1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Synopsys DesignWare Multimedia Card Interface driver 4 * (Based on NXP driver for lpc 31xx) 5 * 6 * Copyright (C) 2009 NXP Semiconductors 7 * Copyright (C) 2009, 2010 Imagination Technologies Ltd. 8 */ 9 10 #include <linux/blkdev.h> 11 #include <linux/clk.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/err.h> 16 #include <linux/init.h> 17 #include <linux/interrupt.h> 18 #include <linux/iopoll.h> 19 #include <linux/ioport.h> 20 #include <linux/ktime.h> 21 #include <linux/module.h> 22 #include <linux/platform_device.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/prandom.h> 25 #include <linux/seq_file.h> 26 #include <linux/slab.h> 27 #include <linux/stat.h> 28 #include <linux/delay.h> 29 #include <linux/irq.h> 30 #include <linux/mmc/card.h> 31 #include <linux/mmc/host.h> 32 #include <linux/mmc/mmc.h> 33 #include <linux/mmc/sd.h> 34 #include <linux/mmc/sdio.h> 35 #include <linux/bitops.h> 36 #include <linux/regulator/consumer.h> 37 #include <linux/of.h> 38 #include <linux/of_gpio.h> 39 #include <linux/mmc/slot-gpio.h> 40 41 #include "dw_mmc.h" 42 43 /* Common flag combinations */ 44 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \ 45 SDMMC_INT_HTO | SDMMC_INT_SBE | \ 46 SDMMC_INT_EBE | SDMMC_INT_HLE) 47 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \ 48 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE) 49 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \ 50 DW_MCI_CMD_ERROR_FLAGS) 51 #define DW_MCI_SEND_STATUS 1 52 #define DW_MCI_RECV_STATUS 2 53 #define DW_MCI_DMA_THRESHOLD 16 54 55 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */ 56 #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */ 57 58 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \ 59 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \ 60 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \ 61 SDMMC_IDMAC_INT_TI) 62 63 #define DESC_RING_BUF_SZ PAGE_SIZE 64 65 struct idmac_desc_64addr { 66 u32 des0; /* Control Descriptor */ 67 #define IDMAC_OWN_CLR64(x) \ 68 !((x) & cpu_to_le32(IDMAC_DES0_OWN)) 69 70 u32 des1; /* Reserved */ 71 72 u32 des2; /*Buffer sizes */ 73 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \ 74 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \ 75 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff))) 76 77 u32 des3; /* Reserved */ 78 79 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/ 80 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/ 81 82 u32 des6; /* Lower 32-bits of Next Descriptor Address */ 83 u32 des7; /* Upper 32-bits of Next Descriptor Address */ 84 }; 85 86 struct idmac_desc { 87 __le32 des0; /* Control Descriptor */ 88 #define IDMAC_DES0_DIC BIT(1) 89 #define IDMAC_DES0_LD BIT(2) 90 #define IDMAC_DES0_FD BIT(3) 91 #define IDMAC_DES0_CH BIT(4) 92 #define IDMAC_DES0_ER BIT(5) 93 #define IDMAC_DES0_CES BIT(30) 94 #define IDMAC_DES0_OWN BIT(31) 95 96 __le32 des1; /* Buffer sizes */ 97 #define IDMAC_SET_BUFFER1_SIZE(d, s) \ 98 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff))) 99 100 __le32 des2; /* buffer 1 physical address */ 101 102 __le32 des3; /* buffer 2 physical address */ 103 }; 104 105 /* Each descriptor can transfer up to 4KB of data in chained mode */ 106 #define DW_MCI_DESC_DATA_LENGTH 0x1000 107 108 #if defined(CONFIG_DEBUG_FS) 109 static int dw_mci_req_show(struct seq_file *s, void *v) 110 { 111 struct dw_mci_slot *slot = s->private; 112 struct mmc_request *mrq; 113 struct mmc_command *cmd; 114 struct mmc_command *stop; 115 struct mmc_data *data; 116 117 /* Make sure we get a consistent snapshot */ 118 spin_lock_bh(&slot->host->lock); 119 mrq = slot->mrq; 120 121 if (mrq) { 122 cmd = mrq->cmd; 123 data = mrq->data; 124 stop = mrq->stop; 125 126 if (cmd) 127 seq_printf(s, 128 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n", 129 cmd->opcode, cmd->arg, cmd->flags, 130 cmd->resp[0], cmd->resp[1], cmd->resp[2], 131 cmd->resp[2], cmd->error); 132 if (data) 133 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n", 134 data->bytes_xfered, data->blocks, 135 data->blksz, data->flags, data->error); 136 if (stop) 137 seq_printf(s, 138 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n", 139 stop->opcode, stop->arg, stop->flags, 140 stop->resp[0], stop->resp[1], stop->resp[2], 141 stop->resp[2], stop->error); 142 } 143 144 spin_unlock_bh(&slot->host->lock); 145 146 return 0; 147 } 148 DEFINE_SHOW_ATTRIBUTE(dw_mci_req); 149 150 static int dw_mci_regs_show(struct seq_file *s, void *v) 151 { 152 struct dw_mci *host = s->private; 153 154 pm_runtime_get_sync(host->dev); 155 156 seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS)); 157 seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS)); 158 seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD)); 159 seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL)); 160 seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK)); 161 seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA)); 162 163 pm_runtime_put_autosuspend(host->dev); 164 165 return 0; 166 } 167 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs); 168 169 static void dw_mci_init_debugfs(struct dw_mci_slot *slot) 170 { 171 struct mmc_host *mmc = slot->mmc; 172 struct dw_mci *host = slot->host; 173 struct dentry *root; 174 175 root = mmc->debugfs_root; 176 if (!root) 177 return; 178 179 debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops); 180 debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops); 181 debugfs_create_u32("state", S_IRUSR, root, &host->state); 182 debugfs_create_xul("pending_events", S_IRUSR, root, 183 &host->pending_events); 184 debugfs_create_xul("completed_events", S_IRUSR, root, 185 &host->completed_events); 186 #ifdef CONFIG_FAULT_INJECTION 187 fault_create_debugfs_attr("fail_data_crc", root, &host->fail_data_crc); 188 #endif 189 } 190 #endif /* defined(CONFIG_DEBUG_FS) */ 191 192 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset) 193 { 194 u32 ctrl; 195 196 ctrl = mci_readl(host, CTRL); 197 ctrl |= reset; 198 mci_writel(host, CTRL, ctrl); 199 200 /* wait till resets clear */ 201 if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl, 202 !(ctrl & reset), 203 1, 500 * USEC_PER_MSEC)) { 204 dev_err(host->dev, 205 "Timeout resetting block (ctrl reset %#x)\n", 206 ctrl & reset); 207 return false; 208 } 209 210 return true; 211 } 212 213 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags) 214 { 215 u32 status; 216 217 /* 218 * Databook says that before issuing a new data transfer command 219 * we need to check to see if the card is busy. Data transfer commands 220 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that. 221 * 222 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is 223 * expected. 224 */ 225 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) && 226 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) { 227 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS, 228 status, 229 !(status & SDMMC_STATUS_BUSY), 230 10, 500 * USEC_PER_MSEC)) 231 dev_err(host->dev, "Busy; trying anyway\n"); 232 } 233 } 234 235 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg) 236 { 237 struct dw_mci *host = slot->host; 238 unsigned int cmd_status = 0; 239 240 mci_writel(host, CMDARG, arg); 241 wmb(); /* drain writebuffer */ 242 dw_mci_wait_while_busy(host, cmd); 243 mci_writel(host, CMD, SDMMC_CMD_START | cmd); 244 245 if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status, 246 !(cmd_status & SDMMC_CMD_START), 247 1, 500 * USEC_PER_MSEC)) 248 dev_err(&slot->mmc->class_dev, 249 "Timeout sending command (cmd %#x arg %#x status %#x)\n", 250 cmd, arg, cmd_status); 251 } 252 253 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd) 254 { 255 struct dw_mci_slot *slot = mmc_priv(mmc); 256 struct dw_mci *host = slot->host; 257 u32 cmdr; 258 259 cmd->error = -EINPROGRESS; 260 cmdr = cmd->opcode; 261 262 if (cmd->opcode == MMC_STOP_TRANSMISSION || 263 cmd->opcode == MMC_GO_IDLE_STATE || 264 cmd->opcode == MMC_GO_INACTIVE_STATE || 265 (cmd->opcode == SD_IO_RW_DIRECT && 266 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT)) 267 cmdr |= SDMMC_CMD_STOP; 268 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data) 269 cmdr |= SDMMC_CMD_PRV_DAT_WAIT; 270 271 if (cmd->opcode == SD_SWITCH_VOLTAGE) { 272 u32 clk_en_a; 273 274 /* Special bit makes CMD11 not die */ 275 cmdr |= SDMMC_CMD_VOLT_SWITCH; 276 277 /* Change state to continue to handle CMD11 weirdness */ 278 WARN_ON(slot->host->state != STATE_SENDING_CMD); 279 slot->host->state = STATE_SENDING_CMD11; 280 281 /* 282 * We need to disable low power mode (automatic clock stop) 283 * while doing voltage switch so we don't confuse the card, 284 * since stopping the clock is a specific part of the UHS 285 * voltage change dance. 286 * 287 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be 288 * unconditionally turned back on in dw_mci_setup_bus() if it's 289 * ever called with a non-zero clock. That shouldn't happen 290 * until the voltage change is all done. 291 */ 292 clk_en_a = mci_readl(host, CLKENA); 293 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id); 294 mci_writel(host, CLKENA, clk_en_a); 295 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | 296 SDMMC_CMD_PRV_DAT_WAIT, 0); 297 } 298 299 if (cmd->flags & MMC_RSP_PRESENT) { 300 /* We expect a response, so set this bit */ 301 cmdr |= SDMMC_CMD_RESP_EXP; 302 if (cmd->flags & MMC_RSP_136) 303 cmdr |= SDMMC_CMD_RESP_LONG; 304 } 305 306 if (cmd->flags & MMC_RSP_CRC) 307 cmdr |= SDMMC_CMD_RESP_CRC; 308 309 if (cmd->data) { 310 cmdr |= SDMMC_CMD_DAT_EXP; 311 if (cmd->data->flags & MMC_DATA_WRITE) 312 cmdr |= SDMMC_CMD_DAT_WR; 313 } 314 315 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags)) 316 cmdr |= SDMMC_CMD_USE_HOLD_REG; 317 318 return cmdr; 319 } 320 321 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd) 322 { 323 struct mmc_command *stop; 324 u32 cmdr; 325 326 if (!cmd->data) 327 return 0; 328 329 stop = &host->stop_abort; 330 cmdr = cmd->opcode; 331 memset(stop, 0, sizeof(struct mmc_command)); 332 333 if (cmdr == MMC_READ_SINGLE_BLOCK || 334 cmdr == MMC_READ_MULTIPLE_BLOCK || 335 cmdr == MMC_WRITE_BLOCK || 336 cmdr == MMC_WRITE_MULTIPLE_BLOCK || 337 mmc_op_tuning(cmdr) || 338 cmdr == MMC_GEN_CMD) { 339 stop->opcode = MMC_STOP_TRANSMISSION; 340 stop->arg = 0; 341 stop->flags = MMC_RSP_R1B | MMC_CMD_AC; 342 } else if (cmdr == SD_IO_RW_EXTENDED) { 343 stop->opcode = SD_IO_RW_DIRECT; 344 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) | 345 ((cmd->arg >> 28) & 0x7); 346 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC; 347 } else { 348 return 0; 349 } 350 351 cmdr = stop->opcode | SDMMC_CMD_STOP | 352 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP; 353 354 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags)) 355 cmdr |= SDMMC_CMD_USE_HOLD_REG; 356 357 return cmdr; 358 } 359 360 static inline void dw_mci_set_cto(struct dw_mci *host) 361 { 362 unsigned int cto_clks; 363 unsigned int cto_div; 364 unsigned int cto_ms; 365 unsigned long irqflags; 366 367 cto_clks = mci_readl(host, TMOUT) & 0xff; 368 cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2; 369 if (cto_div == 0) 370 cto_div = 1; 371 372 cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div, 373 host->bus_hz); 374 375 /* add a bit spare time */ 376 cto_ms += 10; 377 378 /* 379 * The durations we're working with are fairly short so we have to be 380 * extra careful about synchronization here. Specifically in hardware a 381 * command timeout is _at most_ 5.1 ms, so that means we expect an 382 * interrupt (either command done or timeout) to come rather quickly 383 * after the mci_writel. ...but just in case we have a long interrupt 384 * latency let's add a bit of paranoia. 