xref: /openbmc/linux/drivers/mmc/host/dw_mmc.c (revision aac5987a)
1 /*
2  * Synopsys DesignWare Multimedia Card Interface driver
3  *  (Based on NXP driver for lpc 31xx)
4  *
5  * Copyright (C) 2009 NXP Semiconductors
6  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/bitops.h>
36 #include <linux/regulator/consumer.h>
37 #include <linux/of.h>
38 #include <linux/of_gpio.h>
39 #include <linux/mmc/slot-gpio.h>
40 
41 #include "dw_mmc.h"
42 
43 /* Common flag combinations */
44 #define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
45 				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
46 				 SDMMC_INT_EBE | SDMMC_INT_HLE)
47 #define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
48 				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
49 #define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
50 				 DW_MCI_CMD_ERROR_FLAGS)
51 #define DW_MCI_SEND_STATUS	1
52 #define DW_MCI_RECV_STATUS	2
53 #define DW_MCI_DMA_THRESHOLD	16
54 
55 #define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
56 #define DW_MCI_FREQ_MIN	100000		/* unit: HZ */
57 
58 #define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
59 				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
60 				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
61 				 SDMMC_IDMAC_INT_TI)
62 
63 #define DESC_RING_BUF_SZ	PAGE_SIZE
64 
65 struct idmac_desc_64addr {
66 	u32		des0;	/* Control Descriptor */
67 
68 	u32		des1;	/* Reserved */
69 
70 	u32		des2;	/*Buffer sizes */
71 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
72 	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
73 	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
74 
75 	u32		des3;	/* Reserved */
76 
77 	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
78 	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
79 
80 	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
81 	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
82 };
83 
84 struct idmac_desc {
85 	__le32		des0;	/* Control Descriptor */
86 #define IDMAC_DES0_DIC	BIT(1)
87 #define IDMAC_DES0_LD	BIT(2)
88 #define IDMAC_DES0_FD	BIT(3)
89 #define IDMAC_DES0_CH	BIT(4)
90 #define IDMAC_DES0_ER	BIT(5)
91 #define IDMAC_DES0_CES	BIT(30)
92 #define IDMAC_DES0_OWN	BIT(31)
93 
94 	__le32		des1;	/* Buffer sizes */
95 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
96 	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
97 
98 	__le32		des2;	/* buffer 1 physical address */
99 
100 	__le32		des3;	/* buffer 2 physical address */
101 };
102 
103 /* Each descriptor can transfer up to 4KB of data in chained mode */
104 #define DW_MCI_DESC_DATA_LENGTH	0x1000
105 
106 static bool dw_mci_reset(struct dw_mci *host);
107 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset);
108 static int dw_mci_card_busy(struct mmc_host *mmc);
109 static int dw_mci_get_cd(struct mmc_host *mmc);
110 
111 #if defined(CONFIG_DEBUG_FS)
112 static int dw_mci_req_show(struct seq_file *s, void *v)
113 {
114 	struct dw_mci_slot *slot = s->private;
115 	struct mmc_request *mrq;
116 	struct mmc_command *cmd;
117 	struct mmc_command *stop;
118 	struct mmc_data	*data;
119 
120 	/* Make sure we get a consistent snapshot */
121 	spin_lock_bh(&slot->host->lock);
122 	mrq = slot->mrq;
123 
124 	if (mrq) {
125 		cmd = mrq->cmd;
126 		data = mrq->data;
127 		stop = mrq->stop;
128 
129 		if (cmd)
130 			seq_printf(s,
131 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
132 				   cmd->opcode, cmd->arg, cmd->flags,
133 				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
134 				   cmd->resp[2], cmd->error);
135 		if (data)
136 			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
137 				   data->bytes_xfered, data->blocks,
138 				   data->blksz, data->flags, data->error);
139 		if (stop)
140 			seq_printf(s,
141 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
142 				   stop->opcode, stop->arg, stop->flags,
143 				   stop->resp[0], stop->resp[1], stop->resp[2],
144 				   stop->resp[2], stop->error);
145 	}
146 
147 	spin_unlock_bh(&slot->host->lock);
148 
149 	return 0;
150 }
151 
152 static int dw_mci_req_open(struct inode *inode, struct file *file)
153 {
154 	return single_open(file, dw_mci_req_show, inode->i_private);
155 }
156 
157 static const struct file_operations dw_mci_req_fops = {
158 	.owner		= THIS_MODULE,
159 	.open		= dw_mci_req_open,
160 	.read		= seq_read,
161 	.llseek		= seq_lseek,
162 	.release	= single_release,
163 };
164 
165 static int dw_mci_regs_show(struct seq_file *s, void *v)
166 {
167 	struct dw_mci *host = s->private;
168 
169 	seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
170 	seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
171 	seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
172 	seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
173 	seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
174 	seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
175 
176 	return 0;
177 }
178 
179 static int dw_mci_regs_open(struct inode *inode, struct file *file)
180 {
181 	return single_open(file, dw_mci_regs_show, inode->i_private);
182 }
183 
184 static const struct file_operations dw_mci_regs_fops = {
185 	.owner		= THIS_MODULE,
186 	.open		= dw_mci_regs_open,
187 	.read		= seq_read,
188 	.llseek		= seq_lseek,
189 	.release	= single_release,
190 };
191 
192 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
193 {
194 	struct mmc_host	*mmc = slot->mmc;
195 	struct dw_mci *host = slot->host;
196 	struct dentry *root;
197 	struct dentry *node;
198 
199 	root = mmc->debugfs_root;
200 	if (!root)
201 		return;
202 
203 	node = debugfs_create_file("regs", S_IRUSR, root, host,
204 				   &dw_mci_regs_fops);
205 	if (!node)
206 		goto err;
207 
208 	node = debugfs_create_file("req", S_IRUSR, root, slot,
209 				   &dw_mci_req_fops);
210 	if (!node)
211 		goto err;
212 
213 	node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
214 	if (!node)
215 		goto err;
216 
217 	node = debugfs_create_x32("pending_events", S_IRUSR, root,
218 				  (u32 *)&host->pending_events);
219 	if (!node)
220 		goto err;
221 
222 	node = debugfs_create_x32("completed_events", S_IRUSR, root,
223 				  (u32 *)&host->completed_events);
224 	if (!node)
225 		goto err;
226 
227 	return;
228 
229 err:
230 	dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
231 }
232 #endif /* defined(CONFIG_DEBUG_FS) */
233 
234 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg);
235 
236 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
237 {
238 	struct dw_mci_slot *slot = mmc_priv(mmc);
239 	struct dw_mci *host = slot->host;
240 	u32 cmdr;
241 
242 	cmd->error = -EINPROGRESS;
243 	cmdr = cmd->opcode;
244 
245 	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
246 	    cmd->opcode == MMC_GO_IDLE_STATE ||
247 	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
248 	    (cmd->opcode == SD_IO_RW_DIRECT &&
249 	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
250 		cmdr |= SDMMC_CMD_STOP;
251 	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
252 		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
253 
254 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
255 		u32 clk_en_a;
256 
257 		/* Special bit makes CMD11 not die */
258 		cmdr |= SDMMC_CMD_VOLT_SWITCH;
259 
260 		/* Change state to continue to handle CMD11 weirdness */
261 		WARN_ON(slot->host->state != STATE_SENDING_CMD);
262 		slot->host->state = STATE_SENDING_CMD11;
263 
264 		/*
265 		 * We need to disable low power mode (automatic clock stop)
266 		 * while doing voltage switch so we don't confuse the card,
267 		 * since stopping the clock is a specific part of the UHS
268 		 * voltage change dance.
269 		 *
270 		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
271 		 * unconditionally turned back on in dw_mci_setup_bus() if it's
272 		 * ever called with a non-zero clock.  That shouldn't happen
273 		 * until the voltage change is all done.
274 		 */
275 		clk_en_a = mci_readl(host, CLKENA);
276 		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
277 		mci_writel(host, CLKENA, clk_en_a);
278 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
279 			     SDMMC_CMD_PRV_DAT_WAIT, 0);
280 	}
281 
282 	if (cmd->flags & MMC_RSP_PRESENT) {
283 		/* We expect a response, so set this bit */
284 		cmdr |= SDMMC_CMD_RESP_EXP;
285 		if (cmd->flags & MMC_RSP_136)
286 			cmdr |= SDMMC_CMD_RESP_LONG;
287 	}
288 
289 	if (cmd->flags & MMC_RSP_CRC)
290 		cmdr |= SDMMC_CMD_RESP_CRC;
291 
292 	if (cmd->data) {
293 		cmdr |= SDMMC_CMD_DAT_EXP;
294 		if (cmd->data->flags & MMC_DATA_WRITE)
295 			cmdr |= SDMMC_CMD_DAT_WR;
296 	}
297 
298 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
299 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
300 
301 	return cmdr;
302 }
303 
304 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
305 {
306 	struct mmc_command *stop;
307 	u32 cmdr;
308 
309 	if (!cmd->data)
310 		return 0;
311 
312 	stop = &host->stop_abort;
313 	cmdr = cmd->opcode;
314 	memset(stop, 0, sizeof(struct mmc_command));
315 
316 	if (cmdr == MMC_READ_SINGLE_BLOCK ||
317 	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
318 	    cmdr == MMC_WRITE_BLOCK ||
319 	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
320 	    cmdr == MMC_SEND_TUNING_BLOCK ||
321 	    cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
322 		stop->opcode = MMC_STOP_TRANSMISSION;
323 		stop->arg = 0;
324 		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
325 	} else if (cmdr == SD_IO_RW_EXTENDED) {
326 		stop->opcode = SD_IO_RW_DIRECT;
327 		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
328 			     ((cmd->arg >> 28) & 0x7);
329 		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
330 	} else {
331 		return 0;
332 	}
333 
334 	cmdr = stop->opcode | SDMMC_CMD_STOP |
335 		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
336 
337 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->cur_slot->flags))
338 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
339 
340 	return cmdr;
341 }
342 
343 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
344 {
345 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
346 
347 	/*
348 	 * Databook says that before issuing a new data transfer command
349 	 * we need to check to see if the card is busy.  Data transfer commands
350 	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
351 	 *
352 	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
353 	 * expected.
354 	 */
355 	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
356 	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
357 		while (mci_readl(host, STATUS) & SDMMC_STATUS_BUSY) {
358 			if (time_after(jiffies, timeout)) {
359 				/* Command will fail; we'll pass error then */
360 				dev_err(host->dev, "Busy; trying anyway\n");
361 				break;
362 			}
363 			udelay(10);
364 		}
365 	}
366 }
367 
368 static void dw_mci_start_command(struct dw_mci *host,
369 				 struct mmc_command *cmd, u32 cmd_flags)
370 {
371 	host->cmd = cmd;
372 	dev_vdbg(host->dev,
373 		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
374 		 cmd->arg, cmd_flags);
375 
376 	mci_writel(host, CMDARG, cmd->arg);
377 	wmb(); /* drain writebuffer */
378 	dw_mci_wait_while_busy(host, cmd_flags);
379 
380 	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
381 }
382 
383 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
384 {
385 	struct mmc_command *stop = &host->stop_abort;
386 
387 	dw_mci_start_command(host, stop, host->stop_cmdr);
388 }
389 
390 /* DMA interface functions */
391 static void dw_mci_stop_dma(struct dw_mci *host)
392 {
393 	if (host->using_dma) {
394 		host->dma_ops->stop(host);
395 		host->dma_ops->cleanup(host);
396 	}
397 
398 	/* Data transfer was stopped by the interrupt handler */
399 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
400 }
401 
402 static int dw_mci_get_dma_dir(struct mmc_data *data)
403 {
404 	if (data->flags & MMC_DATA_WRITE)
405 		return DMA_TO_DEVICE;
406 	else
407 		return DMA_FROM_DEVICE;
408 }
409 
410 static void dw_mci_dma_cleanup(struct dw_mci *host)
411 {
412 	struct mmc_data *data = host->data;
413 
414 	if (data && data->host_cookie == COOKIE_MAPPED) {
415 		dma_unmap_sg(host->dev,
416 			     data->sg,
417 			     data->sg_len,
418 			     dw_mci_get_dma_dir(data));
419 		data->host_cookie = COOKIE_UNMAPPED;
420 	}
421 }
422 
423 static void dw_mci_idmac_reset(struct dw_mci *host)
424 {
425 	u32 bmod = mci_readl(host, BMOD);
426 	/* Software reset of DMA */
427 	bmod |= SDMMC_IDMAC_SWRESET;
428 	mci_writel(host, BMOD, bmod);
429 }
430 
431 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
432 {
433 	u32 temp;
434 
435 	/* Disable and reset the IDMAC interface */
436 	temp = mci_readl(host, CTRL);
437 	temp &= ~SDMMC_CTRL_USE_IDMAC;
438 	temp |= SDMMC_CTRL_DMA_RESET;
439 	mci_writel(host, CTRL, temp);
440 
441 	/* Stop the IDMAC running */
442 	temp = mci_readl(host, BMOD);
443 	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
444 	temp |= SDMMC_IDMAC_SWRESET;
445 	mci_writel(host, BMOD, temp);
446 }
447 
448 static void dw_mci_dmac_complete_dma(void *arg)
449 {
450 	struct dw_mci *host = arg;
451 	struct mmc_data *data = host->data;
452 
453 	dev_vdbg(host->dev, "DMA complete\n");
454 
455 	if ((host->use_dma == TRANS_MODE_EDMAC) &&
456 	    data && (data->flags & MMC_DATA_READ))
457 		/* Invalidate cache after read */
458 		dma_sync_sg_for_cpu(mmc_dev(host->cur_slot->mmc),
459 				    data->sg,
460 				    data->sg_len,
461 				    DMA_FROM_DEVICE);
462 
463 	host->dma_ops->cleanup(host);
464 
465 	/*
466 	 * If the card was removed, data will be NULL. No point in trying to
467 	 * send the stop command or waiting for NBUSY in this case.
