xref: /openbmc/linux/drivers/mmc/host/dw_mmc.c (revision a06c488d)
1 /*
2  * Synopsys DesignWare Multimedia Card Interface driver
3  *  (Based on NXP driver for lpc 31xx)
4  *
5  * Copyright (C) 2009 NXP Semiconductors
6  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/mmc/dw_mmc.h>
36 #include <linux/bitops.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/of.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mmc/slot-gpio.h>
41 
42 #include "dw_mmc.h"
43 
44 /* Common flag combinations */
45 #define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
46 				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
47 				 SDMMC_INT_EBE)
48 #define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
49 				 SDMMC_INT_RESP_ERR)
50 #define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
51 				 DW_MCI_CMD_ERROR_FLAGS  | SDMMC_INT_HLE)
52 #define DW_MCI_SEND_STATUS	1
53 #define DW_MCI_RECV_STATUS	2
54 #define DW_MCI_DMA_THRESHOLD	16
55 
56 #define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
57 #define DW_MCI_FREQ_MIN	400000		/* unit: HZ */
58 
59 #define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
60 				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
61 				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
62 				 SDMMC_IDMAC_INT_TI)
63 
64 struct idmac_desc_64addr {
65 	u32		des0;	/* Control Descriptor */
66 
67 	u32		des1;	/* Reserved */
68 
69 	u32		des2;	/*Buffer sizes */
70 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
71 	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
72 	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
73 
74 	u32		des3;	/* Reserved */
75 
76 	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
77 	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
78 
79 	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
80 	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
81 };
82 
83 struct idmac_desc {
84 	__le32		des0;	/* Control Descriptor */
85 #define IDMAC_DES0_DIC	BIT(1)
86 #define IDMAC_DES0_LD	BIT(2)
87 #define IDMAC_DES0_FD	BIT(3)
88 #define IDMAC_DES0_CH	BIT(4)
89 #define IDMAC_DES0_ER	BIT(5)
90 #define IDMAC_DES0_CES	BIT(30)
91 #define IDMAC_DES0_OWN	BIT(31)
92 
93 	__le32		des1;	/* Buffer sizes */
94 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
95 	((d)->des1 = ((d)->des1 & 0x03ffe000) | ((s) & 0x1fff))
96 
97 	__le32		des2;	/* buffer 1 physical address */
98 
99 	__le32		des3;	/* buffer 2 physical address */
100 };
101 
102 /* Each descriptor can transfer up to 4KB of data in chained mode */
103 #define DW_MCI_DESC_DATA_LENGTH	0x1000
104 
105 static bool dw_mci_reset(struct dw_mci *host);
106 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset);
107 static int dw_mci_card_busy(struct mmc_host *mmc);
108 
109 #if defined(CONFIG_DEBUG_FS)
110 static int dw_mci_req_show(struct seq_file *s, void *v)
111 {
112 	struct dw_mci_slot *slot = s->private;
113 	struct mmc_request *mrq;
114 	struct mmc_command *cmd;
115 	struct mmc_command *stop;
116 	struct mmc_data	*data;
117 
118 	/* Make sure we get a consistent snapshot */
119 	spin_lock_bh(&slot->host->lock);
120 	mrq = slot->mrq;
121 
122 	if (mrq) {
123 		cmd = mrq->cmd;
124 		data = mrq->data;
125 		stop = mrq->stop;
126 
127 		if (cmd)
128 			seq_printf(s,
129 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
130 				   cmd->opcode, cmd->arg, cmd->flags,
131 				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
132 				   cmd->resp[2], cmd->error);
133 		if (data)
134 			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
135 				   data->bytes_xfered, data->blocks,
136 				   data->blksz, data->flags, data->error);
137 		if (stop)
138 			seq_printf(s,
139 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
140 				   stop->opcode, stop->arg, stop->flags,
141 				   stop->resp[0], stop->resp[1], stop->resp[2],
142 				   stop->resp[2], stop->error);
143 	}
144 
145 	spin_unlock_bh(&slot->host->lock);
146 
147 	return 0;
148 }
149 
150 static int dw_mci_req_open(struct inode *inode, struct file *file)
151 {
152 	return single_open(file, dw_mci_req_show, inode->i_private);
153 }
154 
155 static const struct file_operations dw_mci_req_fops = {
156 	.owner		= THIS_MODULE,
157 	.open		= dw_mci_req_open,
158 	.read		= seq_read,
159 	.llseek		= seq_lseek,
160 	.release	= single_release,
161 };
162 
163 static int dw_mci_regs_show(struct seq_file *s, void *v)
164 {
165 	seq_printf(s, "STATUS:\t0x%08x\n", SDMMC_STATUS);
166 	seq_printf(s, "RINTSTS:\t0x%08x\n", SDMMC_RINTSTS);
167 	seq_printf(s, "CMD:\t0x%08x\n", SDMMC_CMD);
168 	seq_printf(s, "CTRL:\t0x%08x\n", SDMMC_CTRL);
169 	seq_printf(s, "INTMASK:\t0x%08x\n", SDMMC_INTMASK);
170 	seq_printf(s, "CLKENA:\t0x%08x\n", SDMMC_CLKENA);
171 
172 	return 0;
173 }
174 
175 static int dw_mci_regs_open(struct inode *inode, struct file *file)
176 {
177 	return single_open(file, dw_mci_regs_show, inode->i_private);
178 }
179 
180 static const struct file_operations dw_mci_regs_fops = {
181 	.owner		= THIS_MODULE,
182 	.open		= dw_mci_regs_open,
183 	.read		= seq_read,
184 	.llseek		= seq_lseek,
185 	.release	= single_release,
186 };
187 
188 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
189 {
190 	struct mmc_host	*mmc = slot->mmc;
191 	struct dw_mci *host = slot->host;
192 	struct dentry *root;
193 	struct dentry *node;
194 
195 	root = mmc->debugfs_root;
196 	if (!root)
197 		return;
198 
199 	node = debugfs_create_file("regs", S_IRUSR, root, host,
200 				   &dw_mci_regs_fops);
201 	if (!node)
202 		goto err;
203 
204 	node = debugfs_create_file("req", S_IRUSR, root, slot,
205 				   &dw_mci_req_fops);
206 	if (!node)
207 		goto err;
208 
209 	node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
210 	if (!node)
211 		goto err;
212 
213 	node = debugfs_create_x32("pending_events", S_IRUSR, root,
214 				  (u32 *)&host->pending_events);
215 	if (!node)
216 		goto err;
217 
218 	node = debugfs_create_x32("completed_events", S_IRUSR, root,
219 				  (u32 *)&host->completed_events);
220 	if (!node)
221 		goto err;
222 
223 	return;
224 
225 err:
226 	dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
227 }
228 #endif /* defined(CONFIG_DEBUG_FS) */
229 
230 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg);
231 
232 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
233 {
234 	struct mmc_data	*data;
235 	struct dw_mci_slot *slot = mmc_priv(mmc);
236 	struct dw_mci *host = slot->host;
237 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
238 	u32 cmdr;
239 
240 	cmd->error = -EINPROGRESS;
241 	cmdr = cmd->opcode;
242 
243 	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
244 	    cmd->opcode == MMC_GO_IDLE_STATE ||
245 	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
246 	    (cmd->opcode == SD_IO_RW_DIRECT &&
247 	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
248 		cmdr |= SDMMC_CMD_STOP;
249 	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
250 		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
251 
252 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
253 		u32 clk_en_a;
254 
255 		/* Special bit makes CMD11 not die */
256 		cmdr |= SDMMC_CMD_VOLT_SWITCH;
257 
258 		/* Change state to continue to handle CMD11 weirdness */
259 		WARN_ON(slot->host->state != STATE_SENDING_CMD);
260 		slot->host->state = STATE_SENDING_CMD11;
261 
262 		/*
263 		 * We need to disable low power mode (automatic clock stop)
264 		 * while doing voltage switch so we don't confuse the card,
265 		 * since stopping the clock is a specific part of the UHS
266 		 * voltage change dance.
267 		 *
268 		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
269 		 * unconditionally turned back on in dw_mci_setup_bus() if it's
270 		 * ever called with a non-zero clock.  That shouldn't happen
271 		 * until the voltage change is all done.
272 		 */
273 		clk_en_a = mci_readl(host, CLKENA);
274 		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
275 		mci_writel(host, CLKENA, clk_en_a);
276 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
277 			     SDMMC_CMD_PRV_DAT_WAIT, 0);
278 	}
279 
280 	if (cmd->flags & MMC_RSP_PRESENT) {
281 		/* We expect a response, so set this bit */
282 		cmdr |= SDMMC_CMD_RESP_EXP;
283 		if (cmd->flags & MMC_RSP_136)
284 			cmdr |= SDMMC_CMD_RESP_LONG;
285 	}
286 
287 	if (cmd->flags & MMC_RSP_CRC)
288 		cmdr |= SDMMC_CMD_RESP_CRC;
289 
290 	data = cmd->data;
291 	if (data) {
292 		cmdr |= SDMMC_CMD_DAT_EXP;
293 		if (data->flags & MMC_DATA_STREAM)
294 			cmdr |= SDMMC_CMD_STRM_MODE;
295 		if (data->flags & MMC_DATA_WRITE)
296 			cmdr |= SDMMC_CMD_DAT_WR;
297 	}
298 
299 	if (drv_data && drv_data->prepare_command)
300 		drv_data->prepare_command(slot->host, &cmdr);
301 
302 	return cmdr;
303 }
304 
305 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
306 {
307 	struct mmc_command *stop;
308 	u32 cmdr;
309 
310 	if (!cmd->data)
311 		return 0;
312 
313 	stop = &host->stop_abort;
314 	cmdr = cmd->opcode;
315 	memset(stop, 0, sizeof(struct mmc_command));
316 
317 	if (cmdr == MMC_READ_SINGLE_BLOCK ||
318 	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
319 	    cmdr == MMC_WRITE_BLOCK ||
320 	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
321 	    cmdr == MMC_SEND_TUNING_BLOCK ||
322 	    cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
323 		stop->opcode = MMC_STOP_TRANSMISSION;
324 		stop->arg = 0;
325 		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
326 	} else if (cmdr == SD_IO_RW_EXTENDED) {
327 		stop->opcode = SD_IO_RW_DIRECT;
328 		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
329 			     ((cmd->arg >> 28) & 0x7);
330 		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
331 	} else {
332 		return 0;
333 	}
334 
335 	cmdr = stop->opcode | SDMMC_CMD_STOP |
336 		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
337 
338 	return cmdr;
339 }
340 
341 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
342 {
343 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
344 
345 	/*
346 	 * Databook says that before issuing a new data transfer command
347 	 * we need to check to see if the card is busy.  Data transfer commands
348 	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
349 	 *
350 	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
351 	 * expected.
352 	 */
353 	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
354 	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
355 		while (mci_readl(host, STATUS) & SDMMC_STATUS_BUSY) {
356 			if (time_after(jiffies, timeout)) {
357 				/* Command will fail; we'll pass error then */
358 				dev_err(host->dev, "Busy; trying anyway\n");
359 				break;
360 			}
361 			udelay(10);
362 		}
363 	}
364 }
365 
366 static void dw_mci_start_command(struct dw_mci *host,
367 				 struct mmc_command *cmd, u32 cmd_flags)
368 {
369 	host->cmd = cmd;
370 	dev_vdbg(host->dev,
371 		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
372 		 cmd->arg, cmd_flags);
373 
374 	mci_writel(host, CMDARG, cmd->arg);
375 	wmb(); /* drain writebuffer */
376 	dw_mci_wait_while_busy(host, cmd_flags);
377 
378 	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
379 }
380 
381 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
382 {
383 	struct mmc_command *stop = data->stop ? data->stop : &host->stop_abort;
384 
385 	dw_mci_start_command(host, stop, host->stop_cmdr);
386 }
387 
388 /* DMA interface functions */
389 static void dw_mci_stop_dma(struct dw_mci *host)
390 {
391 	if (host->using_dma) {
392 		host->dma_ops->stop(host);
393 		host->dma_ops->cleanup(host);
394 	}
395 
396 	/* Data transfer was stopped by the interrupt handler */
397 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
398 }
399 
400 static int dw_mci_get_dma_dir(struct mmc_data *data)
401 {
402 	if (data->flags & MMC_DATA_WRITE)
403 		return DMA_TO_DEVICE;
404 	else
405 		return DMA_FROM_DEVICE;
406 }
407 
408 static void dw_mci_dma_cleanup(struct dw_mci *host)
409 {
410 	struct mmc_data *data = host->data;
411 
412 	if (data)
413 		if (!data->host_cookie)
414 			dma_unmap_sg(host->dev,
415 				     data->sg,
416 				     data->sg_len,
417 				     dw_mci_get_dma_dir(data));
418 }
419 
420 static void dw_mci_idmac_reset(struct dw_mci *host)
421 {
422 	u32 bmod = mci_readl(host, BMOD);
423 	/* Software reset of DMA */
424 	bmod |= SDMMC_IDMAC_SWRESET;
425 	mci_writel(host, BMOD, bmod);
426 }
427 
428 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
429 {
430 	u32 temp;
431 
432 	/* Disable and reset the IDMAC interface */
433 	temp = mci_readl(host, CTRL);
434 	temp &= ~SDMMC_CTRL_USE_IDMAC;
435 	temp |= SDMMC_CTRL_DMA_RESET;
436 	mci_writel(host, CTRL, temp);
437 
438 	/* Stop the IDMAC running */
439 	temp = mci_readl(host, BMOD);
440 	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
441 	temp |= SDMMC_IDMAC_SWRESET;
442 	mci_writel(host, BMOD, temp);
443 }
444 
445 static void dw_mci_dmac_complete_dma(void *arg)
446 {
447 	struct dw_mci *host = arg;
448 	struct mmc_data *data = host->data;
449 
450 	dev_vdbg(host->dev, "DMA complete\n");
451 
452 	if ((host->use_dma == TRANS_MODE_EDMAC) &&
453 	    data && (data->flags & MMC_DATA_READ))
454 		/* Invalidate cache after read */
455 		dma_sync_sg_for_cpu(mmc_dev(host->cur_slot->mmc),
456 				    data->sg,
457 				    data->sg_len,
458 				    DMA_FROM_DEVICE);
459 
460 	host->dma_ops->cleanup(host);
461 
462 	/*
463 	 * If the card was removed, data will be NULL. No point in trying to
464 	 * send the stop command or waiting for NBUSY in this case.