385 * 386 * In general we'll assume that at least an interrupt will be asserted 387 * in hardware by the time the cto_timer runs. ...and if it hasn't 388 * been asserted in hardware by that time then we'll assume it'll never 389 * come. 390 */ 391 spin_lock_irqsave(&host->irq_lock, irqflags); 392 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) 393 mod_timer(&host->cto_timer, 394 jiffies + msecs_to_jiffies(cto_ms) + 1); 395 spin_unlock_irqrestore(&host->irq_lock, irqflags); 396 } 397 398 static void dw_mci_start_command(struct dw_mci *host, 399 struct mmc_command *cmd, u32 cmd_flags) 400 { 401 host->cmd = cmd; 402 dev_vdbg(host->dev, 403 "start command: ARGR=0x%08x CMDR=0x%08x\n", 404 cmd->arg, cmd_flags); 405 406 mci_writel(host, CMDARG, cmd->arg); 407 wmb(); /* drain writebuffer */ 408 dw_mci_wait_while_busy(host, cmd_flags); 409 410 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START); 411 412 /* response expected command only */ 413 if (cmd_flags & SDMMC_CMD_RESP_EXP) 414 dw_mci_set_cto(host); 415 } 416 417 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data) 418 { 419 struct mmc_command *stop = &host->stop_abort; 420 421 dw_mci_start_command(host, stop, host->stop_cmdr); 422 } 423 424 /* DMA interface functions */ 425 static void dw_mci_stop_dma(struct dw_mci *host) 426 { 427 if (host->using_dma) { 428 host->dma_ops->stop(host); 429 host->dma_ops->cleanup(host); 430 } 431 432 /* Data transfer was stopped by the interrupt handler */ 433 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 434 } 435 436 static void dw_mci_dma_cleanup(struct dw_mci *host) 437 { 438 struct mmc_data *data = host->data; 439 440 if (data && data->host_cookie == COOKIE_MAPPED) { 441 dma_unmap_sg(host->dev, 442 data->sg, 443 data->sg_len, 444 mmc_get_dma_dir(data)); 445 data->host_cookie = COOKIE_UNMAPPED; 446 } 447 } 448 449 static void dw_mci_idmac_reset(struct dw_mci *host) 450 { 451 u32 bmod = mci_readl(host, BMOD); 452 /* Software reset of DMA */ 453 bmod |= SDMMC_IDMAC_SWRESET; 454 mci_writel(host, BMOD, bmod); 455 } 456 457 static void dw_mci_idmac_stop_dma(struct dw_mci *host) 458 { 459 u32 temp; 460 461 /* Disable and reset the IDMAC interface */ 462 temp = mci_readl(host, CTRL); 463 temp &= ~SDMMC_CTRL_USE_IDMAC; 464 temp |= SDMMC_CTRL_DMA_RESET; 465 mci_writel(host, CTRL, temp); 466 467 /* Stop the IDMAC running */ 468 temp = mci_readl(host, BMOD); 469 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB); 470 temp |= SDMMC_IDMAC_SWRESET; 471 mci_writel(host, BMOD, temp); 472 } 473 474 static void dw_mci_dmac_complete_dma(void *arg) 475 { 476 struct dw_mci *host = arg; 477 struct mmc_data *data = host->data; 478 479 dev_vdbg(host->dev, "DMA complete\n"); 480 481 if ((host->use_dma == TRANS_MODE_EDMAC) && 482 data && (data->flags & MMC_DATA_READ)) 483 /* Invalidate cache after read */ 484 dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc), 485 data->sg, 486 data->sg_len, 487 DMA_FROM_DEVICE); 488 489 host->dma_ops->cleanup(host); 490 491 /* 492 * If the card was removed, data will be NULL. No point in trying to 493 * send the stop command or waiting for NBUSY in this case. 494 */ 495 if (data) { 496 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 497 tasklet_schedule(&host->tasklet); 498 } 499 } 500 501 static int dw_mci_idmac_init(struct dw_mci *host) 502 { 503 int i; 504 505 if (host->dma_64bit_address == 1) { 506 struct idmac_desc_64addr *p; 507 /* Number of descriptors in the ring buffer */ 508 host->ring_size = 509 DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr); 510 511 /* Forward link the descriptor list */ 512 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1; 513 i++, p++) { 514 p->des6 = (host->sg_dma + 515 (sizeof(struct idmac_desc_64addr) * 516 (i + 1))) & 0xffffffff; 517 518 p->des7 = (u64)(host->sg_dma + 519 (sizeof(struct idmac_desc_64addr) * 520 (i + 1))) >> 32; 521 /* Initialize reserved and buffer size fields to "0" */ 522 p->des0 = 0; 523 p->des1 = 0; 524 p->des2 = 0; 525 p->des3 = 0; 526 } 527 528 /* Set the last descriptor as the end-of-ring descriptor */ 529 p->des6 = host->sg_dma & 0xffffffff; 530 p->des7 = (u64)host->sg_dma >> 32; 531 p->des0 = IDMAC_DES0_ER; 532 533 } else { 534 struct idmac_desc *p; 535 /* Number of descriptors in the ring buffer */ 536 host->ring_size = 537 DESC_RING_BUF_SZ / sizeof(struct idmac_desc); 538 539 /* Forward link the descriptor list */ 540 for (i = 0, p = host->sg_cpu; 541 i < host->ring_size - 1; 542 i++, p++) { 543 p->des3 = cpu_to_le32(host->sg_dma + 544 (sizeof(struct idmac_desc) * (i + 1))); 545 p->des0 = 0; 546 p->des1 = 0; 547 } 548 549 /* Set the last descriptor as the end-of-ring descriptor */ 550 p->des3 = cpu_to_le32(host->sg_dma); 551 p->des0 = cpu_to_le32(IDMAC_DES0_ER); 552 } 553 554 dw_mci_idmac_reset(host); 555 556 if (host->dma_64bit_address == 1) { 557 /* Mask out interrupts - get Tx & Rx complete only */ 558 mci_writel(host, IDSTS64, IDMAC_INT_CLR); 559 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI | 560 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI); 561 562 /* Set the descriptor base address */ 563 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff); 564 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32); 565 566 } else { 567 /* Mask out interrupts - get Tx & Rx complete only */ 568 mci_writel(host, IDSTS, IDMAC_INT_CLR); 569 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI | 570 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI); 571 572 /* Set the descriptor base address */ 573 mci_writel(host, DBADDR, host->sg_dma); 574 } 575 576 return 0; 577 } 578 579 static inline int dw_mci_prepare_desc64(struct dw_mci *host, 580 struct mmc_data *data, 581 unsigned int sg_len) 582 { 583 unsigned int desc_len; 584 struct idmac_desc_64addr *desc_first, *desc_last, *desc; 585 u32 val; 586 int i; 587 588 desc_first = desc_last = desc = host->sg_cpu; 589 590 for (i = 0; i < sg_len; i++) { 591 unsigned int length = sg_dma_len(&data->sg[i]); 592 593 u64 mem_addr = sg_dma_address(&data->sg[i]); 594 595 for ( ; length ; desc++) { 596 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ? 597 length : DW_MCI_DESC_DATA_LENGTH; 598 599 length -= desc_len; 600 601 /* 602 * Wait for the former clear OWN bit operation 603 * of IDMAC to make sure that this descriptor 604 * isn't still owned by IDMAC as IDMAC's write 605 * ops and CPU's read ops are asynchronous. 606 */ 607 if (readl_poll_timeout_atomic(&desc->des0, val, 608 !(val & IDMAC_DES0_OWN), 609 10, 100 * USEC_PER_MSEC)) 610 goto err_own_bit; 611 612 /* 613 * Set the OWN bit and disable interrupts 614 * for this descriptor 615 */ 616 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC | 617 IDMAC_DES0_CH; 618 619 /* Buffer length */ 620 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len); 621 622 /* Physical address to DMA to/from */ 623 desc->des4 = mem_addr & 0xffffffff; 624 desc->des5 = mem_addr >> 32; 625 626 /* Update physical address for the next desc */ 627 mem_addr += desc_len; 628 629 /* Save pointer to the last descriptor */ 630 desc_last = desc; 631 } 632 } 633 634 /* Set first descriptor */ 635 desc_first->des0 |= IDMAC_DES0_FD; 636 637 /* Set last descriptor */ 638 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC); 639 desc_last->des0 |= IDMAC_DES0_LD; 640 641 return 0; 642 err_own_bit: 643 /* restore the descriptor chain as it's polluted */ 644 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n"); 645 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ); 646 dw_mci_idmac_init(host); 647 return -EINVAL; 648 } 649 650 651 static inline int dw_mci_prepare_desc32(struct dw_mci *host, 652 struct mmc_data *data, 653 unsigned int sg_len) 654 { 655 unsigned int desc_len; 656 struct idmac_desc *desc_first, *desc_last, *desc; 657 u32 val; 658 int i; 659 660 desc_first = desc_last = desc = host->sg_cpu; 661 662 for (i = 0; i < sg_len; i++) { 663 unsigned int length = sg_dma_len(&data->sg[i]); 664 665 u32 mem_addr = sg_dma_address(&data->sg[i]); 666 667 for ( ; length ; desc++) { 668 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ? 669 length : DW_MCI_DESC_DATA_LENGTH; 670 671 length -= desc_len; 672 673 /* 674 * Wait for the former clear OWN bit operation 675 * of IDMAC to make sure that this descriptor 676 * isn't still owned by IDMAC as IDMAC's write 677 * ops and CPU's read ops are asynchronous. 678 */ 679 if (readl_poll_timeout_atomic(&desc->des0, val, 680 IDMAC_OWN_CLR64(val), 681 10, 682 100 * USEC_PER_MSEC)) 683 goto err_own_bit; 684 685 /* 686 * Set the OWN bit and disable interrupts 687 * for this descriptor 688 */ 689 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN | 690 IDMAC_DES0_DIC | 691 IDMAC_DES0_CH); 692 693 /* Buffer length */ 694 IDMAC_SET_BUFFER1_SIZE(desc, desc_len); 695 696 /* Physical address to DMA to/from */ 697 desc->des2 = cpu_to_le32(mem_addr); 698 699 /* Update physical address for the next desc */ 700 mem_addr += desc_len; 701 702 /* Save pointer to the last descriptor */ 703 desc_last = desc; 704 } 705 } 706 707 /* Set first descriptor */ 708 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD); 709 710 /* Set last descriptor */ 711 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH | 712 IDMAC_DES0_DIC)); 713 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD); 714 715 return 0; 716 err_own_bit: 717 /* restore the descriptor chain as it's polluted */ 718 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n"); 719 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ); 720 dw_mci_idmac_init(host); 721 return -EINVAL; 722 } 723 724 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len) 725 { 726 u32 temp; 727 int ret; 728 729 if (host->dma_64bit_address == 1) 730 ret = dw_mci_prepare_desc64(host, host->data, sg_len); 731 else 732 ret = dw_mci_prepare_desc32(host, host->data, sg_len); 733 734 if (ret) 735 goto out; 736 737 /* drain writebuffer */ 738 wmb(); 739 740 /* Make sure to reset DMA in case we did PIO before this */ 741 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET); 742 dw_mci_idmac_reset(host); 743 744 /* Select IDMAC interface */ 745 temp = mci_readl(host, CTRL); 746 temp |= SDMMC_CTRL_USE_IDMAC; 747 mci_writel(host, CTRL, temp); 748 749 /* drain writebuffer */ 750 wmb(); 751 752 /* Enable the IDMAC */ 753 temp = mci_readl(host, BMOD); 754 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB; 755 mci_writel(host, BMOD, temp); 756 757 /* Start it running */ 758 mci_writel(host, PLDMND, 1); 759 760 out: 761 return ret; 762 } 763 764 static const struct dw_mci_dma_ops dw_mci_idmac_ops = { 765 .init = dw_mci_idmac_init, 766 .start = dw_mci_idmac_start_dma, 767 .stop = dw_mci_idmac_stop_dma, 768 .complete = dw_mci_dmac_complete_dma, 769 .cleanup = dw_mci_dma_cleanup, 770 }; 771 772 static void dw_mci_edmac_stop_dma(struct dw_mci *host) 773 { 774 dmaengine_terminate_async(host->dms->ch); 775 } 776 777 static int dw_mci_edmac_start_dma(struct dw_mci *host, 778 unsigned int sg_len) 779 { 780 struct dma_slave_config cfg; 781 struct dma_async_tx_descriptor *desc = NULL; 782 struct scatterlist *sgl = host->data->sg; 783 static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256}; 784 u32 sg_elems = host->data->sg_len; 785 u32 fifoth_val; 786 u32 fifo_offset = host->fifo_reg - host->regs; 787 int ret = 0; 788 789 /* Set external dma config: burst size, burst width */ 790 memset(&cfg, 0, sizeof(cfg)); 791 cfg.dst_addr = host->phy_regs + fifo_offset; 792 cfg.src_addr = cfg.dst_addr; 793 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 794 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 795 796 /* Match burst msize with external dma config */ 797 fifoth_val = mci_readl(host, FIFOTH); 798 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7]; 799 cfg.src_maxburst = cfg.dst_maxburst; 800 801 if (host->data->flags & MMC_DATA_WRITE) 802 cfg.direction = DMA_MEM_TO_DEV; 803 else 804 cfg.direction = DMA_DEV_TO_MEM; 805 806 ret = dmaengine_slave_config(host->dms->ch, &cfg); 807 if (ret) { 808 dev_err(host->dev, "Failed to config edmac.\n"); 809 return -EBUSY; 810 } 811 812 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl, 813 sg_len, cfg.direction, 814 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 815 if (!desc) { 816 dev_err(host->dev, "Can't prepare slave sg.\n"); 817 return -EBUSY; 818 } 819 820 /* Set dw_mci_dmac_complete_dma as callback */ 821 desc->callback = dw_mci_dmac_complete_dma; 822 desc->callback_param = (void *)host; 823 dmaengine_submit(desc); 824 825 /* Flush cache before write */ 826 if (host->data->flags & MMC_DATA_WRITE) 827 dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl, 828 sg_elems, DMA_TO_DEVICE); 829 830 dma_async_issue_pending(host->dms->ch); 831 832 return 0; 833 } 834 835 static int dw_mci_edmac_init(struct dw_mci *host) 836 { 837 /* Request external dma channel */ 838 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL); 839 if (!host->dms) 840 return -ENOMEM; 841 842 host->dms->ch = dma_request_chan(host->dev, "rx-tx"); 843 if (IS_ERR(host->dms->ch)) { 844 int ret = PTR_ERR(host->dms->ch); 845 846 dev_err(host->dev, "Failed to get external DMA channel.\n"); 847 kfree(host->dms); 848 host->dms = NULL; 849 return ret; 850 } 851 852 return 0; 853 } 854 855 static void dw_mci_edmac_exit(struct dw_mci *host) 856 { 857 if (host->dms) { 858 if (host->dms->ch) { 859 dma_release_channel(host->dms->ch); 860 host->dms->ch = NULL; 861 } 862 kfree(host->dms); 863 host->dms = NULL; 864 } 865 } 866 867 static const struct dw_mci_dma_ops dw_mci_edmac_ops = { 868 .init = dw_mci_edmac_init, 869 .exit = dw_mci_edmac_exit, 870 .start = dw_mci_edmac_start_dma, 871 .stop = dw_mci_edmac_stop_dma, 872 .complete = dw_mci_dmac_complete_dma, 873 .cleanup = dw_mci_dma_cleanup, 874 }; 875 876 static int dw_mci_pre_dma_transfer(struct dw_mci *host, 877 struct mmc_data *data, 878 int cookie) 879 { 880 struct scatterlist *sg; 881 unsigned int i, sg_len; 882 883 if (data->host_cookie == COOKIE_PRE_MAPPED) 884 return data->sg_len; 885 886 /* 887 * We don't do DMA on "complex" transfers, i.e. with 888 * non-word-aligned buffers or lengths. Also, we don't bother 889 * with all the DMA setup overhead for short transfers. 