1 /* 2 * Synopsys DesignWare Multimedia Card Interface driver 3 * (Based on NXP driver for lpc 31xx) 4 * 5 * Copyright (C) 2009 NXP Semiconductors 6 * Copyright (C) 2009, 2010 Imagination Technologies Ltd. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/blkdev.h> 15 #include <linux/clk.h> 16 #include <linux/debugfs.h> 17 #include <linux/device.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/err.h> 20 #include <linux/init.h> 21 #include <linux/interrupt.h> 22 #include <linux/ioport.h> 23 #include <linux/module.h> 24 #include <linux/platform_device.h> 25 #include <linux/seq_file.h> 26 #include <linux/slab.h> 27 #include <linux/stat.h> 28 #include <linux/delay.h> 29 #include <linux/irq.h> 30 #include <linux/mmc/card.h> 31 #include <linux/mmc/host.h> 32 #include <linux/mmc/mmc.h> 33 #include <linux/mmc/sd.h> 34 #include <linux/mmc/sdio.h> 35 #include <linux/mmc/dw_mmc.h> 36 #include <linux/bitops.h> 37 #include <linux/regulator/consumer.h> 38 #include <linux/of.h> 39 #include <linux/of_gpio.h> 40 #include <linux/mmc/slot-gpio.h> 41 42 #include "dw_mmc.h" 43 44 /* Common flag combinations */ 45 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \ 46 SDMMC_INT_HTO | SDMMC_INT_SBE | \ 47 SDMMC_INT_EBE | SDMMC_INT_HLE) 48 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \ 49 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE) 50 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \ 51 DW_MCI_CMD_ERROR_FLAGS) 52 #define DW_MCI_SEND_STATUS 1 53 #define DW_MCI_RECV_STATUS 2 54 #define DW_MCI_DMA_THRESHOLD 16 55 56 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */ 57 #define DW_MCI_FREQ_MIN 400000 /* unit: HZ */ 58 59 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \ 60 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \ 61 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \ 62 SDMMC_IDMAC_INT_TI) 63 64 #define DESC_RING_BUF_SZ PAGE_SIZE 65 66 struct idmac_desc_64addr { 67 u32 des0; /* Control Descriptor */ 68 69 u32 des1; /* Reserved */ 70 71 u32 des2; /*Buffer sizes */ 72 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \ 73 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \ 74 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff))) 75 76 u32 des3; /* Reserved */ 77 78 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/ 79 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/ 80 81 u32 des6; /* Lower 32-bits of Next Descriptor Address */ 82 u32 des7; /* Upper 32-bits of Next Descriptor Address */ 83 }; 84 85 struct idmac_desc { 86 __le32 des0; /* Control Descriptor */ 87 #define IDMAC_DES0_DIC BIT(1) 88 #define IDMAC_DES0_LD BIT(2) 89 #define IDMAC_DES0_FD BIT(3) 90 #define IDMAC_DES0_CH BIT(4) 91 #define IDMAC_DES0_ER BIT(5) 92 #define IDMAC_DES0_CES BIT(30) 93 #define IDMAC_DES0_OWN BIT(31) 94 95 __le32 des1; /* Buffer sizes */ 96 #define IDMAC_SET_BUFFER1_SIZE(d, s) \ 97 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff))) 98 99 __le32 des2; /* buffer 1 physical address */ 100 101 __le32 des3; /* buffer 2 physical address */ 102 }; 103 104 /* Each descriptor can transfer up to 4KB of data in chained mode */ 105 #define DW_MCI_DESC_DATA_LENGTH 0x1000 106 107 static bool dw_mci_reset(struct dw_mci *host); 108 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset); 109 static int dw_mci_card_busy(struct mmc_host *mmc); 110 static int dw_mci_get_cd(struct mmc_host *mmc); 111 112 #if defined(CONFIG_DEBUG_FS) 113 static int dw_mci_req_show(struct seq_file *s, void *v) 114 { 115 struct dw_mci_slot *slot = s->private; 116 struct mmc_request *mrq; 117 struct mmc_command *cmd; 118 struct mmc_command *stop; 119 struct mmc_data *data; 120 121 /* Make sure we get a consistent snapshot */ 122 spin_lock_bh(&slot->host->lock); 123 mrq = slot->mrq; 124 125 if (mrq) { 126 cmd = mrq->cmd; 127 data = mrq->data; 128 stop = mrq->stop; 129 130 if (cmd) 131 seq_printf(s, 132 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n", 133 cmd->opcode, cmd->arg, cmd->flags, 134 cmd->resp[0], cmd->resp[1], cmd->resp[2], 135 cmd->resp[2], cmd->error); 136 if (data) 137 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n", 138 data->bytes_xfered, data->blocks, 139 data->blksz, data->flags, data->error); 140 if (stop) 141 seq_printf(s, 142 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n", 143 stop->opcode, stop->arg, stop->flags, 144 stop->resp[0], stop->resp[1], stop->resp[2], 145 stop->resp[2], stop->error); 146 } 147 148 spin_unlock_bh(&slot->host->lock); 149 150 return 0; 151 } 152 153 static int dw_mci_req_open(struct inode *inode, struct file *file) 154 { 155 return single_open(file, dw_mci_req_show, inode->i_private); 156 } 157 158 static const struct file_operations dw_mci_req_fops = { 159 .owner = THIS_MODULE, 160 .open = dw_mci_req_open, 161 .read = seq_read, 162 .llseek = seq_lseek, 163 .release = single_release, 164 }; 165 166 static int dw_mci_regs_show(struct seq_file *s, void *v) 167 { 168 seq_printf(s, "STATUS:\t0x%08x\n", SDMMC_STATUS); 169 seq_printf(s, "RINTSTS:\t0x%08x\n", SDMMC_RINTSTS); 170 seq_printf(s, "CMD:\t0x%08x\n", SDMMC_CMD); 171 seq_printf(s, "CTRL:\t0x%08x\n", SDMMC_CTRL); 172 seq_printf(s, "INTMASK:\t0x%08x\n", SDMMC_INTMASK); 173 seq_printf(s, "CLKENA:\t0x%08x\n", SDMMC_CLKENA); 174 175 return 0; 176 } 177 178 static int dw_mci_regs_open(struct inode *inode, struct file *file) 179 { 180 return single_open(file, dw_mci_regs_show, inode->i_private); 181 } 182 183 static const struct file_operations dw_mci_regs_fops = { 184 .owner = THIS_MODULE, 185 .open = dw_mci_regs_open, 186 .read = seq_read, 187 .llseek = seq_lseek, 188 .release = single_release, 189 }; 190 191 static void dw_mci_init_debugfs(struct dw_mci_slot *slot) 192 { 193 struct mmc_host *mmc = slot->mmc; 194 struct dw_mci *host = slot->host; 195 struct dentry *root; 196 struct dentry *node; 197 198 root = mmc->debugfs_root; 199 if (!root) 200 return; 201 202 node = debugfs_create_file("regs", S_IRUSR, root, host, 203 &dw_mci_regs_fops); 204 if (!node) 205 goto err; 206 207 node = debugfs_create_file("req", S_IRUSR, root, slot, 208 &dw_mci_req_fops); 209 if (!node) 210 goto err; 211 212 node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state); 213 if (!node) 214 goto err; 215 216 node = debugfs_create_x32("pending_events", S_IRUSR, root, 217 (u32 *)&host->pending_events); 218 if (!node) 219 goto err; 220 221 node = debugfs_create_x32("completed_events", S_IRUSR, root, 222 (u32 *)&host->completed_events); 223 if (!node) 224 goto err; 225 226 return; 227 228 err: 229 dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n"); 230 } 231 #endif /* defined(CONFIG_DEBUG_FS) */ 232 233 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg); 234 235 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd) 236 { 237 struct mmc_data *data; 238 struct dw_mci_slot *slot = mmc_priv(mmc); 239 struct dw_mci *host = slot->host; 240 u32 cmdr; 241 242 cmd->error = -EINPROGRESS; 243 cmdr = cmd->opcode; 244 245 if (cmd->opcode == MMC_STOP_TRANSMISSION || 246 cmd->opcode == MMC_GO_IDLE_STATE || 247 cmd->opcode == MMC_GO_INACTIVE_STATE || 248 (cmd->opcode == SD_IO_RW_DIRECT && 249 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT)) 250 cmdr |= SDMMC_CMD_STOP; 251 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data) 252 cmdr |= SDMMC_CMD_PRV_DAT_WAIT; 253 254 if (cmd->opcode == SD_SWITCH_VOLTAGE) { 255 u32 clk_en_a; 256 257 /* Special bit makes CMD11 not die */ 258 cmdr |= SDMMC_CMD_VOLT_SWITCH; 259 260 /* Change state to continue to handle CMD11 weirdness */ 261 WARN_ON(slot->host->state != STATE_SENDING_CMD); 262 slot->host->state = STATE_SENDING_CMD11; 263 264 /* 265 * We need to disable low power mode (automatic clock stop) 266 * while doing voltage switch so we don't confuse the card, 267 * since stopping the clock is a specific part of the UHS 268 * voltage change dance. 269 * 270 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be 271 * unconditionally turned back on in dw_mci_setup_bus() if it's 272 * ever called with a non-zero clock. That shouldn't happen 273 * until the voltage change is all done. 274 */ 275 clk_en_a = mci_readl(host, CLKENA); 276 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id); 277 mci_writel(host, CLKENA, clk_en_a); 278 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | 279 SDMMC_CMD_PRV_DAT_WAIT, 0); 280 } 281 282 if (cmd->flags & MMC_RSP_PRESENT) { 283 /* We expect a response, so set this bit */ 284 cmdr |= SDMMC_CMD_RESP_EXP; 285 if (cmd->flags & MMC_RSP_136) 286 cmdr |= SDMMC_CMD_RESP_LONG; 287 } 288 289 if (cmd->flags & MMC_RSP_CRC) 290 cmdr |= SDMMC_CMD_RESP_CRC; 291 292 data = cmd->data; 293 if (data) { 294 cmdr |= SDMMC_CMD_DAT_EXP; 295 if (data->flags & MMC_DATA_WRITE) 296 cmdr |= SDMMC_CMD_DAT_WR; 297 } 298 299 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags)) 300 cmdr |= SDMMC_CMD_USE_HOLD_REG; 301 302 return cmdr; 303 } 304 305 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd) 306 { 307 struct mmc_command *stop; 308 u32 cmdr; 309 310 if (!cmd->data) 311 return 0; 312 313 stop = &host->stop_abort; 314 cmdr = cmd->opcode; 315 memset(stop, 0, sizeof(struct mmc_command)); 316 317 if (cmdr == MMC_READ_SINGLE_BLOCK || 318 cmdr == MMC_READ_MULTIPLE_BLOCK || 319 cmdr == MMC_WRITE_BLOCK || 320 cmdr == MMC_WRITE_MULTIPLE_BLOCK || 321 cmdr == MMC_SEND_TUNING_BLOCK || 322 cmdr == MMC_SEND_TUNING_BLOCK_HS200) { 323 stop->opcode = MMC_STOP_TRANSMISSION; 324 stop->arg = 0; 325 stop->flags = MMC_RSP_R1B | MMC_CMD_AC; 326 } else if (cmdr == SD_IO_RW_EXTENDED) { 327 stop->opcode = SD_IO_RW_DIRECT; 328 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) | 329 ((cmd->arg >> 28) & 0x7); 330 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC; 331 } else { 332 return 0; 333 } 334 335 cmdr = stop->opcode | SDMMC_CMD_STOP | 336 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP; 337 338 return cmdr; 339 } 340 341 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags) 342 { 343 unsigned long timeout = jiffies + msecs_to_jiffies(500); 344 345 /* 346 * Databook says that before issuing a new data transfer command 347 * we need to check to see if the card is busy. Data transfer commands 348 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that. 349 * 350 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is 351 * expected. 