465 	 */
466 	if (data) {
467 		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
468 		tasklet_schedule(&host->tasklet);
469 	}
470 }
471 
472 static void dw_mci_translate_sglist(struct dw_mci *host, struct mmc_data *data,
473 				    unsigned int sg_len)
474 {
475 	unsigned int desc_len;
476 	int i;
477 
478 	if (host->dma_64bit_address == 1) {
479 		struct idmac_desc_64addr *desc_first, *desc_last, *desc;
480 
481 		desc_first = desc_last = desc = host->sg_cpu;
482 
483 		for (i = 0; i < sg_len; i++) {
484 			unsigned int length = sg_dma_len(&data->sg[i]);
485 
486 			u64 mem_addr = sg_dma_address(&data->sg[i]);
487 
488 			for ( ; length ; desc++) {
489 				desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
490 					   length : DW_MCI_DESC_DATA_LENGTH;
491 
492 				length -= desc_len;
493 
494 				/*
495 				 * Set the OWN bit and disable interrupts
496 				 * for this descriptor
497 				 */
498 				desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
499 							IDMAC_DES0_CH;
500 
501 				/* Buffer length */
502 				IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
503 
504 				/* Physical address to DMA to/from */
505 				desc->des4 = mem_addr & 0xffffffff;
506 				desc->des5 = mem_addr >> 32;
507 
508 				/* Update physical address for the next desc */
509 				mem_addr += desc_len;
510 
511 				/* Save pointer to the last descriptor */
512 				desc_last = desc;
513 			}
514 		}
515 
516 		/* Set first descriptor */
517 		desc_first->des0 |= IDMAC_DES0_FD;
518 
519 		/* Set last descriptor */
520 		desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
521 		desc_last->des0 |= IDMAC_DES0_LD;
522 
523 	} else {
524 		struct idmac_desc *desc_first, *desc_last, *desc;
525 
526 		desc_first = desc_last = desc = host->sg_cpu;
527 
528 		for (i = 0; i < sg_len; i++) {
529 			unsigned int length = sg_dma_len(&data->sg[i]);
530 
531 			u32 mem_addr = sg_dma_address(&data->sg[i]);
532 
533 			for ( ; length ; desc++) {
534 				desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
535 					   length : DW_MCI_DESC_DATA_LENGTH;
536 
537 				length -= desc_len;
538 
539 				/*
540 				 * Set the OWN bit and disable interrupts
541 				 * for this descriptor
542 				 */
543 				desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
544 							 IDMAC_DES0_DIC |
545 							 IDMAC_DES0_CH);
546 
547 				/* Buffer length */
548 				IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
549 
550 				/* Physical address to DMA to/from */
551 				desc->des2 = cpu_to_le32(mem_addr);
552 
553 				/* Update physical address for the next desc */
554 				mem_addr += desc_len;
555 
556 				/* Save pointer to the last descriptor */
557 				desc_last = desc;
558 			}
559 		}
560 
561 		/* Set first descriptor */
562 		desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
563 
564 		/* Set last descriptor */
565 		desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
566 					       IDMAC_DES0_DIC));
567 		desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
568 	}
569 
570 	wmb(); /* drain writebuffer */
571 }
572 
573 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
574 {
575 	u32 temp;
576 
577 	dw_mci_translate_sglist(host, host->data, sg_len);
578 
579 	/* Make sure to reset DMA in case we did PIO before this */
580 	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
581 	dw_mci_idmac_reset(host);
582 
583 	/* Select IDMAC interface */
584 	temp = mci_readl(host, CTRL);
585 	temp |= SDMMC_CTRL_USE_IDMAC;
586 	mci_writel(host, CTRL, temp);
587 
588 	/* drain writebuffer */
589 	wmb();
590 
591 	/* Enable the IDMAC */
592 	temp = mci_readl(host, BMOD);
593 	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
594 	mci_writel(host, BMOD, temp);
595 
596 	/* Start it running */
597 	mci_writel(host, PLDMND, 1);
598 
599 	return 0;
600 }
601 
602 static int dw_mci_idmac_init(struct dw_mci *host)
603 {
604 	int i;
605 
606 	if (host->dma_64bit_address == 1) {
607 		struct idmac_desc_64addr *p;
608 		/* Number of descriptors in the ring buffer */
609 		host->ring_size = PAGE_SIZE / sizeof(struct idmac_desc_64addr);
610 
611 		/* Forward link the descriptor list */
612 		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
613 								i++, p++) {
614 			p->des6 = (host->sg_dma +
615 					(sizeof(struct idmac_desc_64addr) *
616 							(i + 1))) & 0xffffffff;
617 
618 			p->des7 = (u64)(host->sg_dma +
619 					(sizeof(struct idmac_desc_64addr) *
620 							(i + 1))) >> 32;
621 			/* Initialize reserved and buffer size fields to "0" */
622 			p->des1 = 0;
623 			p->des2 = 0;
624 			p->des3 = 0;
625 		}
626 
627 		/* Set the last descriptor as the end-of-ring descriptor */
628 		p->des6 = host->sg_dma & 0xffffffff;
629 		p->des7 = (u64)host->sg_dma >> 32;
630 		p->des0 = IDMAC_DES0_ER;
631 
632 	} else {
633 		struct idmac_desc *p;
634 		/* Number of descriptors in the ring buffer */
635 		host->ring_size = PAGE_SIZE / sizeof(struct idmac_desc);
636 
637 		/* Forward link the descriptor list */
638 		for (i = 0, p = host->sg_cpu;
639 		     i < host->ring_size - 1;
640 		     i++, p++) {
641 			p->des3 = cpu_to_le32(host->sg_dma +
642 					(sizeof(struct idmac_desc) * (i + 1)));
643 			p->des1 = 0;
644 		}
645 
646 		/* Set the last descriptor as the end-of-ring descriptor */
647 		p->des3 = cpu_to_le32(host->sg_dma);
648 		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
649 	}
650 
651 	dw_mci_idmac_reset(host);
652 
653 	if (host->dma_64bit_address == 1) {
654 		/* Mask out interrupts - get Tx & Rx complete only */
655 		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
656 		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
657 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
658 
659 		/* Set the descriptor base address */
660 		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
661 		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
662 
663 	} else {
664 		/* Mask out interrupts - get Tx & Rx complete only */
665 		mci_writel(host, IDSTS, IDMAC_INT_CLR);
666 		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
667 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
668 
669 		/* Set the descriptor base address */
670 		mci_writel(host, DBADDR, host->sg_dma);
671 	}
672 
673 	return 0;
674 }
675 
676 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
677 	.init = dw_mci_idmac_init,
678 	.start = dw_mci_idmac_start_dma,
679 	.stop = dw_mci_idmac_stop_dma,
680 	.complete = dw_mci_dmac_complete_dma,
681 	.cleanup = dw_mci_dma_cleanup,
682 };
683 
684 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
685 {
686 	dmaengine_terminate_all(host->dms->ch);
687 }
688 
689 static int dw_mci_edmac_start_dma(struct dw_mci *host,
690 					    unsigned int sg_len)
691 {
692 	struct dma_slave_config cfg;
693 	struct dma_async_tx_descriptor *desc = NULL;
694 	struct scatterlist *sgl = host->data->sg;
695 	const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
696 	u32 sg_elems = host->data->sg_len;
697 	u32 fifoth_val;
698 	u32 fifo_offset = host->fifo_reg - host->regs;
699 	int ret = 0;
700 
701 	/* Set external dma config: burst size, burst width */
702 	cfg.dst_addr = host->phy_regs + fifo_offset;
703 	cfg.src_addr = cfg.dst_addr;
704 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
705 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
706 
707 	/* Match burst msize with external dma config */
708 	fifoth_val = mci_readl(host, FIFOTH);
709 	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
710 	cfg.src_maxburst = cfg.dst_maxburst;
711 
712 	if (host->data->flags & MMC_DATA_WRITE)
713 		cfg.direction = DMA_MEM_TO_DEV;
714 	else
715 		cfg.direction = DMA_DEV_TO_MEM;
716 
717 	ret = dmaengine_slave_config(host->dms->ch, &cfg);
718 	if (ret) {
719 		dev_err(host->dev, "Failed to config edmac.\n");
720 		return -EBUSY;
721 	}
722 
723 	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
724 				       sg_len, cfg.direction,
725 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
726 	if (!desc) {
727 		dev_err(host->dev, "Can't prepare slave sg.\n");
728 		return -EBUSY;
729 	}
730 
731 	/* Set dw_mci_dmac_complete_dma as callback */
732 	desc->callback = dw_mci_dmac_complete_dma;
733 	desc->callback_param = (void *)host;
734 	dmaengine_submit(desc);
735 
736 	/* Flush cache before write */
737 	if (host->data->flags & MMC_DATA_WRITE)
738 		dma_sync_sg_for_device(mmc_dev(host->cur_slot->mmc), sgl,
739 				       sg_elems, DMA_TO_DEVICE);
740 
741 	dma_async_issue_pending(host->dms->ch);
742 
743 	return 0;
744 }
745 
746 static int dw_mci_edmac_init(struct dw_mci *host)
747 {
748 	/* Request external dma channel */
749 	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
750 	if (!host->dms)
751 		return -ENOMEM;
752 
753 	host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
754 	if (!host->dms->ch) {
755 		dev_err(host->dev, "Failed to get external DMA channel.\n");
756 		kfree(host->dms);
757 		host->dms = NULL;
758 		return -ENXIO;
759 	}
760 
761 	return 0;
762 }
763 
764 static void dw_mci_edmac_exit(struct dw_mci *host)
765 {
766 	if (host->dms) {
767 		if (host->dms->ch) {
768 			dma_release_channel(host->dms->ch);
769 			host->dms->ch = NULL;
770 		}
771 		kfree(host->dms);
772 		host->dms = NULL;
773 	}
774 }
775 
776 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
777 	.init = dw_mci_edmac_init,
778 	.exit = dw_mci_edmac_exit,
779 	.start = dw_mci_edmac_start_dma,
780 	.stop = dw_mci_edmac_stop_dma,
781 	.complete = dw_mci_dmac_complete_dma,
782 	.cleanup = dw_mci_dma_cleanup,
783 };
784 
785 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
786 				   struct mmc_data *data,
787 				   bool next)
788 {
789 	struct scatterlist *sg;
790 	unsigned int i, sg_len;
791 
792 	if (!next && data->host_cookie)
793 		return data->host_cookie;
794 
795 	/*
796 	 * We don't do DMA on "complex" transfers, i.e. with
797 	 * non-word-aligned buffers or lengths. Also, we don't bother
798 	 * with all the DMA setup overhead for short transfers.
799 	 */
800 	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
801 		return -EINVAL;
802 
803 	if (data->blksz & 3)
804 		return -EINVAL;
805 
806 	for_each_sg(data->sg, sg, data->sg_len, i) {
807 		if (sg->offset & 3 || sg->length & 3)
808 			return -EINVAL;
809 	}
810 
811 	sg_len = dma_map_sg(host->dev,
812 			    data->sg,
813 			    data->sg_len,
814 			    dw_mci_get_dma_dir(data));
815 	if (sg_len == 0)
816 		return -EINVAL;
817 
818 	if (next)
819 		data->host_cookie = sg_len;
820 
821 	return sg_len;
822 }
823 
824 static void dw_mci_pre_req(struct mmc_host *mmc,
825 			   struct mmc_request *mrq,
826 			   bool is_first_req)
827 {
828 	struct dw_mci_slot *slot = mmc_priv(mmc);
829 	struct mmc_data *data = mrq->data;
830 
831 	if (!slot->host->use_dma || !data)
832 		return;
833 
834 	if (data->host_cookie) {
835 		data->host_cookie = 0;
836 		return;
837 	}
838 
839 	if (dw_mci_pre_dma_transfer(slot->host, mrq->data, 1) < 0)
840 		data->host_cookie = 0;
841 }
842 
843 static void dw_mci_post_req(struct mmc_host *mmc,
844 			    struct mmc_request *mrq,
845 			    int err)
846 {
847 	struct dw_mci_slot *slot = mmc_priv(mmc);
848 	struct mmc_data *data = mrq->data;
849 
850 	if (!slot->host->use_dma || !data)
851 		return;
852 
853 	if (data->host_cookie)
854 		dma_unmap_sg(slot->host->dev,
855 			     data->sg,
856 			     data->sg_len,
857 			     dw_mci_get_dma_dir(data));
858 	data->host_cookie = 0;
859 }
860 
861 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
862 {
863 	unsigned int blksz = data->blksz;
864 	const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
865 	u32 fifo_width = 1 << host->data_shift;
866 	u32 blksz_depth = blksz / fifo_width, fifoth_val;
867 	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
868 	int idx = ARRAY_SIZE(mszs) - 1;
869 
870 	/* pio should ship this scenario */
871 	if (!host->use_dma)
872 		return;
873 
874 	tx_wmark = (host->fifo_depth) / 2;
875 	tx_wmark_invers = host->fifo_depth - tx_wmark;
876 
877 	/*
878 	 * MSIZE is '1',
879 	 * if blksz is not a multiple of the FIFO width
880 	 */
881 	if (blksz % fifo_width) {
882 		msize = 0;
883 		rx_wmark = 1;
884 		goto done;
885 	}
886 
887 	do {
888 		if (!((blksz_depth % mszs[idx]) ||
889 		     (tx_wmark_invers % mszs[idx]))) {
890 			msize = idx;
891 			rx_wmark = mszs[idx] - 1;
892 			break;
893 		}
894 	} while (--idx > 0);
895 	/*
896 	 * If idx is '0', it won't be tried
897 	 * Thus, initial values are uesed
898 	 */
899 done:
900 	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
901 	mci_writel(host, FIFOTH, fifoth_val);
902 }
903 
904 static void dw_mci_ctrl_rd_thld(struct dw_mci *host, struct mmc_data *data)
905 {
906 	unsigned int blksz = data->blksz;
907 	u32 blksz_depth, fifo_depth;
908 	u16 thld_size;
909 
910 	WARN_ON(!(data->flags & MMC_DATA_READ));
911 
912 	/*
913 	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
914 	 * in the FIFO region, so we really shouldn't access it).