890 */ 891 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD) 892 return -EINVAL; 893 894 if (data->blksz & 3) 895 return -EINVAL; 896 897 for_each_sg(data->sg, sg, data->sg_len, i) { 898 if (sg->offset & 3 || sg->length & 3) 899 return -EINVAL; 900 } 901 902 sg_len = dma_map_sg(host->dev, 903 data->sg, 904 data->sg_len, 905 mmc_get_dma_dir(data)); 906 if (sg_len == 0) 907 return -EINVAL; 908 909 data->host_cookie = cookie; 910 911 return sg_len; 912 } 913 914 static void dw_mci_pre_req(struct mmc_host *mmc, 915 struct mmc_request *mrq) 916 { 917 struct dw_mci_slot *slot = mmc_priv(mmc); 918 struct mmc_data *data = mrq->data; 919 920 if (!slot->host->use_dma || !data) 921 return; 922 923 /* This data might be unmapped at this time */ 924 data->host_cookie = COOKIE_UNMAPPED; 925 926 if (dw_mci_pre_dma_transfer(slot->host, mrq->data, 927 COOKIE_PRE_MAPPED) < 0) 928 data->host_cookie = COOKIE_UNMAPPED; 929 } 930 931 static void dw_mci_post_req(struct mmc_host *mmc, 932 struct mmc_request *mrq, 933 int err) 934 { 935 struct dw_mci_slot *slot = mmc_priv(mmc); 936 struct mmc_data *data = mrq->data; 937 938 if (!slot->host->use_dma || !data) 939 return; 940 941 if (data->host_cookie != COOKIE_UNMAPPED) 942 dma_unmap_sg(slot->host->dev, 943 data->sg, 944 data->sg_len, 945 mmc_get_dma_dir(data)); 946 data->host_cookie = COOKIE_UNMAPPED; 947 } 948 949 static int dw_mci_get_cd(struct mmc_host *mmc) 950 { 951 int present; 952 struct dw_mci_slot *slot = mmc_priv(mmc); 953 struct dw_mci *host = slot->host; 954 int gpio_cd = mmc_gpio_get_cd(mmc); 955 956 /* Use platform get_cd function, else try onboard card detect */ 957 if (((mmc->caps & MMC_CAP_NEEDS_POLL) 958 || !mmc_card_is_removable(mmc))) { 959 present = 1; 960 961 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) { 962 if (mmc->caps & MMC_CAP_NEEDS_POLL) { 963 dev_info(&mmc->class_dev, 964 "card is polling.\n"); 965 } else { 966 dev_info(&mmc->class_dev, 967 "card is non-removable.\n"); 968 } 969 set_bit(DW_MMC_CARD_PRESENT, &slot->flags); 970 } 971 972 return present; 973 } else if (gpio_cd >= 0) 974 present = gpio_cd; 975 else 976 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id)) 977 == 0 ? 1 : 0; 978 979 spin_lock_bh(&host->lock); 980 if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags)) 981 dev_dbg(&mmc->class_dev, "card is present\n"); 982 else if (!present && 983 !test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags)) 984 dev_dbg(&mmc->class_dev, "card is not present\n"); 985 spin_unlock_bh(&host->lock); 986 987 return present; 988 } 989 990 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data) 991 { 992 unsigned int blksz = data->blksz; 993 static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256}; 994 u32 fifo_width = 1 << host->data_shift; 995 u32 blksz_depth = blksz / fifo_width, fifoth_val; 996 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers; 997 int idx = ARRAY_SIZE(mszs) - 1; 998 999 /* pio should ship this scenario */ 1000 if (!host->use_dma) 1001 return; 1002 1003 tx_wmark = (host->fifo_depth) / 2; 1004 tx_wmark_invers = host->fifo_depth - tx_wmark; 1005 1006 /* 1007 * MSIZE is '1', 1008 * if blksz is not a multiple of the FIFO width 1009 */ 1010 if (blksz % fifo_width) 1011 goto done; 1012 1013 do { 1014 if (!((blksz_depth % mszs[idx]) || 1015 (tx_wmark_invers % mszs[idx]))) { 1016 msize = idx; 1017 rx_wmark = mszs[idx] - 1; 1018 break; 1019 } 1020 } while (--idx > 0); 1021 /* 1022 * If idx is '0', it won't be tried 1023 * Thus, initial values are uesed 1024 */ 1025 done: 1026 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark); 1027 mci_writel(host, FIFOTH, fifoth_val); 1028 } 1029 1030 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data) 1031 { 1032 unsigned int blksz = data->blksz; 1033 u32 blksz_depth, fifo_depth; 1034 u16 thld_size; 1035 u8 enable; 1036 1037 /* 1038 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is 1039 * in the FIFO region, so we really shouldn't access it). 1040 */ 1041 if (host->verid < DW_MMC_240A || 1042 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE)) 1043 return; 1044 1045 /* 1046 * Card write Threshold is introduced since 2.80a 1047 * It's used when HS400 mode is enabled. 1048 */ 1049 if (data->flags & MMC_DATA_WRITE && 1050 host->timing != MMC_TIMING_MMC_HS400) 1051 goto disable; 1052 1053 if (data->flags & MMC_DATA_WRITE) 1054 enable = SDMMC_CARD_WR_THR_EN; 1055 else 1056 enable = SDMMC_CARD_RD_THR_EN; 1057 1058 if (host->timing != MMC_TIMING_MMC_HS200 && 1059 host->timing != MMC_TIMING_UHS_SDR104 && 1060 host->timing != MMC_TIMING_MMC_HS400) 1061 goto disable; 1062 1063 blksz_depth = blksz / (1 << host->data_shift); 1064 fifo_depth = host->fifo_depth; 1065 1066 if (blksz_depth > fifo_depth) 1067 goto disable; 1068 1069 /* 1070 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz' 1071 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz 1072 * Currently just choose blksz. 1073 */ 1074 thld_size = blksz; 1075 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable)); 1076 return; 1077 1078 disable: 1079 mci_writel(host, CDTHRCTL, 0); 1080 } 1081 1082 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data) 1083 { 1084 unsigned long irqflags; 1085 int sg_len; 1086 u32 temp; 1087 1088 host->using_dma = 0; 1089 1090 /* If we don't have a channel, we can't do DMA */ 1091 if (!host->use_dma) 1092 return -ENODEV; 1093 1094 sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED); 1095 if (sg_len < 0) { 1096 host->dma_ops->stop(host); 1097 return sg_len; 1098 } 1099 1100 host->using_dma = 1; 1101 1102 if (host->use_dma == TRANS_MODE_IDMAC) 1103 dev_vdbg(host->dev, 1104 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n", 1105 (unsigned long)host->sg_cpu, 1106 (unsigned long)host->sg_dma, 1107 sg_len); 1108 1109 /* 1110 * Decide the MSIZE and RX/TX Watermark. 1111 * If current block size is same with previous size, 1112 * no need to update fifoth. 1113 */ 1114 if (host->prev_blksz != data->blksz) 1115 dw_mci_adjust_fifoth(host, data); 1116 1117 /* Enable the DMA interface */ 1118 temp = mci_readl(host, CTRL); 1119 temp |= SDMMC_CTRL_DMA_ENABLE; 1120 mci_writel(host, CTRL, temp); 1121 1122 /* Disable RX/TX IRQs, let DMA handle it */ 1123 spin_lock_irqsave(&host->irq_lock, irqflags); 1124 temp = mci_readl(host, INTMASK); 1125 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR); 1126 mci_writel(host, INTMASK, temp); 1127 spin_unlock_irqrestore(&host->irq_lock, irqflags); 1128 1129 if (host->dma_ops->start(host, sg_len)) { 1130 host->dma_ops->stop(host); 1131 /* We can't do DMA, try PIO for this one */ 1132 dev_dbg(host->dev, 1133 "%s: fall back to PIO mode for current transfer\n", 1134 __func__); 1135 return -ENODEV; 1136 } 1137 1138 return 0; 1139 } 1140 1141 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data) 1142 { 1143 unsigned long irqflags; 1144 int flags = SG_MITER_ATOMIC; 1145 u32 temp; 1146 1147 data->error = -EINPROGRESS; 1148 1149 WARN_ON(host->data); 1150 host->sg = NULL; 1151 host->data = data; 1152 1153 if (data->flags & MMC_DATA_READ) 1154 host->dir_status = DW_MCI_RECV_STATUS; 1155 else 1156 host->dir_status = DW_MCI_SEND_STATUS; 1157 1158 dw_mci_ctrl_thld(host, data); 1159 1160 if (dw_mci_submit_data_dma(host, data)) { 1161 if (host->data->flags & MMC_DATA_READ) 1162 flags |= SG_MITER_TO_SG; 1163 else 1164 flags |= SG_MITER_FROM_SG; 1165 1166 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); 1167 host->sg = data->sg; 1168 host->part_buf_start = 0; 1169 host->part_buf_count = 0; 1170 1171 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR); 1172 1173 spin_lock_irqsave(&host->irq_lock, irqflags); 1174 temp = mci_readl(host, INTMASK); 1175 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR; 1176 mci_writel(host, INTMASK, temp); 1177 spin_unlock_irqrestore(&host->irq_lock, irqflags); 1178 1179 temp = mci_readl(host, CTRL); 1180 temp &= ~SDMMC_CTRL_DMA_ENABLE; 1181 mci_writel(host, CTRL, temp); 1182 1183 /* 1184 * Use the initial fifoth_val for PIO mode. If wm_algined 1185 * is set, we set watermark same as data size. 1186 * If next issued data may be transfered by DMA mode, 1187 * prev_blksz should be invalidated. 1188 */ 1189 if (host->wm_aligned) 1190 dw_mci_adjust_fifoth(host, data); 1191 else 1192 mci_writel(host, FIFOTH, host->fifoth_val); 1193 host->prev_blksz = 0; 1194 } else { 1195 /* 1196 * Keep the current block size. 1197 * It will be used to decide whether to update 1198 * fifoth register next time. 1199 */ 1200 host->prev_blksz = data->blksz; 1201 } 1202 } 1203 1204 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit) 1205 { 1206 struct dw_mci *host = slot->host; 1207 unsigned int clock = slot->clock; 1208 u32 div; 1209 u32 clk_en_a; 1210 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT; 1211 1212 /* We must continue to set bit 28 in CMD until the change is complete */ 1213 if (host->state == STATE_WAITING_CMD11_DONE) 1214 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH; 1215 1216 slot->mmc->actual_clock = 0; 1217 1218 if (!clock) { 1219 mci_writel(host, CLKENA, 0); 1220 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 1221 } else if (clock != host->current_speed || force_clkinit) { 1222 div = host->bus_hz / clock; 1223 if (host->bus_hz % clock && host->bus_hz > clock) 1224 /* 1225 * move the + 1 after the divide to prevent 1226 * over-clocking the card. 1227 */ 1228 div += 1; 1229 1230 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0; 1231 1232 if ((clock != slot->__clk_old && 1233 !test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) || 1234 force_clkinit) { 1235 /* Silent the verbose log if calling from PM context */ 1236 if (!force_clkinit) 1237 dev_info(&slot->mmc->class_dev, 1238 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n", 1239 slot->id, host->bus_hz, clock, 1240 div ? ((host->bus_hz / div) >> 1) : 1241 host->bus_hz, div); 1242 1243 /* 1244 * If card is polling, display the message only 1245 * one time at boot time. 1246 */ 1247 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL && 1248 slot->mmc->f_min == clock) 1249 set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags); 1250 } 1251 1252 /* disable clock */ 1253 mci_writel(host, CLKENA, 0); 1254 mci_writel(host, CLKSRC, 0); 1255 1256 /* inform CIU */ 1257 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 1258 1259 /* set clock to desired speed */ 1260 mci_writel(host, CLKDIV, div); 1261 1262 /* inform CIU */ 1263 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 1264 1265 /* enable clock; only low power if no SDIO */ 1266 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id; 1267 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags)) 1268 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id; 1269 mci_writel(host, CLKENA, clk_en_a); 1270 1271 /* inform CIU */ 1272 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 1273 1274 /* keep the last clock value that was requested from core */ 1275 slot->__clk_old = clock; 1276 slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) : 1277 host->bus_hz; 1278 } 1279 1280 host->current_speed = clock; 1281 1282 /* Set the current slot bus width */ 1283 mci_writel(host, CTYPE, (slot->ctype << slot->id)); 1284 } 1285 1286 static void dw_mci_set_data_timeout(struct dw_mci *host, 1287 unsigned int timeout_ns) 1288 { 1289 const struct dw_mci_drv_data *drv_data = host->drv_data; 1290 u32 clk_div, tmout; 1291 u64 tmp; 1292 1293 if (drv_data && drv_data->set_data_timeout) 1294 return drv_data->set_data_timeout(host, timeout_ns); 1295 1296 clk_div = (mci_readl(host, CLKDIV) & 0xFF) * 2; 1297 if (clk_div == 0) 1298 clk_div = 1; 1299 1300 tmp = DIV_ROUND_UP_ULL((u64)timeout_ns * host->bus_hz, NSEC_PER_SEC); 1301 tmp = DIV_ROUND_UP_ULL(tmp, clk_div); 1302 1303 /* TMOUT[7:0] (RESPONSE_TIMEOUT) */ 1304 tmout = 0xFF; /* Set maximum */ 1305 1306 /* TMOUT[31:8] (DATA_TIMEOUT) */ 1307 if (!tmp || tmp > 0xFFFFFF) 1308 tmout |= (0xFFFFFF << 8); 1309 else 1310 tmout |= (tmp & 0xFFFFFF) << 8; 1311 1312 mci_writel(host, TMOUT, tmout); 1313 dev_dbg(host->dev, "timeout_ns: %u => TMOUT[31:8]: %#08x", 1314 timeout_ns, tmout >> 8); 1315 } 1316 1317 static void __dw_mci_start_request(struct dw_mci *host, 1318 struct dw_mci_slot *slot, 1319 struct mmc_command *cmd) 1320 { 1321 struct mmc_request *mrq; 1322 struct mmc_data *data; 1323 u32 cmdflags; 1324 1325 mrq = slot->mrq; 1326 1327 host->mrq = mrq; 1328 1329 host->pending_events = 0; 1330 host->completed_events = 0; 1331 host->cmd_status = 0; 1332 host->data_status = 0; 1333 host->dir_status = 0; 1334 1335 data = cmd->data; 1336 if (data) { 1337 dw_mci_set_data_timeout(host, data->timeout_ns); 1338 mci_writel(host, BYTCNT, data->blksz*data->blocks); 1339 mci_writel(host, BLKSIZ, data->blksz); 1340 } 1341 1342 cmdflags = dw_mci_prepare_command(slot->mmc, cmd); 1343 1344 /* this is the first command, send the initialization clock */ 1345 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags)) 1346 cmdflags |= SDMMC_CMD_INIT; 1347 1348 if (data) { 1349 dw_mci_submit_data(host, data); 1350 wmb(); /* drain writebuffer */ 1351 } 1352 1353 dw_mci_start_command(host, cmd, cmdflags); 1354 1355 if (cmd->opcode == SD_SWITCH_VOLTAGE) { 1356 unsigned long irqflags; 1357 1358 /* 1359 * Databook says to fail after 2ms w/ no response, but evidence 1360 * shows that sometimes the cmd11 interrupt takes over 130ms. 1361 * We'll set to 500ms, plus an extra jiffy just in case jiffies 1362 * is just about to roll over. 1363 * 1364 * We do this whole thing under spinlock and only if the 1365 * command hasn't already completed (indicating the irq 1366 * already ran so we don't want the timeout). 