352 */ 353 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) && 354 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) { 355 while (mci_readl(host, STATUS) & SDMMC_STATUS_BUSY) { 356 if (time_after(jiffies, timeout)) { 357 /* Command will fail; we'll pass error then */ 358 dev_err(host->dev, "Busy; trying anyway\n"); 359 break; 360 } 361 udelay(10); 362 } 363 } 364 } 365 366 static void dw_mci_start_command(struct dw_mci *host, 367 struct mmc_command *cmd, u32 cmd_flags) 368 { 369 host->cmd = cmd; 370 dev_vdbg(host->dev, 371 "start command: ARGR=0x%08x CMDR=0x%08x\n", 372 cmd->arg, cmd_flags); 373 374 mci_writel(host, CMDARG, cmd->arg); 375 wmb(); /* drain writebuffer */ 376 dw_mci_wait_while_busy(host, cmd_flags); 377 378 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START); 379 } 380 381 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data) 382 { 383 struct mmc_command *stop = data->stop ? data->stop : &host->stop_abort; 384 385 dw_mci_start_command(host, stop, host->stop_cmdr); 386 } 387 388 /* DMA interface functions */ 389 static void dw_mci_stop_dma(struct dw_mci *host) 390 { 391 if (host->using_dma) { 392 host->dma_ops->stop(host); 393 host->dma_ops->cleanup(host); 394 } 395 396 /* Data transfer was stopped by the interrupt handler */ 397 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 398 } 399 400 static int dw_mci_get_dma_dir(struct mmc_data *data) 401 { 402 if (data->flags & MMC_DATA_WRITE) 403 return DMA_TO_DEVICE; 404 else 405 return DMA_FROM_DEVICE; 406 } 407 408 static void dw_mci_dma_cleanup(struct dw_mci *host) 409 { 410 struct mmc_data *data = host->data; 411 412 if (data) 413 if (!data->host_cookie) 414 dma_unmap_sg(host->dev, 415 data->sg, 416 data->sg_len, 417 dw_mci_get_dma_dir(data)); 418 } 419 420 static void dw_mci_idmac_reset(struct dw_mci *host) 421 { 422 u32 bmod = mci_readl(host, BMOD); 423 /* Software reset of DMA */ 424 bmod |= SDMMC_IDMAC_SWRESET; 425 mci_writel(host, BMOD, bmod); 426 } 427 428 static void dw_mci_idmac_stop_dma(struct dw_mci *host) 429 { 430 u32 temp; 431 432 /* Disable and reset the IDMAC interface */ 433 temp = mci_readl(host, CTRL); 434 temp &= ~SDMMC_CTRL_USE_IDMAC; 435 temp |= SDMMC_CTRL_DMA_RESET; 436 mci_writel(host, CTRL, temp); 437 438 /* Stop the IDMAC running */ 439 temp = mci_readl(host, BMOD); 440 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB); 441 temp |= SDMMC_IDMAC_SWRESET; 442 mci_writel(host, BMOD, temp); 443 } 444 445 static void dw_mci_dmac_complete_dma(void *arg) 446 { 447 struct dw_mci *host = arg; 448 struct mmc_data *data = host->data; 449 450 dev_vdbg(host->dev, "DMA complete\n"); 451 452 if ((host->use_dma == TRANS_MODE_EDMAC) && 453 data && (data->flags & MMC_DATA_READ)) 454 /* Invalidate cache after read */ 455 dma_sync_sg_for_cpu(mmc_dev(host->cur_slot->mmc), 456 data->sg, 457 data->sg_len, 458 DMA_FROM_DEVICE); 459 460 host->dma_ops->cleanup(host); 461 462 /* 463 * If the card was removed, data will be NULL. No point in trying to 464 * send the stop command or waiting for NBUSY in this case. 465 */ 466 if (data) { 467 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 468 tasklet_schedule(&host->tasklet); 469 } 470 } 471 472 static int dw_mci_idmac_init(struct dw_mci *host) 473 { 474 int i; 475 476 if (host->dma_64bit_address == 1) { 477 struct idmac_desc_64addr *p; 478 /* Number of descriptors in the ring buffer */ 479 host->ring_size = 480 DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr); 481 482 /* Forward link the descriptor list */ 483 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1; 484 i++, p++) { 485 p->des6 = (host->sg_dma + 486 (sizeof(struct idmac_desc_64addr) * 487 (i + 1))) & 0xffffffff; 488 489 p->des7 = (u64)(host->sg_dma + 490 (sizeof(struct idmac_desc_64addr) * 491 (i + 1))) >> 32; 492 /* Initialize reserved and buffer size fields to "0" */ 493 p->des1 = 0; 494 p->des2 = 0; 495 p->des3 = 0; 496 } 497 498 /* Set the last descriptor as the end-of-ring descriptor */ 499 p->des6 = host->sg_dma & 0xffffffff; 500 p->des7 = (u64)host->sg_dma >> 32; 501 p->des0 = IDMAC_DES0_ER; 502 503 } else { 504 struct idmac_desc *p; 505 /* Number of descriptors in the ring buffer */ 506 host->ring_size = 507 DESC_RING_BUF_SZ / sizeof(struct idmac_desc); 508 509 /* Forward link the descriptor list */ 510 for (i = 0, p = host->sg_cpu; 511 i < host->ring_size - 1; 512 i++, p++) { 513 p->des3 = cpu_to_le32(host->sg_dma + 514 (sizeof(struct idmac_desc) * (i + 1))); 515 p->des1 = 0; 516 } 517 518 /* Set the last descriptor as the end-of-ring descriptor */ 519 p->des3 = cpu_to_le32(host->sg_dma); 520 p->des0 = cpu_to_le32(IDMAC_DES0_ER); 521 } 522 523 dw_mci_idmac_reset(host); 524 525 if (host->dma_64bit_address == 1) { 526 /* Mask out interrupts - get Tx & Rx complete only */ 527 mci_writel(host, IDSTS64, IDMAC_INT_CLR); 528 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI | 529 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI); 530 531 /* Set the descriptor base address */ 532 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff); 533 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32); 534 535 } else { 536 /* Mask out interrupts - get Tx & Rx complete only */ 537 mci_writel(host, IDSTS, IDMAC_INT_CLR); 538 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI | 539 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI); 540 541 /* Set the descriptor base address */ 542 mci_writel(host, DBADDR, host->sg_dma); 543 } 544 545 return 0; 546 } 547 548 static inline int dw_mci_prepare_desc64(struct dw_mci *host, 549 struct mmc_data *data, 550 unsigned int sg_len) 551 { 552 unsigned int desc_len; 553 struct idmac_desc_64addr *desc_first, *desc_last, *desc; 554 unsigned long timeout; 555 int i; 556 557 desc_first = desc_last = desc = host->sg_cpu; 558 559 for (i = 0; i < sg_len; i++) { 560 unsigned int length = sg_dma_len(&data->sg[i]); 561 562 u64 mem_addr = sg_dma_address(&data->sg[i]); 563 564 for ( ; length ; desc++) { 565 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ? 566 length : DW_MCI_DESC_DATA_LENGTH; 567 568 length -= desc_len; 569 570 /* 571 * Wait for the former clear OWN bit operation 572 * of IDMAC to make sure that this descriptor 573 * isn't still owned by IDMAC as IDMAC's write 574 * ops and CPU's read ops are asynchronous. 575 */ 576 timeout = jiffies + msecs_to_jiffies(100); 577 while (readl(&desc->des0) & IDMAC_DES0_OWN) { 578 if (time_after(jiffies, timeout)) 579 goto err_own_bit; 580 udelay(10); 581 } 582 583 /* 584 * Set the OWN bit and disable interrupts 585 * for this descriptor 586 */ 587 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC | 588 IDMAC_DES0_CH; 589 590 /* Buffer length */ 591 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len); 592 593 /* Physical address to DMA to/from */ 594 desc->des4 = mem_addr & 0xffffffff; 595 desc->des5 = mem_addr >> 32; 596 597 /* Update physical address for the next desc */ 598 mem_addr += desc_len; 599 600 /* Save pointer to the last descriptor */ 601 desc_last = desc; 602 } 603 } 604 605 /* Set first descriptor */ 606 desc_first->des0 |= IDMAC_DES0_FD; 607 608 /* Set last descriptor */ 609 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC); 610 desc_last->des0 |= IDMAC_DES0_LD; 611 612 return 0; 613 err_own_bit: 614 /* restore the descriptor chain as it's polluted */ 615 dev_dbg(host->dev, "desciptor is still owned by IDMAC.\n"); 616 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ); 617 dw_mci_idmac_init(host); 618 return -EINVAL; 619 } 620 621 622 static inline int dw_mci_prepare_desc32(struct dw_mci *host, 623 struct mmc_data *data, 624 unsigned int sg_len) 625 { 626 unsigned int desc_len; 627 struct idmac_desc *desc_first, *desc_last, *desc; 628 unsigned long timeout; 629 int i; 630 631 desc_first = desc_last = desc = host->sg_cpu; 632 633 for (i = 0; i < sg_len; i++) { 634 unsigned int length = sg_dma_len(&data->sg[i]); 635 636 u32 mem_addr = sg_dma_address(&data->sg[i]); 637 638 for ( ; length ; desc++) { 639 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ? 640 length : DW_MCI_DESC_DATA_LENGTH; 641 642 length -= desc_len; 643 644 /* 645 * Wait for the former clear OWN bit operation 646 * of IDMAC to make sure that this descriptor 647 * isn't still owned by IDMAC as IDMAC's write 648 * ops and CPU's read ops are asynchronous. 649 */ 650 timeout = jiffies + msecs_to_jiffies(100); 651 while (readl(&desc->des0) & 652 cpu_to_le32(IDMAC_DES0_OWN)) { 653 if (time_after(jiffies, timeout)) 654 goto err_own_bit; 655 udelay(10); 656 } 657 658 /* 659 * Set the OWN bit and disable interrupts 660 * for this descriptor 661 */ 662 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN | 663 IDMAC_DES0_DIC | 664 IDMAC_DES0_CH); 665 666 /* Buffer length */ 667 IDMAC_SET_BUFFER1_SIZE(desc, desc_len); 668 669 /* Physical address to DMA to/from */ 670 desc->des2 = cpu_to_le32(mem_addr); 671 672 /* Update physical address for the next desc */ 673 mem_addr += desc_len; 674 675 /* Save pointer to the last descriptor */ 676 desc_last = desc; 677 } 678 } 679 680 /* Set first descriptor */ 681 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD); 682 683 /* Set last descriptor */ 684 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH | 685 IDMAC_DES0_DIC)); 686 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD); 687 688 return 0; 689 err_own_bit: 690 /* restore the descriptor chain as it's polluted */ 691 dev_dbg(host->dev, "desciptor is still owned by IDMAC.