915 	 */
916 	if (host->verid < DW_MMC_240A)
917 		return;
918 
919 	if (host->timing != MMC_TIMING_MMC_HS200 &&
920 	    host->timing != MMC_TIMING_MMC_HS400 &&
921 	    host->timing != MMC_TIMING_UHS_SDR104)
922 		goto disable;
923 
924 	blksz_depth = blksz / (1 << host->data_shift);
925 	fifo_depth = host->fifo_depth;
926 
927 	if (blksz_depth > fifo_depth)
928 		goto disable;
929 
930 	/*
931 	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
932 	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
933 	 * Currently just choose blksz.
934 	 */
935 	thld_size = blksz;
936 	mci_writel(host, CDTHRCTL, SDMMC_SET_RD_THLD(thld_size, 1));
937 	return;
938 
939 disable:
940 	mci_writel(host, CDTHRCTL, SDMMC_SET_RD_THLD(0, 0));
941 }
942 
943 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
944 {
945 	unsigned long irqflags;
946 	int sg_len;
947 	u32 temp;
948 
949 	host->using_dma = 0;
950 
951 	/* If we don't have a channel, we can't do DMA */
952 	if (!host->use_dma)
953 		return -ENODEV;
954 
955 	sg_len = dw_mci_pre_dma_transfer(host, data, 0);
956 	if (sg_len < 0) {
957 		host->dma_ops->stop(host);
958 		return sg_len;
959 	}
960 
961 	host->using_dma = 1;
962 
963 	if (host->use_dma == TRANS_MODE_IDMAC)
964 		dev_vdbg(host->dev,
965 			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
966 			 (unsigned long)host->sg_cpu,
967 			 (unsigned long)host->sg_dma,
968 			 sg_len);
969 
970 	/*
971 	 * Decide the MSIZE and RX/TX Watermark.
972 	 * If current block size is same with previous size,
973 	 * no need to update fifoth.
974 	 */
975 	if (host->prev_blksz != data->blksz)
976 		dw_mci_adjust_fifoth(host, data);
977 
978 	/* Enable the DMA interface */
979 	temp = mci_readl(host, CTRL);
980 	temp |= SDMMC_CTRL_DMA_ENABLE;
981 	mci_writel(host, CTRL, temp);
982 
983 	/* Disable RX/TX IRQs, let DMA handle it */
984 	spin_lock_irqsave(&host->irq_lock, irqflags);
985 	temp = mci_readl(host, INTMASK);
986 	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
987 	mci_writel(host, INTMASK, temp);
988 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
989 
990 	if (host->dma_ops->start(host, sg_len)) {
991 		/* We can't do DMA */
992 		dev_err(host->dev, "%s: failed to start DMA.\n", __func__);
993 		return -ENODEV;
994 	}
995 
996 	return 0;
997 }
998 
999 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1000 {
1001 	unsigned long irqflags;
1002 	int flags = SG_MITER_ATOMIC;
1003 	u32 temp;
1004 
1005 	data->error = -EINPROGRESS;
1006 
1007 	WARN_ON(host->data);
1008 	host->sg = NULL;
1009 	host->data = data;
1010 
1011 	if (data->flags & MMC_DATA_READ) {
1012 		host->dir_status = DW_MCI_RECV_STATUS;
1013 		dw_mci_ctrl_rd_thld(host, data);
1014 	} else {
1015 		host->dir_status = DW_MCI_SEND_STATUS;
1016 	}
1017 
1018 	if (dw_mci_submit_data_dma(host, data)) {
1019 		if (host->data->flags & MMC_DATA_READ)
1020 			flags |= SG_MITER_TO_SG;
1021 		else
1022 			flags |= SG_MITER_FROM_SG;
1023 
1024 		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1025 		host->sg = data->sg;
1026 		host->part_buf_start = 0;
1027 		host->part_buf_count = 0;
1028 
1029 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1030 
1031 		spin_lock_irqsave(&host->irq_lock, irqflags);
1032 		temp = mci_readl(host, INTMASK);
1033 		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1034 		mci_writel(host, INTMASK, temp);
1035 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1036 
1037 		temp = mci_readl(host, CTRL);
1038 		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1039 		mci_writel(host, CTRL, temp);
1040 
1041 		/*
1042 		 * Use the initial fifoth_val for PIO mode.
1043 		 * If next issued data may be transfered by DMA mode,
1044 		 * prev_blksz should be invalidated.
1045 		 */
1046 		mci_writel(host, FIFOTH, host->fifoth_val);
1047 		host->prev_blksz = 0;
1048 	} else {
1049 		/*
1050 		 * Keep the current block size.
1051 		 * It will be used to decide whether to update
1052 		 * fifoth register next time.
1053 		 */
1054 		host->prev_blksz = data->blksz;
1055 	}
1056 }
1057 
1058 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
1059 {
1060 	struct dw_mci *host = slot->host;
1061 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
1062 	unsigned int cmd_status = 0;
1063 
1064 	mci_writel(host, CMDARG, arg);
1065 	wmb(); /* drain writebuffer */
1066 	dw_mci_wait_while_busy(host, cmd);
1067 	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
1068 
1069 	while (time_before(jiffies, timeout)) {
1070 		cmd_status = mci_readl(host, CMD);
1071 		if (!(cmd_status & SDMMC_CMD_START))
1072 			return;
1073 	}
1074 	dev_err(&slot->mmc->class_dev,
1075 		"Timeout sending command (cmd %#x arg %#x status %#x)\n",
1076 		cmd, arg, cmd_status);
1077 }
1078 
1079 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1080 {
1081 	struct dw_mci *host = slot->host;
1082 	unsigned int clock = slot->clock;
1083 	u32 div;
1084 	u32 clk_en_a;
1085 	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1086 
1087 	/* We must continue to set bit 28 in CMD until the change is complete */
1088 	if (host->state == STATE_WAITING_CMD11_DONE)
1089 		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1090 
1091 	if (!clock) {
1092 		mci_writel(host, CLKENA, 0);
1093 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1094 	} else if (clock != host->current_speed || force_clkinit) {
1095 		div = host->bus_hz / clock;
1096 		if (host->bus_hz % clock && host->bus_hz > clock)
1097 			/*
1098 			 * move the + 1 after the divide to prevent
1099 			 * over-clocking the card.
1100 			 */
1101 			div += 1;
1102 
1103 		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1104 
1105 		if ((clock << div) != slot->__clk_old || force_clkinit)
1106 			dev_info(&slot->mmc->class_dev,
1107 				 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1108 				 slot->id, host->bus_hz, clock,
1109 				 div ? ((host->bus_hz / div) >> 1) :
1110 				 host->bus_hz, div);
1111 
1112 		/* disable clock */
1113 		mci_writel(host, CLKENA, 0);
1114 		mci_writel(host, CLKSRC, 0);
1115 
1116 		/* inform CIU */
1117 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1118 
1119 		/* set clock to desired speed */
1120 		mci_writel(host, CLKDIV, div);
1121 
1122 		/* inform CIU */
1123 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1124 
1125 		/* enable clock; only low power if no SDIO */
1126 		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1127 		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1128 			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1129 		mci_writel(host, CLKENA, clk_en_a);
1130 
1131 		/* inform CIU */
1132 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1133 
1134 		/* keep the clock with reflecting clock dividor */
1135 		slot->__clk_old = clock << div;
1136 	}
1137 
1138 	host->current_speed = clock;
1139 
1140 	/* Set the current slot bus width */
1141 	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1142 }
1143 
1144 static void __dw_mci_start_request(struct dw_mci *host,
1145 				   struct dw_mci_slot *slot,
1146 				   struct mmc_command *cmd)
1147 {
1148 	struct mmc_request *mrq;
1149 	struct mmc_data	*data;
1150 	u32 cmdflags;
1151 
1152 	mrq = slot->mrq;
1153 
1154 	host->cur_slot = slot;
1155 	host->mrq = mrq;
1156 
1157 	host->pending_events = 0;
1158 	host->completed_events = 0;
1159 	host->cmd_status = 0;
1160 	host->data_status = 0;
1161 	host->dir_status = 0;
1162 
1163 	data = cmd->data;
1164 	if (data) {
1165 		mci_writel(host, TMOUT, 0xFFFFFFFF);
1166 		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1167 		mci_writel(host, BLKSIZ, data->blksz);
1168 	}
1169 
1170 	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1171 
1172 	/* this is the first command, send the initialization clock */
1173 	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1174 		cmdflags |= SDMMC_CMD_INIT;
1175 
1176 	if (data) {
1177 		dw_mci_submit_data(host, data);
1178 		wmb(); /* drain writebuffer */
1179 	}
1180 
1181 	dw_mci_start_command(host, cmd, cmdflags);
1182 
1183 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1184 		unsigned long irqflags;
1185 
1186 		/*
1187 		 * Databook says to fail after 2ms w/ no response, but evidence
1188 		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1189 		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1190 		 * is just about to roll over.
1191 		 *
1192 		 * We do this whole thing under spinlock and only if the
1193 		 * command hasn't already completed (indicating the the irq
1194 		 * already ran so we don't want the timeout).
1195 		 */
1196 		spin_lock_irqsave(&host->irq_lock, irqflags);
1197 		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1198 			mod_timer(&host->cmd11_timer,
1199 				jiffies + msecs_to_jiffies(500) + 1);
1200 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1201 	}
1202 
1203 	if (mrq->stop)
1204 		host->stop_cmdr = dw_mci_prepare_command(slot->mmc, mrq->stop);
1205 	else
1206 		host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1207 }
1208 
1209 static void dw_mci_start_request(struct dw_mci *host,
1210 				 struct dw_mci_slot *slot)
1211 {
1212 	struct mmc_request *mrq = slot->mrq;
1213 	struct mmc_command *cmd;
1214 
1215 	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1216 	__dw_mci_start_request(host, slot, cmd);
1217 }
1218 
1219 /* must be called with host->lock held */
1220 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1221 				 struct mmc_request *mrq)
1222 {
1223 	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1224 		 host->state);
1225 
1226 	slot->mrq = mrq;
1227 
1228 	if (host->state == STATE_WAITING_CMD11_DONE) {
1229 		dev_warn(&slot->mmc->class_dev,
1230 			 "Voltage change didn't complete\n");
1231 		/*
1232 		 * this case isn't expected to happen, so we can
1233 		 * either crash here or just try to continue on
1234 		 * in the closest possible state
1235 		 */
1236 		host->state = STATE_IDLE;
1237 	}
1238 
1239 	if (host->state == STATE_IDLE) {
1240 		host->state = STATE_SENDING_CMD;
1241 		dw_mci_start_request(host, slot);
1242 	} else {
1243 		list_add_tail(&slot->queue_node, &host->queue);
1244 	}
1245 }
1246 
1247 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1248 {
1249 	struct dw_mci_slot *slot = mmc_priv(mmc);
1250 	struct dw_mci *host = slot->host;
1251 
1252 	WARN_ON(slot->mrq);
1253 
1254 	/*
1255 	 * The check for card presence and queueing of the request must be
1256 	 * atomic, otherwise the card could be removed in between and the
1257 	 * request wouldn't fail until another card was inserted.