468 	 */
469 	if (data) {
470 		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
471 		tasklet_schedule(&host->tasklet);
472 	}
473 }
474 
475 static int dw_mci_idmac_init(struct dw_mci *host)
476 {
477 	int i;
478 
479 	if (host->dma_64bit_address == 1) {
480 		struct idmac_desc_64addr *p;
481 		/* Number of descriptors in the ring buffer */
482 		host->ring_size =
483 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
484 
485 		/* Forward link the descriptor list */
486 		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
487 								i++, p++) {
488 			p->des6 = (host->sg_dma +
489 					(sizeof(struct idmac_desc_64addr) *
490 							(i + 1))) & 0xffffffff;
491 
492 			p->des7 = (u64)(host->sg_dma +
493 					(sizeof(struct idmac_desc_64addr) *
494 							(i + 1))) >> 32;
495 			/* Initialize reserved and buffer size fields to "0" */
496 			p->des1 = 0;
497 			p->des2 = 0;
498 			p->des3 = 0;
499 		}
500 
501 		/* Set the last descriptor as the end-of-ring descriptor */
502 		p->des6 = host->sg_dma & 0xffffffff;
503 		p->des7 = (u64)host->sg_dma >> 32;
504 		p->des0 = IDMAC_DES0_ER;
505 
506 	} else {
507 		struct idmac_desc *p;
508 		/* Number of descriptors in the ring buffer */
509 		host->ring_size =
510 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
511 
512 		/* Forward link the descriptor list */
513 		for (i = 0, p = host->sg_cpu;
514 		     i < host->ring_size - 1;
515 		     i++, p++) {
516 			p->des3 = cpu_to_le32(host->sg_dma +
517 					(sizeof(struct idmac_desc) * (i + 1)));
518 			p->des1 = 0;
519 		}
520 
521 		/* Set the last descriptor as the end-of-ring descriptor */
522 		p->des3 = cpu_to_le32(host->sg_dma);
523 		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
524 	}
525 
526 	dw_mci_idmac_reset(host);
527 
528 	if (host->dma_64bit_address == 1) {
529 		/* Mask out interrupts - get Tx & Rx complete only */
530 		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
531 		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
532 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
533 
534 		/* Set the descriptor base address */
535 		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
536 		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
537 
538 	} else {
539 		/* Mask out interrupts - get Tx & Rx complete only */
540 		mci_writel(host, IDSTS, IDMAC_INT_CLR);
541 		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
542 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
543 
544 		/* Set the descriptor base address */
545 		mci_writel(host, DBADDR, host->sg_dma);
546 	}
547 
548 	return 0;
549 }
550 
551 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
552 					 struct mmc_data *data,
553 					 unsigned int sg_len)
554 {
555 	unsigned int desc_len;
556 	struct idmac_desc_64addr *desc_first, *desc_last, *desc;
557 	unsigned long timeout;
558 	int i;
559 
560 	desc_first = desc_last = desc = host->sg_cpu;
561 
562 	for (i = 0; i < sg_len; i++) {
563 		unsigned int length = sg_dma_len(&data->sg[i]);
564 
565 		u64 mem_addr = sg_dma_address(&data->sg[i]);
566 
567 		for ( ; length ; desc++) {
568 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
569 				   length : DW_MCI_DESC_DATA_LENGTH;
570 
571 			length -= desc_len;
572 
573 			/*
574 			 * Wait for the former clear OWN bit operation
575 			 * of IDMAC to make sure that this descriptor
576 			 * isn't still owned by IDMAC as IDMAC's write
577 			 * ops and CPU's read ops are asynchronous.
578 			 */
579 			timeout = jiffies + msecs_to_jiffies(100);
580 			while (readl(&desc->des0) & IDMAC_DES0_OWN) {
581 				if (time_after(jiffies, timeout))
582 					goto err_own_bit;
583 				udelay(10);
584 			}
585 
586 			/*
587 			 * Set the OWN bit and disable interrupts
588 			 * for this descriptor
589 			 */
590 			desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
591 						IDMAC_DES0_CH;
592 
593 			/* Buffer length */
594 			IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
595 
596 			/* Physical address to DMA to/from */
597 			desc->des4 = mem_addr & 0xffffffff;
598 			desc->des5 = mem_addr >> 32;
599 
600 			/* Update physical address for the next desc */
601 			mem_addr += desc_len;
602 
603 			/* Save pointer to the last descriptor */
604 			desc_last = desc;
605 		}
606 	}
607 
608 	/* Set first descriptor */
609 	desc_first->des0 |= IDMAC_DES0_FD;
610 
611 	/* Set last descriptor */
612 	desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
613 	desc_last->des0 |= IDMAC_DES0_LD;
614 
615 	return 0;
616 err_own_bit:
617 	/* restore the descriptor chain as it's polluted */
618 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
619 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
620 	dw_mci_idmac_init(host);
621 	return -EINVAL;
622 }
623 
624 
625 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
626 					 struct mmc_data *data,
627 					 unsigned int sg_len)
628 {
629 	unsigned int desc_len;
630 	struct idmac_desc *desc_first, *desc_last, *desc;
631 	unsigned long timeout;
632 	int i;
633 
634 	desc_first = desc_last = desc = host->sg_cpu;
635 
636 	for (i = 0; i < sg_len; i++) {
637 		unsigned int length = sg_dma_len(&data->sg[i]);
638 
639 		u32 mem_addr = sg_dma_address(&data->sg[i]);
640 
641 		for ( ; length ; desc++) {
642 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
643 				   length : DW_MCI_DESC_DATA_LENGTH;
644 
645 			length -= desc_len;
646 
647 			/*
648 			 * Wait for the former clear OWN bit operation
649 			 * of IDMAC to make sure that this descriptor
650 			 * isn't still owned by IDMAC as IDMAC's write
651 			 * ops and CPU's read ops are asynchronous.
652 			 */
653 			timeout = jiffies + msecs_to_jiffies(100);
654 			while (readl(&desc->des0) &
655 			       cpu_to_le32(IDMAC_DES0_OWN)) {
656 				if (time_after(jiffies, timeout))
657 					goto err_own_bit;
658 				udelay(10);
659 			}
660 
661 			/*
662 			 * Set the OWN bit and disable interrupts
663 			 * for this descriptor
664 			 */
665 			desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
666 						 IDMAC_DES0_DIC |
667 						 IDMAC_DES0_CH);
668 
669 			/* Buffer length */
670 			IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
671 
672 			/* Physical address to DMA to/from */
673 			desc->des2 = cpu_to_le32(mem_addr);
674 
675 			/* Update physical address for the next desc */
676 			mem_addr += desc_len;
677 
678 			/* Save pointer to the last descriptor */
679 			desc_last = desc;
680 		}
681 	}
682 
683 	/* Set first descriptor */
684 	desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
685 
686 	/* Set last descriptor */
687 	desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
688 				       IDMAC_DES0_DIC));
689 	desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
690 
691 	return 0;
692 err_own_bit:
693 	/* restore the descriptor chain as it's polluted */
694 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
695 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
696 	dw_mci_idmac_init(host);
697 	return -EINVAL;
698 }
699 
700 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
701 {
702 	u32 temp;
703 	int ret;
704 
705 	if (host->dma_64bit_address == 1)
706 		ret = dw_mci_prepare_desc64(host, host->data, sg_len);
707 	else
708 		ret = dw_mci_prepare_desc32(host, host->data, sg_len);
709 
710 	if (ret)
711 		goto out;
712 
713 	/* drain writebuffer */
714 	wmb();
715 
716 	/* Make sure to reset DMA in case we did PIO before this */
717 	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
718 	dw_mci_idmac_reset(host);
719 
720 	/* Select IDMAC interface */
721 	temp = mci_readl(host, CTRL);
722 	temp |= SDMMC_CTRL_USE_IDMAC;
723 	mci_writel(host, CTRL, temp);
724 
725 	/* drain writebuffer */
726 	wmb();
727 
728 	/* Enable the IDMAC */
729 	temp = mci_readl(host, BMOD);
730 	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
731 	mci_writel(host, BMOD, temp);
732 
733 	/* Start it running */
734 	mci_writel(host, PLDMND, 1);
735 
736 out:
737 	return ret;
738 }
739 
740 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
741 	.init = dw_mci_idmac_init,
742 	.start = dw_mci_idmac_start_dma,
743 	.stop = dw_mci_idmac_stop_dma,
744 	.complete = dw_mci_dmac_complete_dma,
745 	.cleanup = dw_mci_dma_cleanup,
746 };
747 
748 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
749 {
750 	dmaengine_terminate_async(host->dms->ch);
751 }
752 
753 static int dw_mci_edmac_start_dma(struct dw_mci *host,
754 					    unsigned int sg_len)
755 {
756 	struct dma_slave_config cfg;
757 	struct dma_async_tx_descriptor *desc = NULL;
758 	struct scatterlist *sgl = host->data->sg;
759 	const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
760 	u32 sg_elems = host->data->sg_len;
761 	u32 fifoth_val;
762 	u32 fifo_offset = host->fifo_reg - host->regs;
763 	int ret = 0;
764 
765 	/* Set external dma config: burst size, burst width */
766 	cfg.dst_addr = host->phy_regs + fifo_offset;
767 	cfg.src_addr = cfg.dst_addr;
768 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
769 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
770 
771 	/* Match burst msize with external dma config */
772 	fifoth_val = mci_readl(host, FIFOTH);
773 	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
774 	cfg.src_maxburst = cfg.dst_maxburst;
775 
776 	if (host->data->flags & MMC_DATA_WRITE)
777 		cfg.direction = DMA_MEM_TO_DEV;
778 	else
779 		cfg.direction = DMA_DEV_TO_MEM;
780 
781 	ret = dmaengine_slave_config(host->dms->ch, &cfg);
782 	if (ret) {
783 		dev_err(host->dev, "Failed to config edmac.\n");
784 		return -EBUSY;
785 	}
786 
787 	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
788 				       sg_len, cfg.direction,
789 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
790 	if (!desc) {
791 		dev_err(host->dev, "Can't prepare slave sg.\n");
792 		return -EBUSY;
793 	}
794 
795 	/* Set dw_mci_dmac_complete_dma as callback */
796 	desc->callback = dw_mci_dmac_complete_dma;
797 	desc->callback_param = (void *)host;
798 	dmaengine_submit(desc);
799 
800 	/* Flush cache before write */
801 	if (host->data->flags & MMC_DATA_WRITE)
802 		dma_sync_sg_for_device(mmc_dev(host->cur_slot->mmc), sgl,
803 				       sg_elems, DMA_TO_DEVICE);
804 
805 	dma_async_issue_pending(host->dms->ch);
806 
807 	return 0;
808 }
809 
810 static int dw_mci_edmac_init(struct dw_mci *host)
811 {
812 	/* Request external dma channel */
813 	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
814 	if (!host->dms)
815 		return -ENOMEM;
816 
817 	host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
818 	if (!host->dms->ch) {
819 		dev_err(host->dev, "Failed to get external DMA channel.\n");
820 		kfree(host->dms);
821 		host->dms = NULL;
822 		return -ENXIO;
823 	}
824 
825 	return 0;
826 }
827 
828 static void dw_mci_edmac_exit(struct dw_mci *host)
829 {
830 	if (host->dms) {
831 		if (host->dms->ch) {
832 			dma_release_channel(host->dms->ch);
833 			host->dms->ch = NULL;
834 		}
835 		kfree(host->dms);
836 		host->dms = NULL;
837 	}
838 }
839 
840 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
841 	.init = dw_mci_edmac_init,
842 	.exit = dw_mci_edmac_exit,
843 	.start = dw_mci_edmac_start_dma,
844 	.stop = dw_mci_edmac_stop_dma,
845 	.complete = dw_mci_dmac_complete_dma,
846 	.cleanup = dw_mci_dma_cleanup,
847 };
848 
849 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
850 				   struct mmc_data *data,
851 				   int cookie)
852 {
853 	struct scatterlist *sg;
854 	unsigned int i, sg_len;
855 
856 	if (data->host_cookie == COOKIE_PRE_MAPPED)
857 		return data->sg_len;
858 
859 	/*
860 	 * We don't do DMA on "complex" transfers, i.e. with
861 	 * non-word-aligned buffers or lengths. Also, we don't bother
862 	 * with all the DMA setup overhead for short transfers.