\n"); 692 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ); 693 dw_mci_idmac_init(host); 694 return -EINVAL; 695 } 696 697 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len) 698 { 699 u32 temp; 700 int ret; 701 702 if (host->dma_64bit_address == 1) 703 ret = dw_mci_prepare_desc64(host, host->data, sg_len); 704 else 705 ret = dw_mci_prepare_desc32(host, host->data, sg_len); 706 707 if (ret) 708 goto out; 709 710 /* drain writebuffer */ 711 wmb(); 712 713 /* Make sure to reset DMA in case we did PIO before this */ 714 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET); 715 dw_mci_idmac_reset(host); 716 717 /* Select IDMAC interface */ 718 temp = mci_readl(host, CTRL); 719 temp |= SDMMC_CTRL_USE_IDMAC; 720 mci_writel(host, CTRL, temp); 721 722 /* drain writebuffer */ 723 wmb(); 724 725 /* Enable the IDMAC */ 726 temp = mci_readl(host, BMOD); 727 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB; 728 mci_writel(host, BMOD, temp); 729 730 /* Start it running */ 731 mci_writel(host, PLDMND, 1); 732 733 out: 734 return ret; 735 } 736 737 static const struct dw_mci_dma_ops dw_mci_idmac_ops = { 738 .init = dw_mci_idmac_init, 739 .start = dw_mci_idmac_start_dma, 740 .stop = dw_mci_idmac_stop_dma, 741 .complete = dw_mci_dmac_complete_dma, 742 .cleanup = dw_mci_dma_cleanup, 743 }; 744 745 static void dw_mci_edmac_stop_dma(struct dw_mci *host) 746 { 747 dmaengine_terminate_async(host->dms->ch); 748 } 749 750 static int dw_mci_edmac_start_dma(struct dw_mci *host, 751 unsigned int sg_len) 752 { 753 struct dma_slave_config cfg; 754 struct dma_async_tx_descriptor *desc = NULL; 755 struct scatterlist *sgl = host->data->sg; 756 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256}; 757 u32 sg_elems = host->data->sg_len; 758 u32 fifoth_val; 759 u32 fifo_offset = host->fifo_reg - host->regs; 760 int ret = 0; 761 762 /* Set external dma config: burst size, burst width */ 763 cfg.dst_addr = host->phy_regs + fifo_offset; 764 cfg.src_addr = cfg.dst_addr; 765 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 766 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 767 768 /* Match burst msize with external dma config */ 769 fifoth_val = mci_readl(host, FIFOTH); 770 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7]; 771 cfg.src_maxburst = cfg.dst_maxburst; 772 773 if (host->data->flags & MMC_DATA_WRITE) 774 cfg.direction = DMA_MEM_TO_DEV; 775 else 776 cfg.direction = DMA_DEV_TO_MEM; 777 778 ret = dmaengine_slave_config(host->dms->ch, &cfg); 779 if (ret) { 780 dev_err(host->dev, "Failed to config edmac.\n"); 781 return -EBUSY; 782 } 783 784 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl, 785 sg_len, cfg.direction, 786 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 787 if (!desc) { 788 dev_err(host->dev, "Can't prepare slave sg.\n"); 789 return -EBUSY; 790 } 791 792 /* Set dw_mci_dmac_complete_dma as callback */ 793 desc->callback = dw_mci_dmac_complete_dma; 794 desc->callback_param = (void *)host; 795 dmaengine_submit(desc); 796 797 /* Flush cache before write */ 798 if (host->data->flags & MMC_DATA_WRITE) 799 dma_sync_sg_for_device(mmc_dev(host->cur_slot->mmc), sgl, 800 sg_elems, DMA_TO_DEVICE); 801 802 dma_async_issue_pending(host->dms->ch); 803 804 return 0; 805 } 806 807 static int dw_mci_edmac_init(struct dw_mci *host) 808 { 809 /* Request external dma channel */ 810 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL); 811 if (!host->dms) 812 return -ENOMEM; 813 814 host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx"); 815 if (!host->dms->ch) { 816 dev_err(host->dev, "Failed to get external DMA channel.\n"); 817 kfree(host->dms); 818 host->dms = NULL; 819 return -ENXIO; 820 } 821 822 return 0; 823 } 824 825 static void dw_mci_edmac_exit(struct dw_mci *host) 826 { 827 if (host->dms) { 828 if (host->dms->ch) { 829 dma_release_channel(host->dms->ch); 830 host->dms->ch = NULL; 831 } 832 kfree(host->dms); 833 host->dms = NULL; 834 } 835 } 836 837 static const struct dw_mci_dma_ops dw_mci_edmac_ops = { 838 .init = dw_mci_edmac_init, 839 .exit = dw_mci_edmac_exit, 840 .start = dw_mci_edmac_start_dma, 841 .stop = dw_mci_edmac_stop_dma, 842 .complete = dw_mci_dmac_complete_dma, 843 .cleanup = dw_mci_dma_cleanup, 844 }; 845 846 static int dw_mci_pre_dma_transfer(struct dw_mci *host, 847 struct mmc_data *data, 848 bool next) 849 { 850 struct scatterlist *sg; 851 unsigned int i, sg_len; 852 853 if (!next && data->host_cookie) 854 return data->host_cookie; 855 856 /* 857 * We don't do DMA on "complex" transfers, i.e. with 858 * non-word-aligned buffers or lengths. Also, we don't bother 859 * with all the DMA setup overhead for short transfers. 860 */ 861 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD) 862 return -EINVAL; 863 864 if (data->blksz & 3) 865 return -EINVAL; 866 867 for_each_sg(data->sg, sg, data->sg_len, i) { 868 if (sg->offset & 3 || sg->length & 3) 869 return -EINVAL; 870 } 871 872 sg_len = dma_map_sg(host->dev, 873 data->sg, 874 data->sg_len, 875 dw_mci_get_dma_dir(data)); 876 if (sg_len == 0) 877 return -EINVAL; 878 879 if (next) 880 data->host_cookie = sg_len; 881 882 return sg_len; 883 } 884 885 static void dw_mci_pre_req(struct mmc_host *mmc, 886 struct mmc_request *mrq, 887 bool is_first_req) 888 { 889 struct dw_mci_slot *slot = mmc_priv(mmc); 890 struct mmc_data *data = mrq->data; 891 892 if (!slot->host->use_dma || !data) 893 return; 894 895 if (data->host_cookie) { 896 data->host_cookie = 0; 897 return; 898 } 899 900 if (dw_mci_pre_dma_transfer(slot->host, mrq->data, 1) < 0) 901 data->host_cookie = 0; 902 } 903 904 static void dw_mci_post_req(struct mmc_host *mmc, 905 struct mmc_request *mrq, 906 int err) 907 { 908 struct dw_mci_slot *slot = mmc_priv(mmc); 909 struct mmc_data *data = mrq->data; 910 911 if (!slot->host->use_dma || !data) 912 return; 913 914 if (data->host_cookie) 915 dma_unmap_sg(slot->host->dev, 916 data->sg, 917 data->sg_len, 918 dw_mci_get_dma_dir(data)); 919 data->host_cookie = 0; 920 } 921 922 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data) 923 { 924 unsigned int blksz = data->blksz; 925 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256}; 926 u32 fifo_width = 1 << host->data_shift; 927 u32 blksz_depth = blksz / fifo_width, fifoth_val; 928 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers; 929 int idx = ARRAY_SIZE(mszs) - 1; 930 931 /* pio should ship this scenario */ 932 if (!host->use_dma) 933 return; 934 935 tx_wmark = (host->fifo_depth) / 2; 936 tx_wmark_invers = host->fifo_depth - tx_wmark; 937 938 /* 939 * MSIZE is '1', 940 * if blksz is not a multiple of the FIFO width 941 */ 942 if (blksz % fifo_width) 943 goto done; 944 945 do { 946 if (!((blksz_depth % mszs[idx]) || 947 (tx_wmark_invers % mszs[idx]))) { 948 msize = idx; 949 rx_wmark = mszs[idx] - 1; 950 break; 951 } 952 } while (--idx > 0); 953 /* 954 * If idx is '0', it won't be tried 955 * Thus, initial values are uesed 956 */ 957 done: 958 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark); 959 mci_writel(host, FIFOTH, fifoth_val); 960 } 961 962 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data) 963 { 964 unsigned int blksz = data->blksz; 965 u32 blksz_depth, fifo_depth; 966 u16 thld_size; 967 u8 enable; 968 969 /* 970 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is 971 * in the FIFO region, so we really shouldn't access it). 972 */ 973 if (host->verid < DW_MMC_240A || 974 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE)) 975 return; 976 977 /* 978 * Card write Threshold is introduced since 2.80a 979 * It's used when HS400 mode is enabled. 980 */ 981 if (data->flags & MMC_DATA_WRITE && 982 !(host->timing != MMC_TIMING_MMC_HS400)) 983 return; 984 985 if (data->flags & MMC_DATA_WRITE) 986 enable = SDMMC_CARD_WR_THR_EN; 987 else 988 enable = SDMMC_CARD_RD_THR_EN; 989 990 if (host->timing != MMC_TIMING_MMC_HS200 && 991 host->timing != MMC_TIMING_UHS_SDR104) 992 goto disable; 993 994 blksz_depth = blksz / (1 << host->data_shift); 995 fifo_depth = host->fifo_depth; 996 997 if (blksz_depth > fifo_depth) 998 goto disable; 999 1000 /* 1001 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz' 1002 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz 1003 * Currently just choose blksz. 1004 */ 1005 thld_size = blksz; 1006 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable)); 1007 return; 1008 1009 disable: 1010 mci_writel(host, CDTHRCTL, 0); 1011 } 1012 1013 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data) 1014 { 1015 unsigned long irqflags; 1016 int sg_len; 1017 u32 temp; 1018 1019 host->using_dma = 0; 1020 1021 /* If we don't have a channel, we can't do DMA */ 1022 if (!host->use_dma) 1023 return -ENODEV; 1024 1025 sg_len = dw_mci_pre_dma_transfer(host, data, 0); 1026 if (sg_len < 0) { 1027 host->dma_ops->stop(host); 1028 return sg_len; 1029 } 1030 1031 host->using_dma = 1; 1032 1033 if (host->use_dma == TRANS_MODE_IDMAC) 1034 dev_vdbg(host->dev, 1035 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n", 1036 (unsigned long)host->sg_cpu, 1037 (unsigned long)host->sg_dma, 1038 sg_len); 1039 1040 /* 1041 * Decide the MSIZE and RX/TX Watermark. 1042 * If current block size is same with previous size, 1043 * no need to update fifoth. 