1367 */ 1368 spin_lock_irqsave(&host->irq_lock, irqflags); 1369 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) 1370 mod_timer(&host->cmd11_timer, 1371 jiffies + msecs_to_jiffies(500) + 1); 1372 spin_unlock_irqrestore(&host->irq_lock, irqflags); 1373 } 1374 1375 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd); 1376 } 1377 1378 static void dw_mci_start_request(struct dw_mci *host, 1379 struct dw_mci_slot *slot) 1380 { 1381 struct mmc_request *mrq = slot->mrq; 1382 struct mmc_command *cmd; 1383 1384 cmd = mrq->sbc ? mrq->sbc : mrq->cmd; 1385 __dw_mci_start_request(host, slot, cmd); 1386 } 1387 1388 /* must be called with host->lock held */ 1389 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot, 1390 struct mmc_request *mrq) 1391 { 1392 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n", 1393 host->state); 1394 1395 slot->mrq = mrq; 1396 1397 if (host->state == STATE_WAITING_CMD11_DONE) { 1398 dev_warn(&slot->mmc->class_dev, 1399 "Voltage change didn't complete\n"); 1400 /* 1401 * this case isn't expected to happen, so we can 1402 * either crash here or just try to continue on 1403 * in the closest possible state 1404 */ 1405 host->state = STATE_IDLE; 1406 } 1407 1408 if (host->state == STATE_IDLE) { 1409 host->state = STATE_SENDING_CMD; 1410 dw_mci_start_request(host, slot); 1411 } else { 1412 list_add_tail(&slot->queue_node, &host->queue); 1413 } 1414 } 1415 1416 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq) 1417 { 1418 struct dw_mci_slot *slot = mmc_priv(mmc); 1419 struct dw_mci *host = slot->host; 1420 1421 WARN_ON(slot->mrq); 1422 1423 /* 1424 * The check for card presence and queueing of the request must be 1425 * atomic, otherwise the card could be removed in between and the 1426 * request wouldn't fail until another card was inserted. 1427 */ 1428 1429 if (!dw_mci_get_cd(mmc)) { 1430 mrq->cmd->error = -ENOMEDIUM; 1431 mmc_request_done(mmc, mrq); 1432 return; 1433 } 1434 1435 spin_lock_bh(&host->lock); 1436 1437 dw_mci_queue_request(host, slot, mrq); 1438 1439 spin_unlock_bh(&host->lock); 1440 } 1441 1442 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1443 { 1444 struct dw_mci_slot *slot = mmc_priv(mmc); 1445 const struct dw_mci_drv_data *drv_data = slot->host->drv_data; 1446 u32 regs; 1447 int ret; 1448 1449 switch (ios->bus_width) { 1450 case MMC_BUS_WIDTH_4: 1451 slot->ctype = SDMMC_CTYPE_4BIT; 1452 break; 1453 case MMC_BUS_WIDTH_8: 1454 slot->ctype = SDMMC_CTYPE_8BIT; 1455 break; 1456 default: 1457 /* set default 1 bit mode */ 1458 slot->ctype = SDMMC_CTYPE_1BIT; 1459 } 1460 1461 regs = mci_readl(slot->host, UHS_REG); 1462 1463 /* DDR mode set */ 1464 if (ios->timing == MMC_TIMING_MMC_DDR52 || 1465 ios->timing == MMC_TIMING_UHS_DDR50 || 1466 ios->timing == MMC_TIMING_MMC_HS400) 1467 regs |= ((0x1 << slot->id) << 16); 1468 else 1469 regs &= ~((0x1 << slot->id) << 16); 1470 1471 mci_writel(slot->host, UHS_REG, regs); 1472 slot->host->timing = ios->timing; 1473 1474 /* 1475 * Use mirror of ios->clock to prevent race with mmc 1476 * core ios update when finding the minimum. 1477 */ 1478 slot->clock = ios->clock; 1479 1480 if (drv_data && drv_data->set_ios) 1481 drv_data->set_ios(slot->host, ios); 1482 1483 switch (ios->power_mode) { 1484 case MMC_POWER_UP: 1485 if (!IS_ERR(mmc->supply.vmmc)) { 1486 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 1487 ios->vdd); 1488 if (ret) { 1489 dev_err(slot->host->dev, 1490 "failed to enable vmmc regulator\n"); 1491 /*return, if failed turn on vmmc*/ 1492 return; 1493 } 1494 } 1495 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags); 1496 regs = mci_readl(slot->host, PWREN); 1497 regs |= (1 << slot->id); 1498 mci_writel(slot->host, PWREN, regs); 1499 break; 1500 case MMC_POWER_ON: 1501 if (!slot->host->vqmmc_enabled) { 1502 if (!IS_ERR(mmc->supply.vqmmc)) { 1503 ret = regulator_enable(mmc->supply.vqmmc); 1504 if (ret < 0) 1505 dev_err(slot->host->dev, 1506 "failed to enable vqmmc\n"); 1507 else 1508 slot->host->vqmmc_enabled = true; 1509 1510 } else { 1511 /* Keep track so we don't reset again */ 1512 slot->host->vqmmc_enabled = true; 1513 } 1514 1515 /* Reset our state machine after powering on */ 1516 dw_mci_ctrl_reset(slot->host, 1517 SDMMC_CTRL_ALL_RESET_FLAGS); 1518 } 1519 1520 /* Adjust clock / bus width after power is up */ 1521 dw_mci_setup_bus(slot, false); 1522 1523 break; 1524 case MMC_POWER_OFF: 1525 /* Turn clock off before power goes down */ 1526 dw_mci_setup_bus(slot, false); 1527 1528 if (!IS_ERR(mmc->supply.vmmc)) 1529 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 1530 1531 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled) 1532 regulator_disable(mmc->supply.vqmmc); 1533 slot->host->vqmmc_enabled = false; 1534 1535 regs = mci_readl(slot->host, PWREN); 1536 regs &= ~(1 << slot->id); 1537 mci_writel(slot->host, PWREN, regs); 1538 break; 1539 default: 1540 break; 1541 } 1542 1543 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0) 1544 slot->host->state = STATE_IDLE; 1545 } 1546 1547 static int dw_mci_card_busy(struct mmc_host *mmc) 1548 { 1549 struct dw_mci_slot *slot = mmc_priv(mmc); 1550 u32 status; 1551 1552 /* 1553 * Check the busy bit which is low when DAT[3:0] 1554 * (the data lines) are 0000 1555 */ 1556 status = mci_readl(slot->host, STATUS); 1557 1558 return !!(status & SDMMC_STATUS_BUSY); 1559 } 1560 1561 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios) 1562 { 1563 struct dw_mci_slot *slot = mmc_priv(mmc); 1564 struct dw_mci *host = slot->host; 1565 const struct dw_mci_drv_data *drv_data = host->drv_data; 1566 u32 uhs; 1567 u32 v18 = SDMMC_UHS_18V << slot->id; 1568 int ret; 1569 1570 if (drv_data && drv_data->switch_voltage) 1571 return drv_data->switch_voltage(mmc, ios); 1572 1573 /* 1574 * Program the voltage. Note that some instances of dw_mmc may use 1575 * the UHS_REG for this. For other instances (like exynos) the UHS_REG 1576 * does no harm but you need to set the regulator directly. Try both. 1577 */ 1578 uhs = mci_readl(host, UHS_REG); 1579 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) 1580 uhs &= ~v18; 1581 else 1582 uhs |= v18; 1583 1584 if (!IS_ERR(mmc->supply.vqmmc)) { 1585 ret = mmc_regulator_set_vqmmc(mmc, ios); 1586 if (ret < 0) { 1587 dev_dbg(&mmc->class_dev, 1588 "Regulator set error %d - %s V\n", 1589 ret, uhs & v18 ? "1.8" : "3.3"); 1590 return ret; 1591 } 1592 } 1593 mci_writel(host, UHS_REG, uhs); 1594 1595 return 0; 1596 } 1597 1598 static int dw_mci_get_ro(struct mmc_host *mmc) 1599 { 1600 int read_only; 1601 struct dw_mci_slot *slot = mmc_priv(mmc); 1602 int gpio_ro = mmc_gpio_get_ro(mmc); 1603 1604 /* Use platform get_ro function, else try on board write protect */ 1605 if (gpio_ro >= 0) 1606 read_only = gpio_ro; 1607 else 1608 read_only = 1609 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0; 1610 1611 dev_dbg(&mmc->class_dev, "card is %s\n", 1612 read_only ? "read-only" : "read-write"); 1613 1614 return read_only; 1615 } 1616 1617 static void dw_mci_hw_reset(struct mmc_host *mmc) 1618 { 1619 struct dw_mci_slot *slot = mmc_priv(mmc); 1620 struct dw_mci *host = slot->host; 1621 int reset; 1622 1623 if (host->use_dma == TRANS_MODE_IDMAC) 1624 dw_mci_idmac_reset(host); 1625 1626 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET | 1627 SDMMC_CTRL_FIFO_RESET)) 1628 return; 1629 1630 /* 1631 * According to eMMC spec, card reset procedure: 1632 * tRstW >= 1us: RST_n pulse width 1633 * tRSCA >= 200us: RST_n to Command time 1634 * tRSTH >= 1us: RST_n high period 1635 */ 1636 reset = mci_readl(host, RST_N); 1637 reset &= ~(SDMMC_RST_HWACTIVE << slot->id); 1638 mci_writel(host, RST_N, reset); 1639 usleep_range(1, 2); 1640 reset |= SDMMC_RST_HWACTIVE << slot->id; 1641 mci_writel(host, RST_N, reset); 1642 usleep_range(200, 300); 1643 } 1644 1645 static void dw_mci_prepare_sdio_irq(struct dw_mci_slot *slot, bool prepare) 1646 { 1647 struct dw_mci *host = slot->host; 1648 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id; 1649 u32 clk_en_a_old; 1650 u32 clk_en_a; 1651 1652 /* 1653 * Low power mode will stop the card clock when idle. According to the 1654 * description of the CLKENA register we should disable low power mode 1655 * for SDIO cards if we need SDIO interrupts to work. 1656 */ 1657 1658 clk_en_a_old = mci_readl(host, CLKENA); 1659 if (prepare) { 1660 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags); 1661 clk_en_a = clk_en_a_old & ~clken_low_pwr; 1662 } else { 1663 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags); 1664 clk_en_a = clk_en_a_old | clken_low_pwr; 1665 } 1666 1667 if (clk_en_a != clk_en_a_old) { 1668 mci_writel(host, CLKENA, clk_en_a); 1669 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT, 1670 0); 1671 } 1672 } 1673 1674 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb) 1675 { 1676 struct dw_mci *host = slot->host; 1677 unsigned long irqflags; 1678 u32 int_mask; 1679 1680 spin_lock_irqsave(&host->irq_lock, irqflags); 1681 1682 /* Enable/disable Slot Specific SDIO interrupt */ 1683 int_mask = mci_readl(host, INTMASK); 1684 if (enb) 1685 int_mask |= SDMMC_INT_SDIO(slot->sdio_id); 1686 else 1687 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id); 1688 mci_writel(host, INTMASK, int_mask); 1689 1690 spin_unlock_irqrestore(&host->irq_lock, irqflags); 1691 } 1692 1693 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb) 1694 { 1695 struct dw_mci_slot *slot = mmc_priv(mmc); 1696 struct dw_mci *host = slot->host; 1697 1698 dw_mci_prepare_sdio_irq(slot, enb); 1699 __dw_mci_enable_sdio_irq(slot, enb); 1700 1701 /* Avoid runtime suspending the device when SDIO IRQ is enabled */ 1702 if (enb) 1703 pm_runtime_get_noresume(host->dev); 1704 else 1705 pm_runtime_put_noidle(host->dev); 1706 } 1707 1708 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc) 1709 { 1710 struct dw_mci_slot *slot = mmc_priv(mmc); 1711 1712 __dw_mci_enable_sdio_irq(slot, 1); 1713 } 1714 1715 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode) 1716 { 1717 struct dw_mci_slot *slot = mmc_priv(mmc); 1718 struct dw_mci *host = slot->host; 1719 const struct dw_mci_drv_data *drv_data = host->drv_data; 1720 int err = -EINVAL; 1721 1722 if (drv_data && drv_data->execute_tuning) 1723 err = drv_data->execute_tuning(slot, opcode); 1724 return err; 1725 } 1726 1727 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc, 1728 struct mmc_ios *ios) 1729 { 1730 struct dw_mci_slot *slot = mmc_priv(mmc); 1731 struct dw_mci *host = slot->host; 1732 const struct dw_mci_drv_data *drv_data = host->drv_data; 1733 1734 if (drv_data && drv_data->prepare_hs400_tuning) 1735 return drv_data->prepare_hs400_tuning(host, ios); 1736 1737 return 0; 1738 } 1739 1740 static bool dw_mci_reset(struct dw_mci *host) 1741 { 1742 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET; 1743 bool ret = false; 1744 u32 status = 0; 1745 1746 /* 1747 * Resetting generates a block interrupt, hence setting 1748 * the scatter-gather pointer to NULL. 1749 */ 1750 if (host->sg) { 1751 sg_miter_stop(&host->sg_miter); 1752 host->sg = NULL; 1753 } 1754 1755 if (host->use_dma) 1756 flags |= SDMMC_CTRL_DMA_RESET; 1757 1758 if (dw_mci_ctrl_reset(host, flags)) { 1759 /* 1760 * In all cases we clear the RAWINTS 1761 * register to clear any interrupts. 1762 */ 1763 mci_writel(host, RINTSTS, 0xFFFFFFFF); 1764 1765 if (!host->use_dma) { 1766 ret = true; 1767 goto ciu_out; 1768 } 1769 1770 /* Wait for dma_req to be cleared */ 1771 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS, 1772 status, 1773 !(status & SDMMC_STATUS_DMA_REQ), 1774 1, 500 * USEC_PER_MSEC)) { 1775 dev_err(host->dev, 1776 "%s: Timeout waiting for dma_req to be cleared\n", 1777 __func__); 1778 goto ciu_out; 1779 } 1780 1781 /* when using DMA next we reset the fifo again */ 1782 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET)) 1783 goto ciu_out; 1784 } else { 1785 /* if the controller reset bit did clear, then set clock regs */ 1786 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) { 1787 dev_err(host->dev, 1788 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n", 1789 __func__); 1790 goto ciu_out; 1791 } 1792 } 1793 1794 if (host->use_dma == TRANS_MODE_IDMAC) 1795 /* It is also required that we reinit idmac */ 1796 dw_mci_idmac_init(host); 1797 1798 ret = true; 1799 1800 ciu_out: 1801 /* After a CTRL reset we need to have CIU set clock registers */ 1802 mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0); 1803 1804 return ret; 1805 } 1806 1807 static const struct mmc_host_ops dw_mci_ops = { 1808 .request = dw_mci_request, 1809 .pre_req = dw_mci_pre_req, 1810 .post_req = dw_mci_post_req, 1811 .set_ios = dw_mci_set_ios, 1812 .get_ro = dw_mci_get_ro, 1813 .get_cd = dw_mci_get_cd, 1814 .card_hw_reset = dw_mci_hw_reset, 1815 .enable_sdio_irq = dw_mci_enable_sdio_irq, 1816 .ack_sdio_irq = dw_mci_ack_sdio_irq, 1817 .execute_tuning = dw_mci_execute_tuning, 1818 .card_busy = dw_mci_card_busy, 1819 .start_signal_voltage_switch = dw_mci_switch_voltage, 1820 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning, 1821 }; 1822 1823 #ifdef CONFIG_FAULT_INJECTION 1824 static enum hrtimer_restart dw_mci_fault_timer(struct hrtimer *t) 1825 { 1826 struct dw_mci *host = container_of(t, struct dw_mci, fault_timer); 1827 unsigned long flags; 1828 1829 spin_lock_irqsave(&host->irq_lock, flags); 1830 1831 /* 1832 * Only inject an error if we haven't already got an error or data over 1833 * interrupt. 