863 	 */
864 	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
865 		return -EINVAL;
866 
867 	if (data->blksz & 3)
868 		return -EINVAL;
869 
870 	for_each_sg(data->sg, sg, data->sg_len, i) {
871 		if (sg->offset & 3 || sg->length & 3)
872 			return -EINVAL;
873 	}
874 
875 	sg_len = dma_map_sg(host->dev,
876 			    data->sg,
877 			    data->sg_len,
878 			    dw_mci_get_dma_dir(data));
879 	if (sg_len == 0)
880 		return -EINVAL;
881 
882 	data->host_cookie = cookie;
883 
884 	return sg_len;
885 }
886 
887 static void dw_mci_pre_req(struct mmc_host *mmc,
888 			   struct mmc_request *mrq)
889 {
890 	struct dw_mci_slot *slot = mmc_priv(mmc);
891 	struct mmc_data *data = mrq->data;
892 
893 	if (!slot->host->use_dma || !data)
894 		return;
895 
896 	/* This data might be unmapped at this time */
897 	data->host_cookie = COOKIE_UNMAPPED;
898 
899 	if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
900 				COOKIE_PRE_MAPPED) < 0)
901 		data->host_cookie = COOKIE_UNMAPPED;
902 }
903 
904 static void dw_mci_post_req(struct mmc_host *mmc,
905 			    struct mmc_request *mrq,
906 			    int err)
907 {
908 	struct dw_mci_slot *slot = mmc_priv(mmc);
909 	struct mmc_data *data = mrq->data;
910 
911 	if (!slot->host->use_dma || !data)
912 		return;
913 
914 	if (data->host_cookie != COOKIE_UNMAPPED)
915 		dma_unmap_sg(slot->host->dev,
916 			     data->sg,
917 			     data->sg_len,
918 			     dw_mci_get_dma_dir(data));
919 	data->host_cookie = COOKIE_UNMAPPED;
920 }
921 
922 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
923 {
924 	unsigned int blksz = data->blksz;
925 	const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
926 	u32 fifo_width = 1 << host->data_shift;
927 	u32 blksz_depth = blksz / fifo_width, fifoth_val;
928 	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
929 	int idx = ARRAY_SIZE(mszs) - 1;
930 
931 	/* pio should ship this scenario */
932 	if (!host->use_dma)
933 		return;
934 
935 	tx_wmark = (host->fifo_depth) / 2;
936 	tx_wmark_invers = host->fifo_depth - tx_wmark;
937 
938 	/*
939 	 * MSIZE is '1',
940 	 * if blksz is not a multiple of the FIFO width
941 	 */
942 	if (blksz % fifo_width)
943 		goto done;
944 
945 	do {
946 		if (!((blksz_depth % mszs[idx]) ||
947 		     (tx_wmark_invers % mszs[idx]))) {
948 			msize = idx;
949 			rx_wmark = mszs[idx] - 1;
950 			break;
951 		}
952 	} while (--idx > 0);
953 	/*
954 	 * If idx is '0', it won't be tried
955 	 * Thus, initial values are uesed
956 	 */
957 done:
958 	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
959 	mci_writel(host, FIFOTH, fifoth_val);
960 }
961 
962 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
963 {
964 	unsigned int blksz = data->blksz;
965 	u32 blksz_depth, fifo_depth;
966 	u16 thld_size;
967 	u8 enable;
968 
969 	/*
970 	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
971 	 * in the FIFO region, so we really shouldn't access it).
972 	 */
973 	if (host->verid < DW_MMC_240A ||
974 		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
975 		return;
976 
977 	/*
978 	 * Card write Threshold is introduced since 2.80a
979 	 * It's used when HS400 mode is enabled.
980 	 */
981 	if (data->flags & MMC_DATA_WRITE &&
982 		!(host->timing != MMC_TIMING_MMC_HS400))
983 		return;
984 
985 	if (data->flags & MMC_DATA_WRITE)
986 		enable = SDMMC_CARD_WR_THR_EN;
987 	else
988 		enable = SDMMC_CARD_RD_THR_EN;
989 
990 	if (host->timing != MMC_TIMING_MMC_HS200 &&
991 	    host->timing != MMC_TIMING_UHS_SDR104)
992 		goto disable;
993 
994 	blksz_depth = blksz / (1 << host->data_shift);
995 	fifo_depth = host->fifo_depth;
996 
997 	if (blksz_depth > fifo_depth)
998 		goto disable;
999 
1000 	/*
1001 	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1002 	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1003 	 * Currently just choose blksz.
1004 	 */
1005 	thld_size = blksz;
1006 	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1007 	return;
1008 
1009 disable:
1010 	mci_writel(host, CDTHRCTL, 0);
1011 }
1012 
1013 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1014 {
1015 	unsigned long irqflags;
1016 	int sg_len;
1017 	u32 temp;
1018 
1019 	host->using_dma = 0;
1020 
1021 	/* If we don't have a channel, we can't do DMA */
1022 	if (!host->use_dma)
1023 		return -ENODEV;
1024 
1025 	sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1026 	if (sg_len < 0) {
1027 		host->dma_ops->stop(host);
1028 		return sg_len;
1029 	}
1030 
1031 	host->using_dma = 1;
1032 
1033 	if (host->use_dma == TRANS_MODE_IDMAC)
1034 		dev_vdbg(host->dev,
1035 			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1036 			 (unsigned long)host->sg_cpu,
1037 			 (unsigned long)host->sg_dma,
1038 			 sg_len);
1039 
1040 	/*
1041 	 * Decide the MSIZE and RX/TX Watermark.
1042 	 * If current block size is same with previous size,
1043 	 * no need to update fifoth.
1044 	 */
1045 	if (host->prev_blksz != data->blksz)
1046 		dw_mci_adjust_fifoth(host, data);
1047 
1048 	/* Enable the DMA interface */
1049 	temp = mci_readl(host, CTRL);
1050 	temp |= SDMMC_CTRL_DMA_ENABLE;
1051 	mci_writel(host, CTRL, temp);
1052 
1053 	/* Disable RX/TX IRQs, let DMA handle it */
1054 	spin_lock_irqsave(&host->irq_lock, irqflags);
1055 	temp = mci_readl(host, INTMASK);
1056 	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1057 	mci_writel(host, INTMASK, temp);
1058 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1059 
1060 	if (host->dma_ops->start(host, sg_len)) {
1061 		host->dma_ops->stop(host);
1062 		/* We can't do DMA, try PIO for this one */
1063 		dev_dbg(host->dev,
1064 			"%s: fall back to PIO mode for current transfer\n",
1065 			__func__);
1066 		return -ENODEV;
1067 	}
1068 
1069 	return 0;
1070 }
1071 
1072 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1073 {
1074 	unsigned long irqflags;
1075 	int flags = SG_MITER_ATOMIC;
1076 	u32 temp;
1077 
1078 	data->error = -EINPROGRESS;
1079 
1080 	WARN_ON(host->data);
1081 	host->sg = NULL;
1082 	host->data = data;
1083 
1084 	if (data->flags & MMC_DATA_READ)
1085 		host->dir_status = DW_MCI_RECV_STATUS;
1086 	else
1087 		host->dir_status = DW_MCI_SEND_STATUS;
1088 
1089 	dw_mci_ctrl_thld(host, data);
1090 
1091 	if (dw_mci_submit_data_dma(host, data)) {
1092 		if (host->data->flags & MMC_DATA_READ)
1093 			flags |= SG_MITER_TO_SG;
1094 		else
1095 			flags |= SG_MITER_FROM_SG;
1096 
1097 		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1098 		host->sg = data->sg;
1099 		host->part_buf_start = 0;
1100 		host->part_buf_count = 0;
1101 
1102 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1103 
1104 		spin_lock_irqsave(&host->irq_lock, irqflags);
1105 		temp = mci_readl(host, INTMASK);
1106 		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1107 		mci_writel(host, INTMASK, temp);
1108 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1109 
1110 		temp = mci_readl(host, CTRL);
1111 		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1112 		mci_writel(host, CTRL, temp);
1113 
1114 		/*
1115 		 * Use the initial fifoth_val for PIO mode. If wm_algined
1116 		 * is set, we set watermark same as data size.
1117 		 * If next issued data may be transfered by DMA mode,
1118 		 * prev_blksz should be invalidated.
1119 		 */
1120 		if (host->wm_aligned)
1121 			dw_mci_adjust_fifoth(host, data);
1122 		else
1123 			mci_writel(host, FIFOTH, host->fifoth_val);
1124 		host->prev_blksz = 0;
1125 	} else {
1126 		/*
1127 		 * Keep the current block size.
1128 		 * It will be used to decide whether to update
1129 		 * fifoth register next time.
1130 		 */
1131 		host->prev_blksz = data->blksz;
1132 	}
1133 }
1134 
1135 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
1136 {
1137 	struct dw_mci *host = slot->host;
1138 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
1139 	unsigned int cmd_status = 0;
1140 
1141 	mci_writel(host, CMDARG, arg);
1142 	wmb(); /* drain writebuffer */
1143 	dw_mci_wait_while_busy(host, cmd);
1144 	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
1145 
1146 	while (time_before(jiffies, timeout)) {
1147 		cmd_status = mci_readl(host, CMD);
1148 		if (!(cmd_status & SDMMC_CMD_START))
1149 			return;
1150 	}
1151 	dev_err(&slot->mmc->class_dev,
1152 		"Timeout sending command (cmd %#x arg %#x status %#x)\n",
1153 		cmd, arg, cmd_status);
1154 }
1155 
1156 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1157 {
1158 	struct dw_mci *host = slot->host;
1159 	unsigned int clock = slot->clock;
1160 	u32 div;
1161 	u32 clk_en_a;
1162 	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1163 
1164 	/* We must continue to set bit 28 in CMD until the change is complete */
1165 	if (host->state == STATE_WAITING_CMD11_DONE)
1166 		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1167 
1168 	if (!clock) {
1169 		mci_writel(host, CLKENA, 0);
1170 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1171 	} else if (clock != host->current_speed || force_clkinit) {
1172 		div = host->bus_hz / clock;
1173 		if (host->bus_hz % clock && host->bus_hz > clock)
1174 			/*
1175 			 * move the + 1 after the divide to prevent
1176 			 * over-clocking the card.
1177 			 */
1178 			div += 1;
1179 
1180 		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1181 
1182 		if ((clock != slot->__clk_old &&
1183 			!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1184 			force_clkinit) {
1185 			/* Silent the verbose log if calling from PM context */
1186 			if (!force_clkinit)
1187 				dev_info(&slot->mmc->class_dev,
1188 					 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1189 					 slot->id, host->bus_hz, clock,
1190 					 div ? ((host->bus_hz / div) >> 1) :
1191 					 host->bus_hz, div);
1192 
1193 			/*
1194 			 * If card is polling, display the message only
1195 			 * one time at boot time.
1196 			 */
1197 			if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1198 					slot->mmc->f_min == clock)
1199 				set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1200 		}
1201 
1202 		/* disable clock */
1203 		mci_writel(host, CLKENA, 0);
1204 		mci_writel(host, CLKSRC, 0);
1205 
1206 		/* inform CIU */
1207 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1208 
1209 		/* set clock to desired speed */
1210 		mci_writel(host, CLKDIV, div);
1211 
1212 		/* inform CIU */
1213 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1214 
1215 		/* enable clock; only low power if no SDIO */
1216 		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1217 		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1218 			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1219 		mci_writel(host, CLKENA, clk_en_a);
1220 
1221 		/* inform CIU */
1222 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1223 
1224 		/* keep the last clock value that was requested from core */
1225 		slot->__clk_old = clock;
1226 	}
1227 
1228 	host->current_speed = clock;
1229 
1230 	/* Set the current slot bus width */
1231 	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1232 }
1233 
1234 static void __dw_mci_start_request(struct dw_mci *host,
1235 				   struct dw_mci_slot *slot,
1236 				   struct mmc_command *cmd)
1237 {
1238 	struct mmc_request *mrq;
1239 	struct mmc_data	*data;
1240 	u32 cmdflags;
1241 
1242 	mrq = slot->mrq;
1243 
1244 	host->cur_slot = slot;
1245 	host->mrq = mrq;
1246 
1247 	host->pending_events = 0;
1248 	host->completed_events = 0;
1249 	host->cmd_status = 0;
1250 	host->data_status = 0;
1251 	host->dir_status = 0;
1252 
1253 	data = cmd->data;
1254 	if (data) {
1255 		mci_writel(host, TMOUT, 0xFFFFFFFF);
1256 		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1257 		mci_writel(host, BLKSIZ, data->blksz);
1258 	}
1259 
1260 	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1261 
1262 	/* this is the first command, send the initialization clock */
1263 	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1264 		cmdflags |= SDMMC_CMD_INIT;
1265 
1266 	if (data) {
1267 		dw_mci_submit_data(host, data);
1268 		wmb(); /* drain writebuffer */
1269 	}
1270 
1271 	dw_mci_start_command(host, cmd, cmdflags);
1272 
1273 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1274 		unsigned long irqflags;
1275 
1276 		/*
1277 		 * Databook says to fail after 2ms w/ no response, but evidence
1278 		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1279 		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1280 		 * is just about to roll over.
1281 		 *
1282 		 * We do this whole thing under spinlock and only if the
1283 		 * command hasn't already completed (indicating the the irq
1284 		 * already ran so we don't want the timeout).
1285 		 */
1286 		spin_lock_irqsave(&host->irq_lock, irqflags);
1287 		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1288 			mod_timer(&host->cmd11_timer,
1289 				jiffies + msecs_to_jiffies(500) + 1);
1290 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1291 	}
1292 
1293 	host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1294 }
1295 
1296 static void dw_mci_start_request(struct dw_mci *host,
1297 				 struct dw_mci_slot *slot)
1298 {
1299 	struct mmc_request *mrq = slot->mrq;
1300 	struct mmc_command *cmd;
1301 
1302 	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1303 	__dw_mci_start_request(host, slot, cmd);
1304 }
1305 
1306 /* must be called with host->lock held */
1307 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1308 				 struct mmc_request *mrq)
1309 {
1310 	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1311 		 host->state);
1312 
1313 	slot->mrq = mrq;
1314 
1315 	if (host->state == STATE_WAITING_CMD11_DONE) {
1316 		dev_warn(&slot->mmc->class_dev,
1317 			 "Voltage change didn't complete\n");
1318 		/*
1319 		 * this case isn't expected to happen, so we can
1320 		 * either crash here or just try to continue on
1321 		 * in the closest possible state
1322 		 */
1323 		host->state = STATE_IDLE;
1324 	}
1325 
1326 	if (host->state == STATE_IDLE) {
1327 		host->state = STATE_SENDING_CMD;
1328 		dw_mci_start_request(host, slot);
1329 	} else {
1330 		list_add_tail(&slot->queue_node, &host->queue);
1331 	}
1332 }
1333 
1334 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1335 {
1336 	struct dw_mci_slot *slot = mmc_priv(mmc);
1337 	struct dw_mci *host = slot->host;
1338 
1339 	WARN_ON(slot->mrq);
1340 
1341 	/*
1342 	 * The check for card presence and queueing of the request must be
1343 	 * atomic, otherwise the card could be removed in between and the
1344 	 * request wouldn't fail until another card was inserted.
