359 	 * Get the host data width - this assumes that HCON has been set with
3360 	 * the correct values.
3361 	 */
3362 	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3363 	if (!i) {
3364 		host->push_data = dw_mci_push_data16;
3365 		host->pull_data = dw_mci_pull_data16;
3366 		width = 16;
3367 		host->data_shift = 1;
3368 	} else if (i == 2) {
3369 		host->push_data = dw_mci_push_data64;
3370 		host->pull_data = dw_mci_pull_data64;
3371 		width = 64;
3372 		host->data_shift = 3;
3373 	} else {
3374 		/* Check for a reserved value, and warn if it is */
3375 		WARN((i != 1),
3376 		     "HCON reports a reserved host data width!\n"
3377 		     "Defaulting to 32-bit access.\n");
3378 		host->push_data = dw_mci_push_data32;
3379 		host->pull_data = dw_mci_pull_data32;
3380 		width = 32;
3381 		host->data_shift = 2;
3382 	}
3383 
3384 	/* Reset all blocks */
3385 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3386 		ret = -ENODEV;
3387 		goto err_clk_ciu;
3388 	}
3389 
3390 	host->dma_ops = host->pdata->dma_ops;
3391 	dw_mci_init_dma(host);
3392 
3393 	/* Clear the interrupts for the host controller */
3394 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3395 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3396 
3397 	/* Put in max timeout */
3398 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3399 
3400 	/*
3401 	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3402 	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3403 	 */
3404 	if (!host->pdata->fifo_depth) {
3405 		/*
3406 		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3407 		 * have been overwritten by the bootloader, just like we're
3408 		 * about to do, so if you know the value for your hardware, you
3409 		 * should put it in the platform data.
3410 		 */
3411 		fifo_size = mci_readl(host, FIFOTH);
3412 		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3413 	} else {
3414 		fifo_size = host->pdata->fifo_depth;
3415 	}
3416 	host->fifo_depth = fifo_size;
3417 	host->fifoth_val =
3418 		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3419 	mci_writel(host, FIFOTH, host->fifoth_val);
3420 
3421 	/* disable clock to CIU */
3422 	mci_writel(host, CLKENA, 0);
3423 	mci_writel(host, CLKSRC, 0);
3424 
3425 	/*
3426 	 * In 2.40a spec, Data offset is changed.
3427 	 * Need to check the version-id and set data-offset for DATA register.
3428 	 */
3429 	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3430 	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3431 
3432 	if (host->data_addr_override)
3433 		host->fifo_reg = host->regs + host->data_addr_override;
3434 	else if (host->verid < DW_MMC_240A)
3435 		host->fifo_reg = host->regs + DATA_OFFSET;
3436 	else
3437 		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3438 
3439 	tasklet_setup(&host->tasklet, dw_mci_tasklet_func);
3440 	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3441 			       host->irq_flags, "dw-mci", host);
3442 	if (ret)
3443 		goto err_dmaunmap;
3444 
3445 	/*
3446 	 * Enable interrupts for command done, data over, data empty,
3447 	 * receive ready and error such as transmit, receive timeout, crc error
3448 	 */
3449 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3450 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3451 		   DW_MCI_ERROR_FLAGS);
3452 	/* Enable mci interrupt */
3453 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3454 
3455 	dev_info(host->dev,
3456 		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3457 		 host->irq, width, fifo_size);
3458 
3459 	/* We need at least one slot to succeed */
3460 	ret = dw_mci_init_slot(host);
3461 	if (ret) {
3462 		dev_dbg(host->dev, "slot %d init failed\n", i);
3463 		goto err_dmaunmap;
3464 	}
3465 
3466 	/* Now that slots are all setup, we can enable card detect */
3467 	dw_mci_enable_cd(host);
3468 
3469 	return 0;
3470 
3471 err_dmaunmap:
3472 	if (host->use_dma && host->dma_ops->exit)
3473 		host->dma_ops->exit(host);
3474 
3475 	reset_control_assert(host->pdata->rstc);