1044 */ 1045 if (host->prev_blksz != data->blksz) 1046 dw_mci_adjust_fifoth(host, data); 1047 1048 /* Enable the DMA interface */ 1049 temp = mci_readl(host, CTRL); 1050 temp |= SDMMC_CTRL_DMA_ENABLE; 1051 mci_writel(host, CTRL, temp); 1052 1053 /* Disable RX/TX IRQs, let DMA handle it */ 1054 spin_lock_irqsave(&host->irq_lock, irqflags); 1055 temp = mci_readl(host, INTMASK); 1056 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR); 1057 mci_writel(host, INTMASK, temp); 1058 spin_unlock_irqrestore(&host->irq_lock, irqflags); 1059 1060 if (host->dma_ops->start(host, sg_len)) { 1061 /* We can't do DMA, try PIO for this one */ 1062 dev_dbg(host->dev, 1063 "%s: fall back to PIO mode for current transfer\n", 1064 __func__); 1065 return -ENODEV; 1066 } 1067 1068 return 0; 1069 } 1070 1071 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data) 1072 { 1073 unsigned long irqflags; 1074 int flags = SG_MITER_ATOMIC; 1075 u32 temp; 1076 1077 data->error = -EINPROGRESS; 1078 1079 WARN_ON(host->data); 1080 host->sg = NULL; 1081 host->data = data; 1082 1083 if (data->flags & MMC_DATA_READ) 1084 host->dir_status = DW_MCI_RECV_STATUS; 1085 else 1086 host->dir_status = DW_MCI_SEND_STATUS; 1087 1088 dw_mci_ctrl_thld(host, data); 1089 1090 if (dw_mci_submit_data_dma(host, data)) { 1091 if (host->data->flags & MMC_DATA_READ) 1092 flags |= SG_MITER_TO_SG; 1093 else 1094 flags |= SG_MITER_FROM_SG; 1095 1096 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); 1097 host->sg = data->sg; 1098 host->part_buf_start = 0; 1099 host->part_buf_count = 0; 1100 1101 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR); 1102 1103 spin_lock_irqsave(&host->irq_lock, irqflags); 1104 temp = mci_readl(host, INTMASK); 1105 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR; 1106 mci_writel(host, INTMASK, temp); 1107 spin_unlock_irqrestore(&host->irq_lock, irqflags); 1108 1109 temp = mci_readl(host, CTRL); 1110 temp &= ~SDMMC_CTRL_DMA_ENABLE; 1111 mci_writel(host, CTRL, temp); 1112 1113 /* 1114 * Use the initial fifoth_val for PIO mode. 1115 * If next issued data may be transfered by DMA mode, 1116 * prev_blksz should be invalidated. 1117 */ 1118 mci_writel(host, FIFOTH, host->fifoth_val); 1119 host->prev_blksz = 0; 1120 } else { 1121 /* 1122 * Keep the current block size. 1123 * It will be used to decide whether to update 1124 * fifoth register next time. 1125 */ 1126 host->prev_blksz = data->blksz; 1127 } 1128 } 1129 1130 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg) 1131 { 1132 struct dw_mci *host = slot->host; 1133 unsigned long timeout = jiffies + msecs_to_jiffies(500); 1134 unsigned int cmd_status = 0; 1135 1136 mci_writel(host, CMDARG, arg); 1137 wmb(); /* drain writebuffer */ 1138 dw_mci_wait_while_busy(host, cmd); 1139 mci_writel(host, CMD, SDMMC_CMD_START | cmd); 1140 1141 while (time_before(jiffies, timeout)) { 1142 cmd_status = mci_readl(host, CMD); 1143 if (!(cmd_status & SDMMC_CMD_START)) 1144 return; 1145 } 1146 dev_err(&slot->mmc->class_dev, 1147 "Timeout sending command (cmd %#x arg %#x status %#x)\n", 1148 cmd, arg, cmd_status); 1149 } 1150 1151 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit) 1152 { 1153 struct dw_mci *host = slot->host; 1154 unsigned int clock = slot->clock; 1155 u32 div; 1156 u32 clk_en_a; 1157 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT; 1158 1159 /* We must continue to set bit 28 in CMD until the change is complete */ 1160 if (host->state == STATE_WAITING_CMD11_DONE) 1161 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH; 1162 1163 if (!clock) { 1164 mci_writel(host, CLKENA, 0); 1165 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 1166 } else if (clock != host->current_speed || force_clkinit) { 1167 div = host->bus_hz / clock; 1168 if (host->bus_hz % clock && host->bus_hz > clock) 1169 /* 1170 * move the + 1 after the divide to prevent 1171 * over-clocking the card. 1172 */ 1173 div += 1; 1174 1175 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0; 1176 1177 if (clock != slot->__clk_old || force_clkinit) 1178 dev_info(&slot->mmc->class_dev, 1179 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n", 1180 slot->id, host->bus_hz, clock, 1181 div ? ((host->bus_hz / div) >> 1) : 1182 host->bus_hz, div); 1183 1184 /* disable clock */ 1185 mci_writel(host, CLKENA, 0); 1186 mci_writel(host, CLKSRC, 0); 1187 1188 /* inform CIU */ 1189 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 1190 1191 /* set clock to desired speed */ 1192 mci_writel(host, CLKDIV, div); 1193 1194 /* inform CIU */ 1195 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 1196 1197 /* enable clock; only low power if no SDIO */ 1198 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id; 1199 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags)) 1200 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id; 1201 mci_writel(host, CLKENA, clk_en_a); 1202 1203 /* inform CIU */ 1204 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 1205 1206 /* keep the last clock value that was requested from core */ 1207 slot->__clk_old = clock; 1208 } 1209 1210 host->current_speed = clock; 1211 1212 /* Set the current slot bus width */ 1213 mci_writel(host, CTYPE, (slot->ctype << slot->id)); 1214 } 1215 1216 static void __dw_mci_start_request(struct dw_mci *host, 1217 struct dw_mci_slot *slot, 1218 struct mmc_command *cmd) 1219 { 1220 struct mmc_request *mrq; 1221 struct mmc_data *data; 1222 u32 cmdflags; 1223 1224 mrq = slot->mrq; 1225 1226 host->cur_slot = slot; 1227 host->mrq = mrq; 1228 1229 host->pending_events = 0; 1230 host->completed_events = 0; 1231 host->cmd_status = 0; 1232 host->data_status = 0; 1233 host->dir_status = 0; 1234 1235 data = cmd->data; 1236 if (data) { 1237 mci_writel(host, TMOUT, 0xFFFFFFFF); 1238 mci_writel(host, BYTCNT, data->blksz*data->blocks); 1239 mci_writel(host, BLKSIZ, data->blksz); 1240 } 1241 1242 cmdflags = dw_mci_prepare_command(slot->mmc, cmd); 1243 1244 /* this is the first command, send the initialization clock */ 1245 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags)) 1246 cmdflags |= SDMMC_CMD_INIT; 1247 1248 if (data) { 1249 dw_mci_submit_data(host, data); 1250 wmb(); /* drain writebuffer */ 1251 } 1252 1253 dw_mci_start_command(host, cmd, cmdflags); 1254 1255 if (cmd->opcode == SD_SWITCH_VOLTAGE) { 1256 unsigned long irqflags; 1257 1258 /* 1259 * Databook says to fail after 2ms w/ no response, but evidence 1260 * shows that sometimes the cmd11 interrupt takes over 130ms. 1261 * We'll set to 500ms, plus an extra jiffy just in case jiffies 1262 * is just about to roll over. 1263 * 1264 * We do this whole thing under spinlock and only if the 1265 * command hasn't already completed (indicating the the irq 1266 * already ran so we don't want the timeout). 1267 */ 1268 spin_lock_irqsave(&host->irq_lock, irqflags); 1269 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) 1270 mod_timer(&host->cmd11_timer, 1271 jiffies + msecs_to_jiffies(500) + 1); 1272 spin_unlock_irqrestore(&host->irq_lock, irqflags); 1273 } 1274 1275 if (mrq->stop) 1276 host->stop_cmdr = dw_mci_prepare_command(slot->mmc, mrq->stop); 1277 else 1278 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd); 1279 } 1280 1281 static void dw_mci_start_request(struct dw_mci *host, 1282 struct dw_mci_slot *slot) 1283 { 1284 struct mmc_request *mrq = slot->mrq; 1285 struct mmc_command *cmd; 1286 1287 cmd = mrq->sbc ? mrq->sbc : mrq->cmd; 1288 __dw_mci_start_request(host, slot, cmd); 1289 } 1290 1291 /* must be called with host->lock held */ 1292 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot, 1293 struct mmc_request *mrq) 1294 { 1295 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n", 1296 host->state); 1297 1298 slot->mrq = mrq; 1299 1300 if (host->state == STATE_WAITING_CMD11_DONE) { 1301 dev_warn(&slot->mmc->class_dev, 1302 "Voltage change didn't complete\n"); 1303 /* 1304 * this case isn't expected to happen, so we can 1305 * either crash here or just try to continue on 1306 * in the closest possible state 1307 */ 1308 host->state = STATE_IDLE; 1309 } 1310 1311 if (host->state == STATE_IDLE) { 1312 host->state = STATE_SENDING_CMD; 1313 dw_mci_start_request(host, slot); 1314 } else { 1315 list_add_tail(&slot->queue_node, &host->queue); 1316 } 1317 } 1318 1319 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq) 1320 { 1321 struct dw_mci_slot *slot = mmc_priv(mmc); 1322 struct dw_mci *host = slot->host; 1323 1324 WARN_ON(slot->mrq); 1325 1326 /* 1327 * The check for card presence and queueing of the request must be 1328 * atomic, otherwise the card could be removed in between and the 1329 * request wouldn't fail until another card was inserted. 1330 */ 1331 1332 if (!dw_mci_get_cd(mmc)) { 1333 mrq->cmd->error = -ENOMEDIUM; 1334 mmc_request_done(mmc, mrq); 1335 return; 1336 } 1337 1338 spin_lock_bh(&host->lock); 1339 1340 dw_mci_queue_request(host, slot, mrq); 1341 1342 spin_unlock_bh(&host->lock); 1343 } 1344 1345 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1346 { 1347 struct dw_mci_slot *slot = mmc_priv(mmc); 1348 const struct dw_mci_drv_data *drv_data = slot->host->drv_data; 1349 u32 regs; 1350 int ret; 1351 1352 switch (ios->bus_width) { 1353 case MMC_BUS_WIDTH_4: 1354 slot->ctype = SDMMC_CTYPE_4BIT; 1355 break; 1356 case MMC_BUS_WIDTH_8: 1357 slot->ctype = SDMMC_CTYPE_8BIT; 1358 break; 1359 default: 1360 /* set default 1 bit mode */ 1361 slot->ctype = SDMMC_CTYPE_1BIT; 1362 } 1363 1364 regs = mci_readl(slot->host, UHS_REG); 1365 1366 /* DDR mode set */ 1367 if (ios->timing == MMC_TIMING_MMC_DDR52 || 1368 ios->timing == MMC_TIMING_UHS_DDR50 || 1369 ios->timing == MMC_TIMING_MMC_HS400) 1370 regs |= ((0x1 << slot->id) << 16); 1371 else 1372 regs &= ~((0x1 << slot->id) << 16); 1373 1374 mci_writel(slot->host, UHS_REG, regs); 1375 slot->host->timing = ios->timing; 1376 1377 /* 1378 * Use mirror of ios->clock to prevent race with mmc 1379 * core ios update when finding the minimum. 1380 */ 1381 slot->clock = ios->clock; 1382 1383 if (drv_data && drv_data->set_ios) 1384 drv_data->set_ios(slot->host, ios); 1385 1386 switch (ios->power_mode) { 1387 case MMC_POWER_UP: 1388 if (!IS_ERR(mmc->supply.vmmc)) { 1389 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 1390 ios->vdd); 1391 if (ret) { 1392 dev_err(slot->host->dev, 1393 "failed to enable vmmc regulator\n"); 1394 /*return, if failed turn on vmmc*/ 1395 return; 1396 } 1397 } 1398 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags); 1399 regs = mci_readl(slot->host, PWREN); 1400 regs |= (1 << slot->id); 1401 mci_writel(slot->host, PWREN, regs); 1402 break; 1403 case MMC_POWER_ON: 1404 if (!slot->host->vqmmc_enabled) { 1405 if (!IS_ERR(mmc->supply.vqmmc)) { 1406 ret = regulator_enable(mmc->supply.vqmmc); 1407 if (ret < 0) 1408 dev_err(slot->host->dev, 1409 "failed to enable vqmmc\n"); 1410 else 1411 slot->host->vqmmc_enabled = true; 1412 1413 } else { 1414 /* Keep track so we don't reset again */ 1415 slot->host->vqmmc_enabled = true; 1416 } 1417 1418 /* Reset our state machine after powering on */ 1419 dw_mci_ctrl_reset(slot->host, 1420 SDMMC_CTRL_ALL_RESET_FLAGS); 1421 } 1422 1423 /* Adjust clock / bus width after power is up */ 1424 dw_mci_setup_bus(slot, false); 1425 1426 break; 1427 case MMC_POWER_OFF: 1428 /* Turn clock off before power goes down */ 1429 dw_mci_setup_bus(slot, false); 1430 1431 if (!IS_ERR(mmc->supply.vmmc)) 1432 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 1433 1434 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled) 1435 regulator_disable(mmc->supply.vqmmc); 1436 slot->host->vqmmc_enabled = false; 1437 1438 regs = mci_readl(slot->host, PWREN); 1439 regs &= ~(1 << slot->id); 1440 mci_writel(slot->host, PWREN, regs); 1441 break; 1442 default: 1443 break; 1444 } 1445 1446 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0) 1447 slot->host->state = STATE_IDLE; 1448 } 1449 1450 static int dw_mci_card_busy(struct mmc_host *mmc) 1451 { 1452 struct dw_mci_slot *slot = mmc_priv(mmc); 1453 u32 status; 1454 1455 /* 1456 * Check the busy bit which is low when DAT[3:0] 1457 * (the data lines) are 0000 1458 */ 1459 status = mci_readl(slot->host, STATUS); 1460 1461 return !!