1258 	 */
1259 	spin_lock_bh(&host->lock);
1260 
1261 	if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
1262 		spin_unlock_bh(&host->lock);
1263 		mrq->cmd->error = -ENOMEDIUM;
1264 		mmc_request_done(mmc, mrq);
1265 		return;
1266 	}
1267 
1268 	dw_mci_queue_request(host, slot, mrq);
1269 
1270 	spin_unlock_bh(&host->lock);
1271 }
1272 
1273 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1274 {
1275 	struct dw_mci_slot *slot = mmc_priv(mmc);
1276 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1277 	u32 regs;
1278 	int ret;
1279 
1280 	switch (ios->bus_width) {
1281 	case MMC_BUS_WIDTH_4:
1282 		slot->ctype = SDMMC_CTYPE_4BIT;
1283 		break;
1284 	case MMC_BUS_WIDTH_8:
1285 		slot->ctype = SDMMC_CTYPE_8BIT;
1286 		break;
1287 	default:
1288 		/* set default 1 bit mode */
1289 		slot->ctype = SDMMC_CTYPE_1BIT;
1290 	}
1291 
1292 	regs = mci_readl(slot->host, UHS_REG);
1293 
1294 	/* DDR mode set */
1295 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1296 	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1297 	    ios->timing == MMC_TIMING_MMC_HS400)
1298 		regs |= ((0x1 << slot->id) << 16);
1299 	else
1300 		regs &= ~((0x1 << slot->id) << 16);
1301 
1302 	mci_writel(slot->host, UHS_REG, regs);
1303 	slot->host->timing = ios->timing;
1304 
1305 	/*
1306 	 * Use mirror of ios->clock to prevent race with mmc
1307 	 * core ios update when finding the minimum.
1308 	 */
1309 	slot->clock = ios->clock;
1310 
1311 	if (drv_data && drv_data->set_ios)
1312 		drv_data->set_ios(slot->host, ios);
1313 
1314 	switch (ios->power_mode) {
1315 	case MMC_POWER_UP:
1316 		if (!IS_ERR(mmc->supply.vmmc)) {
1317 			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1318 					ios->vdd);
1319 			if (ret) {
1320 				dev_err(slot->host->dev,
1321 					"failed to enable vmmc regulator\n");
1322 				/*return, if failed turn on vmmc*/
1323 				return;
1324 			}
1325 		}
1326 		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1327 		regs = mci_readl(slot->host, PWREN);
1328 		regs |= (1 << slot->id);
1329 		mci_writel(slot->host, PWREN, regs);
1330 		break;
1331 	case MMC_POWER_ON:
1332 		if (!slot->host->vqmmc_enabled) {
1333 			if (!IS_ERR(mmc->supply.vqmmc)) {
1334 				ret = regulator_enable(mmc->supply.vqmmc);
1335 				if (ret < 0)
1336 					dev_err(slot->host->dev,
1337 						"failed to enable vqmmc\n");
1338 				else
1339 					slot->host->vqmmc_enabled = true;
1340 
1341 			} else {
1342 				/* Keep track so we don't reset again */
1343 				slot->host->vqmmc_enabled = true;
1344 			}
1345 
1346 			/* Reset our state machine after powering on */
1347 			dw_mci_ctrl_reset(slot->host,
1348 					  SDMMC_CTRL_ALL_RESET_FLAGS);
1349 		}
1350 
1351 		/* Adjust clock / bus width after power is up */
1352 		dw_mci_setup_bus(slot, false);
1353 
1354 		break;
1355 	case MMC_POWER_OFF:
1356 		/* Turn clock off before power goes down */
1357 		dw_mci_setup_bus(slot, false);
1358 
1359 		if (!IS_ERR(mmc->supply.vmmc))
1360 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1361 
1362 		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1363 			regulator_disable(mmc->supply.vqmmc);
1364 		slot->host->vqmmc_enabled = false;
1365 
1366 		regs = mci_readl(slot->host, PWREN);
1367 		regs &= ~(1 << slot->id);
1368 		mci_writel(slot->host, PWREN, regs);
1369 		break;
1370 	default:
1371 		break;
1372 	}
1373 
1374 	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1375 		slot->host->state = STATE_IDLE;
1376 }
1377 
1378 static int dw_mci_card_busy(struct mmc_host *mmc)
1379 {
1380 	struct dw_mci_slot *slot = mmc_priv(mmc);
1381 	u32 status;
1382 
1383 	/*
1384 	 * Check the busy bit which is low when DAT[3:0]
1385 	 * (the data lines) are 0000
1386 	 */
1387 	status = mci_readl(slot->host, STATUS);
1388 
1389 	return !!(status & SDMMC_STATUS_BUSY);
1390 }
1391 
1392 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1393 {
1394 	struct dw_mci_slot *slot = mmc_priv(mmc);
1395 	struct dw_mci *host = slot->host;
1396 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1397 	u32 uhs;
1398 	u32 v18 = SDMMC_UHS_18V << slot->id;
1399 	int ret;
1400 
1401 	if (drv_data && drv_data->switch_voltage)
1402 		return drv_data->switch_voltage(mmc, ios);
1403 
1404 	/*
1405 	 * Program the voltage.  Note that some instances of dw_mmc may use
1406 	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1407 	 * does no harm but you need to set the regulator directly.  Try both.
1408 	 */
1409 	uhs = mci_readl(host, UHS_REG);
1410 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1411 		uhs &= ~v18;
1412 	else
1413 		uhs |= v18;
1414 
1415 	if (!IS_ERR(mmc->supply.vqmmc)) {
1416 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1417 
1418 		if (ret) {
1419 			dev_dbg(&mmc->class_dev,
1420 					 "Regulator set error %d - %s V\n",
1421 					 ret, uhs & v18 ? "1.8" : "3.3");
1422 			return ret;
1423 		}
1424 	}
1425 	mci_writel(host, UHS_REG, uhs);
1426 
1427 	return 0;
1428 }
1429 
1430 static int dw_mci_get_ro(struct mmc_host *mmc)
1431 {
1432 	int read_only;
1433 	struct dw_mci_slot *slot = mmc_priv(mmc);
1434 	int gpio_ro = mmc_gpio_get_ro(mmc);
1435 
1436 	/* Use platform get_ro function, else try on board write protect */
1437 	if (!IS_ERR_VALUE(gpio_ro))
1438 		read_only = gpio_ro;
1439 	else
1440 		read_only =
1441 			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1442 
1443 	dev_dbg(&mmc->class_dev, "card is %s\n",
1444 		read_only ? "read-only" : "read-write");
1445 
1446 	return read_only;
1447 }
1448 
1449 static int dw_mci_get_cd(struct mmc_host *mmc)
1450 {
1451 	int present;
1452 	struct dw_mci_slot *slot = mmc_priv(mmc);
1453 	struct dw_mci_board *brd = slot->host->pdata;
1454 	struct dw_mci *host = slot->host;
1455 	int gpio_cd = mmc_gpio_get_cd(mmc);
1456 
1457 	/* Use platform get_cd function, else try onboard card detect */
1458 	if ((brd->quirks & DW_MCI_QUIRK_BROKEN_CARD_DETECTION) ||
1459 	    (mmc->caps & MMC_CAP_NONREMOVABLE))
1460 		present = 1;
1461 	else if (!IS_ERR_VALUE(gpio_cd))
1462 		present = gpio_cd;
1463 	else
1464 		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
1465 			== 0 ? 1 : 0;
1466 
1467 	spin_lock_bh(&host->lock);
1468 	if (present) {
1469 		set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1470 		dev_dbg(&mmc->class_dev, "card is present\n");
1471 	} else {
1472 		clear_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1473 		dev_dbg(&mmc->class_dev, "card is not present\n");
1474 	}
1475 	spin_unlock_bh(&host->lock);
1476 
1477 	return present;
1478 }
1479 
1480 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1481 {
1482 	struct dw_mci_slot *slot = mmc_priv(mmc);
1483 	struct dw_mci *host = slot->host;
1484 
1485 	/*
1486 	 * Low power mode will stop the card clock when idle.  According to the
1487 	 * description of the CLKENA register we should disable low power mode
1488 	 * for SDIO cards if we need SDIO interrupts to work.
1489 	 */
1490 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1491 		const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1492 		u32 clk_en_a_old;
1493 		u32 clk_en_a;
1494 
1495 		clk_en_a_old = mci_readl(host, CLKENA);
1496 
1497 		if (card->type == MMC_TYPE_SDIO ||
1498 		    card->type == MMC_TYPE_SD_COMBO) {
1499 			set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1500 			clk_en_a = clk_en_a_old & ~clken_low_pwr;
1501 		} else {
1502 			clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1503 			clk_en_a = clk_en_a_old | clken_low_pwr;
1504 		}
1505 
1506 		if (clk_en_a != clk_en_a_old) {
1507 			mci_writel(host, CLKENA, clk_en_a);
1508 			mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1509 				     SDMMC_CMD_PRV_DAT_WAIT, 0);
1510 		}
1511 	}
1512 }
1513 
1514 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1515 {
1516 	struct dw_mci_slot *slot = mmc_priv(mmc);
1517 	struct dw_mci *host = slot->host;
1518 	unsigned long irqflags;
1519 	u32 int_mask;
1520 
1521 	spin_lock_irqsave(&host->irq_lock, irqflags);
1522 
1523 	/* Enable/disable Slot Specific SDIO interrupt */
1524 	int_mask = mci_readl(host, INTMASK);
1525 	if (enb)
1526 		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1527 	else
1528 		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1529 	mci_writel(host, INTMASK, int_mask);
1530 
1531 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1532 }
1533 
1534 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1535 {
1536 	struct dw_mci_slot *slot = mmc_priv(mmc);
1537 	struct dw_mci *host = slot->host;
1538 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1539 	int err = -EINVAL;
1540 
1541 	if (drv_data && drv_data->execute_tuning)
1542 		err = drv_data->execute_tuning(slot, opcode);
1543 	return err;
1544 }
1545 
1546 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1547 				       struct mmc_ios *ios)
1548 {
1549 	struct dw_mci_slot *slot = mmc_priv(mmc);
1550 	struct dw_mci *host = slot->host;
1551 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1552 
1553 	if (drv_data && drv_data->prepare_hs400_tuning)
1554 		return drv_data->prepare_hs400_tuning(host, ios);
1555 
1556 	return 0;
1557 }
1558 
1559 static const struct mmc_host_ops dw_mci_ops = {
1560 	.request		= dw_mci_request,
1561 	.pre_req		= dw_mci_pre_req,
1562 	.post_req		= dw_mci_post_req,
1563 	.set_ios		= dw_mci_set_ios,
1564 	.get_ro			= dw_mci_get_ro,
1565 	.get_cd			= dw_mci_get_cd,
1566 	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1567 	.execute_tuning		= dw_mci_execute_tuning,
1568 	.card_busy		= dw_mci_card_busy,
1569 	.start_signal_voltage_switch = dw_mci_switch_voltage,
1570 	.init_card		= dw_mci_init_card,
1571 	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1572 };
1573 
1574 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1575 	__releases(&host->lock)
1576 	__acquires(&host->lock)
1577 {
1578 	struct dw_mci_slot *slot;
1579 	struct mmc_host	*prev_mmc = host->cur_slot->mmc;
1580 
1581 	WARN_ON(host->cmd || host->data);
1582 
1583 	host->cur_slot->mrq = NULL;
1584 	host->mrq = NULL;
1585 	if (!list_empty(&host->queue)) {
1586 		slot = list_entry(host->queue.next,
1587 				  struct dw_mci_slot, queue_node);
1588 		list_del(&slot->queue_node);
1589 		dev_vdbg(host->dev, "list not empty: %s is next\n",
1590 			 mmc_hostname(slot->mmc));
1591 		host->state = STATE_SENDING_CMD;
1592 		dw_mci_start_request(host, slot);
1593 	} else {
1594 		dev_vdbg(host->dev, "list empty\n");
1595 
1596 		if (host->state == STATE_SENDING_CMD11)
1597 			host->state = STATE_WAITING_CMD11_DONE;
1598 		else
1599 			host->state = STATE_IDLE;
1600 	}
1601 
1602 	spin_unlock(&host->lock);
1603 	mmc_request_done(prev_mmc, mrq);
1604 	spin_lock(&host->lock);
1605 }
1606 
1607 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1608 {
1609 	u32 status = host->cmd_status;
1610 
1611 	host->cmd_status = 0;
1612 
1613 	/* Read the response from the card (up to 16 bytes) */
1614 	if (cmd->flags & MMC_RSP_PRESENT) {
1615 		if (cmd->flags & MMC_RSP_136) {
1616 			cmd->resp[3] = mci_readl(host, RESP0);
1617 			cmd->resp[2] = mci_readl(host, RESP1);
1618 			cmd->resp[1] = mci_readl(host, RESP2);
1619 			cmd->resp[0] = mci_readl(host, RESP3);
1620 		} else {
1621 			cmd->resp[0] = mci_readl(host, RESP0);
1622 			cmd->resp[1] = 0;
1623 			cmd->resp[2] = 0;
1624 			cmd->resp[3] = 0;
1625 		}
1626 	}
1627 
1628 	if (status & SDMMC_INT_RTO)
1629 		cmd->error = -ETIMEDOUT;
1630 	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1631 		cmd->error = -EILSEQ;
1632 	else if (status & SDMMC_INT_RESP_ERR)
1633 		cmd->error = -EIO;
1634 	else
1635 		cmd->error = 0;
1636 
1637 	return cmd->error;
1638 }
1639 
1640 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1641 {
1642 	u32 status = host->data_status;
1643 
1644 	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1645 		if (status & SDMMC_INT_DRTO) {
1646 			data->error = -ETIMEDOUT;
1647 		} else if (status & SDMMC_INT_DCRC) {
1648 			data->error = -EILSEQ;
1649 		} else if (status & SDMMC_INT_EBE) {
1650 			if (host->dir_status ==
1651 				DW_MCI_SEND_STATUS) {
1652 				/*
1653 				 * No data CRC status was returned.