1345 	 */
1346 
1347 	if (!dw_mci_get_cd(mmc)) {
1348 		mrq->cmd->error = -ENOMEDIUM;
1349 		mmc_request_done(mmc, mrq);
1350 		return;
1351 	}
1352 
1353 	spin_lock_bh(&host->lock);
1354 
1355 	dw_mci_queue_request(host, slot, mrq);
1356 
1357 	spin_unlock_bh(&host->lock);
1358 }
1359 
1360 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1361 {
1362 	struct dw_mci_slot *slot = mmc_priv(mmc);
1363 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1364 	u32 regs;
1365 	int ret;
1366 
1367 	switch (ios->bus_width) {
1368 	case MMC_BUS_WIDTH_4:
1369 		slot->ctype = SDMMC_CTYPE_4BIT;
1370 		break;
1371 	case MMC_BUS_WIDTH_8:
1372 		slot->ctype = SDMMC_CTYPE_8BIT;
1373 		break;
1374 	default:
1375 		/* set default 1 bit mode */
1376 		slot->ctype = SDMMC_CTYPE_1BIT;
1377 	}
1378 
1379 	regs = mci_readl(slot->host, UHS_REG);
1380 
1381 	/* DDR mode set */
1382 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1383 	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1384 	    ios->timing == MMC_TIMING_MMC_HS400)
1385 		regs |= ((0x1 << slot->id) << 16);
1386 	else
1387 		regs &= ~((0x1 << slot->id) << 16);
1388 
1389 	mci_writel(slot->host, UHS_REG, regs);
1390 	slot->host->timing = ios->timing;
1391 
1392 	/*
1393 	 * Use mirror of ios->clock to prevent race with mmc
1394 	 * core ios update when finding the minimum.
1395 	 */
1396 	slot->clock = ios->clock;
1397 
1398 	if (drv_data && drv_data->set_ios)
1399 		drv_data->set_ios(slot->host, ios);
1400 
1401 	switch (ios->power_mode) {
1402 	case MMC_POWER_UP:
1403 		if (!IS_ERR(mmc->supply.vmmc)) {
1404 			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1405 					ios->vdd);
1406 			if (ret) {
1407 				dev_err(slot->host->dev,
1408 					"failed to enable vmmc regulator\n");
1409 				/*return, if failed turn on vmmc*/
1410 				return;
1411 			}
1412 		}
1413 		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1414 		regs = mci_readl(slot->host, PWREN);
1415 		regs |= (1 << slot->id);
1416 		mci_writel(slot->host, PWREN, regs);
1417 		break;
1418 	case MMC_POWER_ON:
1419 		if (!slot->host->vqmmc_enabled) {
1420 			if (!IS_ERR(mmc->supply.vqmmc)) {
1421 				ret = regulator_enable(mmc->supply.vqmmc);
1422 				if (ret < 0)
1423 					dev_err(slot->host->dev,
1424 						"failed to enable vqmmc\n");
1425 				else
1426 					slot->host->vqmmc_enabled = true;
1427 
1428 			} else {
1429 				/* Keep track so we don't reset again */
1430 				slot->host->vqmmc_enabled = true;
1431 			}
1432 
1433 			/* Reset our state machine after powering on */
1434 			dw_mci_ctrl_reset(slot->host,
1435 					  SDMMC_CTRL_ALL_RESET_FLAGS);
1436 		}
1437 
1438 		/* Adjust clock / bus width after power is up */
1439 		dw_mci_setup_bus(slot, false);
1440 
1441 		break;
1442 	case MMC_POWER_OFF:
1443 		/* Turn clock off before power goes down */
1444 		dw_mci_setup_bus(slot, false);
1445 
1446 		if (!IS_ERR(mmc->supply.vmmc))
1447 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1448 
1449 		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1450 			regulator_disable(mmc->supply.vqmmc);
1451 		slot->host->vqmmc_enabled = false;
1452 
1453 		regs = mci_readl(slot->host, PWREN);
1454 		regs &= ~(1 << slot->id);
1455 		mci_writel(slot->host, PWREN, regs);
1456 		break;
1457 	default:
1458 		break;
1459 	}
1460 
1461 	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1462 		slot->host->state = STATE_IDLE;
1463 }
1464 
1465 static int dw_mci_card_busy(struct mmc_host *mmc)
1466 {
1467 	struct dw_mci_slot *slot = mmc_priv(mmc);
1468 	u32 status;
1469 
1470 	/*
1471 	 * Check the busy bit which is low when DAT[3:0]
1472 	 * (the data lines) are 0000
1473 	 */
1474 	status = mci_readl(slot->host, STATUS);
1475 
1476 	return !!(status & SDMMC_STATUS_BUSY);
1477 }
1478 
1479 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1480 {
1481 	struct dw_mci_slot *slot = mmc_priv(mmc);
1482 	struct dw_mci *host = slot->host;
1483 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1484 	u32 uhs;
1485 	u32 v18 = SDMMC_UHS_18V << slot->id;
1486 	int ret;
1487 
1488 	if (drv_data && drv_data->switch_voltage)
1489 		return drv_data->switch_voltage(mmc, ios);
1490 
1491 	/*
1492 	 * Program the voltage.  Note that some instances of dw_mmc may use
1493 	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1494 	 * does no harm but you need to set the regulator directly.  Try both.
1495 	 */
1496 	uhs = mci_readl(host, UHS_REG);
1497 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1498 		uhs &= ~v18;
1499 	else
1500 		uhs |= v18;
1501 
1502 	if (!IS_ERR(mmc->supply.vqmmc)) {
1503 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1504 
1505 		if (ret) {
1506 			dev_dbg(&mmc->class_dev,
1507 					 "Regulator set error %d - %s V\n",
1508 					 ret, uhs & v18 ? "1.8" : "3.3");
1509 			return ret;
1510 		}
1511 	}
1512 	mci_writel(host, UHS_REG, uhs);
1513 
1514 	return 0;
1515 }
1516 
1517 static int dw_mci_get_ro(struct mmc_host *mmc)
1518 {
1519 	int read_only;
1520 	struct dw_mci_slot *slot = mmc_priv(mmc);
1521 	int gpio_ro = mmc_gpio_get_ro(mmc);
1522 
1523 	/* Use platform get_ro function, else try on board write protect */
1524 	if (gpio_ro >= 0)
1525 		read_only = gpio_ro;
1526 	else
1527 		read_only =
1528 			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1529 
1530 	dev_dbg(&mmc->class_dev, "card is %s\n",
1531 		read_only ? "read-only" : "read-write");
1532 
1533 	return read_only;
1534 }
1535 
1536 static int dw_mci_get_cd(struct mmc_host *mmc)
1537 {
1538 	int present;
1539 	struct dw_mci_slot *slot = mmc_priv(mmc);
1540 	struct dw_mci *host = slot->host;
1541 	int gpio_cd = mmc_gpio_get_cd(mmc);
1542 
1543 	/* Use platform get_cd function, else try onboard card detect */
1544 	if (((mmc->caps & MMC_CAP_NEEDS_POLL)
1545 				|| !mmc_card_is_removable(mmc))) {
1546 		present = 1;
1547 
1548 		if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
1549 			if (mmc->caps & MMC_CAP_NEEDS_POLL) {
1550 				dev_info(&mmc->class_dev,
1551 					"card is polling.\n");
1552 			} else {
1553 				dev_info(&mmc->class_dev,
1554 					"card is non-removable.\n");
1555 			}
1556 			set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1557 		}
1558 
1559 		return present;
1560 	} else if (gpio_cd >= 0)
1561 		present = gpio_cd;
1562 	else
1563 		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
1564 			== 0 ? 1 : 0;
1565 
1566 	spin_lock_bh(&host->lock);
1567 	if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
1568 		dev_dbg(&mmc->class_dev, "card is present\n");
1569 	else if (!present &&
1570 			!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
1571 		dev_dbg(&mmc->class_dev, "card is not present\n");
1572 	spin_unlock_bh(&host->lock);
1573 
1574 	return present;
1575 }
1576 
1577 static void dw_mci_hw_reset(struct mmc_host *mmc)
1578 {
1579 	struct dw_mci_slot *slot = mmc_priv(mmc);
1580 	struct dw_mci *host = slot->host;
1581 	int reset;
1582 
1583 	if (host->use_dma == TRANS_MODE_IDMAC)
1584 		dw_mci_idmac_reset(host);
1585 
1586 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1587 				     SDMMC_CTRL_FIFO_RESET))
1588 		return;
1589 
1590 	/*
1591 	 * According to eMMC spec, card reset procedure:
1592 	 * tRstW >= 1us:   RST_n pulse width
1593 	 * tRSCA >= 200us: RST_n to Command time
1594 	 * tRSTH >= 1us:   RST_n high period
1595 	 */
1596 	reset = mci_readl(host, RST_N);
1597 	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1598 	mci_writel(host, RST_N, reset);
1599 	usleep_range(1, 2);
1600 	reset |= SDMMC_RST_HWACTIVE << slot->id;
1601 	mci_writel(host, RST_N, reset);
1602 	usleep_range(200, 300);
1603 }
1604 
1605 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1606 {
1607 	struct dw_mci_slot *slot = mmc_priv(mmc);
1608 	struct dw_mci *host = slot->host;
1609 
1610 	/*
1611 	 * Low power mode will stop the card clock when idle.  According to the
1612 	 * description of the CLKENA register we should disable low power mode
1613 	 * for SDIO cards if we need SDIO interrupts to work.
1614 	 */
1615 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1616 		const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1617 		u32 clk_en_a_old;
1618 		u32 clk_en_a;
1619 
1620 		clk_en_a_old = mci_readl(host, CLKENA);
1621 
1622 		if (card->type == MMC_TYPE_SDIO ||
1623 		    card->type == MMC_TYPE_SD_COMBO) {
1624 			set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1625 			clk_en_a = clk_en_a_old & ~clken_low_pwr;
1626 		} else {
1627 			clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1628 			clk_en_a = clk_en_a_old | clken_low_pwr;
1629 		}
1630 
1631 		if (clk_en_a != clk_en_a_old) {
1632 			mci_writel(host, CLKENA, clk_en_a);
1633 			mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1634 				     SDMMC_CMD_PRV_DAT_WAIT, 0);
1635 		}
1636 	}
1637 }
1638 
1639 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1640 {
1641 	struct dw_mci_slot *slot = mmc_priv(mmc);
1642 	struct dw_mci *host = slot->host;
1643 	unsigned long irqflags;
1644 	u32 int_mask;
1645 
1646 	spin_lock_irqsave(&host->irq_lock, irqflags);
1647 
1648 	/* Enable/disable Slot Specific SDIO interrupt */
1649 	int_mask = mci_readl(host, INTMASK);
1650 	if (enb)
1651 		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1652 	else
1653 		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1654 	mci_writel(host, INTMASK, int_mask);
1655 
1656 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1657 }
1658 
1659 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1660 {
1661 	struct dw_mci_slot *slot = mmc_priv(mmc);
1662 	struct dw_mci *host = slot->host;
1663 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1664 	int err = -EINVAL;
1665 
1666 	if (drv_data && drv_data->execute_tuning)
1667 		err = drv_data->execute_tuning(slot, opcode);
1668 	return err;
1669 }
1670 
1671 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1672 				       struct mmc_ios *ios)
1673 {
1674 	struct dw_mci_slot *slot = mmc_priv(mmc);
1675 	struct dw_mci *host = slot->host;
1676 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1677 
1678 	if (drv_data && drv_data->prepare_hs400_tuning)
1679 		return drv_data->prepare_hs400_tuning(host, ios);
1680 
1681 	return 0;
1682 }
1683 
1684 static const struct mmc_host_ops dw_mci_ops = {
1685 	.request		= dw_mci_request,
1686 	.pre_req		= dw_mci_pre_req,
1687 	.post_req		= dw_mci_post_req,
1688 	.set_ios		= dw_mci_set_ios,
1689 	.get_ro			= dw_mci_get_ro,
1690 	.get_cd			= dw_mci_get_cd,
1691 	.hw_reset               = dw_mci_hw_reset,
1692 	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1693 	.execute_tuning		= dw_mci_execute_tuning,
1694 	.card_busy		= dw_mci_card_busy,
1695 	.start_signal_voltage_switch = dw_mci_switch_voltage,
1696 	.init_card		= dw_mci_init_card,
1697 	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1698 };
1699 
1700 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1701 	__releases(&host->lock)
1702 	__acquires(&host->lock)
1703 {
1704 	struct dw_mci_slot *slot;
1705 	struct mmc_host	*prev_mmc = host->cur_slot->mmc;
1706 
1707 	WARN_ON(host->cmd || host->data);
1708 
1709 	host->cur_slot->mrq = NULL;
1710 	host->mrq = NULL;
1711 	if (!list_empty(&host->queue)) {
1712 		slot = list_entry(host->queue.next,
1713 				  struct dw_mci_slot, queue_node);
1714 		list_del(&slot->queue_node);
1715 		dev_vdbg(host->dev, "list not empty: %s is next\n",
1716 			 mmc_hostname(slot->mmc));
1717 		host->state = STATE_SENDING_CMD;
1718 		dw_mci_start_request(host, slot);
1719 	} else {
1720 		dev_vdbg(host->dev, "list empty\n");
1721 
1722 		if (host->state == STATE_SENDING_CMD11)
1723 			host->state = STATE_WAITING_CMD11_DONE;
1724 		else
1725 			host->state = STATE_IDLE;
1726 	}
1727 
1728 	spin_unlock(&host->lock);
1729 	mmc_request_done(prev_mmc, mrq);
1730 	spin_lock(&host->lock);
1731 }
1732 
1733 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1734 {
1735 	u32 status = host->cmd_status;
1736 
1737 	host->cmd_status = 0;
1738 
1739 	/* Read the response from the card (up to 16 bytes) */
1740 	if (cmd->flags & MMC_RSP_PRESENT) {
1741 		if (cmd->flags & MMC_RSP_136) {
1742 			cmd->resp[3] = mci_readl(host, RESP0);
1743 			cmd->resp[2] = mci_readl(host, RESP1);
1744 			cmd->resp[1] = mci_readl(host, RESP2);
1745 			cmd->resp[0] = mci_readl(host, RESP3);
1746 		} else {
1747 			cmd->resp[0] = mci_readl(host, RESP0);
1748 			cmd->resp[1] = 0;
1749 			cmd->resp[2] = 0;
1750 			cmd->resp[3] = 0;
1751 		}
1752 	}
1753 
1754 	if (status & SDMMC_INT_RTO)
1755 		cmd->error = -ETIMEDOUT;
1756 	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1757 		cmd->error = -EILSEQ;
1758 	else if (status & SDMMC_INT_RESP_ERR)
1759 		cmd->error = -EIO;
1760 	else
1761 		cmd->error = 0;
1762 
1763 	return cmd->error;
1764 }
1765 
1766 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1767 {
1768 	u32 status = host->data_status;
1769 
1770 	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1771 		if (status & SDMMC_INT_DRTO) {
1772 			data->error = -ETIMEDOUT;
1773 		} else if (status & SDMMC_INT_DCRC) {
1774 			data->error = -EILSEQ;
1775 		} else if (status & SDMMC_INT_EBE) {
1776 			if (host->dir_status ==
1777 				DW_MCI_SEND_STATUS) {
1778 				/*
1779 				 * No data CRC status was returned.