(status & SDMMC_STATUS_BUSY); 1462 } 1463 1464 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios) 1465 { 1466 struct dw_mci_slot *slot = mmc_priv(mmc); 1467 struct dw_mci *host = slot->host; 1468 const struct dw_mci_drv_data *drv_data = host->drv_data; 1469 u32 uhs; 1470 u32 v18 = SDMMC_UHS_18V << slot->id; 1471 int ret; 1472 1473 if (drv_data && drv_data->switch_voltage) 1474 return drv_data->switch_voltage(mmc, ios); 1475 1476 /* 1477 * Program the voltage. Note that some instances of dw_mmc may use 1478 * the UHS_REG for this. For other instances (like exynos) the UHS_REG 1479 * does no harm but you need to set the regulator directly. Try both. 1480 */ 1481 uhs = mci_readl(host, UHS_REG); 1482 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) 1483 uhs &= ~v18; 1484 else 1485 uhs |= v18; 1486 1487 if (!IS_ERR(mmc->supply.vqmmc)) { 1488 ret = mmc_regulator_set_vqmmc(mmc, ios); 1489 1490 if (ret) { 1491 dev_dbg(&mmc->class_dev, 1492 "Regulator set error %d - %s V\n", 1493 ret, uhs & v18 ? "1.8" : "3.3"); 1494 return ret; 1495 } 1496 } 1497 mci_writel(host, UHS_REG, uhs); 1498 1499 return 0; 1500 } 1501 1502 static int dw_mci_get_ro(struct mmc_host *mmc) 1503 { 1504 int read_only; 1505 struct dw_mci_slot *slot = mmc_priv(mmc); 1506 int gpio_ro = mmc_gpio_get_ro(mmc); 1507 1508 /* Use platform get_ro function, else try on board write protect */ 1509 if (gpio_ro >= 0) 1510 read_only = gpio_ro; 1511 else 1512 read_only = 1513 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0; 1514 1515 dev_dbg(&mmc->class_dev, "card is %s\n", 1516 read_only ? "read-only" : "read-write"); 1517 1518 return read_only; 1519 } 1520 1521 static int dw_mci_get_cd(struct mmc_host *mmc) 1522 { 1523 int present; 1524 struct dw_mci_slot *slot = mmc_priv(mmc); 1525 struct dw_mci *host = slot->host; 1526 int gpio_cd = mmc_gpio_get_cd(mmc); 1527 1528 /* Use platform get_cd function, else try onboard card detect */ 1529 if ((mmc->caps & MMC_CAP_NEEDS_POLL) || !mmc_card_is_removable(mmc)) 1530 present = 1; 1531 else if (gpio_cd >= 0) 1532 present = gpio_cd; 1533 else 1534 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id)) 1535 == 0 ? 1 : 0; 1536 1537 spin_lock_bh(&host->lock); 1538 if (present) { 1539 set_bit(DW_MMC_CARD_PRESENT, &slot->flags); 1540 dev_dbg(&mmc->class_dev, "card is present\n"); 1541 } else { 1542 clear_bit(DW_MMC_CARD_PRESENT, &slot->flags); 1543 dev_dbg(&mmc->class_dev, "card is not present\n"); 1544 } 1545 spin_unlock_bh(&host->lock); 1546 1547 return present; 1548 } 1549 1550 static void dw_mci_hw_reset(struct mmc_host *mmc) 1551 { 1552 struct dw_mci_slot *slot = mmc_priv(mmc); 1553 struct dw_mci *host = slot->host; 1554 int reset; 1555 1556 if (host->use_dma == TRANS_MODE_IDMAC) 1557 dw_mci_idmac_reset(host); 1558 1559 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET | 1560 SDMMC_CTRL_FIFO_RESET)) 1561 return; 1562 1563 /* 1564 * According to eMMC spec, card reset procedure: 1565 * tRstW >= 1us: RST_n pulse width 1566 * tRSCA >= 200us: RST_n to Command time 1567 * tRSTH >= 1us: RST_n high period 1568 */ 1569 reset = mci_readl(host, RST_N); 1570 reset &= ~(SDMMC_RST_HWACTIVE << slot->id); 1571 mci_writel(host, RST_N, reset); 1572 usleep_range(1, 2); 1573 reset |= SDMMC_RST_HWACTIVE << slot->id; 1574 mci_writel(host, RST_N, reset); 1575 usleep_range(200, 300); 1576 } 1577 1578 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card) 1579 { 1580 struct dw_mci_slot *slot = mmc_priv(mmc); 1581 struct dw_mci *host = slot->host; 1582 1583 /* 1584 * Low power mode will stop the card clock when idle. According to the 1585 * description of the CLKENA register we should disable low power mode 1586 * for SDIO cards if we need SDIO interrupts to work. 1587 */ 1588 if (mmc->caps & MMC_CAP_SDIO_IRQ) { 1589 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id; 1590 u32 clk_en_a_old; 1591 u32 clk_en_a; 1592 1593 clk_en_a_old = mci_readl(host, CLKENA); 1594 1595 if (card->type == MMC_TYPE_SDIO || 1596 card->type == MMC_TYPE_SD_COMBO) { 1597 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags); 1598 clk_en_a = clk_en_a_old & ~clken_low_pwr; 1599 } else { 1600 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags); 1601 clk_en_a = clk_en_a_old | clken_low_pwr; 1602 } 1603 1604 if (clk_en_a != clk_en_a_old) { 1605 mci_writel(host, CLKENA, clk_en_a); 1606 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | 1607 SDMMC_CMD_PRV_DAT_WAIT, 0); 1608 } 1609 } 1610 } 1611 1612 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb) 1613 { 1614 struct dw_mci_slot *slot = mmc_priv(mmc); 1615 struct dw_mci *host = slot->host; 1616 unsigned long irqflags; 1617 u32 int_mask; 1618 1619 spin_lock_irqsave(&host->irq_lock, irqflags); 1620 1621 /* Enable/disable Slot Specific SDIO interrupt */ 1622 int_mask = mci_readl(host, INTMASK); 1623 if (enb) 1624 int_mask |= SDMMC_INT_SDIO(slot->sdio_id); 1625 else 1626 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id); 1627 mci_writel(host, INTMASK, int_mask); 1628 1629 spin_unlock_irqrestore(&host->irq_lock, irqflags); 1630 } 1631 1632 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode) 1633 { 1634 struct dw_mci_slot *slot = mmc_priv(mmc); 1635 struct dw_mci *host = slot->host; 1636 const struct dw_mci_drv_data *drv_data = host->drv_data; 1637 int err = -EINVAL; 1638 1639 if (drv_data && drv_data->execute_tuning) 1640 err = drv_data->execute_tuning(slot, opcode); 1641 return err; 1642 } 1643 1644 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc, 1645 struct mmc_ios *ios) 1646 { 1647 struct dw_mci_slot *slot = mmc_priv(mmc); 1648 struct dw_mci *host = slot->host; 1649 const struct dw_mci_drv_data *drv_data = host->drv_data; 1650 1651 if (drv_data && drv_data->prepare_hs400_tuning) 1652 return drv_data->prepare_hs400_tuning(host, ios); 1653 1654 return 0; 1655 } 1656 1657 static const struct mmc_host_ops dw_mci_ops = { 1658 .request = dw_mci_request, 1659 .pre_req = dw_mci_pre_req, 1660 .post_req = dw_mci_post_req, 1661 .set_ios = dw_mci_set_ios, 1662 .get_ro = dw_mci_get_ro, 1663 .get_cd = dw_mci_get_cd, 1664 .hw_reset = dw_mci_hw_reset, 1665 .enable_sdio_irq = dw_mci_enable_sdio_irq, 1666 .execute_tuning = dw_mci_execute_tuning, 1667 .card_busy = dw_mci_card_busy, 1668 .start_signal_voltage_switch = dw_mci_switch_voltage, 1669 .init_card = dw_mci_init_card, 1670 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning, 1671 }; 1672 1673 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq) 1674 __releases(&host->lock) 1675 __acquires(&host->lock) 1676 { 1677 struct dw_mci_slot *slot; 1678 struct mmc_host *prev_mmc = host->cur_slot->mmc; 1679 1680 WARN_ON(host->cmd || host->data); 1681 1682 host->cur_slot->mrq = NULL; 1683 host->mrq = NULL; 1684 if (!list_empty(&host->queue)) { 1685 slot = list_entry(host->queue.next, 1686 struct dw_mci_slot, queue_node); 1687 list_del(&slot->queue_node); 1688 dev_vdbg(host->dev, "list not empty: %s is next\n", 1689 mmc_hostname(slot->mmc)); 1690 host->state = STATE_SENDING_CMD; 1691 dw_mci_start_request(host, slot); 1692 } else { 1693 dev_vdbg(host->dev, "list empty\n"); 1694 1695 if (host->state == STATE_SENDING_CMD11) 1696 host->state = STATE_WAITING_CMD11_DONE; 1697 else 1698 host->state = STATE_IDLE; 1699 } 1700 1701 spin_unlock(&host->lock); 1702 mmc_request_done(prev_mmc, mrq); 1703 spin_lock(&host->lock); 1704 } 1705 1706 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd) 1707 { 1708 u32 status = host->cmd_status; 1709 1710 host->cmd_status = 0; 1711 1712 /* Read the response from the card (up to 16 bytes) */ 1713 if (cmd->flags & MMC_RSP_PRESENT) { 1714 if (cmd->flags & MMC_RSP_136) { 1715 cmd->resp[3] = mci_readl(host, RESP0); 1716 cmd->resp[2] = mci_readl(host, RESP1); 1717 cmd->resp[1] = mci_readl(host, RESP2); 1718 cmd->resp[0] = mci_readl(host, RESP3); 1719 } else { 1720 cmd->resp[0] = mci_readl(host, RESP0); 1721 cmd->resp[1] = 0; 1722 cmd->resp[2] = 0; 1723 cmd->resp[3] = 0; 1724 } 1725 } 1726 1727 if (status & SDMMC_INT_RTO) 1728 cmd->error = -ETIMEDOUT; 1729 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC)) 1730 cmd->error = -EILSEQ; 1731 else if (status & SDMMC_INT_RESP_ERR) 1732 cmd->error = -EIO; 1733 else 1734 cmd->error = 0; 1735 1736 return cmd->error; 1737 } 1738 1739 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data) 1740 { 1741 u32 status = host->data_status; 1742 1743 if (status & DW_MCI_DATA_ERROR_FLAGS) { 1744 if (status & SDMMC_INT_DRTO) { 1745 data->error = -ETIMEDOUT; 1746 } else if (status & SDMMC_INT_DCRC) { 1747 data->error = -EILSEQ; 1748 } else if (status & SDMMC_INT_EBE) { 1749 if (host->dir_status == 1750 DW_MCI_SEND_STATUS) { 1751 /* 1752 * No data CRC status was returned. 