1654 				 * The number of bytes transferred
1655 				 * will be exaggerated in PIO mode.
1656 				 */
1657 				data->bytes_xfered = 0;
1658 				data->error = -ETIMEDOUT;
1659 			} else if (host->dir_status ==
1660 					DW_MCI_RECV_STATUS) {
1661 				data->error = -EIO;
1662 			}
1663 		} else {
1664 			/* SDMMC_INT_SBE is included */
1665 			data->error = -EIO;
1666 		}
1667 
1668 		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1669 
1670 		/*
1671 		 * After an error, there may be data lingering
1672 		 * in the FIFO
1673 		 */
1674 		dw_mci_reset(host);
1675 	} else {
1676 		data->bytes_xfered = data->blocks * data->blksz;
1677 		data->error = 0;
1678 	}
1679 
1680 	return data->error;
1681 }
1682 
1683 static void dw_mci_set_drto(struct dw_mci *host)
1684 {
1685 	unsigned int drto_clks;
1686 	unsigned int drto_ms;
1687 
1688 	drto_clks = mci_readl(host, TMOUT) >> 8;
1689 	drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
1690 
1691 	/* add a bit spare time */
1692 	drto_ms += 10;
1693 
1694 	mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1695 }
1696 
1697 static void dw_mci_tasklet_func(unsigned long priv)
1698 {
1699 	struct dw_mci *host = (struct dw_mci *)priv;
1700 	struct mmc_data	*data;
1701 	struct mmc_command *cmd;
1702 	struct mmc_request *mrq;
1703 	enum dw_mci_state state;
1704 	enum dw_mci_state prev_state;
1705 	unsigned int err;
1706 
1707 	spin_lock(&host->lock);
1708 
1709 	state = host->state;
1710 	data = host->data;
1711 	mrq = host->mrq;
1712 
1713 	do {
1714 		prev_state = state;
1715 
1716 		switch (state) {
1717 		case STATE_IDLE:
1718 		case STATE_WAITING_CMD11_DONE:
1719 			break;
1720 
1721 		case STATE_SENDING_CMD11:
1722 		case STATE_SENDING_CMD:
1723 			if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1724 						&host->pending_events))
1725 				break;
1726 
1727 			cmd = host->cmd;
1728 			host->cmd = NULL;
1729 			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1730 			err = dw_mci_command_complete(host, cmd);
1731 			if (cmd == mrq->sbc && !err) {
1732 				prev_state = state = STATE_SENDING_CMD;
1733 				__dw_mci_start_request(host, host->cur_slot,
1734 						       mrq->cmd);
1735 				goto unlock;
1736 			}
1737 
1738 			if (cmd->data && err) {
1739 				dw_mci_stop_dma(host);
1740 				send_stop_abort(host, data);
1741 				state = STATE_SENDING_STOP;
1742 				break;
1743 			}
1744 
1745 			if (!cmd->data || err) {
1746 				dw_mci_request_end(host, mrq);
1747 				goto unlock;
1748 			}
1749 
1750 			prev_state = state = STATE_SENDING_DATA;
1751 			/* fall through */
1752 
1753 		case STATE_SENDING_DATA:
1754 			/*
1755 			 * We could get a data error and never a transfer
1756 			 * complete so we'd better check for it here.
1757 			 *
1758 			 * Note that we don't really care if we also got a
1759 			 * transfer complete; stopping the DMA and sending an
1760 			 * abort won't hurt.
1761 			 */
1762 			if (test_and_clear_bit(EVENT_DATA_ERROR,
1763 					       &host->pending_events)) {
1764 				dw_mci_stop_dma(host);
1765 				if (data->stop ||
1766 				    !(host->data_status & (SDMMC_INT_DRTO |
1767 							   SDMMC_INT_EBE)))
1768 					send_stop_abort(host, data);
1769 				state = STATE_DATA_ERROR;
1770 				break;
1771 			}
1772 
1773 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1774 						&host->pending_events)) {
1775 				/*
1776 				 * If all data-related interrupts don't come
1777 				 * within the given time in reading data state.
1778 				 */
1779 				if ((host->quirks & DW_MCI_QUIRK_BROKEN_DTO) &&
1780 				    (host->dir_status == DW_MCI_RECV_STATUS))
1781 					dw_mci_set_drto(host);
1782 				break;
1783 			}
1784 
1785 			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
1786 
1787 			/*
1788 			 * Handle an EVENT_DATA_ERROR that might have shown up
1789 			 * before the transfer completed.  This might not have
1790 			 * been caught by the check above because the interrupt
1791 			 * could have gone off between the previous check and
1792 			 * the check for transfer complete.
1793 			 *
1794 			 * Technically this ought not be needed assuming we
1795 			 * get a DATA_COMPLETE eventually (we'll notice the
1796 			 * error and end the request), but it shouldn't hurt.
1797 			 *
1798 			 * This has the advantage of sending the stop command.
1799 			 */
1800 			if (test_and_clear_bit(EVENT_DATA_ERROR,
1801 					       &host->pending_events)) {
1802 				dw_mci_stop_dma(host);
1803 				if (data->stop ||
1804 				    !(host->data_status & (SDMMC_INT_DRTO |
1805 							   SDMMC_INT_EBE)))
1806 					send_stop_abort(host, data);
1807 				state = STATE_DATA_ERROR;
1808 				break;
1809 			}
1810 			prev_state = state = STATE_DATA_BUSY;
1811 
1812 			/* fall through */
1813 
1814 		case STATE_DATA_BUSY:
1815 			if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
1816 						&host->pending_events)) {
1817 				/*
1818 				 * If data error interrupt comes but data over
1819 				 * interrupt doesn't come within the given time.
1820 				 * in reading data state.
1821 				 */
1822 				if ((host->quirks & DW_MCI_QUIRK_BROKEN_DTO) &&
1823 				    (host->dir_status == DW_MCI_RECV_STATUS))
1824 					dw_mci_set_drto(host);
1825 				break;
1826 			}
1827 
1828 			host->data = NULL;
1829 			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
1830 			err = dw_mci_data_complete(host, data);
1831 
1832 			if (!err) {
1833 				if (!data->stop || mrq->sbc) {
1834 					if (mrq->sbc && data->stop)
1835 						data->stop->error = 0;
1836 					dw_mci_request_end(host, mrq);
1837 					goto unlock;
1838 				}
1839 
1840 				/* stop command for open-ended transfer*/
1841 				if (data->stop)
1842 					send_stop_abort(host, data);
1843 			} else {
1844 				/*
1845 				 * If we don't have a command complete now we'll
1846 				 * never get one since we just reset everything;
1847 				 * better end the request.
1848 				 *
1849 				 * If we do have a command complete we'll fall
1850 				 * through to the SENDING_STOP command and
1851 				 * everything will be peachy keen.
1852 				 */
1853 				if (!test_bit(EVENT_CMD_COMPLETE,
1854 					      &host->pending_events)) {
1855 					host->cmd = NULL;
1856 					dw_mci_request_end(host, mrq);
1857 					goto unlock;
1858 				}
1859 			}
1860 
1861 			/*
1862 			 * If err has non-zero,
1863 			 * stop-abort command has been already issued.
1864 			 */
1865 			prev_state = state = STATE_SENDING_STOP;
1866 
1867 			/* fall through */
1868 
1869 		case STATE_SENDING_STOP:
1870 			if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1871 						&host->pending_events))
1872 				break;
1873 
1874 			/* CMD error in data command */
1875 			if (mrq->cmd->error && mrq->data)
1876 				dw_mci_reset(host);
1877 
1878 			host->cmd = NULL;
1879 			host->data = NULL;
1880 
1881 			if (mrq->stop)
1882 				dw_mci_command_complete(host, mrq->stop);
1883 			else
1884 				host->cmd_status = 0;
1885 
1886 			dw_mci_request_end(host, mrq);
1887 			goto unlock;
1888 
1889 		case STATE_DATA_ERROR:
1890 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1891 						&host->pending_events))
1892 				break;
1893 
1894 			state = STATE_DATA_BUSY;
1895 			break;
1896 		}
1897 	} while (state != prev_state);
1898 
1899 	host->state = state;
1900 unlock:
1901 	spin_unlock(&host->lock);
1902 
1903 }
1904 
1905 /* push final bytes to part_buf, only use during push */
1906 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
1907 {
1908 	memcpy((void *)&host->part_buf, buf, cnt);
1909 	host->part_buf_count = cnt;
1910 }
1911 
1912 /* append bytes to part_buf, only use during push */
1913 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
1914 {
1915 	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
1916 	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
1917 	host->part_buf_count += cnt;
1918 	return cnt;
1919 }
1920 
1921 /* pull first bytes from part_buf, only use during pull */
1922 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
1923 {
1924 	cnt = min_t(int, cnt, host->part_buf_count);
1925 	if (cnt) {
1926 		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
1927 		       cnt);
1928 		host->part_buf_count -= cnt;
1929 		host->part_buf_start += cnt;
1930 	}
1931 	return cnt;
1932 }
1933 
1934 /* pull final bytes from the part_buf, assuming it's just been filled */
1935 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
1936 {
1937 	memcpy(buf, &host->part_buf, cnt);
1938 	host->part_buf_start = cnt;
1939 	host->part_buf_count = (1 << host->data_shift) - cnt;
1940 }
1941 
1942 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
1943 {
1944 	struct mmc_data *data = host->data;
1945 	int init_cnt = cnt;
1946 
1947 	/* try and push anything in the part_buf */
1948 	if (unlikely(host->part_buf_count)) {
1949 		int len = dw_mci_push_part_bytes(host, buf, cnt);
1950 
1951 		buf += len;
1952 		cnt -= len;
1953 		if (host->part_buf_count == 2) {
1954 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
1955 			host->part_buf_count = 0;
1956 		}
1957 	}
1958 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1959 	if (unlikely((unsigned long)buf & 0x1)) {
1960 		while (cnt >= 2) {
1961 			u16 aligned_buf[64];
1962 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
1963 			int items = len >> 1;
1964 			int i;
1965 			/* memcpy from input buffer into aligned buffer */
1966 			memcpy(aligned_buf, buf, len);
1967 			buf += len;
1968 			cnt -= len;
1969 			/* push data from aligned buffer into fifo */
1970 			for (i = 0; i < items; ++i)
1971 				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
1972 		}
1973 	} else
1974 #endif
1975 	{
1976 		u16 *pdata = buf;
1977 
1978 		for (; cnt >= 2; cnt -= 2)
1979 			mci_fifo_writew(host->fifo_reg, *pdata++);
1980 		buf = pdata;
1981 	}
1982 	/* put anything remaining in the part_buf */
1983 	if (cnt) {
1984 		dw_mci_set_part_bytes(host, buf, cnt);
1985 		 /* Push data if we have reached the expected data length */
1986 		if ((data->bytes_xfered + init_cnt) ==
1987 		    (data->blksz * data->blocks))
1988 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
1989 	}
1990 }
1991 
1992 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
1993 {
1994 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1995 	if (unlikely((unsigned long)buf & 0x1)) {
1996 		while (cnt >= 2) {
1997 			/* pull data from fifo into aligned buffer */
1998 			u16 aligned_buf[64];
1999 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2000 			int items = len >> 1;
2001 			int i;
2002 
2003 			for (i = 0; i < items; ++i)
2004 				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2005 			/* memcpy from aligned buffer into output buffer */
2006 			memcpy(buf, aligned_buf, len);
2007 			buf += len;
2008 			cnt -= len;
2009 		}
2010 	} else
2011 #endif
2012 	{
2013 		u16 *pdata = buf;
2014 
2015 		for (; cnt >= 2; cnt -= 2)
2016 			*pdata++ = mci_fifo_readw(host->fifo_reg);
2017 		buf = pdata;
2018 	}
2019 	if (cnt) {
2020 		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2021 		dw_mci_pull_final_bytes(host, buf, cnt);
2022 	}
2023 }
2024 
2025 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2026 {
2027 	struct mmc_data *data = host->data;
2028 	int init_cnt = cnt;
2029 
2030 	/* try and push anything in the part_buf */
2031 	if (unlikely(host->part_buf_count)) {
2032 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2033 
2034 		buf += len;
2035 		cnt -= len;
2036 		if (host->part_buf_count == 4) {
2037 			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2038 			host->part_buf_count = 0;
2039 		}
2040 	}
2041 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2042 	if (unlikely((unsigned long)buf & 0x3)) {
2043 		while (cnt >= 4) {
2044 			u32 aligned_buf[32];
2045 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2046 			int items = len >> 2;