1780 				 * The number of bytes transferred
1781 				 * will be exaggerated in PIO mode.
1782 				 */
1783 				data->bytes_xfered = 0;
1784 				data->error = -ETIMEDOUT;
1785 			} else if (host->dir_status ==
1786 					DW_MCI_RECV_STATUS) {
1787 				data->error = -EILSEQ;
1788 			}
1789 		} else {
1790 			/* SDMMC_INT_SBE is included */
1791 			data->error = -EILSEQ;
1792 		}
1793 
1794 		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1795 
1796 		/*
1797 		 * After an error, there may be data lingering
1798 		 * in the FIFO
1799 		 */
1800 		dw_mci_reset(host);
1801 	} else {
1802 		data->bytes_xfered = data->blocks * data->blksz;
1803 		data->error = 0;
1804 	}
1805 
1806 	return data->error;
1807 }
1808 
1809 static void dw_mci_set_drto(struct dw_mci *host)
1810 {
1811 	unsigned int drto_clks;
1812 	unsigned int drto_ms;
1813 
1814 	drto_clks = mci_readl(host, TMOUT) >> 8;
1815 	drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
1816 
1817 	/* add a bit spare time */
1818 	drto_ms += 10;
1819 
1820 	mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1821 }
1822 
1823 static void dw_mci_tasklet_func(unsigned long priv)
1824 {
1825 	struct dw_mci *host = (struct dw_mci *)priv;
1826 	struct mmc_data	*data;
1827 	struct mmc_command *cmd;
1828 	struct mmc_request *mrq;
1829 	enum dw_mci_state state;
1830 	enum dw_mci_state prev_state;
1831 	unsigned int err;
1832 
1833 	spin_lock(&host->lock);
1834 
1835 	state = host->state;
1836 	data = host->data;
1837 	mrq = host->mrq;
1838 
1839 	do {
1840 		prev_state = state;
1841 
1842 		switch (state) {
1843 		case STATE_IDLE:
1844 		case STATE_WAITING_CMD11_DONE:
1845 			break;
1846 
1847 		case STATE_SENDING_CMD11:
1848 		case STATE_SENDING_CMD:
1849 			if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1850 						&host->pending_events))
1851 				break;
1852 
1853 			cmd = host->cmd;
1854 			host->cmd = NULL;
1855 			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1856 			err = dw_mci_command_complete(host, cmd);
1857 			if (cmd == mrq->sbc && !err) {
1858 				prev_state = state = STATE_SENDING_CMD;
1859 				__dw_mci_start_request(host, host->cur_slot,
1860 						       mrq->cmd);
1861 				goto unlock;
1862 			}
1863 
1864 			if (cmd->data && err) {
1865 				/*
1866 				 * During UHS tuning sequence, sending the stop
1867 				 * command after the response CRC error would
1868 				 * throw the system into a confused state
1869 				 * causing all future tuning phases to report
1870 				 * failure.
1871 				 *
1872 				 * In such case controller will move into a data
1873 				 * transfer state after a response error or
1874 				 * response CRC error. Let's let that finish
1875 				 * before trying to send a stop, so we'll go to
1876 				 * STATE_SENDING_DATA.
1877 				 *
1878 				 * Although letting the data transfer take place
1879 				 * will waste a bit of time (we already know
1880 				 * the command was bad), it can't cause any
1881 				 * errors since it's possible it would have
1882 				 * taken place anyway if this tasklet got
1883 				 * delayed. Allowing the transfer to take place
1884 				 * avoids races and keeps things simple.
1885 				 */
1886 				if ((err != -ETIMEDOUT) &&
1887 				    (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
1888 					state = STATE_SENDING_DATA;
1889 					continue;
1890 				}
1891 
1892 				dw_mci_stop_dma(host);
1893 				send_stop_abort(host, data);
1894 				state = STATE_SENDING_STOP;
1895 				break;
1896 			}
1897 
1898 			if (!cmd->data || err) {
1899 				dw_mci_request_end(host, mrq);
1900 				goto unlock;
1901 			}
1902 
1903 			prev_state = state = STATE_SENDING_DATA;
1904 			/* fall through */
1905 
1906 		case STATE_SENDING_DATA:
1907 			/*
1908 			 * We could get a data error and never a transfer
1909 			 * complete so we'd better check for it here.
1910 			 *
1911 			 * Note that we don't really care if we also got a
1912 			 * transfer complete; stopping the DMA and sending an
1913 			 * abort won't hurt.
1914 			 */
1915 			if (test_and_clear_bit(EVENT_DATA_ERROR,
1916 					       &host->pending_events)) {
1917 				dw_mci_stop_dma(host);
1918 				if (!(host->data_status & (SDMMC_INT_DRTO |
1919 							   SDMMC_INT_EBE)))
1920 					send_stop_abort(host, data);
1921 				state = STATE_DATA_ERROR;
1922 				break;
1923 			}
1924 
1925 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1926 						&host->pending_events)) {
1927 				/*
1928 				 * If all data-related interrupts don't come
1929 				 * within the given time in reading data state.
1930 				 */
1931 				if (host->dir_status == DW_MCI_RECV_STATUS)
1932 					dw_mci_set_drto(host);
1933 				break;
1934 			}
1935 
1936 			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
1937 
1938 			/*
1939 			 * Handle an EVENT_DATA_ERROR that might have shown up
1940 			 * before the transfer completed.  This might not have
1941 			 * been caught by the check above because the interrupt
1942 			 * could have gone off between the previous check and
1943 			 * the check for transfer complete.
1944 			 *
1945 			 * Technically this ought not be needed assuming we
1946 			 * get a DATA_COMPLETE eventually (we'll notice the
1947 			 * error and end the request), but it shouldn't hurt.
1948 			 *
1949 			 * This has the advantage of sending the stop command.
1950 			 */
1951 			if (test_and_clear_bit(EVENT_DATA_ERROR,
1952 					       &host->pending_events)) {
1953 				dw_mci_stop_dma(host);
1954 				if (!(host->data_status & (SDMMC_INT_DRTO |
1955 							   SDMMC_INT_EBE)))
1956 					send_stop_abort(host, data);
1957 				state = STATE_DATA_ERROR;
1958 				break;
1959 			}
1960 			prev_state = state = STATE_DATA_BUSY;
1961 
1962 			/* fall through */
1963 
1964 		case STATE_DATA_BUSY:
1965 			if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
1966 						&host->pending_events)) {
1967 				/*
1968 				 * If data error interrupt comes but data over
1969 				 * interrupt doesn't come within the given time.
1970 				 * in reading data state.
1971 				 */
1972 				if (host->dir_status == DW_MCI_RECV_STATUS)
1973 					dw_mci_set_drto(host);
1974 				break;
1975 			}
1976 
1977 			host->data = NULL;
1978 			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
1979 			err = dw_mci_data_complete(host, data);
1980 
1981 			if (!err) {
1982 				if (!data->stop || mrq->sbc) {
1983 					if (mrq->sbc && data->stop)
1984 						data->stop->error = 0;
1985 					dw_mci_request_end(host, mrq);
1986 					goto unlock;
1987 				}
1988 
1989 				/* stop command for open-ended transfer*/
1990 				if (data->stop)
1991 					send_stop_abort(host, data);
1992 			} else {
1993 				/*
1994 				 * If we don't have a command complete now we'll
1995 				 * never get one since we just reset everything;
1996 				 * better end the request.
1997 				 *
1998 				 * If we do have a command complete we'll fall
1999 				 * through to the SENDING_STOP command and
2000 				 * everything will be peachy keen.
2001 				 */
2002 				if (!test_bit(EVENT_CMD_COMPLETE,
2003 					      &host->pending_events)) {
2004 					host->cmd = NULL;
2005 					dw_mci_request_end(host, mrq);
2006 					goto unlock;
2007 				}
2008 			}
2009 
2010 			/*
2011 			 * If err has non-zero,
2012 			 * stop-abort command has been already issued.
2013 			 */
2014 			prev_state = state = STATE_SENDING_STOP;
2015 
2016 			/* fall through */
2017 
2018 		case STATE_SENDING_STOP:
2019 			if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
2020 						&host->pending_events))
2021 				break;
2022 
2023 			/* CMD error in data command */
2024 			if (mrq->cmd->error && mrq->data)
2025 				dw_mci_reset(host);
2026 
2027 			host->cmd = NULL;
2028 			host->data = NULL;
2029 
2030 			if (!mrq->sbc && mrq->stop)
2031 				dw_mci_command_complete(host, mrq->stop);
2032 			else
2033 				host->cmd_status = 0;
2034 
2035 			dw_mci_request_end(host, mrq);
2036 			goto unlock;
2037 
2038 		case STATE_DATA_ERROR:
2039 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2040 						&host->pending_events))
2041 				break;
2042 
2043 			state = STATE_DATA_BUSY;
2044 			break;
2045 		}
2046 	} while (state != prev_state);
2047 
2048 	host->state = state;
2049 unlock:
2050 	spin_unlock(&host->lock);
2051 
2052 }
2053 
2054 /* push final bytes to part_buf, only use during push */
2055 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2056 {
2057 	memcpy((void *)&host->part_buf, buf, cnt);
2058 	host->part_buf_count = cnt;
2059 }
2060 
2061 /* append bytes to part_buf, only use during push */
2062 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2063 {
2064 	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2065 	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2066 	host->part_buf_count += cnt;
2067 	return cnt;
2068 }
2069 
2070 /* pull first bytes from part_buf, only use during pull */
2071 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2072 {
2073 	cnt = min_t(int, cnt, host->part_buf_count);
2074 	if (cnt) {
2075 		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2076 		       cnt);
2077 		host->part_buf_count -= cnt;
2078 		host->part_buf_start += cnt;
2079 	}
2080 	return cnt;
2081 }
2082 
2083 /* pull final bytes from the part_buf, assuming it's just been filled */
2084 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2085 {
2086 	memcpy(buf, &host->part_buf, cnt);
2087 	host->part_buf_start = cnt;
2088 	host->part_buf_count = (1 << host->data_shift) - cnt;
2089 }
2090 
2091 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2092 {
2093 	struct mmc_data *data = host->data;
2094 	int init_cnt = cnt;
2095 
2096 	/* try and push anything in the part_buf */
2097 	if (unlikely(host->part_buf_count)) {
2098 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2099 
2100 		buf += len;
2101 		cnt -= len;
2102 		if (host->part_buf_count == 2) {
2103 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2104 			host->part_buf_count = 0;
2105 		}
2106 	}
2107 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2108 	if (unlikely((unsigned long)buf & 0x1)) {
2109 		while (cnt >= 2) {
2110 			u16 aligned_buf[64];
2111 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2112 			int items = len >> 1;
2113 			int i;
2114 			/* memcpy from input buffer into aligned buffer */
2115 			memcpy(aligned_buf, buf, len);
2116 			buf += len;
2117 			cnt -= len;
2118 			/* push data from aligned buffer into fifo */
2119 			for (i = 0; i < items; ++i)
2120 				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2121 		}
2122 	} else
2123 #endif
2124 	{
2125 		u16 *pdata = buf;
2126 
2127 		for (; cnt >= 2; cnt -= 2)
2128 			mci_fifo_writew(host->fifo_reg, *pdata++);
2129 		buf = pdata;
2130 	}
2131 	/* put anything remaining in the part_buf */
2132 	if (cnt) {
2133 		dw_mci_set_part_bytes(host, buf, cnt);
2134 		 /* Push data if we have reached the expected data length */
2135 		if ((data->bytes_xfered + init_cnt) ==
2136 		    (data->blksz * data->blocks))
2137 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2138 	}
2139 }
2140 
2141 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2142 {
2143 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2144 	if (unlikely((unsigned long)buf & 0x1)) {
2145 		while (cnt >= 2) {
2146 			/* pull data from fifo into aligned buffer */
2147 			u16 aligned_buf[64];
2148 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2149 			int items = len >> 1;
2150 			int i;
2151 
2152 			for (i = 0; i < items; ++i)
2153 				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2154 			/* memcpy from aligned buffer into output buffer */
2155 			memcpy(buf, aligned_buf, len);
2156 			buf += len;
2157 			cnt -= len;
2158 		}
2159 	} else
2160 #endif
2161 	{
2162 		u16 *pdata = buf;
2163 
2164 		for (; cnt >= 2; cnt -= 2)
2165 			*pdata++ = mci_fifo_readw(host->fifo_reg);
2166 		buf = pdata;
2167 	}
2168 	if (cnt) {
2169 		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2170 		dw_mci_pull_final_bytes(host, buf, cnt);
2171 	}
2172 }
2173 
2174 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2175 {
2176 	struct mmc_data *data = host->data;
2177 	int init_cnt = cnt;
2178 
2179 	/* try and push anything in the part_buf */
2180 	if (unlikely(host->part_buf_count)) {
2181 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2182 
2183 		buf += len;
2184 		cnt -= len;
2185 		if (host->part_buf_count == 4) {
2186 			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2187 			host->part_buf_count = 0;
2188 		}
2189 	}
2190 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2191 	if (unlikely((unsigned long)buf & 0x3)) {
2192 		while (cnt >= 4) {
2193 			u32 aligned_buf[32];
2194 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2195 			int items = len >> 2;
2196 			int i;
2197 			/* memcpy from input buffer into aligned buffer */
2198 			memcpy(aligned_buf, buf, len);
2199 			buf += len;
2200 			cnt -= len;
2201 			/* push data from aligned buffer into fifo */
2202 			for (i = 0; i < items; ++i)
2203 				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2204 		}
2205 	} else
2206 #endif
2207 	{
2208 		u32 *pdata = buf;
2209 
2210 		for (; cnt >= 4; cnt -= 4)
2211 			mci_fifo_writel(host->fifo_reg, *pdata++);
2212 		buf = pdata;
2213 	}
2214 	/* put anything remaining in the part_buf */
2215 	if (cnt) {
2216 		dw_mci_set_part_bytes(host, buf, cnt);