1834 */ 1835 if (!host->data_status) { 1836 host->data_status = SDMMC_INT_DCRC; 1837 set_bit(EVENT_DATA_ERROR, &host->pending_events); 1838 tasklet_schedule(&host->tasklet); 1839 } 1840 1841 spin_unlock_irqrestore(&host->irq_lock, flags); 1842 1843 return HRTIMER_NORESTART; 1844 } 1845 1846 static void dw_mci_start_fault_timer(struct dw_mci *host) 1847 { 1848 struct mmc_data *data = host->data; 1849 1850 if (!data || data->blocks <= 1) 1851 return; 1852 1853 if (!should_fail(&host->fail_data_crc, 1)) 1854 return; 1855 1856 /* 1857 * Try to inject the error at random points during the data transfer. 1858 */ 1859 hrtimer_start(&host->fault_timer, 1860 ms_to_ktime(get_random_u32_below(25)), 1861 HRTIMER_MODE_REL); 1862 } 1863 1864 static void dw_mci_stop_fault_timer(struct dw_mci *host) 1865 { 1866 hrtimer_cancel(&host->fault_timer); 1867 } 1868 1869 static void dw_mci_init_fault(struct dw_mci *host) 1870 { 1871 host->fail_data_crc = (struct fault_attr) FAULT_ATTR_INITIALIZER; 1872 1873 hrtimer_init(&host->fault_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1874 host->fault_timer.function = dw_mci_fault_timer; 1875 } 1876 #else 1877 static void dw_mci_init_fault(struct dw_mci *host) 1878 { 1879 } 1880 1881 static void dw_mci_start_fault_timer(struct dw_mci *host) 1882 { 1883 } 1884 1885 static void dw_mci_stop_fault_timer(struct dw_mci *host) 1886 { 1887 } 1888 #endif 1889 1890 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq) 1891 __releases(&host->lock) 1892 __acquires(&host->lock) 1893 { 1894 struct dw_mci_slot *slot; 1895 struct mmc_host *prev_mmc = host->slot->mmc; 1896 1897 WARN_ON(host->cmd || host->data); 1898 1899 host->slot->mrq = NULL; 1900 host->mrq = NULL; 1901 if (!list_empty(&host->queue)) { 1902 slot = list_entry(host->queue.next, 1903 struct dw_mci_slot, queue_node); 1904 list_del(&slot->queue_node); 1905 dev_vdbg(host->dev, "list not empty: %s is next\n", 1906 mmc_hostname(slot->mmc)); 1907 host->state = STATE_SENDING_CMD; 1908 dw_mci_start_request(host, slot); 1909 } else { 1910 dev_vdbg(host->dev, "list empty\n"); 1911 1912 if (host->state == STATE_SENDING_CMD11) 1913 host->state = STATE_WAITING_CMD11_DONE; 1914 else 1915 host->state = STATE_IDLE; 1916 } 1917 1918 spin_unlock(&host->lock); 1919 mmc_request_done(prev_mmc, mrq); 1920 spin_lock(&host->lock); 1921 } 1922 1923 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd) 1924 { 1925 u32 status = host->cmd_status; 1926 1927 host->cmd_status = 0; 1928 1929 /* Read the response from the card (up to 16 bytes) */ 1930 if (cmd->flags & MMC_RSP_PRESENT) { 1931 if (cmd->flags & MMC_RSP_136) { 1932 cmd->resp[3] = mci_readl(host, RESP0); 1933 cmd->resp[2] = mci_readl(host, RESP1); 1934 cmd->resp[1] = mci_readl(host, RESP2); 1935 cmd->resp[0] = mci_readl(host, RESP3); 1936 } else { 1937 cmd->resp[0] = mci_readl(host, RESP0); 1938 cmd->resp[1] = 0; 1939 cmd->resp[2] = 0; 1940 cmd->resp[3] = 0; 1941 } 1942 } 1943 1944 if (status & SDMMC_INT_RTO) 1945 cmd->error = -ETIMEDOUT; 1946 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC)) 1947 cmd->error = -EILSEQ; 1948 else if (status & SDMMC_INT_RESP_ERR) 1949 cmd->error = -EIO; 1950 else 1951 cmd->error = 0; 1952 1953 return cmd->error; 1954 } 1955 1956 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data) 1957 { 1958 u32 status = host->data_status; 1959 1960 if (status & DW_MCI_DATA_ERROR_FLAGS) { 1961 if (status & SDMMC_INT_DRTO) { 1962 data->error = -ETIMEDOUT; 1963 } else if (status & SDMMC_INT_DCRC) { 1964 data->error = -EILSEQ; 1965 } else if (status & SDMMC_INT_EBE) { 1966 if (host->dir_status == 1967 DW_MCI_SEND_STATUS) { 1968 /* 1969 * No data CRC status was returned. 1970 * The number of bytes transferred 1971 * will be exaggerated in PIO mode. 1972 */ 1973 data->bytes_xfered = 0; 1974 data->error = -ETIMEDOUT; 1975 } else if (host->dir_status == 1976 DW_MCI_RECV_STATUS) { 1977 data->error = -EILSEQ; 1978 } 1979 } else { 1980 /* SDMMC_INT_SBE is included */ 1981 data->error = -EILSEQ; 1982 } 1983 1984 dev_dbg(host->dev, "data error, status 0x%08x\n", status); 1985 1986 /* 1987 * After an error, there may be data lingering 1988 * in the FIFO 1989 */ 1990 dw_mci_reset(host); 1991 } else { 1992 data->bytes_xfered = data->blocks * data->blksz; 1993 data->error = 0; 1994 } 1995 1996 return data->error; 1997 } 1998 1999 static void dw_mci_set_drto(struct dw_mci *host) 2000 { 2001 const struct dw_mci_drv_data *drv_data = host->drv_data; 2002 unsigned int drto_clks; 2003 unsigned int drto_div; 2004 unsigned int drto_ms; 2005 unsigned long irqflags; 2006 2007 if (drv_data && drv_data->get_drto_clks) 2008 drto_clks = drv_data->get_drto_clks(host); 2009 else 2010 drto_clks = mci_readl(host, TMOUT) >> 8; 2011 drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2; 2012 if (drto_div == 0) 2013 drto_div = 1; 2014 2015 drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div, 2016 host->bus_hz); 2017 2018 dev_dbg(host->dev, "drto_ms: %u\n", drto_ms); 2019 2020 /* add a bit spare time */ 2021 drto_ms += 10; 2022 2023 spin_lock_irqsave(&host->irq_lock, irqflags); 2024 if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) 2025 mod_timer(&host->dto_timer, 2026 jiffies + msecs_to_jiffies(drto_ms)); 2027 spin_unlock_irqrestore(&host->irq_lock, irqflags); 2028 } 2029 2030 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host) 2031 { 2032 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) 2033 return false; 2034 2035 /* 2036 * Really be certain that the timer has stopped. This is a bit of 2037 * paranoia and could only really happen if we had really bad 2038 * interrupt latency and the interrupt routine and timeout were 2039 * running concurrently so that the del_timer() in the interrupt 2040 * handler couldn't run. 2041 */ 2042 WARN_ON(del_timer_sync(&host->cto_timer)); 2043 clear_bit(EVENT_CMD_COMPLETE, &host->pending_events); 2044 2045 return true; 2046 } 2047 2048 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host) 2049 { 2050 if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) 2051 return false; 2052 2053 /* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */ 2054 WARN_ON(del_timer_sync(&host->dto_timer)); 2055 clear_bit(EVENT_DATA_COMPLETE, &host->pending_events); 2056 2057 return true; 2058 } 2059 2060 static void dw_mci_tasklet_func(struct tasklet_struct *t) 2061 { 2062 struct dw_mci *host = from_tasklet(host, t, tasklet); 2063 struct mmc_data *data; 2064 struct mmc_command *cmd; 2065 struct mmc_request *mrq; 2066 enum dw_mci_state state; 2067 enum dw_mci_state prev_state; 2068 unsigned int err; 2069 2070 spin_lock(&host->lock); 2071 2072 state = host->state; 2073 data = host->data; 2074 mrq = host->mrq; 2075 2076 do { 2077 prev_state = state; 2078 2079 switch (state) { 2080 case STATE_IDLE: 2081 case STATE_WAITING_CMD11_DONE: 2082 break; 2083 2084 case STATE_SENDING_CMD11: 2085 case STATE_SENDING_CMD: 2086 if (!dw_mci_clear_pending_cmd_complete(host)) 2087 break; 2088 2089 cmd = host->cmd; 2090 host->cmd = NULL; 2091 set_bit(EVENT_CMD_COMPLETE, &host->completed_events); 2092 err = dw_mci_command_complete(host, cmd); 2093 if (cmd == mrq->sbc && !err) { 2094 __dw_mci_start_request(host, host->slot, 2095 mrq->cmd); 2096 goto unlock; 2097 } 2098 2099 if (cmd->data && err) { 2100 /* 2101 * During UHS tuning sequence, sending the stop 2102 * command after the response CRC error would 2103 * throw the system into a confused state 2104 * causing all future tuning phases to report 2105 * failure. 2106 * 2107 * In such case controller will move into a data 2108 * transfer state after a response error or 2109 * response CRC error. Let's let that finish 2110 * before trying to send a stop, so we'll go to 2111 * STATE_SENDING_DATA. 2112 * 2113 * Although letting the data transfer take place 2114 * will waste a bit of time (we already know 2115 * the command was bad), it can't cause any 2116 * errors since it's possible it would have 2117 * taken place anyway if this tasklet got 2118 * delayed. Allowing the transfer to take place 2119 * avoids races and keeps things simple. 2120 */ 2121 if (err != -ETIMEDOUT && 2122 host->dir_status == DW_MCI_RECV_STATUS) { 2123 state = STATE_SENDING_DATA; 2124 continue; 2125 } 2126 2127 send_stop_abort(host, data); 2128 dw_mci_stop_dma(host); 2129 state = STATE_SENDING_STOP; 2130 break; 2131 } 2132 2133 if (!cmd->data || err) { 2134 dw_mci_request_end(host, mrq); 2135 goto unlock; 2136 } 2137 2138 prev_state = state = STATE_SENDING_DATA; 2139 fallthrough; 2140 2141 case STATE_SENDING_DATA: 2142 /* 2143 * We could get a data error and never a transfer 2144 * complete so we'd better check for it here. 2145 * 2146 * Note that we don't really care if we also got a 2147 * transfer complete; stopping the DMA and sending an 2148 * abort won't hurt. 2149 */ 2150 if (test_and_clear_bit(EVENT_DATA_ERROR, 2151 &host->pending_events)) { 2152 if (!(host->data_status & (SDMMC_INT_DRTO | 2153 SDMMC_INT_EBE))) 2154 send_stop_abort(host, data); 2155 dw_mci_stop_dma(host); 2156 state = STATE_DATA_ERROR; 2157 break; 2158 } 2159 2160 if (!test_and_clear_bit(EVENT_XFER_COMPLETE, 2161 &host->pending_events)) { 2162 /* 2163 * If all data-related interrupts don't come 2164 * within the given time in reading data state. 2165 */ 2166 if (host->dir_status == DW_MCI_RECV_STATUS) 2167 dw_mci_set_drto(host); 2168 break; 2169 } 2170 2171 set_bit(EVENT_XFER_COMPLETE, &host->completed_events); 2172 2173 /* 2174 * Handle an EVENT_DATA_ERROR that might have shown up 2175 * before the transfer completed. This might not have 2176 * been caught by the check above because the interrupt 2177 * could have gone off between the previous check and 2178 * the check for transfer complete. 2179 * 2180 * Technically this ought not be needed assuming we 2181 * get a DATA_COMPLETE eventually (we'll notice the 2182 * error and end the request), but it shouldn't hurt. 2183 * 2184 * This has the advantage of sending the stop command. 2185 */ 2186 if (test_and_clear_bit(EVENT_DATA_ERROR, 2187 &host->pending_events)) { 2188 if (!(host->data_status & (SDMMC_INT_DRTO | 2189 SDMMC_INT_EBE))) 2190 send_stop_abort(host, data); 2191 dw_mci_stop_dma(host); 2192 state = STATE_DATA_ERROR; 2193 break; 2194 } 2195 prev_state = state = STATE_DATA_BUSY; 2196 2197 fallthrough; 2198 2199 case STATE_DATA_BUSY: 2200 if (!dw_mci_clear_pending_data_complete(host)) { 2201 /* 2202 * If data error interrupt comes but data over 2203 * interrupt doesn't come within the given time. 2204 * in reading data state. 2205 */ 2206 if (host->dir_status == DW_MCI_RECV_STATUS) 2207 dw_mci_set_drto(host); 2208 break; 2209 } 2210 2211 dw_mci_stop_fault_timer(host); 2212 host->data = NULL; 2213 set_bit(EVENT_DATA_COMPLETE, &host->completed_events); 2214 err = dw_mci_data_complete(host, data); 2215 2216 if (!err) { 2217 if (!data->stop || mrq->sbc) { 2218 if (mrq->sbc && data->stop) 2219 data->stop->error = 0; 2220 dw_mci_request_end(host, mrq); 2221 goto unlock; 2222 } 2223 2224 /* stop command for open-ended transfer*/ 2225 if (data->stop) 2226 send_stop_abort(host, data); 2227 } else { 2228 /* 2229 * If we don't have a command complete now we'll 2230 * never get one since we just reset everything; 2231 * better end the request. 2232 * 2233 * If we do have a command complete we'll fall 2234 * through to the SENDING_STOP command and 2235 * everything will be peachy keen. 2236 */ 2237 if (!test_bit(EVENT_CMD_COMPLETE, 2238 &host->pending_events)) { 2239 host->cmd = NULL; 2240 dw_mci_request_end(host, mrq); 2241 goto unlock; 2242 } 2243 } 2244 2245 /* 2246 * If err has non-zero, 2247 * stop-abort command has been already issued. 