2047 			int i;
2048 			/* memcpy from input buffer into aligned buffer */
2049 			memcpy(aligned_buf, buf, len);
2050 			buf += len;
2051 			cnt -= len;
2052 			/* push data from aligned buffer into fifo */
2053 			for (i = 0; i < items; ++i)
2054 				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2055 		}
2056 	} else
2057 #endif
2058 	{
2059 		u32 *pdata = buf;
2060 
2061 		for (; cnt >= 4; cnt -= 4)
2062 			mci_fifo_writel(host->fifo_reg, *pdata++);
2063 		buf = pdata;
2064 	}
2065 	/* put anything remaining in the part_buf */
2066 	if (cnt) {
2067 		dw_mci_set_part_bytes(host, buf, cnt);
2068 		 /* Push data if we have reached the expected data length */
2069 		if ((data->bytes_xfered + init_cnt) ==
2070 		    (data->blksz * data->blocks))
2071 			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2072 	}
2073 }
2074 
2075 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2076 {
2077 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2078 	if (unlikely((unsigned long)buf & 0x3)) {
2079 		while (cnt >= 4) {
2080 			/* pull data from fifo into aligned buffer */
2081 			u32 aligned_buf[32];
2082 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2083 			int items = len >> 2;
2084 			int i;
2085 
2086 			for (i = 0; i < items; ++i)
2087 				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2088 			/* memcpy from aligned buffer into output buffer */
2089 			memcpy(buf, aligned_buf, len);
2090 			buf += len;
2091 			cnt -= len;
2092 		}
2093 	} else
2094 #endif
2095 	{
2096 		u32 *pdata = buf;
2097 
2098 		for (; cnt >= 4; cnt -= 4)
2099 			*pdata++ = mci_fifo_readl(host->fifo_reg);
2100 		buf = pdata;
2101 	}
2102 	if (cnt) {
2103 		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2104 		dw_mci_pull_final_bytes(host, buf, cnt);
2105 	}
2106 }
2107 
2108 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2109 {
2110 	struct mmc_data *data = host->data;
2111 	int init_cnt = cnt;
2112 
2113 	/* try and push anything in the part_buf */
2114 	if (unlikely(host->part_buf_count)) {
2115 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2116 
2117 		buf += len;
2118 		cnt -= len;
2119 
2120 		if (host->part_buf_count == 8) {
2121 			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2122 			host->part_buf_count = 0;
2123 		}
2124 	}
2125 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2126 	if (unlikely((unsigned long)buf & 0x7)) {
2127 		while (cnt >= 8) {
2128 			u64 aligned_buf[16];
2129 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2130 			int items = len >> 3;
2131 			int i;
2132 			/* memcpy from input buffer into aligned buffer */
2133 			memcpy(aligned_buf, buf, len);
2134 			buf += len;
2135 			cnt -= len;
2136 			/* push data from aligned buffer into fifo */
2137 			for (i = 0; i < items; ++i)
2138 				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2139 		}
2140 	} else
2141 #endif
2142 	{
2143 		u64 *pdata = buf;
2144 
2145 		for (; cnt >= 8; cnt -= 8)
2146 			mci_fifo_writeq(host->fifo_reg, *pdata++);
2147 		buf = pdata;
2148 	}
2149 	/* put anything remaining in the part_buf */
2150 	if (cnt) {
2151 		dw_mci_set_part_bytes(host, buf, cnt);
2152 		/* Push data if we have reached the expected data length */
2153 		if ((data->bytes_xfered + init_cnt) ==
2154 		    (data->blksz * data->blocks))
2155 			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2156 	}
2157 }
2158 
2159 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2160 {
2161 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2162 	if (unlikely((unsigned long)buf & 0x7)) {
2163 		while (cnt >= 8) {
2164 			/* pull data from fifo into aligned buffer */
2165 			u64 aligned_buf[16];
2166 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2167 			int items = len >> 3;
2168 			int i;
2169 
2170 			for (i = 0; i < items; ++i)
2171 				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2172 
2173 			/* memcpy from aligned buffer into output buffer */
2174 			memcpy(buf, aligned_buf, len);
2175 			buf += len;
2176 			cnt -= len;
2177 		}
2178 	} else
2179 #endif
2180 	{
2181 		u64 *pdata = buf;
2182 
2183 		for (; cnt >= 8; cnt -= 8)
2184 			*pdata++ = mci_fifo_readq(host->fifo_reg);
2185 		buf = pdata;
2186 	}
2187 	if (cnt) {
2188 		host->part_buf = mci_fifo_readq(host->fifo_reg);
2189 		dw_mci_pull_final_bytes(host, buf, cnt);
2190 	}
2191 }
2192 
2193 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2194 {
2195 	int len;
2196 
2197 	/* get remaining partial bytes */
2198 	len = dw_mci_pull_part_bytes(host, buf, cnt);
2199 	if (unlikely(len == cnt))
2200 		return;
2201 	buf += len;
2202 	cnt -= len;
2203 
2204 	/* get the rest of the data */
2205 	host->pull_data(host, buf, cnt);
2206 }
2207 
2208 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2209 {
2210 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2211 	void *buf;
2212 	unsigned int offset;
2213 	struct mmc_data	*data = host->data;
2214 	int shift = host->data_shift;
2215 	u32 status;
2216 	unsigned int len;
2217 	unsigned int remain, fcnt;
2218 
2219 	do {
2220 		if (!sg_miter_next(sg_miter))
2221 			goto done;
2222 
2223 		host->sg = sg_miter->piter.sg;
2224 		buf = sg_miter->addr;
2225 		remain = sg_miter->length;
2226 		offset = 0;
2227 
2228 		do {
2229 			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2230 					<< shift) + host->part_buf_count;
2231 			len = min(remain, fcnt);
2232 			if (!len)
2233 				break;
2234 			dw_mci_pull_data(host, (void *)(buf + offset), len);
2235 			data->bytes_xfered += len;
2236 			offset += len;
2237 			remain -= len;
2238 		} while (remain);
2239 
2240 		sg_miter->consumed = offset;
2241 		status = mci_readl(host, MINTSTS);
2242 		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2243 	/* if the RXDR is ready read again */
2244 	} while ((status & SDMMC_INT_RXDR) ||
2245 		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2246 
2247 	if (!remain) {
2248 		if (!sg_miter_next(sg_miter))
2249 			goto done;
2250 		sg_miter->consumed = 0;
2251 	}
2252 	sg_miter_stop(sg_miter);
2253 	return;
2254 
2255 done:
2256 	sg_miter_stop(sg_miter);
2257 	host->sg = NULL;
2258 	smp_wmb(); /* drain writebuffer */
2259 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2260 }
2261 
2262 static void dw_mci_write_data_pio(struct dw_mci *host)
2263 {
2264 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2265 	void *buf;
2266 	unsigned int offset;
2267 	struct mmc_data	*data = host->data;
2268 	int shift = host->data_shift;
2269 	u32 status;
2270 	unsigned int len;
2271 	unsigned int fifo_depth = host->fifo_depth;
2272 	unsigned int remain, fcnt;
2273 
2274 	do {
2275 		if (!sg_miter_next(sg_miter))
2276 			goto done;
2277 
2278 		host->sg = sg_miter->piter.sg;
2279 		buf = sg_miter->addr;
2280 		remain = sg_miter->length;
2281 		offset = 0;
2282 
2283 		do {
2284 			fcnt = ((fifo_depth -
2285 				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2286 					<< shift) - host->part_buf_count;
2287 			len = min(remain, fcnt);
2288 			if (!len)
2289 				break;
2290 			host->push_data(host, (void *)(buf + offset), len);
2291 			data->bytes_xfered += len;
2292 			offset += len;
2293 			remain -= len;
2294 		} while (remain);
2295 
2296 		sg_miter->consumed = offset;
2297 		status = mci_readl(host, MINTSTS);
2298 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2299 	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2300 
2301 	if (!remain) {
2302 		if (!sg_miter_next(sg_miter))
2303 			goto done;
2304 		sg_miter->consumed = 0;
2305 	}
2306 	sg_miter_stop(sg_miter);
2307 	return;
2308 
2309 done:
2310 	sg_miter_stop(sg_miter);
2311 	host->sg = NULL;
2312 	smp_wmb(); /* drain writebuffer */
2313 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2314 }
2315 
2316 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2317 {
2318 	if (!host->cmd_status)
2319 		host->cmd_status = status;
2320 
2321 	smp_wmb(); /* drain writebuffer */
2322 
2323 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2324 	tasklet_schedule(&host->tasklet);
2325 }
2326 
2327 static void dw_mci_handle_cd(struct dw_mci *host)
2328 {
2329 	int i;
2330 
2331 	for (i = 0; i < host->num_slots; i++) {
2332 		struct dw_mci_slot *slot = host->slot[i];
2333 
2334 		if (!slot)
2335 			continue;
2336 
2337 		if (slot->mmc->ops->card_event)
2338 			slot->mmc->ops->card_event(slot->mmc);
2339 		mmc_detect_change(slot->mmc,
2340 			msecs_to_jiffies(host->pdata->detect_delay_ms));
2341 	}
2342 }
2343 
2344 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2345 {
2346 	struct dw_mci *host = dev_id;
2347 	u32 pending;
2348 	int i;
2349 
2350 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2351 
2352 	if (pending) {
2353 		/* Check volt switch first, since it can look like an error */
2354 		if ((host->state == STATE_SENDING_CMD11) &&
2355 		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2356 			unsigned long irqflags;
2357 
2358 			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2359 			pending &= ~SDMMC_INT_VOLT_SWITCH;
2360 
2361 			/*
2362 			 * Hold the lock; we know cmd11_timer can't be kicked
2363 			 * off after the lock is released, so safe to delete.
2364 			 */
2365 			spin_lock_irqsave(&host->irq_lock, irqflags);
2366 			dw_mci_cmd_interrupt(host, pending);
2367 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2368 
2369 			del_timer(&host->cmd11_timer);
2370 		}
2371 
2372 		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2373 			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2374 			host->cmd_status = pending;
2375 			smp_wmb(); /* drain writebuffer */
2376 			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2377 		}
2378 
2379 		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2380 			/* if there is an error report DATA_ERROR */
2381 			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2382 			host->data_status = pending;
2383 			smp_wmb(); /* drain writebuffer */
2384 			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2385 			tasklet_schedule(&host->tasklet);
2386 		}
2387 
2388 		if (pending & SDMMC_INT_DATA_OVER) {
2389 			if (host->quirks & DW_MCI_QUIRK_BROKEN_DTO)
2390 				del_timer(&host->dto_timer);
2391 
2392 			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2393 			if (!host->data_status)
2394 				host->data_status = pending;
2395 			smp_wmb(); /* drain writebuffer */
2396 			if (host->dir_status == DW_MCI_RECV_STATUS) {
2397 				if (host->sg != NULL)
2398 					dw_mci_read_data_pio(host, true);
2399 			}
2400 			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2401 			tasklet_schedule(&host->tasklet);
2402 		}
2403 
2404 		if (pending & SDMMC_INT_RXDR) {
2405 			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2406 			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2407 				dw_mci_read_data_pio(host, false);
2408 		}
2409 
2410 		if (pending & SDMMC_INT_TXDR) {
2411 			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2412 			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2413 				dw_mci_write_data_pio(host);
2414 		}
2415 
2416 		if (pending & SDMMC_INT_CMD_DONE) {
2417 			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2418 			dw_mci_cmd_interrupt(host, pending);
2419 		}
2420 
2421 		if (pending & SDMMC_INT_CD) {
2422 			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2423 			dw_mci_handle_cd(host);
2424 		}
2425 
2426 		/* Handle SDIO Interrupts */
2427 		for (i = 0; i < host->num_slots; i++) {
2428 			struct dw_mci_slot *slot = host->slot[i];
2429 
2430 			if (!slot)
2431 				continue;
2432 
2433 			if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2434 				mci_writel(host, RINTSTS,
2435 					   SDMMC_INT_SDIO(slot->sdio_id));
2436 				mmc_signal_sdio_irq(slot->mmc);
2437 			}
2438 		}
2439 
2440 	}
2441 
2442 	if (host->use_dma != TRANS_MODE_IDMAC)