2217 		 /* Push data if we have reached the expected data length */
2218 		if ((data->bytes_xfered + init_cnt) ==
2219 		    (data->blksz * data->blocks))
2220 			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2221 	}
2222 }
2223 
2224 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2225 {
2226 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2227 	if (unlikely((unsigned long)buf & 0x3)) {
2228 		while (cnt >= 4) {
2229 			/* pull data from fifo into aligned buffer */
2230 			u32 aligned_buf[32];
2231 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2232 			int items = len >> 2;
2233 			int i;
2234 
2235 			for (i = 0; i < items; ++i)
2236 				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2237 			/* memcpy from aligned buffer into output buffer */
2238 			memcpy(buf, aligned_buf, len);
2239 			buf += len;
2240 			cnt -= len;
2241 		}
2242 	} else
2243 #endif
2244 	{
2245 		u32 *pdata = buf;
2246 
2247 		for (; cnt >= 4; cnt -= 4)
2248 			*pdata++ = mci_fifo_readl(host->fifo_reg);
2249 		buf = pdata;
2250 	}
2251 	if (cnt) {
2252 		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2253 		dw_mci_pull_final_bytes(host, buf, cnt);
2254 	}
2255 }
2256 
2257 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2258 {
2259 	struct mmc_data *data = host->data;
2260 	int init_cnt = cnt;
2261 
2262 	/* try and push anything in the part_buf */
2263 	if (unlikely(host->part_buf_count)) {
2264 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2265 
2266 		buf += len;
2267 		cnt -= len;
2268 
2269 		if (host->part_buf_count == 8) {
2270 			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2271 			host->part_buf_count = 0;
2272 		}
2273 	}
2274 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2275 	if (unlikely((unsigned long)buf & 0x7)) {
2276 		while (cnt >= 8) {
2277 			u64 aligned_buf[16];
2278 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2279 			int items = len >> 3;
2280 			int i;
2281 			/* memcpy from input buffer into aligned buffer */
2282 			memcpy(aligned_buf, buf, len);
2283 			buf += len;
2284 			cnt -= len;
2285 			/* push data from aligned buffer into fifo */
2286 			for (i = 0; i < items; ++i)
2287 				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2288 		}
2289 	} else
2290 #endif
2291 	{
2292 		u64 *pdata = buf;
2293 
2294 		for (; cnt >= 8; cnt -= 8)
2295 			mci_fifo_writeq(host->fifo_reg, *pdata++);
2296 		buf = pdata;
2297 	}
2298 	/* put anything remaining in the part_buf */
2299 	if (cnt) {
2300 		dw_mci_set_part_bytes(host, buf, cnt);
2301 		/* Push data if we have reached the expected data length */
2302 		if ((data->bytes_xfered + init_cnt) ==
2303 		    (data->blksz * data->blocks))
2304 			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2305 	}
2306 }
2307 
2308 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2309 {
2310 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2311 	if (unlikely((unsigned long)buf & 0x7)) {
2312 		while (cnt >= 8) {
2313 			/* pull data from fifo into aligned buffer */
2314 			u64 aligned_buf[16];
2315 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2316 			int items = len >> 3;
2317 			int i;
2318 
2319 			for (i = 0; i < items; ++i)
2320 				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2321 
2322 			/* memcpy from aligned buffer into output buffer */
2323 			memcpy(buf, aligned_buf, len);
2324 			buf += len;
2325 			cnt -= len;
2326 		}
2327 	} else
2328 #endif
2329 	{
2330 		u64 *pdata = buf;
2331 
2332 		for (; cnt >= 8; cnt -= 8)
2333 			*pdata++ = mci_fifo_readq(host->fifo_reg);
2334 		buf = pdata;
2335 	}
2336 	if (cnt) {
2337 		host->part_buf = mci_fifo_readq(host->fifo_reg);
2338 		dw_mci_pull_final_bytes(host, buf, cnt);
2339 	}
2340 }
2341 
2342 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2343 {
2344 	int len;
2345 
2346 	/* get remaining partial bytes */
2347 	len = dw_mci_pull_part_bytes(host, buf, cnt);
2348 	if (unlikely(len == cnt))
2349 		return;
2350 	buf += len;
2351 	cnt -= len;
2352 
2353 	/* get the rest of the data */
2354 	host->pull_data(host, buf, cnt);
2355 }
2356 
2357 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2358 {
2359 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2360 	void *buf;
2361 	unsigned int offset;
2362 	struct mmc_data	*data = host->data;
2363 	int shift = host->data_shift;
2364 	u32 status;
2365 	unsigned int len;
2366 	unsigned int remain, fcnt;
2367 
2368 	do {
2369 		if (!sg_miter_next(sg_miter))
2370 			goto done;
2371 
2372 		host->sg = sg_miter->piter.sg;
2373 		buf = sg_miter->addr;
2374 		remain = sg_miter->length;
2375 		offset = 0;
2376 
2377 		do {
2378 			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2379 					<< shift) + host->part_buf_count;
2380 			len = min(remain, fcnt);
2381 			if (!len)
2382 				break;
2383 			dw_mci_pull_data(host, (void *)(buf + offset), len);
2384 			data->bytes_xfered += len;
2385 			offset += len;
2386 			remain -= len;
2387 		} while (remain);
2388 
2389 		sg_miter->consumed = offset;
2390 		status = mci_readl(host, MINTSTS);
2391 		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2392 	/* if the RXDR is ready read again */
2393 	} while ((status & SDMMC_INT_RXDR) ||
2394 		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2395 
2396 	if (!remain) {
2397 		if (!sg_miter_next(sg_miter))
2398 			goto done;
2399 		sg_miter->consumed = 0;
2400 	}
2401 	sg_miter_stop(sg_miter);
2402 	return;
2403 
2404 done:
2405 	sg_miter_stop(sg_miter);
2406 	host->sg = NULL;
2407 	smp_wmb(); /* drain writebuffer */
2408 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2409 }
2410 
2411 static void dw_mci_write_data_pio(struct dw_mci *host)
2412 {
2413 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2414 	void *buf;
2415 	unsigned int offset;
2416 	struct mmc_data	*data = host->data;
2417 	int shift = host->data_shift;
2418 	u32 status;
2419 	unsigned int len;
2420 	unsigned int fifo_depth = host->fifo_depth;
2421 	unsigned int remain, fcnt;
2422 
2423 	do {
2424 		if (!sg_miter_next(sg_miter))
2425 			goto done;
2426 
2427 		host->sg = sg_miter->piter.sg;
2428 		buf = sg_miter->addr;
2429 		remain = sg_miter->length;
2430 		offset = 0;
2431 
2432 		do {
2433 			fcnt = ((fifo_depth -
2434 				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2435 					<< shift) - host->part_buf_count;
2436 			len = min(remain, fcnt);
2437 			if (!len)
2438 				break;
2439 			host->push_data(host, (void *)(buf + offset), len);
2440 			data->bytes_xfered += len;
2441 			offset += len;
2442 			remain -= len;
2443 		} while (remain);
2444 
2445 		sg_miter->consumed = offset;
2446 		status = mci_readl(host, MINTSTS);
2447 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2448 	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2449 
2450 	if (!remain) {
2451 		if (!sg_miter_next(sg_miter))
2452 			goto done;
2453 		sg_miter->consumed = 0;
2454 	}
2455 	sg_miter_stop(sg_miter);
2456 	return;
2457 
2458 done:
2459 	sg_miter_stop(sg_miter);
2460 	host->sg = NULL;
2461 	smp_wmb(); /* drain writebuffer */
2462 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2463 }
2464 
2465 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2466 {
2467 	if (!host->cmd_status)
2468 		host->cmd_status = status;
2469 
2470 	smp_wmb(); /* drain writebuffer */
2471 
2472 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2473 	tasklet_schedule(&host->tasklet);
2474 }
2475 
2476 static void dw_mci_handle_cd(struct dw_mci *host)
2477 {
2478 	int i;
2479 
2480 	for (i = 0; i < host->num_slots; i++) {
2481 		struct dw_mci_slot *slot = host->slot[i];
2482 
2483 		if (!slot)
2484 			continue;
2485 
2486 		if (slot->mmc->ops->card_event)
2487 			slot->mmc->ops->card_event(slot->mmc);
2488 		mmc_detect_change(slot->mmc,
2489 			msecs_to_jiffies(host->pdata->detect_delay_ms));
2490 	}
2491 }
2492 
2493 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2494 {
2495 	struct dw_mci *host = dev_id;
2496 	u32 pending;
2497 	int i;
2498 
2499 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2500 
2501 	if (pending) {
2502 		/* Check volt switch first, since it can look like an error */
2503 		if ((host->state == STATE_SENDING_CMD11) &&
2504 		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2505 			unsigned long irqflags;
2506 
2507 			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2508 			pending &= ~SDMMC_INT_VOLT_SWITCH;
2509 
2510 			/*
2511 			 * Hold the lock; we know cmd11_timer can't be kicked
2512 			 * off after the lock is released, so safe to delete.
2513 			 */
2514 			spin_lock_irqsave(&host->irq_lock, irqflags);
2515 			dw_mci_cmd_interrupt(host, pending);
2516 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2517 
2518 			del_timer(&host->cmd11_timer);
2519 		}
2520 
2521 		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2522 			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2523 			host->cmd_status = pending;
2524 			smp_wmb(); /* drain writebuffer */
2525 			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2526 		}
2527 
2528 		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2529 			/* if there is an error report DATA_ERROR */
2530 			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2531 			host->data_status = pending;
2532 			smp_wmb(); /* drain writebuffer */
2533 			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2534 			tasklet_schedule(&host->tasklet);
2535 		}
2536 
2537 		if (pending & SDMMC_INT_DATA_OVER) {
2538 			del_timer(&host->dto_timer);
2539 
2540 			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2541 			if (!host->data_status)
2542 				host->data_status = pending;
2543 			smp_wmb(); /* drain writebuffer */
2544 			if (host->dir_status == DW_MCI_RECV_STATUS) {
2545 				if (host->sg != NULL)
2546 					dw_mci_read_data_pio(host, true);
2547 			}
2548 			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2549 			tasklet_schedule(&host->tasklet);
2550 		}
2551 
2552 		if (pending & SDMMC_INT_RXDR) {
2553 			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2554 			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2555 				dw_mci_read_data_pio(host, false);
2556 		}
2557 
2558 		if (pending & SDMMC_INT_TXDR) {
2559 			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2560 			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2561 				dw_mci_write_data_pio(host);
2562 		}
2563 
2564 		if (pending & SDMMC_INT_CMD_DONE) {
2565 			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2566 			dw_mci_cmd_interrupt(host, pending);
2567 		}
2568 
2569 		if (pending & SDMMC_INT_CD) {
2570 			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2571 			dw_mci_handle_cd(host);
2572 		}
2573 
2574 		/* Handle SDIO Interrupts */
2575 		for (i = 0; i < host->num_slots; i++) {
2576 			struct dw_mci_slot *slot = host->slot[i];
2577 
2578 			if (!slot)
2579 				continue;
2580 
2581 			if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2582 				mci_writel(host, RINTSTS,
2583 					   SDMMC_INT_SDIO(slot->sdio_id));
2584 				mmc_signal_sdio_irq(slot->mmc);
2585 			}
2586 		}
2587 
2588 	}
2589 
2590 	if (host->use_dma != TRANS_MODE_IDMAC)
2591 		return IRQ_HANDLED;
2592 
2593 	/* Handle IDMA interrupts */
2594 	if (host->dma_64bit_address == 1) {
2595 		pending = mci_readl(host, IDSTS64);
2596 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2597 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2598 							SDMMC_IDMAC_INT_RI);
2599 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2600 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2601 				host->dma_ops->complete((void *)host);
2602 		}
2603 	} else {
2604 		pending = mci_readl(host, IDSTS);
2605 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2606 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2607 							SDMMC_IDMAC_INT_RI);
2608 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2609 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2610 				host->dma_ops->complete((void *)host);
2611 		}
2612 	}
2613 
2614 	return IRQ_HANDLED;
2615 }
2616 
2617 static int dw_mci_init_slot(struct dw_mci *host, unsigned int id)
2618 {
2619 	struct mmc_host *mmc;
2620 	struct dw_mci_slot *slot;
2621 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2622 	int ctrl_id, ret;
2623 	u32 freq[2];
2624 
2625 	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2626 	if (!mmc)
2627 		return -ENOMEM;
2628 
2629 	slot = mmc_priv(mmc);
2630 	slot->id = id;
2631 	slot->sdio_id = host->sdio_id0 + id;
2632 	slot->mmc = mmc;
2633 	slot->host = host;
2634 	host->slot[id] = slot;
2635 
2636 	mmc->ops = &dw_mci_ops;
2637 	if (of_property_read_u32_array(host->dev->of_node,
2638 				       "clock-freq-min-max", freq, 2)) {
2639 		mmc->f_min = DW_MCI_FREQ_MIN;
2640 		mmc->f_max = DW_MCI_FREQ_MAX;
2641 	} else {
2642 		dev_info(host->dev,
2643 			"'clock-freq-min-max' property was deprecated.\n");
2644 		mmc->f_min = freq[0];
2645 		mmc->f_max = freq[1];
2646 	}
2647 
2648 	/*if there are external regulators, get them*/
2649 	ret = mmc_regulator_get_supply(mmc);
2650 	if (ret == -EPROBE_DEFER)
2651 		goto err_host_allocated;
2652 
2653 	if (!mmc->ocr_avail)
2654 		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2655 
2656 	if (host->pdata->caps)
2657 		mmc->caps = host->pdata->caps;
2658 
2659 	/*
2660 	 * Support MMC_CAP_ERASE by default.