1753 * The number of bytes transferred 1754 * will be exaggerated in PIO mode. 1755 */ 1756 data->bytes_xfered = 0; 1757 data->error = -ETIMEDOUT; 1758 } else if (host->dir_status == 1759 DW_MCI_RECV_STATUS) { 1760 data->error = -EILSEQ; 1761 } 1762 } else { 1763 /* SDMMC_INT_SBE is included */ 1764 data->error = -EILSEQ; 1765 } 1766 1767 dev_dbg(host->dev, "data error, status 0x%08x\n", status); 1768 1769 /* 1770 * After an error, there may be data lingering 1771 * in the FIFO 1772 */ 1773 dw_mci_reset(host); 1774 } else { 1775 data->bytes_xfered = data->blocks * data->blksz; 1776 data->error = 0; 1777 } 1778 1779 return data->error; 1780 } 1781 1782 static void dw_mci_set_drto(struct dw_mci *host) 1783 { 1784 unsigned int drto_clks; 1785 unsigned int drto_ms; 1786 1787 drto_clks = mci_readl(host, TMOUT) >> 8; 1788 drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000); 1789 1790 /* add a bit spare time */ 1791 drto_ms += 10; 1792 1793 mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms)); 1794 } 1795 1796 static void dw_mci_tasklet_func(unsigned long priv) 1797 { 1798 struct dw_mci *host = (struct dw_mci *)priv; 1799 struct mmc_data *data; 1800 struct mmc_command *cmd; 1801 struct mmc_request *mrq; 1802 enum dw_mci_state state; 1803 enum dw_mci_state prev_state; 1804 unsigned int err; 1805 1806 spin_lock(&host->lock); 1807 1808 state = host->state; 1809 data = host->data; 1810 mrq = host->mrq; 1811 1812 do { 1813 prev_state = state; 1814 1815 switch (state) { 1816 case STATE_IDLE: 1817 case STATE_WAITING_CMD11_DONE: 1818 break; 1819 1820 case STATE_SENDING_CMD11: 1821 case STATE_SENDING_CMD: 1822 if (!test_and_clear_bit(EVENT_CMD_COMPLETE, 1823 &host->pending_events)) 1824 break; 1825 1826 cmd = host->cmd; 1827 host->cmd = NULL; 1828 set_bit(EVENT_CMD_COMPLETE, &host->completed_events); 1829 err = dw_mci_command_complete(host, cmd); 1830 if (cmd == mrq->sbc && !err) { 1831 prev_state = state = STATE_SENDING_CMD; 1832 __dw_mci_start_request(host, host->cur_slot, 1833 mrq->cmd); 1834 goto unlock; 1835 } 1836 1837 if (cmd->data && err) { 1838 /* 1839 * During UHS tuning sequence, sending the stop 1840 * command after the response CRC error would 1841 * throw the system into a confused state 1842 * causing all future tuning phases to report 1843 * failure. 1844 * 1845 * In such case controller will move into a data 1846 * transfer state after a response error or 1847 * response CRC error. Let's let that finish 1848 * before trying to send a stop, so we'll go to 1849 * STATE_SENDING_DATA. 1850 * 1851 * Although letting the data transfer take place 1852 * will waste a bit of time (we already know 1853 * the command was bad), it can't cause any 1854 * errors since it's possible it would have 1855 * taken place anyway if this tasklet got 1856 * delayed. Allowing the transfer to take place 1857 * avoids races and keeps things simple. 1858 */ 1859 if ((err != -ETIMEDOUT) && 1860 (cmd->opcode == MMC_SEND_TUNING_BLOCK)) { 1861 state = STATE_SENDING_DATA; 1862 continue; 1863 } 1864 1865 dw_mci_stop_dma(host); 1866 send_stop_abort(host, data); 1867 state = STATE_SENDING_STOP; 1868 break; 1869 } 1870 1871 if (!cmd->data || err) { 1872 dw_mci_request_end(host, mrq); 1873 goto unlock; 1874 } 1875 1876 prev_state = state = STATE_SENDING_DATA; 1877 /* fall through */ 1878 1879 case STATE_SENDING_DATA: 1880 /* 1881 * We could get a data error and never a transfer 1882 * complete so we'd better check for it here. 1883 * 1884 * Note that we don't really care if we also got a 1885 * transfer complete; stopping the DMA and sending an 1886 * abort won't hurt. 1887 */ 1888 if (test_and_clear_bit(EVENT_DATA_ERROR, 1889 &host->pending_events)) { 1890 dw_mci_stop_dma(host); 1891 if (data->stop || 1892 !(host->data_status & (SDMMC_INT_DRTO | 1893 SDMMC_INT_EBE))) 1894 send_stop_abort(host, data); 1895 state = STATE_DATA_ERROR; 1896 break; 1897 } 1898 1899 if (!test_and_clear_bit(EVENT_XFER_COMPLETE, 1900 &host->pending_events)) { 1901 /* 1902 * If all data-related interrupts don't come 1903 * within the given time in reading data state. 1904 */ 1905 if (host->dir_status == DW_MCI_RECV_STATUS) 1906 dw_mci_set_drto(host); 1907 break; 1908 } 1909 1910 set_bit(EVENT_XFER_COMPLETE, &host->completed_events); 1911 1912 /* 1913 * Handle an EVENT_DATA_ERROR that might have shown up 1914 * before the transfer completed. This might not have 1915 * been caught by the check above because the interrupt 1916 * could have gone off between the previous check and 1917 * the check for transfer complete. 1918 * 1919 * Technically this ought not be needed assuming we 1920 * get a DATA_COMPLETE eventually (we'll notice the 1921 * error and end the request), but it shouldn't hurt. 1922 * 1923 * This has the advantage of sending the stop command. 1924 */ 1925 if (test_and_clear_bit(EVENT_DATA_ERROR, 1926 &host->pending_events)) { 1927 dw_mci_stop_dma(host); 1928 if (data->stop || 1929 !(host->data_status & (SDMMC_INT_DRTO | 1930 SDMMC_INT_EBE))) 1931 send_stop_abort(host, data); 1932 state = STATE_DATA_ERROR; 1933 break; 1934 } 1935 prev_state = state = STATE_DATA_BUSY; 1936 1937 /* fall through */ 1938 1939 case STATE_DATA_BUSY: 1940 if (!test_and_clear_bit(EVENT_DATA_COMPLETE, 1941 &host->pending_events)) { 1942 /* 1943 * If data error interrupt comes but data over 1944 * interrupt doesn't come within the given time. 1945 * in reading data state. 1946 */ 1947 if (host->dir_status == DW_MCI_RECV_STATUS) 1948 dw_mci_set_drto(host); 1949 break; 1950 } 1951 1952 host->data = NULL; 1953 set_bit(EVENT_DATA_COMPLETE, &host->completed_events); 1954 err = dw_mci_data_complete(host, data); 1955 1956 if (!err) { 1957 if (!data->stop || mrq->sbc) { 1958 if (mrq->sbc && data->stop) 1959 data->stop->error = 0; 1960 dw_mci_request_end(host, mrq); 1961 goto unlock; 1962 } 1963 1964 /* stop command for open-ended transfer*/ 1965 if (data->stop) 1966 send_stop_abort(host, data); 1967 } else { 1968 /* 1969 * If we don't have a command complete now we'll 1970 * never get one since we just reset everything; 1971 * better end the request. 1972 * 1973 * If we do have a command complete we'll fall 1974 * through to the SENDING_STOP command and 1975 * everything will be peachy keen. 1976 */ 1977 if (!test_bit(EVENT_CMD_COMPLETE, 1978 &host->pending_events)) { 1979 host->cmd = NULL; 1980 dw_mci_request_end(host, mrq); 1981 goto unlock; 1982 } 1983 } 1984 1985 /* 1986 * If err has non-zero, 1987 * stop-abort command has been already issued. 1988 */ 1989 prev_state = state = STATE_SENDING_STOP; 1990 1991 /* fall through */ 1992 1993 case STATE_SENDING_STOP: 1994 if (!test_and_clear_bit(EVENT_CMD_COMPLETE, 1995 &host->pending_events)) 1996 break; 1997 1998 /* CMD error in data command */ 1999 if (mrq->cmd->error && mrq->data) 2000 dw_mci_reset(host); 2001 2002 host->cmd = NULL; 2003 host->data = NULL; 2004 2005 if (mrq->stop) 2006 dw_mci_command_complete(host, mrq->stop); 2007 else 2008 host->cmd_status = 0; 2009 2010 dw_mci_request_end(host, mrq); 2011 goto unlock; 2012 2013 case STATE_DATA_ERROR: 2014 if (!test_and_clear_bit(EVENT_XFER_COMPLETE, 2015 &host->pending_events)) 2016 break; 2017 2018 state = STATE_DATA_BUSY; 2019 break; 2020 } 2021 } while (state != prev_state); 2022 2023 host->state = state; 2024 unlock: 2025 spin_unlock(&host->lock); 2026 2027 } 2028 2029 /* push final bytes to part_buf, only use during push */ 2030 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt) 2031 { 2032 memcpy((void *)&host->part_buf, buf, cnt); 2033 host->part_buf_count = cnt; 2034 } 2035 2036 /* append bytes to part_buf, only use during push */ 2037 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt) 2038 { 2039 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count); 2040 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt); 2041 host->part_buf_count += cnt; 2042 return cnt; 2043 } 2044 2045 /* pull first bytes from part_buf, only use during pull */ 2046 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt) 2047 { 2048 cnt = min_t(int, cnt, host->part_buf_count); 2049 if (cnt) { 2050 memcpy(buf, (void *)&host->part_buf + host->part_buf_start, 2051 cnt); 2052 host->part_buf_count -= cnt; 2053 host->part_buf_start += cnt; 2054 } 2055 return cnt; 2056 } 2057 2058 /* pull final bytes from the part_buf, assuming it's just been filled */ 2059 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt) 2060 { 2061 memcpy(buf, &host->part_buf, cnt); 2062 host->part_buf_start = cnt; 2063 host->part_buf_count = (1 << host->data_shift) - cnt; 2064 } 2065 2066 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt) 2067 { 2068 struct mmc_data *data = host->data; 2069 int init_cnt = cnt; 2070 2071 /* try and push anything in the part_buf */ 2072 if (unlikely(host->part_buf_count)) { 2073 int len = dw_mci_push_part_bytes(host, buf, cnt); 2074 2075 buf += len; 2076 cnt -= len; 2077 if (host->part_buf_count == 2) { 2078 mci_fifo_writew(host->fifo_reg, host->part_buf16); 2079 host->part_buf_count = 0; 2080 } 2081 } 2082 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2083 if (unlikely((unsigned long)buf & 0x1)) { 2084 while (cnt >= 2) { 2085 u16 aligned_buf[64]; 2086 int len = min(cnt & -2, (int)sizeof(aligned_buf)); 2087 int items = len >> 1; 2088 int i; 2089 /* memcpy from input buffer into aligned buffer */ 2090 memcpy(aligned_buf, buf, len); 2091 buf += len; 2092 cnt -= len; 2093 /* push data from aligned buffer into fifo */ 2094 for (i = 0; i < items; ++i) 2095 mci_fifo_writew(host->fifo_reg, aligned_buf[i]); 2096 } 2097 } else 2098 #endif 2099 { 2100 u16 *pdata = buf; 2101 2102 for (; cnt >= 2; cnt -= 2) 2103 mci_fifo_writew(host->fifo_reg, *pdata++); 2104 buf = pdata; 2105 } 2106 /* put anything remaining in the part_buf */ 2107 if (cnt) { 2108 dw_mci_set_part_bytes(host, buf, cnt); 2109 /* Push data if we have reached the expected data length */ 2110 if ((data->bytes_xfered + init_cnt) == 2111 (data->blksz * data->blocks)) 2112 mci_fifo_writew(host->fifo_reg, host->part_buf16); 2113 } 2114 } 2115 2116 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt) 2117 { 2118 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2119 if (unlikely((unsigned long)buf & 0x1)) { 2120 while (cnt >= 