2443 		return IRQ_HANDLED;
2444 
2445 	/* Handle IDMA interrupts */
2446 	if (host->dma_64bit_address == 1) {
2447 		pending = mci_readl(host, IDSTS64);
2448 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2449 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2450 							SDMMC_IDMAC_INT_RI);
2451 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2452 			host->dma_ops->complete((void *)host);
2453 		}
2454 	} else {
2455 		pending = mci_readl(host, IDSTS);
2456 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2457 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2458 							SDMMC_IDMAC_INT_RI);
2459 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2460 			host->dma_ops->complete((void *)host);
2461 		}
2462 	}
2463 
2464 	return IRQ_HANDLED;
2465 }
2466 
2467 #ifdef CONFIG_OF
2468 /* given a slot, find out the device node representing that slot */
2469 static struct device_node *dw_mci_of_find_slot_node(struct dw_mci_slot *slot)
2470 {
2471 	struct device *dev = slot->mmc->parent;
2472 	struct device_node *np;
2473 	const __be32 *addr;
2474 	int len;
2475 
2476 	if (!dev || !dev->of_node)
2477 		return NULL;
2478 
2479 	for_each_child_of_node(dev->of_node, np) {
2480 		addr = of_get_property(np, "reg", &len);
2481 		if (!addr || (len < sizeof(int)))
2482 			continue;
2483 		if (be32_to_cpup(addr) == slot->id)
2484 			return np;
2485 	}
2486 	return NULL;
2487 }
2488 
2489 static void dw_mci_slot_of_parse(struct dw_mci_slot *slot)
2490 {
2491 	struct device_node *np = dw_mci_of_find_slot_node(slot);
2492 
2493 	if (!np)
2494 		return;
2495 
2496 	if (of_property_read_bool(np, "disable-wp")) {
2497 		slot->mmc->caps2 |= MMC_CAP2_NO_WRITE_PROTECT;
2498 		dev_warn(slot->mmc->parent,
2499 			"Slot quirk 'disable-wp' is deprecated\n");
2500 	}
2501 }
2502 #else /* CONFIG_OF */
2503 static void dw_mci_slot_of_parse(struct dw_mci_slot *slot)
2504 {
2505 }
2506 #endif /* CONFIG_OF */
2507 
2508 static int dw_mci_init_slot(struct dw_mci *host, unsigned int id)
2509 {
2510 	struct mmc_host *mmc;
2511 	struct dw_mci_slot *slot;
2512 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2513 	int ctrl_id, ret;
2514 	u32 freq[2];
2515 
2516 	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2517 	if (!mmc)
2518 		return -ENOMEM;
2519 
2520 	slot = mmc_priv(mmc);
2521 	slot->id = id;
2522 	slot->sdio_id = host->sdio_id0 + id;
2523 	slot->mmc = mmc;
2524 	slot->host = host;
2525 	host->slot[id] = slot;
2526 
2527 	mmc->ops = &dw_mci_ops;
2528 	if (of_property_read_u32_array(host->dev->of_node,
2529 				       "clock-freq-min-max", freq, 2)) {
2530 		mmc->f_min = DW_MCI_FREQ_MIN;
2531 		mmc->f_max = DW_MCI_FREQ_MAX;
2532 	} else {
2533 		mmc->f_min = freq[0];
2534 		mmc->f_max = freq[1];
2535 	}
2536 
2537 	/*if there are external regulators, get them*/
2538 	ret = mmc_regulator_get_supply(mmc);
2539 	if (ret == -EPROBE_DEFER)
2540 		goto err_host_allocated;
2541 
2542 	if (!mmc->ocr_avail)
2543 		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2544 
2545 	if (host->pdata->caps)
2546 		mmc->caps = host->pdata->caps;
2547 
2548 	if (host->pdata->pm_caps)
2549 		mmc->pm_caps = host->pdata->pm_caps;
2550 
2551 	if (host->dev->of_node) {
2552 		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2553 		if (ctrl_id < 0)
2554 			ctrl_id = 0;
2555 	} else {
2556 		ctrl_id = to_platform_device(host->dev)->id;
2557 	}
2558 	if (drv_data && drv_data->caps)
2559 		mmc->caps |= drv_data->caps[ctrl_id];
2560 
2561 	if (host->pdata->caps2)
2562 		mmc->caps2 = host->pdata->caps2;
2563 
2564 	dw_mci_slot_of_parse(slot);
2565 
2566 	ret = mmc_of_parse(mmc);
2567 	if (ret)
2568 		goto err_host_allocated;
2569 
2570 	/* Useful defaults if platform data is unset. */
2571 	if (host->use_dma == TRANS_MODE_IDMAC) {
2572 		mmc->max_segs = host->ring_size;
2573 		mmc->max_blk_size = 65536;
2574 		mmc->max_seg_size = 0x1000;
2575 		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2576 		mmc->max_blk_count = mmc->max_req_size / 512;
2577 	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2578 		mmc->max_segs = 64;
2579 		mmc->max_blk_size = 65536;
2580 		mmc->max_blk_count = 65535;
2581 		mmc->max_req_size =
2582 				mmc->max_blk_size * mmc->max_blk_count;
2583 		mmc->max_seg_size = mmc->max_req_size;
2584 	} else {
2585 		/* TRANS_MODE_PIO */
2586 		mmc->max_segs = 64;
2587 		mmc->max_blk_size = 65536; /* BLKSIZ is 16 bits */
2588 		mmc->max_blk_count = 512;
2589 		mmc->max_req_size = mmc->max_blk_size *
2590 				    mmc->max_blk_count;
2591 		mmc->max_seg_size = mmc->max_req_size;
2592 	}
2593 
2594 	if (dw_mci_get_cd(mmc))
2595 		set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
2596 	else
2597 		clear_bit(DW_MMC_CARD_PRESENT, &slot->flags);
2598 
2599 	ret = mmc_add_host(mmc);
2600 	if (ret)
2601 		goto err_host_allocated;
2602 
2603 #if defined(CONFIG_DEBUG_FS)
2604 	dw_mci_init_debugfs(slot);
2605 #endif
2606 
2607 	return 0;
2608 
2609 err_host_allocated:
2610 	mmc_free_host(mmc);
2611 	return ret;
2612 }
2613 
2614 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot, unsigned int id)
2615 {
2616 	/* Debugfs stuff is cleaned up by mmc core */
2617 	mmc_remove_host(slot->mmc);
2618 	slot->host->slot[id] = NULL;
2619 	mmc_free_host(slot->mmc);
2620 }
2621 
2622 static void dw_mci_init_dma(struct dw_mci *host)
2623 {
2624 	int addr_config;
2625 	struct device *dev = host->dev;
2626 	struct device_node *np = dev->of_node;
2627 
2628 	/*
2629 	* Check tansfer mode from HCON[17:16]
2630 	* Clear the ambiguous description of dw_mmc databook:
2631 	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
2632 	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2633 	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2634 	* 2b'11: Non DW DMA Interface -> pio only
2635 	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
2636 	* simpler request/acknowledge handshake mechanism and both of them
2637 	* are regarded as external dma master for dw_mmc.
2638 	*/
2639 	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2640 	if (host->use_dma == DMA_INTERFACE_IDMA) {
2641 		host->use_dma = TRANS_MODE_IDMAC;
2642 	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2643 		   host->use_dma == DMA_INTERFACE_GDMA) {
2644 		host->use_dma = TRANS_MODE_EDMAC;
2645 	} else {
2646 		goto no_dma;
2647 	}
2648 
2649 	/* Determine which DMA interface to use */
2650 	if (host->use_dma == TRANS_MODE_IDMAC) {
2651 		/*
2652 		* Check ADDR_CONFIG bit in HCON to find
2653 		* IDMAC address bus width
2654 		*/
2655 		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2656 
2657 		if (addr_config == 1) {
2658 			/* host supports IDMAC in 64-bit address mode */
2659 			host->dma_64bit_address = 1;
2660 			dev_info(host->dev,
2661 				 "IDMAC supports 64-bit address mode.\n");
2662 			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2663 				dma_set_coherent_mask(host->dev,
2664 						      DMA_BIT_MASK(64));
2665 		} else {
2666 			/* host supports IDMAC in 32-bit address mode */
2667 			host->dma_64bit_address = 0;
2668 			dev_info(host->dev,
2669 				 "IDMAC supports 32-bit address mode.\n");
2670 		}
2671 
2672 		/* Alloc memory for sg translation */
2673 		host->sg_cpu = dmam_alloc_coherent(host->dev, PAGE_SIZE,
2674 						   &host->sg_dma, GFP_KERNEL);
2675 		if (!host->sg_cpu) {
2676 			dev_err(host->dev,
2677 				"%s: could not alloc DMA memory\n",
2678 				__func__);
2679 			goto no_dma;
2680 		}
2681 
2682 		host->dma_ops = &dw_mci_idmac_ops;
2683 		dev_info(host->dev, "Using internal DMA controller.\n");
2684 	} else {
2685 		/* TRANS_MODE_EDMAC: check dma bindings again */
2686 		if ((of_property_count_strings(np, "dma-names") < 0) ||
2687 		    (!of_find_property(np, "dmas", NULL))) {
2688 			goto no_dma;
2689 		}
2690 		host->dma_ops = &dw_mci_edmac_ops;
2691 		dev_info(host->dev, "Using external DMA controller.\n");
2692 	}
2693 
2694 	if (host->dma_ops->init && host->dma_ops->start &&
2695 	    host->dma_ops->stop && host->dma_ops->cleanup) {
2696 		if (host->dma_ops->init(host)) {
2697 			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2698 				__func__);
2699 			goto no_dma;
2700 		}
2701 	} else {
2702 		dev_err(host->dev, "DMA initialization not found.\n");
2703 		goto no_dma;
2704 	}
2705 
2706 	return;
2707 
2708 no_dma:
2709 	dev_info(host->dev, "Using PIO mode.\n");
2710 	host->use_dma = TRANS_MODE_PIO;
2711 }
2712 
2713 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
2714 {
2715 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
2716 	u32 ctrl;
2717 
2718 	ctrl = mci_readl(host, CTRL);
2719 	ctrl |= reset;
2720 	mci_writel(host, CTRL, ctrl);
2721 
2722 	/* wait till resets clear */
2723 	do {
2724 		ctrl = mci_readl(host, CTRL);
2725 		if (!(ctrl & reset))
2726 			return true;
2727 	} while (time_before(jiffies, timeout));
2728 
2729 	dev_err(host->dev,
2730 		"Timeout resetting block (ctrl reset %#x)\n",
2731 		ctrl & reset);
2732 
2733 	return false;
2734 }
2735 
2736 static bool dw_mci_reset(struct dw_mci *host)
2737 {
2738 	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
2739 	bool ret = false;
2740 
2741 	/*
2742 	 * Reseting generates a block interrupt, hence setting
2743 	 * the scatter-gather pointer to NULL.
2744 	 */
2745 	if (host->sg) {
2746 		sg_miter_stop(&host->sg_miter);
2747 		host->sg = NULL;
2748 	}
2749 
2750 	if (host->use_dma)
2751 		flags |= SDMMC_CTRL_DMA_RESET;
2752 
2753 	if (dw_mci_ctrl_reset(host, flags)) {
2754 		/*
2755 		 * In all cases we clear the RAWINTS register to clear any
2756 		 * interrupts.
2757 		 */
2758 		mci_writel(host, RINTSTS, 0xFFFFFFFF);
2759 
2760 		/* if using dma we wait for dma_req to clear */
2761 		if (host->use_dma) {
2762 			unsigned long timeout = jiffies + msecs_to_jiffies(500);
2763 			u32 status;
2764 
2765 			do {
2766 				status = mci_readl(host, STATUS);
2767 				if (!(status & SDMMC_STATUS_DMA_REQ))
2768 					break;
2769 				cpu_relax();
2770 			} while (time_before(jiffies, timeout));
2771 
2772 			if (status & SDMMC_STATUS_DMA_REQ) {
2773 				dev_err(host->dev,
2774 					"%s: Timeout waiting for dma_req to clear during reset\n",
2775 					__func__);
2776 				goto ciu_out;
2777 			}
2778 
2779 			/* when using DMA next we reset the fifo again */
2780 			if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
2781 				goto ciu_out;
2782 		}
2783 	} else {
2784 		/* if the controller reset bit did clear, then set clock regs */
2785 		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
2786 			dev_err(host->dev,
2787 				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
2788 				__func__);
2789 			goto ciu_out;
2790 		}
2791 	}
2792 
2793 	if (host->use_dma == TRANS_MODE_IDMAC)
2794 		/* It is also recommended that we reset and reprogram idmac */
2795 		dw_mci_idmac_reset(host);
2796 
2797 	ret = true;
2798 
2799 ciu_out:
2800 	/* After a CTRL reset we need to have CIU set clock registers  */
2801 	mci_send_cmd(host->cur_slot, SDMMC_CMD_UPD_CLK, 0);
2802 
2803 	return ret;
2804 }
2805 
2806 static void dw_mci_cmd11_timer(unsigned long arg)
2807 {
2808 	struct dw_mci *host = (struct dw_mci *)arg;
2809 
2810 	if (host->state != STATE_SENDING_CMD11) {
2811 		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2812 		return;
2813 	}
2814 
2815 	host->cmd_status = SDMMC_INT_RTO;
2816 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2817 	tasklet_schedule(&host->tasklet);
2818 }
2819 
2820 static void dw_mci_dto_timer(unsigned long arg)
2821 {
2822 	struct dw_mci *host = (struct dw_mci *)arg;
2823 
2824 	switch (host->state) {
2825 	case STATE_SENDING_DATA:
2826 	case STATE_DATA_BUSY:
2827 		/*
2828 		 * If DTO interrupt does NOT come in sending data state,
2829 		 * we should notify the driver to terminate current transfer
2830 		 * and report a data timeout to the core.