2661 	 * It needs to use trim/discard/erase commands.
2662 	 */
2663 	mmc->caps |= MMC_CAP_ERASE;
2664 
2665 	if (host->pdata->pm_caps)
2666 		mmc->pm_caps = host->pdata->pm_caps;
2667 
2668 	if (host->dev->of_node) {
2669 		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2670 		if (ctrl_id < 0)
2671 			ctrl_id = 0;
2672 	} else {
2673 		ctrl_id = to_platform_device(host->dev)->id;
2674 	}
2675 	if (drv_data && drv_data->caps)
2676 		mmc->caps |= drv_data->caps[ctrl_id];
2677 
2678 	if (host->pdata->caps2)
2679 		mmc->caps2 = host->pdata->caps2;
2680 
2681 	ret = mmc_of_parse(mmc);
2682 	if (ret)
2683 		goto err_host_allocated;
2684 
2685 	/* Useful defaults if platform data is unset. */
2686 	if (host->use_dma == TRANS_MODE_IDMAC) {
2687 		mmc->max_segs = host->ring_size;
2688 		mmc->max_blk_size = 65535;
2689 		mmc->max_seg_size = 0x1000;
2690 		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2691 		mmc->max_blk_count = mmc->max_req_size / 512;
2692 	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2693 		mmc->max_segs = 64;
2694 		mmc->max_blk_size = 65535;
2695 		mmc->max_blk_count = 65535;
2696 		mmc->max_req_size =
2697 				mmc->max_blk_size * mmc->max_blk_count;
2698 		mmc->max_seg_size = mmc->max_req_size;
2699 	} else {
2700 		/* TRANS_MODE_PIO */
2701 		mmc->max_segs = 64;
2702 		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2703 		mmc->max_blk_count = 512;
2704 		mmc->max_req_size = mmc->max_blk_size *
2705 				    mmc->max_blk_count;
2706 		mmc->max_seg_size = mmc->max_req_size;
2707 	}
2708 
2709 	dw_mci_get_cd(mmc);
2710 
2711 	ret = mmc_add_host(mmc);
2712 	if (ret)
2713 		goto err_host_allocated;
2714 
2715 #if defined(CONFIG_DEBUG_FS)
2716 	dw_mci_init_debugfs(slot);
2717 #endif
2718 
2719 	return 0;
2720 
2721 err_host_allocated:
2722 	mmc_free_host(mmc);
2723 	return ret;
2724 }
2725 
2726 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot, unsigned int id)
2727 {
2728 	/* Debugfs stuff is cleaned up by mmc core */
2729 	mmc_remove_host(slot->mmc);
2730 	slot->host->slot[id] = NULL;
2731 	mmc_free_host(slot->mmc);
2732 }
2733 
2734 static void dw_mci_init_dma(struct dw_mci *host)
2735 {
2736 	int addr_config;
2737 	struct device *dev = host->dev;
2738 	struct device_node *np = dev->of_node;
2739 
2740 	/*
2741 	* Check tansfer mode from HCON[17:16]
2742 	* Clear the ambiguous description of dw_mmc databook:
2743 	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
2744 	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2745 	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2746 	* 2b'11: Non DW DMA Interface -> pio only
2747 	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
2748 	* simpler request/acknowledge handshake mechanism and both of them
2749 	* are regarded as external dma master for dw_mmc.
2750 	*/
2751 	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2752 	if (host->use_dma == DMA_INTERFACE_IDMA) {
2753 		host->use_dma = TRANS_MODE_IDMAC;
2754 	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2755 		   host->use_dma == DMA_INTERFACE_GDMA) {
2756 		host->use_dma = TRANS_MODE_EDMAC;
2757 	} else {
2758 		goto no_dma;
2759 	}
2760 
2761 	/* Determine which DMA interface to use */
2762 	if (host->use_dma == TRANS_MODE_IDMAC) {
2763 		/*
2764 		* Check ADDR_CONFIG bit in HCON to find
2765 		* IDMAC address bus width
2766 		*/
2767 		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2768 
2769 		if (addr_config == 1) {
2770 			/* host supports IDMAC in 64-bit address mode */
2771 			host->dma_64bit_address = 1;
2772 			dev_info(host->dev,
2773 				 "IDMAC supports 64-bit address mode.\n");
2774 			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2775 				dma_set_coherent_mask(host->dev,
2776 						      DMA_BIT_MASK(64));
2777 		} else {
2778 			/* host supports IDMAC in 32-bit address mode */
2779 			host->dma_64bit_address = 0;
2780 			dev_info(host->dev,
2781 				 "IDMAC supports 32-bit address mode.\n");
2782 		}
2783 
2784 		/* Alloc memory for sg translation */
2785 		host->sg_cpu = dmam_alloc_coherent(host->dev,
2786 						   DESC_RING_BUF_SZ,
2787 						   &host->sg_dma, GFP_KERNEL);
2788 		if (!host->sg_cpu) {
2789 			dev_err(host->dev,
2790 				"%s: could not alloc DMA memory\n",
2791 				__func__);
2792 			goto no_dma;
2793 		}
2794 
2795 		host->dma_ops = &dw_mci_idmac_ops;
2796 		dev_info(host->dev, "Using internal DMA controller.\n");
2797 	} else {
2798 		/* TRANS_MODE_EDMAC: check dma bindings again */
2799 		if ((of_property_count_strings(np, "dma-names") < 0) ||
2800 		    (!of_find_property(np, "dmas", NULL))) {
2801 			goto no_dma;
2802 		}
2803 		host->dma_ops = &dw_mci_edmac_ops;
2804 		dev_info(host->dev, "Using external DMA controller.\n");
2805 	}
2806 
2807 	if (host->dma_ops->init && host->dma_ops->start &&
2808 	    host->dma_ops->stop && host->dma_ops->cleanup) {
2809 		if (host->dma_ops->init(host)) {
2810 			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2811 				__func__);
2812 			goto no_dma;
2813 		}
2814 	} else {
2815 		dev_err(host->dev, "DMA initialization not found.\n");
2816 		goto no_dma;
2817 	}
2818 
2819 	return;
2820 
2821 no_dma:
2822 	dev_info(host->dev, "Using PIO mode.\n");
2823 	host->use_dma = TRANS_MODE_PIO;
2824 }
2825 
2826 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
2827 {
2828 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
2829 	u32 ctrl;
2830 
2831 	ctrl = mci_readl(host, CTRL);
2832 	ctrl |= reset;
2833 	mci_writel(host, CTRL, ctrl);
2834 
2835 	/* wait till resets clear */
2836 	do {
2837 		ctrl = mci_readl(host, CTRL);
2838 		if (!(ctrl & reset))
2839 			return true;
2840 	} while (time_before(jiffies, timeout));
2841 
2842 	dev_err(host->dev,
2843 		"Timeout resetting block (ctrl reset %#x)\n",
2844 		ctrl & reset);
2845 
2846 	return false;
2847 }
2848 
2849 static bool dw_mci_reset(struct dw_mci *host)
2850 {
2851 	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
2852 	bool ret = false;
2853 
2854 	/*
2855 	 * Reseting generates a block interrupt, hence setting
2856 	 * the scatter-gather pointer to NULL.
2857 	 */
2858 	if (host->sg) {
2859 		sg_miter_stop(&host->sg_miter);
2860 		host->sg = NULL;
2861 	}
2862 
2863 	if (host->use_dma)
2864 		flags |= SDMMC_CTRL_DMA_RESET;
2865 
2866 	if (dw_mci_ctrl_reset(host, flags)) {
2867 		/*
2868 		 * In all cases we clear the RAWINTS register to clear any
2869 		 * interrupts.
2870 		 */
2871 		mci_writel(host, RINTSTS, 0xFFFFFFFF);
2872 
2873 		/* if using dma we wait for dma_req to clear */
2874 		if (host->use_dma) {
2875 			unsigned long timeout = jiffies + msecs_to_jiffies(500);
2876 			u32 status;
2877 
2878 			do {
2879 				status = mci_readl(host, STATUS);
2880 				if (!(status & SDMMC_STATUS_DMA_REQ))
2881 					break;
2882 				cpu_relax();
2883 			} while (time_before(jiffies, timeout));
2884 
2885 			if (status & SDMMC_STATUS_DMA_REQ) {
2886 				dev_err(host->dev,
2887 					"%s: Timeout waiting for dma_req to clear during reset\n",
2888 					__func__);
2889 				goto ciu_out;
2890 			}
2891 
2892 			/* when using DMA next we reset the fifo again */
2893 			if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
2894 				goto ciu_out;
2895 		}
2896 	} else {
2897 		/* if the controller reset bit did clear, then set clock regs */
2898 		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
2899 			dev_err(host->dev,
2900 				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
2901 				__func__);
2902 			goto ciu_out;
2903 		}
2904 	}
2905 
2906 	if (host->use_dma == TRANS_MODE_IDMAC)
2907 		/* It is also recommended that we reset and reprogram idmac */
2908 		dw_mci_idmac_reset(host);
2909 
2910 	ret = true;
2911 
2912 ciu_out:
2913 	/* After a CTRL reset we need to have CIU set clock registers  */
2914 	mci_send_cmd(host->cur_slot, SDMMC_CMD_UPD_CLK, 0);
2915 
2916 	return ret;
2917 }
2918 
2919 static void dw_mci_cmd11_timer(unsigned long arg)
2920 {
2921 	struct dw_mci *host = (struct dw_mci *)arg;
2922 
2923 	if (host->state != STATE_SENDING_CMD11) {
2924 		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2925 		return;
2926 	}
2927 
2928 	host->cmd_status = SDMMC_INT_RTO;
2929 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2930 	tasklet_schedule(&host->tasklet);
2931 }
2932 
2933 static void dw_mci_dto_timer(unsigned long arg)
2934 {
2935 	struct dw_mci *host = (struct dw_mci *)arg;
2936 
2937 	switch (host->state) {
2938 	case STATE_SENDING_DATA:
2939 	case STATE_DATA_BUSY:
2940 		/*
2941 		 * If DTO interrupt does NOT come in sending data state,
2942 		 * we should notify the driver to terminate current transfer
2943 		 * and report a data timeout to the core.
2944 		 */
2945 		host->data_status = SDMMC_INT_DRTO;
2946 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
2947 		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2948 		tasklet_schedule(&host->tasklet);
2949 		break;
2950 	default:
2951 		break;
2952 	}
2953 }
2954 
2955 #ifdef CONFIG_OF
2956 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2957 {
2958 	struct dw_mci_board *pdata;
2959 	struct device *dev = host->dev;
2960 	struct device_node *np = dev->of_node;
2961 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2962 	int ret;
2963 	u32 clock_frequency;
2964 
2965 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2966 	if (!pdata)
2967 		return ERR_PTR(-ENOMEM);
2968 
2969 	/* find reset controller when exist */
2970 	pdata->rstc = devm_reset_control_get_optional(dev, "reset");
2971 	if (IS_ERR(pdata->rstc)) {
2972 		if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
2973 			return ERR_PTR(-EPROBE_DEFER);
2974 	}
2975 
2976 	/* find out number of slots supported */
2977 	of_property_read_u32(np, "num-slots", &pdata->num_slots);
2978 
2979 	if (of_property_read_u32(np, "fifo-depth", &pdata->fifo_depth))
2980 		dev_info(dev,
2981 			 "fifo-depth property not found, using value of FIFOTH register as default\n");
2982 
2983 	of_property_read_u32(np, "card-detect-delay", &pdata->detect_delay_ms);
2984 
2985 	of_property_read_u32(np, "data-addr", &host->data_addr_override);
2986 
2987 	if (of_get_property(np, "fifo-watermark-aligned", NULL))
2988 		host->wm_aligned = true;
2989 
2990 	if (!of_property_read_u32(np, "clock-frequency", &clock_frequency))
2991 		pdata->bus_hz = clock_frequency;
2992 
2993 	if (drv_data && drv_data->parse_dt) {
2994 		ret = drv_data->parse_dt(host);
2995 		if (ret)
2996 			return ERR_PTR(ret);
2997 	}
2998 
2999 	return pdata;
3000 }
3001 
3002 #else /* CONFIG_OF */
3003 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3004 {
3005 	return ERR_PTR(-EINVAL);
3006 }
3007 #endif /* CONFIG_OF */
3008 
3009 static void dw_mci_enable_cd(struct dw_mci *host)
3010 {
3011 	unsigned long irqflags;
3012 	u32 temp;
3013 	int i;
3014 	struct dw_mci_slot *slot;
3015 
3016 	/*
3017 	 * No need for CD if all slots have a non-error GPIO
3018 	 * as well as broken card detection is found.