3476 
3477 err_clk_ciu:
3478 	clk_disable_unprepare(host->ciu_clk);
3479 
3480 err_clk_biu:
3481 	clk_disable_unprepare(host->biu_clk);
3482 
3483 	return ret;
3484 }
3485 EXPORT_SYMBOL(dw_mci_probe);
3486 
3487 void dw_mci_remove(struct dw_mci *host)
3488 {
3489 	dev_dbg(host->dev, "remove slot\n");
3490 	if (host->slot)
3491 		dw_mci_cleanup_slot(host->slot);
3492 
3493 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3494 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3495 
3496 	/* disable clock to CIU */
3497 	mci_writel(host, CLKENA, 0);
3498 	mci_writel(host, CLKSRC, 0);
3499 
3500 	if (host->use_dma && host->dma_ops->exit)
3501 		host->dma_ops->exit(host);
3502 
3503 	reset_control_assert(host->pdata->rstc);
3504 
3505 	clk_disable_unprepare(host->ciu_clk);
3506 	clk_disable_unprepare(host->biu_clk);
3507 }
3508 EXPORT_SYMBOL(dw_mci_remove);
3509 
3510 
3511 
3512 #ifdef CONFIG_PM
3513 int dw_mci_runtime_suspend(struct device *dev)
3514 {
3515 	struct dw_mci *host = dev_get_drvdata(dev);
3516 
3517 	if (host->use_dma && host->dma_ops->exit)
3518 		host->dma_ops->exit(host);
3519 
3520 	clk_disable_unprepare(host->ciu_clk);
3521 
3522 	if (host->slot &&
3523 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3524 	     !mmc_card_is_removable(host->slot->mmc)))
3525 		clk_disable_unprepare(host->biu_clk);
3526 
3527 	return 0;
3528 }
3529 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3530 
3531 int dw_mci_runtime_resume(struct device *dev)
3532 {
3533 	int ret = 0;
3534 	struct dw_mci *host = dev_get_drvdata(dev);
3535 
3536 	if (host->slot &&
3537 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3538 	     !mmc_card_is_removable(host->slot->mmc))) {
3539 		ret = clk_prepare_enable(host->biu_clk);
3540 		if (ret)
3541 			return ret;
3542 	}
3543 
3544 	ret = clk_prepare_enable(host->ciu_clk);
3545 	if (ret)
3546 		goto err;
3547 
3548 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3549 		clk_disable_unprepare(host->ciu_clk);
3550 		ret = -ENODEV;
3551 		goto err;
3552 	}
3553 
3554 	if (host->use_dma && host->dma_ops->init)
3555 		host->dma_ops->init(host);
3556 
3557 	/*
3558 	 * Restore the initial value at FIFOTH register
3559 	 * And Invalidate the prev_blksz with zero
3560 	 */
3561 	mci_writel(host, FIFOTH, host->fifoth_val);
3562 	host->prev_blksz = 0;
3563 
3564 	/* Put in max timeout */
3565 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3566 
3567 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3568 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3569 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3570 		   DW_MCI_ERROR_FLAGS);
3571 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3572 
3573 
3574 	if (host->slot && host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3575 		dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3576 
3577 	/* Force setup bus to guarantee available clock output */
3578 	dw_mci_setup_bus(host->slot, true);
3579 
3580 	/* Re-enable SDIO interrupts. */
3581 	if (sdio_irq_claimed(host->slot->mmc))
3582 		__dw_mci_enable_sdio_irq(host->slot, 1);
3583 
3584 	/* Now that slots are all setup, we can enable card detect */
3585 	dw_mci_enable_cd(host);
3586 
3587 	return 0;
3588 
3589 err:
3590 	if (host->slot &&
3591 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3592 	     !mmc_card_is_removable(host->slot->mmc)))
3593 		clk_disable_unprepare(host->biu_clk);
3594 
3595 	return ret;
3596 }
3597 EXPORT_SYMBOL(dw_mci_runtime_resume);
3598 #endif /* CONFIG_PM */
3599 
3600 static int __init dw_mci_init(void)
3601 {
3602 	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3603 	return 0;
3604 }
3605 
3606 static void __exit dw_mci_exit(void)
3607 {
3608 }
3609 
3610 module_init(dw_mci_init);
3611 module_exit(dw_mci_exit);
3612 
3613 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3614 MODULE_AUTHOR("NXP Semiconductor VietNam");
3615 MODULE_AUTHOR("Imagination Technologies Ltd");
3616 MODULE_LICENSE("GPL v2");
3617