2248 */ 2249 prev_state = state = STATE_SENDING_STOP; 2250 2251 fallthrough; 2252 2253 case STATE_SENDING_STOP: 2254 if (!dw_mci_clear_pending_cmd_complete(host)) 2255 break; 2256 2257 /* CMD error in data command */ 2258 if (mrq->cmd->error && mrq->data) 2259 dw_mci_reset(host); 2260 2261 dw_mci_stop_fault_timer(host); 2262 host->cmd = NULL; 2263 host->data = NULL; 2264 2265 if (!mrq->sbc && mrq->stop) 2266 dw_mci_command_complete(host, mrq->stop); 2267 else 2268 host->cmd_status = 0; 2269 2270 dw_mci_request_end(host, mrq); 2271 goto unlock; 2272 2273 case STATE_DATA_ERROR: 2274 if (!test_and_clear_bit(EVENT_XFER_COMPLETE, 2275 &host->pending_events)) 2276 break; 2277 2278 state = STATE_DATA_BUSY; 2279 break; 2280 } 2281 } while (state != prev_state); 2282 2283 host->state = state; 2284 unlock: 2285 spin_unlock(&host->lock); 2286 2287 } 2288 2289 /* push final bytes to part_buf, only use during push */ 2290 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt) 2291 { 2292 memcpy((void *)&host->part_buf, buf, cnt); 2293 host->part_buf_count = cnt; 2294 } 2295 2296 /* append bytes to part_buf, only use during push */ 2297 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt) 2298 { 2299 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count); 2300 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt); 2301 host->part_buf_count += cnt; 2302 return cnt; 2303 } 2304 2305 /* pull first bytes from part_buf, only use during pull */ 2306 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt) 2307 { 2308 cnt = min_t(int, cnt, host->part_buf_count); 2309 if (cnt) { 2310 memcpy(buf, (void *)&host->part_buf + host->part_buf_start, 2311 cnt); 2312 host->part_buf_count -= cnt; 2313 host->part_buf_start += cnt; 2314 } 2315 return cnt; 2316 } 2317 2318 /* pull final bytes from the part_buf, assuming it's just been filled */ 2319 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt) 2320 { 2321 memcpy(buf, &host->part_buf, cnt); 2322 host->part_buf_start = cnt; 2323 host->part_buf_count = (1 << host->data_shift) - cnt; 2324 } 2325 2326 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt) 2327 { 2328 struct mmc_data *data = host->data; 2329 int init_cnt = cnt; 2330 2331 /* try and push anything in the part_buf */ 2332 if (unlikely(host->part_buf_count)) { 2333 int len = dw_mci_push_part_bytes(host, buf, cnt); 2334 2335 buf += len; 2336 cnt -= len; 2337 if (host->part_buf_count == 2) { 2338 mci_fifo_writew(host->fifo_reg, host->part_buf16); 2339 host->part_buf_count = 0; 2340 } 2341 } 2342 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2343 if (unlikely((unsigned long)buf & 0x1)) { 2344 while (cnt >= 2) { 2345 u16 aligned_buf[64]; 2346 int len = min(cnt & -2, (int)sizeof(aligned_buf)); 2347 int items = len >> 1; 2348 int i; 2349 /* memcpy from input buffer into aligned buffer */ 2350 memcpy(aligned_buf, buf, len); 2351 buf += len; 2352 cnt -= len; 2353 /* push data from aligned buffer into fifo */ 2354 for (i = 0; i < items; ++i) 2355 mci_fifo_writew(host->fifo_reg, aligned_buf[i]); 2356 } 2357 } else 2358 #endif 2359 { 2360 u16 *pdata = buf; 2361 2362 for (; cnt >= 2; cnt -= 2) 2363 mci_fifo_writew(host->fifo_reg, *pdata++); 2364 buf = pdata; 2365 } 2366 /* put anything remaining in the part_buf */ 2367 if (cnt) { 2368 dw_mci_set_part_bytes(host, buf, cnt); 2369 /* Push data if we have reached the expected data length */ 2370 if ((data->bytes_xfered + init_cnt) == 2371 (data->blksz * data->blocks)) 2372 mci_fifo_writew(host->fifo_reg, host->part_buf16); 2373 } 2374 } 2375 2376 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt) 2377 { 2378 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2379 if (unlikely((unsigned long)buf & 0x1)) { 2380 while (cnt >= 2) { 2381 /* pull data from fifo into aligned buffer */ 2382 u16 aligned_buf[64]; 2383 int len = min(cnt & -2, (int)sizeof(aligned_buf)); 2384 int items = len >> 1; 2385 int i; 2386 2387 for (i = 0; i < items; ++i) 2388 aligned_buf[i] = mci_fifo_readw(host->fifo_reg); 2389 /* memcpy from aligned buffer into output buffer */ 2390 memcpy(buf, aligned_buf, len); 2391 buf += len; 2392 cnt -= len; 2393 } 2394 } else 2395 #endif 2396 { 2397 u16 *pdata = buf; 2398 2399 for (; cnt >= 2; cnt -= 2) 2400 *pdata++ = mci_fifo_readw(host->fifo_reg); 2401 buf = pdata; 2402 } 2403 if (cnt) { 2404 host->part_buf16 = mci_fifo_readw(host->fifo_reg); 2405 dw_mci_pull_final_bytes(host, buf, cnt); 2406 } 2407 } 2408 2409 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt) 2410 { 2411 struct mmc_data *data = host->data; 2412 int init_cnt = cnt; 2413 2414 /* try and push anything in the part_buf */ 2415 if (unlikely(host->part_buf_count)) { 2416 int len = dw_mci_push_part_bytes(host, buf, cnt); 2417 2418 buf += len; 2419 cnt -= len; 2420 if (host->part_buf_count == 4) { 2421 mci_fifo_writel(host->fifo_reg, host->part_buf32); 2422 host->part_buf_count = 0; 2423 } 2424 } 2425 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2426 if (unlikely((unsigned long)buf & 0x3)) { 2427 while (cnt >= 4) { 2428 u32 aligned_buf[32]; 2429 int len = min(cnt & -4, (int)sizeof(aligned_buf)); 2430 int items = len >> 2; 2431 int i; 2432 /* memcpy from input buffer into aligned buffer */ 2433 memcpy(aligned_buf, buf, len); 2434 buf += len; 2435 cnt -= len; 2436 /* push data from aligned buffer into fifo */ 2437 for (i = 0; i < items; ++i) 2438 mci_fifo_writel(host->fifo_reg, aligned_buf[i]); 2439 } 2440 } else 2441 #endif 2442 { 2443 u32 *pdata = buf; 2444 2445 for (; cnt >= 4; cnt -= 4) 2446 mci_fifo_writel(host->fifo_reg, *pdata++); 2447 buf = pdata; 2448 } 2449 /* put anything remaining in the part_buf */ 2450 if (cnt) { 2451 dw_mci_set_part_bytes(host, buf, cnt); 2452 /* Push data if we have reached the expected data length */ 2453 if ((data->bytes_xfered + init_cnt) == 2454 (data->blksz * data->blocks)) 2455 mci_fifo_writel(host->fifo_reg, host->part_buf32); 2456 } 2457 } 2458 2459 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt) 2460 { 2461 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2462 if (unlikely((unsigned long)buf & 0x3)) { 2463 while (cnt >= 4) { 2464 /* pull data from fifo into aligned buffer */ 2465 u32 aligned_buf[32]; 2466 int len = min(cnt & -4, (int)sizeof(aligned_buf)); 2467 int items = len >> 2; 2468 int i; 2469 2470 for (i = 0; i < items; ++i) 2471 aligned_buf[i] = mci_fifo_readl(host->fifo_reg); 2472 /* memcpy from aligned buffer into output buffer */ 2473 memcpy(buf, aligned_buf, len); 2474 buf += len; 2475 cnt -= len; 2476 } 2477 } else 2478 #endif 2479 { 2480 u32 *pdata = buf; 2481 2482 for (; cnt >= 4; cnt -= 4) 2483 *pdata++ = mci_fifo_readl(host->fifo_reg); 2484 buf = pdata; 2485 } 2486 if (cnt) { 2487 host->part_buf32 = mci_fifo_readl(host->fifo_reg); 2488 dw_mci_pull_final_bytes(host, buf, cnt); 2489 } 2490 } 2491 2492 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt) 2493 { 2494 struct mmc_data *data = host->data; 2495 int init_cnt = cnt; 2496 2497 /* try and push anything in the part_buf */ 2498 if (unlikely(host->part_buf_count)) { 2499 int len = dw_mci_push_part_bytes(host, buf, cnt); 2500 2501 buf += len; 2502 cnt -= len; 2503 2504 if (host->part_buf_count == 8) { 2505 mci_fifo_writeq(host->fifo_reg, host->part_buf); 2506 host->part_buf_count = 0; 2507 } 2508 } 2509 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2510 if (unlikely((unsigned long)buf & 0x7)) { 2511 while (cnt >= 8) { 2512 u64 aligned_buf[16]; 2513 int len = min(cnt & -8, (int)sizeof(aligned_buf)); 2514 int items = len >> 3; 2515 int i; 2516 /* memcpy from input buffer into aligned buffer */ 2517 memcpy(aligned_buf, buf, len); 2518 buf += len; 2519 cnt -= len; 2520 /* push data from aligned buffer into fifo */ 2521 for (i = 0; i < items; ++i) 2522 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]); 2523 } 2524 } else 2525 #endif 2526 { 2527 u64 *pdata = buf; 2528 2529 for (; cnt >= 8; cnt -= 8) 2530 mci_fifo_writeq(host->fifo_reg, *pdata++); 2531 buf = pdata; 2532 } 2533 /* put anything remaining in the part_buf */ 2534 if (cnt) { 2535 dw_mci_set_part_bytes(host, buf, cnt); 2536 /* Push data if we have reached the expected data length */ 2537 if ((data->bytes_xfered + init_cnt) == 2538 (data->blksz * data->blocks)) 2539 mci_fifo_writeq(host->fifo_reg, host->part_buf); 2540 } 2541 } 2542 2543 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt) 2544 { 2545 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2546 if (unlikely((unsigned long)buf & 0x7)) { 2547 while (cnt >= 8) { 2548 /* pull data from fifo into aligned buffer */ 2549 u64 aligned_buf[16]; 2550 int len = min(cnt & -8, (int)sizeof(aligned_buf)); 2551 int items = len >> 3; 2552 int i; 2553 2554 for (i = 0; i < items; ++i) 2555 aligned_buf[i] = mci_fifo_readq(host->fifo_reg); 2556 2557 /* memcpy from aligned buffer into output buffer */ 2558 memcpy(buf, aligned_buf, len); 2559 buf += len; 2560 cnt -= len; 2561 } 2562 } else 2563 #endif 2564 { 2565 u64 *pdata = buf; 2566 2567 for (; cnt >= 8; cnt -= 8) 2568 *pdata++ = mci_fifo_readq(host->fifo_reg); 2569 buf = pdata; 2570 } 2571 if (cnt) { 2572 host->part_buf = mci_fifo_readq(host->fifo_reg); 2573 dw_mci_pull_final_bytes(host, buf, cnt); 2574 } 2575 } 2576 2577 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt) 2578 { 2579 int len; 2580 2581 /* get remaining partial bytes */ 2582 len = dw_mci_pull_part_bytes(host, buf, cnt); 2583 if (unlikely(len == cnt)) 2584 return; 2585 buf += len; 2586 cnt -= len; 2587 2588 /* get the rest of the data */ 2589 host->pull_data(host, buf, cnt); 2590 } 2591 2592 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto) 2593 { 2594 struct sg_mapping_iter *sg_miter = &host->sg_miter; 2595 void *buf; 2596 unsigned int offset; 2597 struct mmc_data *data = host->data; 2598 int shift = host->data_shift; 2599 u32 status; 2600 unsigned int len; 2601 unsigned int remain, fcnt; 2602 2603 do { 2604 if (!sg_miter_next(sg_miter)) 2605 goto done; 2606 2607 host->sg = sg_miter->piter.sg; 2608 buf = sg_miter->addr; 2609 remain = sg_miter->length; 2610 offset = 0; 2611 2612 do { 2613 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS)) 2614 << shift) + host->part_buf_count; 2615 len = min(remain, fcnt); 2616 if (!len) 2617 break; 2618 dw_mci_pull_data(host, (void *)(buf + offset), len); 2619 data->bytes_xfered += len; 2620 offset += len; 2621 remain -= len; 2622 } while (remain); 2623 2624 sg_miter->consumed = offset; 2625 status = mci_readl(host, MINTSTS); 2626 mci_writel(host, RINTSTS, SDMMC_INT_RXDR); 2627 /* if the RXDR is ready read again */ 2628 } while ((status & SDMMC_INT_RXDR) || 2629 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS)))); 2630 2631 if (!remain) { 2632 if (!sg_miter_next(sg_miter)) 2633 goto done; 2634 sg_miter->consumed = 0; 2635 } 2636 sg_miter_stop(sg_miter); 2637 return; 2638 2639 done: 2640 sg_miter_stop(sg_miter); 2641 host->sg = NULL; 2642 smp_wmb(); /* drain writebuffer */ 2643 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 2644 } 2645 2646 static void dw_mci_write_data_pio(struct dw_mci *host) 2647 { 2648 struct sg_mapping_iter *sg_miter = &host->sg_miter; 2649 void *buf; 2650 unsigned int offset; 2651 struct mmc_data *data = host->data; 2652 int shift = host->data_shift; 2653 u32 status; 2654 unsigned int len; 2655 unsigned int fifo_depth = host->fifo_depth; 2656 unsigned int remain, fcnt; 2657 2658 do { 2659 if (!sg_miter_next(sg_miter)) 2660 goto done; 2661 2662 host->sg = sg_miter->piter.sg; 2663 buf = sg_miter->addr; 2664 remain = sg_miter->length; 2665 offset = 0; 2666 2667 do { 2668 fcnt = ((fifo_depth - 2669 SDMMC_GET_FCNT(mci_readl(host, STATUS))) 2670 << shift) - host->part_buf_count; 2671 len = min(remain, fcnt); 2672 if (!len) 2673 break; 2674 host->push_data(host, (void *)(buf + offset), len); 2675 data->bytes_xfered += len; 2676 offset += len; 2677 remain -= len; 2678 } while (remain); 2679 2680 sg_miter->consumed = offset; 2681 status = mci_readl(host, MINTSTS); 2682 mci_writel(host, RINTSTS, SDMMC_INT_TXDR); 2683 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */ 2684 2685 if (!remain) { 2686 if (!sg_miter_next(sg_miter)) 2687 goto done; 2688 sg_miter->consumed = 0; 2689 } 2690 sg_miter_stop(sg_miter); 2691 return; 2692 2693 done: 2694 sg_miter_stop(sg_miter); 2695 host->sg = NULL; 2696 smp_wmb(); /* drain writebuffer */ 2697 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 2698 } 2699 2700 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status) 2701 { 2702 del_timer(&host->cto_timer); 2703 2704 if (!host->cmd_status) 2705 host->cmd_status = status; 2706 2707 smp_wmb(); /* drain writebuffer */ 2708 2709 set_bit(EVENT_CMD_COMPLETE, &host->pending_events); 2710 tasklet_schedule(&host->tasklet); 2711 2712 dw_mci_start_fault_timer(host); 2713 } 2714 2715 static void dw_mci_handle_cd(struct dw_mci *host) 2716 { 2717 struct dw_mci_slot *slot = host->slot; 2718 2719 mmc_detect_change(slot->mmc, 2720 msecs_to_jiffies(host->pdata->detect_delay_ms)); 2721 } 2722 2723 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id) 2724 { 2725 struct dw_mci *host = dev_id; 2726 u32 pending; 2727 struct dw_mci_slot *slot = host->slot; 2728 2729 pending = mci_readl(host, MINTSTS); /* read-only mask reg */ 2730 2731 if (pending) { 2732 /* Check volt switch first, since it can look like an error */ 2733 if ((host->state == STATE_SENDING_CMD11) && 2734 (pending & SDMMC_INT_VOLT_SWITCH)) { 2735 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH); 2736 pending &= ~SDMMC_INT_VOLT_SWITCH; 2737 2738 /* 2739 * Hold the lock; we know cmd11_timer can't be kicked 2740 * off after the lock is released, so safe to delete. 