2831 		 */
2832 		host->data_status = SDMMC_INT_DRTO;
2833 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
2834 		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2835 		tasklet_schedule(&host->tasklet);
2836 		break;
2837 	default:
2838 		break;
2839 	}
2840 }
2841 
2842 #ifdef CONFIG_OF
2843 static struct dw_mci_of_quirks {
2844 	char *quirk;
2845 	int id;
2846 } of_quirks[] = {
2847 	{
2848 		.quirk	= "broken-cd",
2849 		.id	= DW_MCI_QUIRK_BROKEN_CARD_DETECTION,
2850 	},
2851 };
2852 
2853 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2854 {
2855 	struct dw_mci_board *pdata;
2856 	struct device *dev = host->dev;
2857 	struct device_node *np = dev->of_node;
2858 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2859 	int idx, ret;
2860 	u32 clock_frequency;
2861 
2862 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2863 	if (!pdata)
2864 		return ERR_PTR(-ENOMEM);
2865 
2866 	/* find out number of slots supported */
2867 	if (of_property_read_u32(dev->of_node, "num-slots",
2868 				&pdata->num_slots)) {
2869 		dev_info(dev,
2870 			 "num-slots property not found, assuming 1 slot is available\n");
2871 		pdata->num_slots = 1;
2872 	}
2873 
2874 	/* get quirks */
2875 	for (idx = 0; idx < ARRAY_SIZE(of_quirks); idx++)
2876 		if (of_get_property(np, of_quirks[idx].quirk, NULL))
2877 			pdata->quirks |= of_quirks[idx].id;
2878 
2879 	if (of_property_read_u32(np, "fifo-depth", &pdata->fifo_depth))
2880 		dev_info(dev,
2881 			 "fifo-depth property not found, using value of FIFOTH register as default\n");
2882 
2883 	of_property_read_u32(np, "card-detect-delay", &pdata->detect_delay_ms);
2884 
2885 	if (!of_property_read_u32(np, "clock-frequency", &clock_frequency))
2886 		pdata->bus_hz = clock_frequency;
2887 
2888 	if (drv_data && drv_data->parse_dt) {
2889 		ret = drv_data->parse_dt(host);
2890 		if (ret)
2891 			return ERR_PTR(ret);
2892 	}
2893 
2894 	if (of_find_property(np, "supports-highspeed", NULL)) {
2895 		dev_info(dev, "supports-highspeed property is deprecated.\n");
2896 		pdata->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;
2897 	}
2898 
2899 	return pdata;
2900 }
2901 
2902 #else /* CONFIG_OF */
2903 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2904 {
2905 	return ERR_PTR(-EINVAL);
2906 }
2907 #endif /* CONFIG_OF */
2908 
2909 static void dw_mci_enable_cd(struct dw_mci *host)
2910 {
2911 	struct dw_mci_board *brd = host->pdata;
2912 	unsigned long irqflags;
2913 	u32 temp;
2914 	int i;
2915 
2916 	/* No need for CD if broken card detection */
2917 	if (brd->quirks & DW_MCI_QUIRK_BROKEN_CARD_DETECTION)
2918 		return;
2919 
2920 	/* No need for CD if all slots have a non-error GPIO */
2921 	for (i = 0; i < host->num_slots; i++) {
2922 		struct dw_mci_slot *slot = host->slot[i];
2923 
2924 		if (IS_ERR_VALUE(mmc_gpio_get_cd(slot->mmc)))
2925 			break;
2926 	}
2927 	if (i == host->num_slots)
2928 		return;
2929 
2930 	spin_lock_irqsave(&host->irq_lock, irqflags);
2931 	temp = mci_readl(host, INTMASK);
2932 	temp  |= SDMMC_INT_CD;
2933 	mci_writel(host, INTMASK, temp);
2934 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
2935 }
2936 
2937 int dw_mci_probe(struct dw_mci *host)
2938 {
2939 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2940 	int width, i, ret = 0;
2941 	u32 fifo_size;
2942 	int init_slots = 0;
2943 
2944 	if (!host->pdata) {
2945 		host->pdata = dw_mci_parse_dt(host);
2946 		if (IS_ERR(host->pdata)) {
2947 			dev_err(host->dev, "platform data not available\n");
2948 			return -EINVAL;
2949 		}
2950 	}
2951 
2952 	if (host->pdata->num_slots < 1) {
2953 		dev_err(host->dev,
2954 			"Platform data must supply num_slots.\n");
2955 		return -ENODEV;
2956 	}
2957 
2958 	host->biu_clk = devm_clk_get(host->dev, "biu");
2959 	if (IS_ERR(host->biu_clk)) {
2960 		dev_dbg(host->dev, "biu clock not available\n");
2961 	} else {
2962 		ret = clk_prepare_enable(host->biu_clk);
2963 		if (ret) {
2964 			dev_err(host->dev, "failed to enable biu clock\n");
2965 			return ret;
2966 		}
2967 	}
2968 
2969 	host->ciu_clk = devm_clk_get(host->dev, "ciu");
2970 	if (IS_ERR(host->ciu_clk)) {
2971 		dev_dbg(host->dev, "ciu clock not available\n");
2972 		host->bus_hz = host->pdata->bus_hz;
2973 	} else {
2974 		ret = clk_prepare_enable(host->ciu_clk);
2975 		if (ret) {
2976 			dev_err(host->dev, "failed to enable ciu clock\n");
2977 			goto err_clk_biu;
2978 		}
2979 
2980 		if (host->pdata->bus_hz) {
2981 			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
2982 			if (ret)
2983 				dev_warn(host->dev,
2984 					 "Unable to set bus rate to %uHz\n",
2985 					 host->pdata->bus_hz);
2986 		}
2987 		host->bus_hz = clk_get_rate(host->ciu_clk);
2988 	}
2989 
2990 	if (!host->bus_hz) {
2991 		dev_err(host->dev,
2992 			"Platform data must supply bus speed\n");
2993 		ret = -ENODEV;
2994 		goto err_clk_ciu;
2995 	}
2996 
2997 	if (drv_data && drv_data->init) {
2998 		ret = drv_data->init(host);
2999 		if (ret) {
3000 			dev_err(host->dev,
3001 				"implementation specific init failed\n");
3002 			goto err_clk_ciu;
3003 		}
3004 	}
3005 
3006 	if (drv_data && drv_data->setup_clock) {
3007 		ret = drv_data->setup_clock(host);
3008 		if (ret) {
3009 			dev_err(host->dev,
3010 				"implementation specific clock setup failed\n");
3011 			goto err_clk_ciu;
3012 		}
3013 	}
3014 
3015 	setup_timer(&host->cmd11_timer,
3016 		    dw_mci_cmd11_timer, (unsigned long)host);
3017 
3018 	host->quirks = host->pdata->quirks;
3019 
3020 	if (host->quirks & DW_MCI_QUIRK_BROKEN_DTO)
3021 		setup_timer(&host->dto_timer,
3022 			    dw_mci_dto_timer, (unsigned long)host);
3023 
3024 	spin_lock_init(&host->lock);
3025 	spin_lock_init(&host->irq_lock);
3026 	INIT_LIST_HEAD(&host->queue);
3027 
3028 	/*
3029 	 * Get the host data width - this assumes that HCON has been set with
3030 	 * the correct values.
3031 	 */
3032 	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3033 	if (!i) {
3034 		host->push_data = dw_mci_push_data16;
3035 		host->pull_data = dw_mci_pull_data16;
3036 		width = 16;
3037 		host->data_shift = 1;
3038 	} else if (i == 2) {
3039 		host->push_data = dw_mci_push_data64;
3040 		host->pull_data = dw_mci_pull_data64;
3041 		width = 64;
3042 		host->data_shift = 3;
3043 	} else {
3044 		/* Check for a reserved value, and warn if it is */
3045 		WARN((i != 1),
3046 		     "HCON reports a reserved host data width!\n"
3047 		     "Defaulting to 32-bit access.\n");
3048 		host->push_data = dw_mci_push_data32;
3049 		host->pull_data = dw_mci_pull_data32;
3050 		width = 32;
3051 		host->data_shift = 2;
3052 	}
3053 
3054 	/* Reset all blocks */
3055 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS))
3056 		return -ENODEV;
3057 
3058 	host->dma_ops = host->pdata->dma_ops;
3059 	dw_mci_init_dma(host);
3060 
3061 	/* Clear the interrupts for the host controller */
3062 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3063 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3064 
3065 	/* Put in max timeout */
3066 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3067 
3068 	/*
3069 	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3070 	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3071 	 */
3072 	if (!host->pdata->fifo_depth) {
3073 		/*
3074 		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3075 		 * have been overwritten by the bootloader, just like we're
3076 		 * about to do, so if you know the value for your hardware, you
3077 		 * should put it in the platform data.
3078 		 */
3079 		fifo_size = mci_readl(host, FIFOTH);
3080 		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3081 	} else {
3082 		fifo_size = host->pdata->fifo_depth;
3083 	}
3084 	host->fifo_depth = fifo_size;
3085 	host->fifoth_val =
3086 		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3087 	mci_writel(host, FIFOTH, host->fifoth_val);
3088 
3089 	/* disable clock to CIU */
3090 	mci_writel(host, CLKENA, 0);
3091 	mci_writel(host, CLKSRC, 0);
3092 
3093 	/*
3094 	 * In 2.40a spec, Data offset is changed.
3095 	 * Need to check the version-id and set data-offset for DATA register.
3096 	 */
3097 	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3098 	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3099 
3100 	if (host->verid < DW_MMC_240A)
3101 		host->fifo_reg = host->regs + DATA_OFFSET;
3102 	else
3103 		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3104 
3105 	tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3106 	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3107 			       host->irq_flags, "dw-mci", host);
3108 	if (ret)
3109 		goto err_dmaunmap;
3110 
3111 	if (host->pdata->num_slots)
3112 		host->num_slots = host->pdata->num_slots;
3113 	else
3114 		host->num_slots = SDMMC_GET_SLOT_NUM(mci_readl(host, HCON));
3115 
3116 	/*
3117 	 * Enable interrupts for command done, data over, data empty,
3118 	 * receive ready and error such as transmit, receive timeout, crc error
3119 	 */
3120 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3121 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3122 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3123 		   DW_MCI_ERROR_FLAGS);
3124 	/* Enable mci interrupt */
3125 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3126 
3127 	dev_info(host->dev,
3128 		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3129 		 host->irq, width, fifo_size);
3130 
3131 	/* We need at least one slot to succeed */
3132 	for (i = 0; i < host->num_slots; i++) {
3133 		ret = dw_mci_init_slot(host, i);
3134 		if (ret)
3135 			dev_dbg(host->dev, "slot %d init failed\n", i);
3136 		else
3137 			init_slots++;
3138 	}
3139 
3140 	if (init_slots) {
3141 		dev_info(host->dev, "%d slots initialized\n", init_slots);
3142 	} else {
3143 		dev_dbg(host->dev,
3144 			"attempted to initialize %d slots, but failed on all\n",
3145 			host->num_slots);
3146 		goto err_dmaunmap;
3147 	}
3148 
3149 	/* Now that slots are all setup, we can enable card detect */
3150 	dw_mci_enable_cd(host);
3151 
3152 	return 0;
3153 
3154 err_dmaunmap:
3155 	if (host->use_dma && host->dma_ops->exit)
3156 		host->dma_ops->exit(host);
3157 
3158 err_clk_ciu:
3159 	if (!IS_ERR(host->ciu_clk))
3160 		clk_disable_unprepare(host->ciu_clk);
3161 
3162 err_clk_biu:
3163 	if (!IS_ERR(host->biu_clk))
3164 		clk_disable_unprepare(host->biu_clk);
3165 
3166 	return ret;
3167 }
3168 EXPORT_SYMBOL(dw_mci_probe);
3169 
3170 void dw_mci_remove(struct dw_mci *host)
3171 {
3172 	int i;
3173 
3174 	for (i = 0; i < host->num_slots; i++) {
3175 		dev_dbg(host->dev, "remove slot %d\n", i);
3176 		if (host->slot[i])
3177 			dw_mci_cleanup_slot(host->slot[i], i);
3178 	}
3179 
3180 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3181 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3182 
3183 	/* disable clock to CIU */
3184 	mci_writel(host, CLKENA, 0);
3185 	mci_writel(host, CLKSRC, 0);
3186 
3187 	if (host->use_dma && host->dma_ops->exit)
3188 		host->dma_ops->exit(host);
3189 
3190 	if (!IS_ERR(host->ciu_clk))
3191 		clk_disable_unprepare(host->ciu_clk);
3192 
3193 	if (!IS_ERR(host->biu_clk))
3194 		clk_disable_unprepare(host->biu_clk);
3195 }
3196 EXPORT_SYMBOL(dw_mci_remove);
3197 
3198 
3199 
3200 #ifdef CONFIG_PM_SLEEP
3201 /*
3202  * TODO: we should probably disable the clock to the card in the suspend path.
3203  */
3204 int dw_mci_suspend(struct dw_mci *host)
3205 {
3206 	if (host->use_dma && host->dma_ops->exit)
3207 		host->dma_ops->exit(host);
3208 
3209 	return 0;
3210 }
3211 EXPORT_SYMBOL(dw_mci_suspend);
3212 
3213 int dw_mci_resume(struct dw_mci *host)
3214 {
3215 	int i, ret;
3216 
3217 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3218 		ret = -ENODEV;
3219 		return ret;
3220 	}
3221 
3222 	if (host->use_dma && host->dma_ops->init)
3223 		host->dma_ops->init(host);
3224 
3225 	/*
3226 	 * Restore the initial value at FIFOTH register
3227 	 * And Invalidate the prev_blksz with zero
3228 	 */
3229 	mci_writel(host, FIFOTH, host->fifoth_val);
3230 	host->prev_blksz = 0;
3231 
3232 	/* Put in max timeout */
3233 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3234 
3235 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3236 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3237 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3238 		   DW_MCI_ERROR_FLAGS);
3239 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3240 
3241 	for (i = 0; i < host->num_slots; i++) {
3242 		struct dw_mci_slot *slot = host->slot[i];
3243 
3244 		if (!slot)
3245 			continue;
3246 		if (slot->mmc->pm_flags & MMC_PM_KEEP_POWER) {
3247 			dw_mci_set_ios(slot->mmc, &slot->mmc->ios);
3248 			dw_mci_setup_bus(slot, true);
3249 		}
3250 	}
3251 
3252 	/* Now that slots are all setup, we can enable card detect */
3253 	dw_mci_enable_cd(host);
3254 
3255 	return 0;
3256 }
3257 EXPORT_SYMBOL(dw_mci_resume);
3258 #endif /* CONFIG_PM_SLEEP */
3259 
3260 static int __init dw_mci_init(void)
3261 {
3262 	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3263 	return 0;
3264 }
3265 
3266 static void __exit dw_mci_exit(void)
3267 {
3268 }
3269 
3270 module_init(dw_mci_init);
3271 module_exit(dw_mci_exit);
3272 
3273 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3274 MODULE_AUTHOR("NXP Semiconductor VietNam");
3275 MODULE_AUTHOR("Imagination Technologies Ltd");
3276 MODULE_LICENSE("GPL v2");
3277