2) { 2121 /* pull data from fifo into aligned buffer */ 2122 u16 aligned_buf[64]; 2123 int len = min(cnt & -2, (int)sizeof(aligned_buf)); 2124 int items = len >> 1; 2125 int i; 2126 2127 for (i = 0; i < items; ++i) 2128 aligned_buf[i] = mci_fifo_readw(host->fifo_reg); 2129 /* memcpy from aligned buffer into output buffer */ 2130 memcpy(buf, aligned_buf, len); 2131 buf += len; 2132 cnt -= len; 2133 } 2134 } else 2135 #endif 2136 { 2137 u16 *pdata = buf; 2138 2139 for (; cnt >= 2; cnt -= 2) 2140 *pdata++ = mci_fifo_readw(host->fifo_reg); 2141 buf = pdata; 2142 } 2143 if (cnt) { 2144 host->part_buf16 = mci_fifo_readw(host->fifo_reg); 2145 dw_mci_pull_final_bytes(host, buf, cnt); 2146 } 2147 } 2148 2149 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt) 2150 { 2151 struct mmc_data *data = host->data; 2152 int init_cnt = cnt; 2153 2154 /* try and push anything in the part_buf */ 2155 if (unlikely(host->part_buf_count)) { 2156 int len = dw_mci_push_part_bytes(host, buf, cnt); 2157 2158 buf += len; 2159 cnt -= len; 2160 if (host->part_buf_count == 4) { 2161 mci_fifo_writel(host->fifo_reg, host->part_buf32); 2162 host->part_buf_count = 0; 2163 } 2164 } 2165 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2166 if (unlikely((unsigned long)buf & 0x3)) { 2167 while (cnt >= 4) { 2168 u32 aligned_buf[32]; 2169 int len = min(cnt & -4, (int)sizeof(aligned_buf)); 2170 int items = len >> 2; 2171 int i; 2172 /* memcpy from input buffer into aligned buffer */ 2173 memcpy(aligned_buf, buf, len); 2174 buf += len; 2175 cnt -= len; 2176 /* push data from aligned buffer into fifo */ 2177 for (i = 0; i < items; ++i) 2178 mci_fifo_writel(host->fifo_reg, aligned_buf[i]); 2179 } 2180 } else 2181 #endif 2182 { 2183 u32 *pdata = buf; 2184 2185 for (; cnt >= 4; cnt -= 4) 2186 mci_fifo_writel(host->fifo_reg, *pdata++); 2187 buf = pdata; 2188 } 2189 /* put anything remaining in the part_buf */ 2190 if (cnt) { 2191 dw_mci_set_part_bytes(host, buf, cnt); 2192 /* Push data if we have reached the expected data length */ 2193 if ((data->bytes_xfered + init_cnt) == 2194 (data->blksz * data->blocks)) 2195 mci_fifo_writel(host->fifo_reg, host->part_buf32); 2196 } 2197 } 2198 2199 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt) 2200 { 2201 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2202 if (unlikely((unsigned long)buf & 0x3)) { 2203 while (cnt >= 4) { 2204 /* pull data from fifo into aligned buffer */ 2205 u32 aligned_buf[32]; 2206 int len = min(cnt & -4, (int)sizeof(aligned_buf)); 2207 int items = len >> 2; 2208 int i; 2209 2210 for (i = 0; i < items; ++i) 2211 aligned_buf[i] = mci_fifo_readl(host->fifo_reg); 2212 /* memcpy from aligned buffer into output buffer */ 2213 memcpy(buf, aligned_buf, len); 2214 buf += len; 2215 cnt -= len; 2216 } 2217 } else 2218 #endif 2219 { 2220 u32 *pdata = buf; 2221 2222 for (; cnt >= 4; cnt -= 4) 2223 *pdata++ = mci_fifo_readl(host->fifo_reg); 2224 buf = pdata; 2225 } 2226 if (cnt) { 2227 host->part_buf32 = mci_fifo_readl(host->fifo_reg); 2228 dw_mci_pull_final_bytes(host, buf, cnt); 2229 } 2230 } 2231 2232 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt) 2233 { 2234 struct mmc_data *data = host->data; 2235 int init_cnt = cnt; 2236 2237 /* try and push anything in the part_buf */ 2238 if (unlikely(host->part_buf_count)) { 2239 int len = dw_mci_push_part_bytes(host, buf, cnt); 2240 2241 buf += len; 2242 cnt -= len; 2243 2244 if (host->part_buf_count == 8) { 2245 mci_fifo_writeq(host->fifo_reg, host->part_buf); 2246 host->part_buf_count = 0; 2247 } 2248 } 2249 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2250 if (unlikely((unsigned long)buf & 0x7)) { 2251 while (cnt >= 8) { 2252 u64 aligned_buf[16]; 2253 int len = min(cnt & -8, (int)sizeof(aligned_buf)); 2254 int items = len >> 3; 2255 int i; 2256 /* memcpy from input buffer into aligned buffer */ 2257 memcpy(aligned_buf, buf, len); 2258 buf += len; 2259 cnt -= len; 2260 /* push data from aligned buffer into fifo */ 2261 for (i = 0; i < items; ++i) 2262 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]); 2263 } 2264 } else 2265 #endif 2266 { 2267 u64 *pdata = buf; 2268 2269 for (; cnt >= 8; cnt -= 8) 2270 mci_fifo_writeq(host->fifo_reg, *pdata++); 2271 buf = pdata; 2272 } 2273 /* put anything remaining in the part_buf */ 2274 if (cnt) { 2275 dw_mci_set_part_bytes(host, buf, cnt); 2276 /* Push data if we have reached the expected data length */ 2277 if ((data->bytes_xfered + init_cnt) == 2278 (data->blksz * data->blocks)) 2279 mci_fifo_writeq(host->fifo_reg, host->part_buf); 2280 } 2281 } 2282 2283 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt) 2284 { 2285 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2286 if (unlikely((unsigned long)buf & 0x7)) { 2287 while (cnt >= 8) { 2288 /* pull data from fifo into aligned buffer */ 2289 u64 aligned_buf[16]; 2290 int len = min(cnt & -8, (int)sizeof(aligned_buf)); 2291 int items = len >> 3; 2292 int i; 2293 2294 for (i = 0; i < items; ++i) 2295 aligned_buf[i] = mci_fifo_readq(host->fifo_reg); 2296 2297 /* memcpy from aligned buffer into output buffer */ 2298 memcpy(buf, aligned_buf, len); 2299 buf += len; 2300 cnt -= len; 2301 } 2302 } else 2303 #endif 2304 { 2305 u64 *pdata = buf; 2306 2307 for (; cnt >= 8; cnt -= 8) 2308 *pdata++ = mci_fifo_readq(host->fifo_reg); 2309 buf = pdata; 2310 } 2311 if (cnt) { 2312 host->part_buf = mci_fifo_readq(host->fifo_reg); 2313 dw_mci_pull_final_bytes(host, buf, cnt); 2314 } 2315 } 2316 2317 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt) 2318 { 2319 int len; 2320 2321 /* get remaining partial bytes */ 2322 len = dw_mci_pull_part_bytes(host, buf, cnt); 2323 if (unlikely(len == cnt)) 2324 return; 2325 buf += len; 2326 cnt -= len; 2327 2328 /* get the rest of the data */ 2329 host->pull_data(host, buf, cnt); 2330 } 2331 2332 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto) 2333 { 2334 struct sg_mapping_iter *sg_miter = &host->sg_miter; 2335 void *buf; 2336 unsigned int offset; 2337 struct mmc_data *data = host->data; 2338 int shift = host->data_shift; 2339 u32 status; 2340 unsigned int len; 2341 unsigned int remain, fcnt; 2342 2343 do { 2344 if (!sg_miter_next(sg_miter)) 2345 goto done; 2346 2347 host->sg = sg_miter->piter.sg; 2348 buf = sg_miter->addr; 2349 remain = sg_miter->length; 2350 offset = 0; 2351 2352 do { 2353 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS)) 2354 << shift) + host->part_buf_count; 2355 len = min(remain, fcnt); 2356 if (!len) 2357 break; 2358 dw_mci_pull_data(host, (void *)(buf + offset), len); 2359 data->bytes_xfered += len; 2360 offset += len; 2361 remain -= len; 2362 } while (remain); 2363 2364 sg_miter->consumed = offset; 2365 status = mci_readl(host, MINTSTS); 2366 mci_writel(host, RINTSTS, SDMMC_INT_RXDR); 2367 /* if the RXDR is ready read again */ 2368 } while ((status & SDMMC_INT_RXDR) || 2369 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS)))); 2370 2371 if (!remain) { 2372 if (!sg_miter_next(sg_miter)) 2373 goto done; 2374 sg_miter->consumed = 0; 2375 } 2376 sg_miter_stop(sg_miter); 2377 return; 2378 2379 done: 2380 sg_miter_stop(sg_miter); 2381 host->sg = NULL; 2382 smp_wmb(); /* drain writebuffer */ 2383 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 2384 } 2385 2386 static void dw_mci_write_data_pio(struct dw_mci *host) 2387 { 2388 struct sg_mapping_iter *sg_miter = &host->sg_miter; 2389 void *buf; 2390 unsigned int offset; 2391 struct mmc_data *data = host->data; 2392 int shift = host->data_shift; 2393 u32 status; 2394 unsigned int len; 2395 unsigned int fifo_depth = host->fifo_depth; 2396 unsigned int remain, fcnt; 2397 2398 do { 2399 if (!sg_miter_next(sg_miter)) 2400 goto done; 2401 2402 host->sg = sg_miter->piter.sg; 2403 buf = sg_miter->addr; 2404 remain = sg_miter->length; 2405 offset = 0; 2406 2407 do { 2408 fcnt = ((fifo_depth - 2409 SDMMC_GET_FCNT(mci_readl(host, STATUS))) 2410 << shift) - host->part_buf_count; 2411 len = min(remain, fcnt); 2412 if (!len) 2413 break; 2414 host->push_data(host, (void *)(buf + offset), len); 2415 data->bytes_xfered += len; 2416 offset += len; 2417 remain -= len; 2418 } while (remain); 2419 2420 sg_miter->consumed = offset; 2421 status = mci_readl(host, MINTSTS); 2422 mci_writel(host, RINTSTS, SDMMC_INT_TXDR); 2423 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */ 2424 2425 if (!remain) { 2426 if (!sg_miter_next(sg_miter)) 2427 goto done; 2428 sg_miter->consumed = 0; 2429 } 2430 sg_miter_stop(sg_miter); 2431 return; 2432 2433 done: 2434 sg_miter_stop(sg_miter); 2435 host->sg = NULL; 2436 smp_wmb(); /* drain writebuffer */ 2437 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 2438 } 2439 2440 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status) 2441 { 2442 if (!host->cmd_status) 2443 host->cmd_status = status; 2444 2445 smp_wmb(); /* drain writebuffer */ 2446 2447 set_bit(EVENT_CMD_COMPLETE, &host->pending_events); 2448 tasklet_schedule(&host->tasklet); 2449 } 2450 2451 static void dw_mci_handle_cd(struct dw_mci *host) 2452 { 2453 int i; 2454 2455 for (i = 0; i < host->num_slots; i++) { 2456 struct dw_mci_slot *slot = host->slot[i]; 2457 2458 if (!slot) 2459 continue; 2460 2461 if (slot->mmc->ops->card_event) 2462 slot->mmc->ops->card_event(slot->mmc); 2463 mmc_detect_change(slot->mmc, 2464 msecs_to_jiffies(host->pdata->detect_delay_ms)); 2465 } 2466 } 2467 2468 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id) 2469 { 2470 struct dw_mci *host = dev_id; 2471 u32 pending; 2472 int i; 2473 2474 pending = mci_readl(host, MINTSTS); /* read-only mask reg */ 2475 2476 if (pending) { 2477 /* Check volt switch first, since it can look like an error */ 2478 if ((host->state == STATE_SENDING_CMD11) && 2479 (pending & SDMMC_INT_VOLT_SWITCH)) { 2480 unsigned long irqflags; 2481 2482 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH); 2483 pending &= ~SDMMC_INT_VOLT_SWITCH; 2484 2485 /* 2486 * Hold the lock; we know cmd11_timer can't be kicked 2487 * off after the lock is released, so safe to delete. 