3019 	 */
3020 	for (i = 0; i < host->num_slots; i++) {
3021 		slot = host->slot[i];
3022 		if (slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3023 			return;
3024 
3025 		if (mmc_gpio_get_cd(slot->mmc) < 0)
3026 			break;
3027 	}
3028 	if (i == host->num_slots)
3029 		return;
3030 
3031 	spin_lock_irqsave(&host->irq_lock, irqflags);
3032 	temp = mci_readl(host, INTMASK);
3033 	temp  |= SDMMC_INT_CD;
3034 	mci_writel(host, INTMASK, temp);
3035 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3036 }
3037 
3038 int dw_mci_probe(struct dw_mci *host)
3039 {
3040 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3041 	int width, i, ret = 0;
3042 	u32 fifo_size;
3043 	int init_slots = 0;
3044 
3045 	if (!host->pdata) {
3046 		host->pdata = dw_mci_parse_dt(host);
3047 		if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3048 			return -EPROBE_DEFER;
3049 		} else if (IS_ERR(host->pdata)) {
3050 			dev_err(host->dev, "platform data not available\n");
3051 			return -EINVAL;
3052 		}
3053 	}
3054 
3055 	host->biu_clk = devm_clk_get(host->dev, "biu");
3056 	if (IS_ERR(host->biu_clk)) {
3057 		dev_dbg(host->dev, "biu clock not available\n");
3058 	} else {
3059 		ret = clk_prepare_enable(host->biu_clk);
3060 		if (ret) {
3061 			dev_err(host->dev, "failed to enable biu clock\n");
3062 			return ret;
3063 		}
3064 	}
3065 
3066 	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3067 	if (IS_ERR(host->ciu_clk)) {
3068 		dev_dbg(host->dev, "ciu clock not available\n");
3069 		host->bus_hz = host->pdata->bus_hz;
3070 	} else {
3071 		ret = clk_prepare_enable(host->ciu_clk);
3072 		if (ret) {
3073 			dev_err(host->dev, "failed to enable ciu clock\n");
3074 			goto err_clk_biu;
3075 		}
3076 
3077 		if (host->pdata->bus_hz) {
3078 			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3079 			if (ret)
3080 				dev_warn(host->dev,
3081 					 "Unable to set bus rate to %uHz\n",
3082 					 host->pdata->bus_hz);
3083 		}
3084 		host->bus_hz = clk_get_rate(host->ciu_clk);
3085 	}
3086 
3087 	if (!host->bus_hz) {
3088 		dev_err(host->dev,
3089 			"Platform data must supply bus speed\n");
3090 		ret = -ENODEV;
3091 		goto err_clk_ciu;
3092 	}
3093 
3094 	if (drv_data && drv_data->init) {
3095 		ret = drv_data->init(host);
3096 		if (ret) {
3097 			dev_err(host->dev,
3098 				"implementation specific init failed\n");
3099 			goto err_clk_ciu;
3100 		}
3101 	}
3102 
3103 	if (!IS_ERR(host->pdata->rstc)) {
3104 		reset_control_assert(host->pdata->rstc);
3105 		usleep_range(10, 50);
3106 		reset_control_deassert(host->pdata->rstc);
3107 	}
3108 
3109 	setup_timer(&host->cmd11_timer,
3110 		    dw_mci_cmd11_timer, (unsigned long)host);
3111 
3112 	setup_timer(&host->dto_timer,
3113 		    dw_mci_dto_timer, (unsigned long)host);
3114 
3115 	spin_lock_init(&host->lock);
3116 	spin_lock_init(&host->irq_lock);
3117 	INIT_LIST_HEAD(&host->queue);
3118 
3119 	/*
3120 	 * Get the host data width - this assumes that HCON has been set with
3121 	 * the correct values.
3122 	 */
3123 	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3124 	if (!i) {
3125 		host->push_data = dw_mci_push_data16;
3126 		host->pull_data = dw_mci_pull_data16;
3127 		width = 16;
3128 		host->data_shift = 1;
3129 	} else if (i == 2) {
3130 		host->push_data = dw_mci_push_data64;
3131 		host->pull_data = dw_mci_pull_data64;
3132 		width = 64;
3133 		host->data_shift = 3;
3134 	} else {
3135 		/* Check for a reserved value, and warn if it is */
3136 		WARN((i != 1),
3137 		     "HCON reports a reserved host data width!\n"
3138 		     "Defaulting to 32-bit access.\n");
3139 		host->push_data = dw_mci_push_data32;
3140 		host->pull_data = dw_mci_pull_data32;
3141 		width = 32;
3142 		host->data_shift = 2;
3143 	}
3144 
3145 	/* Reset all blocks */
3146 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3147 		ret = -ENODEV;
3148 		goto err_clk_ciu;
3149 	}
3150 
3151 	host->dma_ops = host->pdata->dma_ops;
3152 	dw_mci_init_dma(host);
3153 
3154 	/* Clear the interrupts for the host controller */
3155 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3156 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3157 
3158 	/* Put in max timeout */
3159 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3160 
3161 	/*
3162 	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3163 	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3164 	 */
3165 	if (!host->pdata->fifo_depth) {
3166 		/*
3167 		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3168 		 * have been overwritten by the bootloader, just like we're
3169 		 * about to do, so if you know the value for your hardware, you
3170 		 * should put it in the platform data.
3171 		 */
3172 		fifo_size = mci_readl(host, FIFOTH);
3173 		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3174 	} else {
3175 		fifo_size = host->pdata->fifo_depth;
3176 	}
3177 	host->fifo_depth = fifo_size;
3178 	host->fifoth_val =
3179 		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3180 	mci_writel(host, FIFOTH, host->fifoth_val);
3181 
3182 	/* disable clock to CIU */
3183 	mci_writel(host, CLKENA, 0);
3184 	mci_writel(host, CLKSRC, 0);
3185 
3186 	/*
3187 	 * In 2.40a spec, Data offset is changed.
3188 	 * Need to check the version-id and set data-offset for DATA register.
3189 	 */
3190 	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3191 	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3192 
3193 	if (host->data_addr_override)
3194 		host->fifo_reg = host->regs + host->data_addr_override;
3195 	else if (host->verid < DW_MMC_240A)
3196 		host->fifo_reg = host->regs + DATA_OFFSET;
3197 	else
3198 		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3199 
3200 	tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3201 	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3202 			       host->irq_flags, "dw-mci", host);
3203 	if (ret)
3204 		goto err_dmaunmap;
3205 
3206 	if (host->pdata->num_slots)
3207 		host->num_slots = host->pdata->num_slots;
3208 	else
3209 		host->num_slots = 1;
3210 
3211 	if (host->num_slots < 1 ||
3212 	    host->num_slots > SDMMC_GET_SLOT_NUM(mci_readl(host, HCON))) {
3213 		dev_err(host->dev,
3214 			"Platform data must supply correct num_slots.\n");
3215 		ret = -ENODEV;
3216 		goto err_clk_ciu;
3217 	}
3218 
3219 	/*
3220 	 * Enable interrupts for command done, data over, data empty,
3221 	 * receive ready and error such as transmit, receive timeout, crc error
3222 	 */
3223 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3224 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3225 		   DW_MCI_ERROR_FLAGS);
3226 	/* Enable mci interrupt */
3227 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3228 
3229 	dev_info(host->dev,
3230 		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3231 		 host->irq, width, fifo_size);
3232 
3233 	/* We need at least one slot to succeed */
3234 	for (i = 0; i < host->num_slots; i++) {
3235 		ret = dw_mci_init_slot(host, i);
3236 		if (ret)
3237 			dev_dbg(host->dev, "slot %d init failed\n", i);
3238 		else
3239 			init_slots++;
3240 	}
3241 
3242 	if (init_slots) {
3243 		dev_info(host->dev, "%d slots initialized\n", init_slots);
3244 	} else {
3245 		dev_dbg(host->dev,
3246 			"attempted to initialize %d slots, but failed on all\n",
3247 			host->num_slots);
3248 		goto err_dmaunmap;
3249 	}
3250 
3251 	/* Now that slots are all setup, we can enable card detect */
3252 	dw_mci_enable_cd(host);
3253 
3254 	return 0;
3255 
3256 err_dmaunmap:
3257 	if (host->use_dma && host->dma_ops->exit)
3258 		host->dma_ops->exit(host);
3259 
3260 	if (!IS_ERR(host->pdata->rstc))
3261 		reset_control_assert(host->pdata->rstc);
3262 
3263 err_clk_ciu:
3264 	clk_disable_unprepare(host->ciu_clk);
3265 
3266 err_clk_biu:
3267 	clk_disable_unprepare(host->biu_clk);
3268 
3269 	return ret;
3270 }
3271 EXPORT_SYMBOL(dw_mci_probe);
3272 
3273 void dw_mci_remove(struct dw_mci *host)
3274 {
3275 	int i;
3276 
3277 	for (i = 0; i < host->num_slots; i++) {
3278 		dev_dbg(host->dev, "remove slot %d\n", i);
3279 		if (host->slot[i])
3280 			dw_mci_cleanup_slot(host->slot[i], i);
3281 	}
3282 
3283 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3284 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3285 
3286 	/* disable clock to CIU */
3287 	mci_writel(host, CLKENA, 0);
3288 	mci_writel(host, CLKSRC, 0);
3289 
3290 	if (host->use_dma && host->dma_ops->exit)
3291 		host->dma_ops->exit(host);
3292 
3293 	if (!IS_ERR(host->pdata->rstc))
3294 		reset_control_assert(host->pdata->rstc);
3295 
3296 	clk_disable_unprepare(host->ciu_clk);
3297 	clk_disable_unprepare(host->biu_clk);
3298 }
3299 EXPORT_SYMBOL(dw_mci_remove);
3300 
3301 
3302 
3303 #ifdef CONFIG_PM
3304 int dw_mci_runtime_suspend(struct device *dev)
3305 {
3306 	struct dw_mci *host = dev_get_drvdata(dev);
3307 
3308 	if (host->use_dma && host->dma_ops->exit)
3309 		host->dma_ops->exit(host);
3310 
3311 	clk_disable_unprepare(host->ciu_clk);
3312 
3313 	if (host->cur_slot &&
3314 	    (mmc_can_gpio_cd(host->cur_slot->mmc) ||
3315 	     !mmc_card_is_removable(host->cur_slot->mmc)))
3316 		clk_disable_unprepare(host->biu_clk);
3317 
3318 	return 0;
3319 }
3320 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3321 
3322 int dw_mci_runtime_resume(struct device *dev)
3323 {
3324 	int i, ret = 0;
3325 	struct dw_mci *host = dev_get_drvdata(dev);
3326 
3327 	if (host->cur_slot &&
3328 	    (mmc_can_gpio_cd(host->cur_slot->mmc) ||
3329 	     !mmc_card_is_removable(host->cur_slot->mmc))) {
3330 		ret = clk_prepare_enable(host->biu_clk);
3331 		if (ret)
3332 			return ret;
3333 	}
3334 
3335 	ret = clk_prepare_enable(host->ciu_clk);
3336 	if (ret)
3337 		goto err;
3338 
3339 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3340 		clk_disable_unprepare(host->ciu_clk);
3341 		ret = -ENODEV;
3342 		goto err;
3343 	}
3344 
3345 	if (host->use_dma && host->dma_ops->init)
3346 		host->dma_ops->init(host);
3347 
3348 	/*
3349 	 * Restore the initial value at FIFOTH register
3350 	 * And Invalidate the prev_blksz with zero
3351 	 */
3352 	 mci_writel(host, FIFOTH, host->fifoth_val);
3353 	 host->prev_blksz = 0;
3354 
3355 	/* Put in max timeout */
3356 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3357 
3358 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3359 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3360 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3361 		   DW_MCI_ERROR_FLAGS);
3362 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3363 
3364 	for (i = 0; i < host->num_slots; i++) {
3365 		struct dw_mci_slot *slot = host->slot[i];
3366 
3367 		if (!slot)
3368 			continue;
3369 		if (slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3370 			dw_mci_set_ios(slot->mmc, &slot->mmc->ios);
3371 
3372 		/* Force setup bus to guarantee available clock output */
3373 		dw_mci_setup_bus(slot, true);
3374 	}
3375 
3376 	/* Now that slots are all setup, we can enable card detect */
3377 	dw_mci_enable_cd(host);
3378 
3379 	return 0;
3380 
3381 err:
3382 	if (host->cur_slot &&
3383 	    (mmc_can_gpio_cd(host->cur_slot->mmc) ||
3384 	     !mmc_card_is_removable(host->cur_slot->mmc)))
3385 		clk_disable_unprepare(host->biu_clk);
3386 
3387 	return ret;
3388 }
3389 EXPORT_SYMBOL(dw_mci_runtime_resume);
3390 #endif /* CONFIG_PM */
3391 
3392 static int __init dw_mci_init(void)
3393 {
3394 	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3395 	return 0;
3396 }
3397 
3398 static void __exit dw_mci_exit(void)
3399 {
3400 }
3401 
3402 module_init(dw_mci_init);
3403 module_exit(dw_mci_exit);
3404 
3405 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3406 MODULE_AUTHOR("NXP Semiconductor VietNam");
3407 MODULE_AUTHOR("Imagination Technologies Ltd");
3408 MODULE_LICENSE("GPL v2");
3409