2741 */ 2742 spin_lock(&host->irq_lock); 2743 dw_mci_cmd_interrupt(host, pending); 2744 spin_unlock(&host->irq_lock); 2745 2746 del_timer(&host->cmd11_timer); 2747 } 2748 2749 if (pending & DW_MCI_CMD_ERROR_FLAGS) { 2750 spin_lock(&host->irq_lock); 2751 2752 del_timer(&host->cto_timer); 2753 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS); 2754 host->cmd_status = pending; 2755 smp_wmb(); /* drain writebuffer */ 2756 set_bit(EVENT_CMD_COMPLETE, &host->pending_events); 2757 2758 spin_unlock(&host->irq_lock); 2759 } 2760 2761 if (pending & DW_MCI_DATA_ERROR_FLAGS) { 2762 spin_lock(&host->irq_lock); 2763 2764 if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT) 2765 del_timer(&host->dto_timer); 2766 2767 /* if there is an error report DATA_ERROR */ 2768 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS); 2769 host->data_status = pending; 2770 smp_wmb(); /* drain writebuffer */ 2771 set_bit(EVENT_DATA_ERROR, &host->pending_events); 2772 2773 if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT) 2774 /* In case of error, we cannot expect a DTO */ 2775 set_bit(EVENT_DATA_COMPLETE, 2776 &host->pending_events); 2777 2778 tasklet_schedule(&host->tasklet); 2779 2780 spin_unlock(&host->irq_lock); 2781 } 2782 2783 if (pending & SDMMC_INT_DATA_OVER) { 2784 spin_lock(&host->irq_lock); 2785 2786 del_timer(&host->dto_timer); 2787 2788 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER); 2789 if (!host->data_status) 2790 host->data_status = pending; 2791 smp_wmb(); /* drain writebuffer */ 2792 if (host->dir_status == DW_MCI_RECV_STATUS) { 2793 if (host->sg != NULL) 2794 dw_mci_read_data_pio(host, true); 2795 } 2796 set_bit(EVENT_DATA_COMPLETE, &host->pending_events); 2797 tasklet_schedule(&host->tasklet); 2798 2799 spin_unlock(&host->irq_lock); 2800 } 2801 2802 if (pending & SDMMC_INT_RXDR) { 2803 mci_writel(host, RINTSTS, SDMMC_INT_RXDR); 2804 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg) 2805 dw_mci_read_data_pio(host, false); 2806 } 2807 2808 if (pending & SDMMC_INT_TXDR) { 2809 mci_writel(host, RINTSTS, SDMMC_INT_TXDR); 2810 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg) 2811 dw_mci_write_data_pio(host); 2812 } 2813 2814 if (pending & SDMMC_INT_CMD_DONE) { 2815 spin_lock(&host->irq_lock); 2816 2817 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE); 2818 dw_mci_cmd_interrupt(host, pending); 2819 2820 spin_unlock(&host->irq_lock); 2821 } 2822 2823 if (pending & SDMMC_INT_CD) { 2824 mci_writel(host, RINTSTS, SDMMC_INT_CD); 2825 dw_mci_handle_cd(host); 2826 } 2827 2828 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) { 2829 mci_writel(host, RINTSTS, 2830 SDMMC_INT_SDIO(slot->sdio_id)); 2831 __dw_mci_enable_sdio_irq(slot, 0); 2832 sdio_signal_irq(slot->mmc); 2833 } 2834 2835 } 2836 2837 if (host->use_dma != TRANS_MODE_IDMAC) 2838 return IRQ_HANDLED; 2839 2840 /* Handle IDMA interrupts */ 2841 if (host->dma_64bit_address == 1) { 2842 pending = mci_readl(host, IDSTS64); 2843 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) { 2844 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI | 2845 SDMMC_IDMAC_INT_RI); 2846 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI); 2847 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events)) 2848 host->dma_ops->complete((void *)host); 2849 } 2850 } else { 2851 pending = mci_readl(host, IDSTS); 2852 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) { 2853 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI | 2854 SDMMC_IDMAC_INT_RI); 2855 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI); 2856 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events)) 2857 host->dma_ops->complete((void *)host); 2858 } 2859 } 2860 2861 return IRQ_HANDLED; 2862 } 2863 2864 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot) 2865 { 2866 struct dw_mci *host = slot->host; 2867 const struct dw_mci_drv_data *drv_data = host->drv_data; 2868 struct mmc_host *mmc = slot->mmc; 2869 int ctrl_id; 2870 2871 if (host->pdata->caps) 2872 mmc->caps = host->pdata->caps; 2873 2874 if (host->pdata->pm_caps) 2875 mmc->pm_caps = host->pdata->pm_caps; 2876 2877 if (drv_data) 2878 mmc->caps |= drv_data->common_caps; 2879 2880 if (host->dev->of_node) { 2881 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc"); 2882 if (ctrl_id < 0) 2883 ctrl_id = 0; 2884 } else { 2885 ctrl_id = to_platform_device(host->dev)->id; 2886 } 2887 2888 if (drv_data && drv_data->caps) { 2889 if (ctrl_id >= drv_data->num_caps) { 2890 dev_err(host->dev, "invalid controller id %d\n", 2891 ctrl_id); 2892 return -EINVAL; 2893 } 2894 mmc->caps |= drv_data->caps[ctrl_id]; 2895 } 2896 2897 if (host->pdata->caps2) 2898 mmc->caps2 = host->pdata->caps2; 2899 2900 /* if host has set a minimum_freq, we should respect it */ 2901 if (host->minimum_speed) 2902 mmc->f_min = host->minimum_speed; 2903 else 2904 mmc->f_min = DW_MCI_FREQ_MIN; 2905 2906 if (!mmc->f_max) 2907 mmc->f_max = DW_MCI_FREQ_MAX; 2908 2909 /* Process SDIO IRQs through the sdio_irq_work. */ 2910 if (mmc->caps & MMC_CAP_SDIO_IRQ) 2911 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD; 2912 2913 return 0; 2914 } 2915 2916 static int dw_mci_init_slot(struct dw_mci *host) 2917 { 2918 struct mmc_host *mmc; 2919 struct dw_mci_slot *slot; 2920 int ret; 2921 2922 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev); 2923 if (!mmc) 2924 return -ENOMEM; 2925 2926 slot = mmc_priv(mmc); 2927 slot->id = 0; 2928 slot->sdio_id = host->sdio_id0 + slot->id; 2929 slot->mmc = mmc; 2930 slot->host = host; 2931 host->slot = slot; 2932 2933 mmc->ops = &dw_mci_ops; 2934 2935 /*if there are external regulators, get them*/ 2936 ret = mmc_regulator_get_supply(mmc); 2937 if (ret) 2938 goto err_host_allocated; 2939 2940 if (!mmc->ocr_avail) 2941 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34; 2942 2943 ret = mmc_of_parse(mmc); 2944 if (ret) 2945 goto err_host_allocated; 2946 2947 ret = dw_mci_init_slot_caps(slot); 2948 if (ret) 2949 goto err_host_allocated; 2950 2951 /* Useful defaults if platform data is unset. */ 2952 if (host->use_dma == TRANS_MODE_IDMAC) { 2953 mmc->max_segs = host->ring_size; 2954 mmc->max_blk_size = 65535; 2955 mmc->max_seg_size = 0x1000; 2956 mmc->max_req_size = mmc->max_seg_size * host->ring_size; 2957 mmc->max_blk_count = mmc->max_req_size / 512; 2958 } else if (host->use_dma == TRANS_MODE_EDMAC) { 2959 mmc->max_segs = 64; 2960 mmc->max_blk_size = 65535; 2961 mmc->max_blk_count = 65535; 2962 mmc->max_req_size = 2963 mmc->max_blk_size * mmc->max_blk_count; 2964 mmc->max_seg_size = mmc->max_req_size; 2965 } else { 2966 /* TRANS_MODE_PIO */ 2967 mmc->max_segs = 64; 2968 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */ 2969 mmc->max_blk_count = 512; 2970 mmc->max_req_size = mmc->max_blk_size * 2971 mmc->max_blk_count; 2972 mmc->max_seg_size = mmc->max_req_size; 2973 } 2974 2975 dw_mci_get_cd(mmc); 2976 2977 ret = mmc_add_host(mmc); 2978 if (ret) 2979 goto err_host_allocated; 2980 2981 #if defined(CONFIG_DEBUG_FS) 2982 dw_mci_init_debugfs(slot); 2983 #endif 2984 2985 return 0; 2986 2987 err_host_allocated: 2988 mmc_free_host(mmc); 2989 return ret; 2990 } 2991 2992 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot) 2993 { 2994 /* Debugfs stuff is cleaned up by mmc core */ 2995 mmc_remove_host(slot->mmc); 2996 slot->host->slot = NULL; 2997 mmc_free_host(slot->mmc); 2998 } 2999 3000 static void dw_mci_init_dma(struct dw_mci *host) 3001 { 3002 int addr_config; 3003 struct device *dev = host->dev; 3004 3005 /* 3006 * Check tansfer mode from HCON[17:16] 3007 * Clear the ambiguous description of dw_mmc databook: 3008 * 2b'00: No DMA Interface -> Actually means using Internal DMA block 3009 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block 3010 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block 3011 * 2b'11: Non DW DMA Interface -> pio only 3012 * Compared to DesignWare DMA Interface, Generic DMA Interface has a 3013 * simpler request/acknowledge handshake mechanism and both of them 3014 * are regarded as external dma master for dw_mmc. 3015 */ 3016 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON)); 3017 if (host->use_dma == DMA_INTERFACE_IDMA) { 3018 host->use_dma = TRANS_MODE_IDMAC; 3019 } else if (host->use_dma == DMA_INTERFACE_DWDMA || 3020 host->use_dma == DMA_INTERFACE_GDMA) { 3021 host->use_dma = TRANS_MODE_EDMAC; 3022 } else { 3023 goto no_dma; 3024 } 3025 3026 /* Determine which DMA interface to use */ 3027 if (host->use_dma == TRANS_MODE_IDMAC) { 3028 /* 3029 * Check ADDR_CONFIG bit in HCON to find 3030 * IDMAC address bus width 3031 */ 3032 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON)); 3033 3034 if (addr_config == 1) { 3035 /* host supports IDMAC in 64-bit address mode */ 3036 host->dma_64bit_address = 1; 3037 dev_info(host->dev, 3038 "IDMAC supports 64-bit address mode.\n"); 3039 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64))) 3040 dma_set_coherent_mask(host->dev, 3041 DMA_BIT_MASK(64)); 3042 } else { 3043 /* host supports IDMAC in 32-bit address mode */ 3044 host->dma_64bit_address = 0; 3045 dev_info(host->dev, 3046 "IDMAC supports 32-bit address mode.\n"); 3047 } 3048 3049 /* Alloc memory for sg translation */ 3050 host->sg_cpu = dmam_alloc_coherent(host->dev, 3051 DESC_RING_BUF_SZ, 3052 &host->sg_dma, GFP_KERNEL); 3053 if (!host->sg_cpu) { 3054 dev_err(host->dev, 3055 "%s: could not alloc DMA memory\n", 3056 __func__); 3057 goto no_dma; 3058 } 3059 3060 host->dma_ops = &dw_mci_idmac_ops; 3061 dev_info(host->dev, "Using internal DMA controller.\n"); 3062 } else { 3063 /* TRANS_MODE_EDMAC: check dma bindings again */ 3064 if ((device_property_string_array_count(dev, "dma-names") < 0) || 3065 !device_property_present(dev, "dmas")) { 3066 goto no_dma; 3067 } 3068 host->dma_ops = &dw_mci_edmac_ops; 3069 dev_info(host->dev, "Using external DMA controller.\n"); 3070 } 3071 3072 if (host->dma_ops->init && host->dma_ops->start && 3073 host->dma_ops->stop && host->dma_ops->cleanup) { 3074 if (host->dma_ops->init(host)) { 3075 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n", 3076 __func__); 3077 goto no_dma; 3078 } 3079 } else { 3080 dev_err(host->dev, "DMA initialization not found.\n"); 3081 goto no_dma; 3082 } 3083 3084 return; 3085 3086 no_dma: 3087 dev_info(host->dev, "Using PIO mode.\n"); 3088 host->use_dma = TRANS_MODE_PIO; 3089 } 3090 3091 static void dw_mci_cmd11_timer(struct timer_list *t) 3092 { 3093 struct dw_mci *host = from_timer(host, t, cmd11_timer); 3094 3095 if (host->state != STATE_SENDING_CMD11) { 3096 dev_warn(host->dev, "Unexpected CMD11 timeout\n"); 3097 return; 3098 } 3099 3100 host->cmd_status = SDMMC_INT_RTO; 3101 set_bit(EVENT_CMD_COMPLETE, &host->pending_events); 3102 tasklet_schedule(&host->tasklet); 3103 } 3104 3105 static void dw_mci_cto_timer(struct timer_list *t) 3106 { 3107 struct dw_mci *host = from_timer(host, t, cto_timer); 3108 unsigned long irqflags; 3109 u32 pending; 3110 3111 spin_lock_irqsave(&host->irq_lock, irqflags); 3112 3113 /* 3114 * If somehow we have very bad interrupt latency it's remotely possible 3115 * that the timer could fire while the interrupt is still pending or 3116 * while the interrupt is midway through running. Let's be paranoid 3117 * and detect those two cases. Note that this is paranoia is somewhat 3118 * justified because in this function we don't actually cancel the 3119 * pending command in the controller--we just assume it will never come. 3120 */ 3121 pending = mci_readl(host, MINTSTS); /* read-only mask reg */ 3122 if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) { 3123 /* The interrupt should fire; no need to act but we can warn */ 3124 dev_warn(host->dev, "Unexpected interrupt latency\n"); 3125 goto exit; 3126 } 3127 if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) { 3128 /* Presumably interrupt handler couldn't delete the timer */ 3129 dev_warn(host->dev, "CTO timeout when already completed\n"); 3130 goto exit; 3131 } 3132 3133 /* 3134 * Continued paranoia to make sure we're in the state we expect. 3135 * This paranoia isn't really justified but it seems good to be safe. 3136 */ 3137 switch (host->state) { 3138 case STATE_SENDING_CMD11: 3139 case STATE_SENDING_CMD: 3140 case STATE_SENDING_STOP: 3141 /* 3142 * If CMD_DONE interrupt does NOT come in sending command 3143 * state, we should notify the driver to terminate current 3144 * transfer and report a command timeout to the core. 3145 */ 3146 host->cmd_status = SDMMC_INT_RTO; 3147 set_bit(EVENT_CMD_COMPLETE, &host->pending_events); 3148 tasklet_schedule(&host->tasklet); 3149 break; 3150 default: 3151 dev_warn(host->dev, "Unexpected command timeout, state %d\n", 3152 host->state); 3153 break; 3154 } 3155 3156 exit: 3157 spin_unlock_irqrestore(&host->irq_lock, irqflags); 3158 } 3159 3160 static void dw_mci_dto_timer(struct timer_list *t) 3161 { 3162 struct dw_mci *host = from_timer(host, t, dto_timer); 3163 unsigned long irqflags; 3164 u32 pending; 3165 3166 spin_lock_irqsave(&host->irq_lock, irqflags); 3167 3168 /* 3169 * The DTO timer is much longer than the CTO timer, so it's even less 3170 * likely that we'll these cases, but it pays to be paranoid. 3171 */ 3172 pending = mci_readl(host, MINTSTS); /* read-only mask reg */ 3173 if (pending & SDMMC_INT_DATA_OVER) { 3174 /* The interrupt should fire; no need to act but we can warn */ 3175 dev_warn(host->dev, "Unexpected data interrupt latency\n"); 3176 goto exit; 3177 } 3178 if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) { 3179 /* Presumably interrupt handler couldn't delete the timer */ 3180 dev_warn(host->dev, "DTO timeout when already completed\n"); 3181 goto exit; 3182 } 3183 3184 /* 3185 * Continued paranoia to make sure we're in the state we expect. 3186 * This paranoia isn't really justified but it seems good to be safe. 3187 */ 3188 switch (host->state) { 3189 case STATE_SENDING_DATA: 3190 case STATE_DATA_BUSY: 3191 /* 3192 * If DTO interrupt does NOT come in sending data state, 3193 * we should notify the driver to terminate current transfer 3194 * and report a data timeout to the core. 3195 */ 3196 host->data_status = SDMMC_INT_DRTO; 3197 set_bit(EVENT_DATA_ERROR, &host->pending_events); 3198 set_bit(EVENT_DATA_COMPLETE, &host->pending_events); 3199 tasklet_schedule(&host->tasklet); 3200 break; 3201 default: 3202 dev_warn(host->dev, "Unexpected data timeout, state %d\n", 3203 host->state); 3204 break; 3205 } 3206 3207 exit: 3208 spin_unlock_irqrestore(&host->irq_lock, irqflags); 3209 } 3210 3211 #ifdef CONFIG_OF 3212 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host) 3213 { 3214 struct dw_mci_board *pdata; 3215 struct device *dev = host->dev; 3216 const struct dw_mci_drv_data *drv_data = host->drv_data; 3217 int ret; 3218 u32 clock_frequency; 3219 3220 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 3221 if (!pdata) 3222 return ERR_PTR(-ENOMEM); 3223 3224 /* find reset controller when exist */ 3225 pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset"); 3226 if (IS_ERR(pdata->rstc)) 3227 return ERR_CAST(pdata->rstc); 3228 3229 if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth)) 3230 dev_info(dev, 3231 "fifo-depth property not found, using value of FIFOTH register as default\n"); 3232 3233 device_property_read_u32(dev, "card-detect-delay", 3234 &pdata->detect_delay_ms); 3235 3236 device_property_read_u32(dev, "data-addr", &host->data_addr_override); 3237 3238 if (device_property_present(dev, "fifo-watermark-aligned")) 3239 host->wm_aligned = true; 3240 3241 if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency)) 3242 pdata->bus_hz = clock_frequency; 3243 3244 if (drv_data && drv_data->parse_dt) { 3245 ret = drv_data->parse_dt(host); 3246 if (ret) 3247 return ERR_PTR(ret); 3248 } 3249 3250 return pdata; 3251 } 3252 3253 #else /* CONFIG_OF */ 3254 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host) 3255 { 3256 return ERR_PTR(-EINVAL); 3257 } 3258 #endif /* CONFIG_OF */ 3259 3260 static void dw_mci_enable_cd(struct dw_mci *host) 3261 { 3262 unsigned long irqflags; 3263 u32 temp; 3264 3265 /* 3266 * No need for CD if all slots have a non-error GPIO 3267 * as well as broken card detection is found. 3268 */ 3269 if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL) 3270 return; 3271 3272 if (mmc_gpio_get_cd(host->slot->mmc) < 0) { 3273 spin_lock_irqsave(&host->irq_lock, irqflags); 3274 temp = mci_readl(host, INTMASK); 3275 temp |= SDMMC_INT_CD; 3276 mci_writel(host, INTMASK, temp); 3277 spin_unlock_irqrestore(&host->irq_lock, irqflags); 3278 } 3279 } 3280 3281 int dw_mci_probe(struct dw_mci *host) 3282 { 3283 const struct dw_mci_drv_data *drv_data = host->drv_data; 3284 int width, i, ret = 0; 3285 u32 fifo_size; 3286 3287 if (!host->pdata) { 3288 host->pdata = dw_mci_parse_dt(host); 3289 if (IS_ERR(host->pdata)) 3290 return dev_err_probe(host->dev, PTR_ERR(host->pdata), 3291 "platform data not available\n"); 3292 } 3293 3294 host->biu_clk = devm_clk_get(host->dev, "biu"); 3295 if (IS_ERR(host->biu_clk)) { 3296 dev_dbg(host->dev, "biu clock not available\n"); 3297 ret = PTR_ERR(host->biu_clk); 3298 if (ret == -EPROBE_DEFER) 3299 return ret; 3300 3301 } else { 3302 ret = clk_prepare_enable(host->biu_clk); 3303 if (ret) { 3304 dev_err(host->dev, "failed to enable biu clock\n"); 3305 return ret; 3306 } 3307 } 3308 3309 host->ciu_clk = devm_clk_get(host->dev, "ciu"); 3310 if (IS_ERR(host->ciu_clk)) { 3311 dev_dbg(host->dev, "ciu clock not available\n"); 3312 ret = PTR_ERR(host->ciu_clk); 3313 if (ret == -EPROBE_DEFER) 3314 goto err_clk_biu; 3315 3316 host->bus_hz = host->pdata->bus_hz; 3317 } else { 3318 ret = clk_prepare_enable(host->ciu_clk); 3319 if (ret) { 3320 dev_err(host->dev, "failed to enable ciu clock\n"); 3321 goto err_clk_biu; 3322 } 3323 3324 if (host->pdata->bus_hz) { 3325 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz); 3326 if (ret) 3327 dev_warn(host->dev, 3328 "Unable to set bus rate to %uHz\n", 3329 host->pdata->bus_hz); 3330 } 3331 host->bus_hz = clk_get_rate(host->ciu_clk); 3332 } 3333 3334 if (!host->bus_hz) { 3335 dev_err(host->dev, 3336 "Platform data must supply bus speed\n"); 3337 ret = -ENODEV; 3338 goto err_clk_ciu; 3339 } 3340 3341 if (host->pdata->rstc) { 3342 reset_control_assert(host->pdata->rstc); 3343 usleep_range(10, 50); 3344 reset_control_deassert(host->pdata->rstc); 3345 } 3346 3347 if (drv_data && drv_data->init) { 3348 ret = drv_data->init(host); 3349 if (ret) { 3350 dev_err(host->dev, 3351 "implementation specific init failed\n"); 3352 goto err_clk_ciu; 3353 } 3354 } 3355 3356 timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0); 3357 timer_setup(&host->cto_timer, dw_mci_cto_timer, 0); 3358 timer_setup(&host->dto_timer, dw_mci_dto_timer, 0); 3359 3360 spin_lock_init(&host->lock); 3361 spin_lock_init(&host->irq_lock); 3362 INIT_LIST_HEAD(&host->queue); 3363 3364 dw_mci_init_fault(host); 3365 3366 /* 3367 * Get the host data width - this assumes that HCON has been set with 3368 * the correct values. 3369 */ 3370 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON)); 3371 if (!i) { 3372 host->push_data = dw_mci_push_data16; 3373 host->pull_data = dw_mci_pull_data16; 3374 width = 16; 3375 host->data_shift = 1; 3376 } else if (i == 2) { 3377 host->push_data = dw_mci_push_data64; 3378 host->pull_data = dw_mci_pull_data64; 3379 width = 64; 3380 host->data_shift = 3; 3381 } else { 3382 /* Check for a reserved value, and warn if it is */ 3383 WARN((i != 1), 3384 "HCON reports a reserved host data width!\n" 3385 "Defaulting to 32-bit access.\n"); 3386 host->push_data = dw_mci_push_data32; 3387 host->pull_data = dw_mci_pull_data32; 3388 width = 32; 3389 host->data_shift = 2; 3390 } 3391 3392 /* Reset all blocks */ 3393 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) { 3394 ret = -ENODEV; 3395 goto err_clk_ciu; 3396 } 3397 3398 host->dma_ops = host->pdata->dma_ops; 3399 dw_mci_init_dma(host); 3400 3401 /* Clear the interrupts for the host controller */ 3402 mci_writel(host, RINTSTS, 0xFFFFFFFF); 3403 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */ 3404 3405 /* Put in max timeout */ 3406 mci_writel(host, TMOUT, 0xFFFFFFFF); 3407 3408 /* 3409 * FIFO threshold settings RxMark = fifo_size / 2 - 1, 3410 * Tx Mark = fifo_size / 2 DMA Size = 8 3411 */ 3412 if (!host->pdata->fifo_depth) { 3413 /* 3414 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may 3415 * have been overwritten by the bootloader, just like we're 3416 * about to do, so if you know the value for your hardware, you 3417 * should put it in the platform data. 3418 */ 3419 fifo_size = mci_readl(host, FIFOTH); 3420 fifo_size = 1 + ((fifo_size >> 16) & 0xfff); 3421 } else { 3422 fifo_size = host->pdata->fifo_depth; 3423 } 3424 host->fifo_depth = fifo_size; 3425 host->fifoth_val = 3426 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2); 3427 mci_writel(host, FIFOTH, host->fifoth_val); 3428 3429 /* disable clock to CIU */ 3430 mci_writel(host, CLKENA, 0); 3431 mci_writel(host, CLKSRC, 0); 3432 3433 /* 3434 * In 2.40a spec, Data offset is changed. 3435 * Need to check the version-id and set data-offset for DATA register. 3436 */ 3437 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID)); 3438 dev_info(host->dev, "Version ID is %04x\n", host->verid); 3439 3440 if (host->data_addr_override) 3441 host->fifo_reg = host->regs + host->data_addr_override; 3442 else if (host->verid < DW_MMC_240A) 3443 host->fifo_reg = host->regs + DATA_OFFSET; 3444 else 3445 host->fifo_reg = host->regs + DATA_240A_OFFSET; 3446 3447 tasklet_setup(&host->tasklet, dw_mci_tasklet_func); 3448 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt, 3449 host->irq_flags, "dw-mci", host); 3450 if (ret) 3451 goto err_dmaunmap; 3452 3453 /* 3454 * Enable interrupts for command done, data over, data empty, 3455 * receive ready and error such as transmit, receive timeout, crc error 3456 */ 3457 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER | 3458 SDMMC_INT_TXDR | SDMMC_INT_RXDR | 3459 DW_MCI_ERROR_FLAGS); 3460 /* Enable mci interrupt */ 3461 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE); 3462 3463 dev_info(host->dev, 3464 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n", 3465 host->irq, width, fifo_size); 3466 3467 /* We need at least one slot to succeed */ 3468 ret = dw_mci_init_slot(host); 3469 if (ret) { 3470 dev_dbg(host->dev, "slot %d init failed\n", i); 3471 goto err_dmaunmap; 3472 } 3473 3474 /* Now that slots are all setup, we can enable card detect */ 3475 dw_mci_enable_cd(host); 3476 3477 return 0; 3478 3479 err_dmaunmap: 3480 if (host->use_dma && host->dma_ops->exit) 3481 host->dma_ops->exit(host); 3482 3483 reset_control_assert(host->pdata->rstc); 3484 3485 err_clk_ciu: 3486 clk_disable_unprepare(host->ciu_clk); 3487 3488 err_clk_biu: 3489 clk_disable_unprepare(host->biu_clk); 3490 3491 return ret; 3492 } 3493 EXPORT_SYMBOL(dw_mci_probe); 3494 3495 void dw_mci_remove(struct dw_mci *host) 3496 { 3497 dev_dbg(host->dev, "remove slot\n"); 3498 if (host->slot) 3499 dw_mci_cleanup_slot(host->slot); 3500 3501 mci_writel(host, RINTSTS, 0xFFFFFFFF); 3502 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */ 3503 3504 /* disable clock to CIU */ 3505 mci_writel(host, CLKENA, 0); 3506 mci_writel(host, CLKSRC, 0); 3507 3508 if (host->use_dma && host->dma_ops->exit) 3509 host->dma_ops->exit(host); 3510 3511 reset_control_assert(host->pdata->rstc); 3512 3513 clk_disable_unprepare(host->ciu_clk); 3514 clk_disable_unprepare(host->biu_clk); 3515 } 3516 EXPORT_SYMBOL(dw_mci_remove); 3517 3518 3519 3520 #ifdef CONFIG_PM 3521 int dw_mci_runtime_suspend(struct device *dev) 3522 { 3523 struct dw_mci *host = dev_get_drvdata(dev); 3524 3525 if (host->use_dma && host->dma_ops->exit) 3526 host->dma_ops->exit(host); 3527 3528 clk_disable_unprepare(host->ciu_clk); 3529 3530 if (host->slot && 3531 (mmc_can_gpio_cd(host->slot->mmc) || 3532 !mmc_card_is_removable(host->slot->mmc))) 3533 clk_disable_unprepare(host->biu_clk); 3534 3535 return 0; 3536 } 3537 EXPORT_SYMBOL(dw_mci_runtime_suspend); 3538 3539 int dw_mci_runtime_resume(struct device *dev) 3540 { 3541 int ret = 0; 3542 struct dw_mci *host = dev_get_drvdata(dev); 3543 3544 if (host->slot && 3545 (mmc_can_gpio_cd(host->slot->mmc) || 3546 !mmc_card_is_removable(host->slot->mmc))) { 3547 ret = clk_prepare_enable(host->biu_clk); 3548 if (ret) 3549 return ret; 3550 } 3551 3552 ret = clk_prepare_enable(host->ciu_clk); 3553 if (ret) 3554 goto err; 3555 3556 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) { 3557 clk_disable_unprepare(host->ciu_clk); 3558 ret = -ENODEV; 3559 goto err; 3560 } 3561 3562 if (host->use_dma && host->dma_ops->init) 3563 host->dma_ops->init(host); 3564 3565 /* 3566 * Restore the initial value at FIFOTH register 3567 * And Invalidate the prev_blksz with zero 3568 */ 3569 mci_writel(host, FIFOTH, host->fifoth_val); 3570 host->prev_blksz = 0; 3571 3572 /* Put in max timeout */ 3573 mci_writel(host, TMOUT, 0xFFFFFFFF); 3574 3575 mci_writel(host, RINTSTS, 0xFFFFFFFF); 3576 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER | 3577 SDMMC_INT_TXDR | SDMMC_INT_RXDR | 3578 DW_MCI_ERROR_FLAGS); 3579 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE); 3580 3581 3582 if (host->slot && host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER) 3583 dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios); 3584 3585 /* Force setup bus to guarantee available clock output */ 3586 dw_mci_setup_bus(host->slot, true); 3587 3588 /* Re-enable SDIO interrupts. */ 3589 if (sdio_irq_claimed(host->slot->mmc)) 3590 __dw_mci_enable_sdio_irq(host->slot, 1); 3591 3592 /* Now that slots are all setup, we can enable card detect */ 3593 dw_mci_enable_cd(host); 3594 3595 return 0; 3596 3597 err: 3598 if (host->slot && 3599 (mmc_can_gpio_cd(host->slot->mmc) || 3600 !mmc_card_is_removable(host->slot->mmc))) 3601 clk_disable_unprepare(host->biu_clk); 3602 3603 return ret; 3604 } 3605 EXPORT_SYMBOL(dw_mci_runtime_resume); 3606 #endif /* CONFIG_PM */ 3607 3608 static int __init dw_mci_init(void) 3609 { 3610 pr_info("Synopsys Designware Multimedia Card Interface Driver\n"); 3611 return 0; 3612 } 3613 3614 static void __exit dw_mci_exit(void) 3615 { 3616 } 3617 3618 module_init(dw_mci_init); 3619 module_exit(dw_mci_exit); 3620 3621 MODULE_DESCRIPTION("DW Multimedia Card Interface driver"); 3622 MODULE_AUTHOR("NXP Semiconductor VietNam"); 3623 MODULE_AUTHOR("Imagination Technologies Ltd"); 3624 MODULE_LICENSE("GPL v2"); 3625