2488 */ 2489 spin_lock_irqsave(&host->irq_lock, irqflags); 2490 dw_mci_cmd_interrupt(host, pending); 2491 spin_unlock_irqrestore(&host->irq_lock, irqflags); 2492 2493 del_timer(&host->cmd11_timer); 2494 } 2495 2496 if (pending & DW_MCI_CMD_ERROR_FLAGS) { 2497 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS); 2498 host->cmd_status = pending; 2499 smp_wmb(); /* drain writebuffer */ 2500 set_bit(EVENT_CMD_COMPLETE, &host->pending_events); 2501 } 2502 2503 if (pending & DW_MCI_DATA_ERROR_FLAGS) { 2504 /* if there is an error report DATA_ERROR */ 2505 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS); 2506 host->data_status = pending; 2507 smp_wmb(); /* drain writebuffer */ 2508 set_bit(EVENT_DATA_ERROR, &host->pending_events); 2509 tasklet_schedule(&host->tasklet); 2510 } 2511 2512 if (pending & SDMMC_INT_DATA_OVER) { 2513 del_timer(&host->dto_timer); 2514 2515 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER); 2516 if (!host->data_status) 2517 host->data_status = pending; 2518 smp_wmb(); /* drain writebuffer */ 2519 if (host->dir_status == DW_MCI_RECV_STATUS) { 2520 if (host->sg != NULL) 2521 dw_mci_read_data_pio(host, true); 2522 } 2523 set_bit(EVENT_DATA_COMPLETE, &host->pending_events); 2524 tasklet_schedule(&host->tasklet); 2525 } 2526 2527 if (pending & SDMMC_INT_RXDR) { 2528 mci_writel(host, RINTSTS, SDMMC_INT_RXDR); 2529 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg) 2530 dw_mci_read_data_pio(host, false); 2531 } 2532 2533 if (pending & SDMMC_INT_TXDR) { 2534 mci_writel(host, RINTSTS, SDMMC_INT_TXDR); 2535 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg) 2536 dw_mci_write_data_pio(host); 2537 } 2538 2539 if (pending & SDMMC_INT_CMD_DONE) { 2540 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE); 2541 dw_mci_cmd_interrupt(host, pending); 2542 } 2543 2544 if (pending & SDMMC_INT_CD) { 2545 mci_writel(host, RINTSTS, SDMMC_INT_CD); 2546 dw_mci_handle_cd(host); 2547 } 2548 2549 /* Handle SDIO Interrupts */ 2550 for (i = 0; i < host->num_slots; i++) { 2551 struct dw_mci_slot *slot = host->slot[i]; 2552 2553 if (!slot) 2554 continue; 2555 2556 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) { 2557 mci_writel(host, RINTSTS, 2558 SDMMC_INT_SDIO(slot->sdio_id)); 2559 mmc_signal_sdio_irq(slot->mmc); 2560 } 2561 } 2562 2563 } 2564 2565 if (host->use_dma != TRANS_MODE_IDMAC) 2566 return IRQ_HANDLED; 2567 2568 /* Handle IDMA interrupts */ 2569 if (host->dma_64bit_address == 1) { 2570 pending = mci_readl(host, IDSTS64); 2571 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) { 2572 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI | 2573 SDMMC_IDMAC_INT_RI); 2574 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI); 2575 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events)) 2576 host->dma_ops->complete((void *)host); 2577 } 2578 } else { 2579 pending = mci_readl(host, IDSTS); 2580 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) { 2581 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI | 2582 SDMMC_IDMAC_INT_RI); 2583 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI); 2584 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events)) 2585 host->dma_ops->complete((void *)host); 2586 } 2587 } 2588 2589 return IRQ_HANDLED; 2590 } 2591 2592 static int dw_mci_init_slot(struct dw_mci *host, unsigned int id) 2593 { 2594 struct mmc_host *mmc; 2595 struct dw_mci_slot *slot; 2596 const struct dw_mci_drv_data *drv_data = host->drv_data; 2597 int ctrl_id, ret; 2598 u32 freq[2]; 2599 2600 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev); 2601 if (!mmc) 2602 return -ENOMEM; 2603 2604 slot = mmc_priv(mmc); 2605 slot->id = id; 2606 slot->sdio_id = host->sdio_id0 + id; 2607 slot->mmc = mmc; 2608 slot->host = host; 2609 host->slot[id] = slot; 2610 2611 mmc->ops = &dw_mci_ops; 2612 if (of_property_read_u32_array(host->dev->of_node, 2613 "clock-freq-min-max", freq, 2)) { 2614 mmc->f_min = DW_MCI_FREQ_MIN; 2615 mmc->f_max = DW_MCI_FREQ_MAX; 2616 } else { 2617 mmc->f_min = freq[0]; 2618 mmc->f_max = freq[1]; 2619 } 2620 2621 /*if there are external regulators, get them*/ 2622 ret = mmc_regulator_get_supply(mmc); 2623 if (ret == -EPROBE_DEFER) 2624 goto err_host_allocated; 2625 2626 if (!mmc->ocr_avail) 2627 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34; 2628 2629 if (host->pdata->caps) 2630 mmc->caps = host->pdata->caps; 2631 2632 /* 2633 * Support MMC_CAP_ERASE by default. 2634 * It needs to use trim/discard/erase commands. 2635 */ 2636 mmc->caps |= MMC_CAP_ERASE; 2637 2638 if (host->pdata->pm_caps) 2639 mmc->pm_caps = host->pdata->pm_caps; 2640 2641 if (host->dev->of_node) { 2642 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc"); 2643 if (ctrl_id < 0) 2644 ctrl_id = 0; 2645 } else { 2646 ctrl_id = to_platform_device(host->dev)->id; 2647 } 2648 if (drv_data && drv_data->caps) 2649 mmc->caps |= drv_data->caps[ctrl_id]; 2650 2651 if (host->pdata->caps2) 2652 mmc->caps2 = host->pdata->caps2; 2653 2654 ret = mmc_of_parse(mmc); 2655 if (ret) 2656 goto err_host_allocated; 2657 2658 /* Useful defaults if platform data is unset. */ 2659 if (host->use_dma == TRANS_MODE_IDMAC) { 2660 mmc->max_segs = host->ring_size; 2661 mmc->max_blk_size = 65535; 2662 mmc->max_seg_size = 0x1000; 2663 mmc->max_req_size = mmc->max_seg_size * host->ring_size; 2664 mmc->max_blk_count = mmc->max_req_size / 512; 2665 } else if (host->use_dma == TRANS_MODE_EDMAC) { 2666 mmc->max_segs = 64; 2667 mmc->max_blk_size = 65535; 2668 mmc->max_blk_count = 65535; 2669 mmc->max_req_size = 2670 mmc->max_blk_size * mmc->max_blk_count; 2671 mmc->max_seg_size = mmc->max_req_size; 2672 } else { 2673 /* TRANS_MODE_PIO */ 2674 mmc->max_segs = 64; 2675 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */ 2676 mmc->max_blk_count = 512; 2677 mmc->max_req_size = mmc->max_blk_size * 2678 mmc->max_blk_count; 2679 mmc->max_seg_size = mmc->max_req_size; 2680 } 2681 2682 dw_mci_get_cd(mmc); 2683 2684 ret = mmc_add_host(mmc); 2685 if (ret) 2686 goto err_host_allocated; 2687 2688 #if defined(CONFIG_DEBUG_FS) 2689 dw_mci_init_debugfs(slot); 2690 #endif 2691 2692 return 0; 2693 2694 err_host_allocated: 2695 mmc_free_host(mmc); 2696 return ret; 2697 } 2698 2699 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot, unsigned int id) 2700 { 2701 /* Debugfs stuff is cleaned up by mmc core */ 2702 mmc_remove_host(slot->mmc); 2703 slot->host->slot[id] = NULL; 2704 mmc_free_host(slot->mmc); 2705 } 2706 2707 static void dw_mci_init_dma(struct dw_mci *host) 2708 { 2709 int addr_config; 2710 struct device *dev = host->dev; 2711 struct device_node *np = dev->of_node; 2712 2713 /* 2714 * Check tansfer mode from HCON[17:16] 2715 * Clear the ambiguous description of dw_mmc databook: 2716 * 2b'00: No DMA Interface -> Actually means using Internal DMA block 2717 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block 2718 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block 2719 * 2b'11: Non DW DMA Interface -> pio only 2720 * Compared to DesignWare DMA Interface, Generic DMA Interface has a 2721 * simpler request/acknowledge handshake mechanism and both of them 2722 * are regarded as external dma master for dw_mmc. 2723 */ 2724 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON)); 2725 if (host->use_dma == DMA_INTERFACE_IDMA) { 2726 host->use_dma = TRANS_MODE_IDMAC; 2727 } else if (host->use_dma == DMA_INTERFACE_DWDMA || 2728 host->use_dma == DMA_INTERFACE_GDMA) { 2729 host->use_dma = TRANS_MODE_EDMAC; 2730 } else { 2731 goto no_dma; 2732 } 2733 2734 /* Determine which DMA interface to use */ 2735 if (host->use_dma == TRANS_MODE_IDMAC) { 2736 /* 2737 * Check ADDR_CONFIG bit in HCON to find 2738 * IDMAC address bus width 2739 */ 2740 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON)); 2741 2742 if (addr_config == 1) { 2743 /* host supports IDMAC in 64-bit address mode */ 2744 host->dma_64bit_address = 1; 2745 dev_info(host->dev, 2746 "IDMAC supports 64-bit address mode.\n"); 2747 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64))) 2748 dma_set_coherent_mask(host->dev, 2749 DMA_BIT_MASK(64)); 2750 } else { 2751 /* host supports IDMAC in 32-bit address mode */ 2752 host->dma_64bit_address = 0; 2753 dev_info(host->dev, 2754 "IDMAC supports 32-bit address mode.\n"); 2755 } 2756 2757 /* Alloc memory for sg translation */ 2758 host->sg_cpu = dmam_alloc_coherent(host->dev, 2759 DESC_RING_BUF_SZ, 2760 &host->sg_dma, GFP_KERNEL); 2761 if (!host->sg_cpu) { 2762 dev_err(host->dev, 2763 "%s: could not alloc DMA memory\n", 2764 __func__); 2765 goto no_dma; 2766 } 2767 2768 host->dma_ops = &dw_mci_idmac_ops; 2769 dev_info(host->dev, "Using internal DMA controller.\n"); 2770 } else { 2771 /* TRANS_MODE_EDMAC: check dma bindings again */ 2772 if ((of_property_count_strings(np, "dma-names") < 0) || 2773 (!of_find_property(np, "dmas", NULL))) { 2774 goto no_dma; 2775 } 2776 host->dma_ops = &dw_mci_edmac_ops; 2777 dev_info(host->dev, "Using external DMA controller.\n"); 2778 } 2779 2780 if (host->dma_ops->init && host->dma_ops->start && 2781 host->dma_ops->stop && host->dma_ops->cleanup) { 2782 if (host->dma_ops->init(host)) { 2783 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n", 2784 __func__); 2785 goto no_dma; 2786 } 2787 } else { 2788 dev_err(host->dev, "DMA initialization not found.\n"); 2789 goto no_dma; 2790 } 2791 2792 return; 2793 2794 no_dma: 2795 dev_info(host->dev, "Using PIO mode.\n"); 2796 host->use_dma = TRANS_MODE_PIO; 2797 } 2798 2799 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset) 2800 { 2801 unsigned long timeout = jiffies + msecs_to_jiffies(500); 2802 u32 ctrl; 2803 2804 ctrl = mci_readl(host, CTRL); 2805 ctrl |= reset; 2806 mci_writel(host, CTRL, ctrl); 2807 2808 /* wait till resets clear */ 2809 do { 2810 ctrl = mci_readl(host, CTRL); 2811 if (!(ctrl & reset)) 2812 return true; 2813 } while (time_before(jiffies, timeout)); 2814 2815 dev_err(host->dev, 2816 "Timeout resetting block (ctrl reset %#x)\n", 2817 ctrl & reset); 2818 2819 return false; 2820 } 2821 2822 static bool dw_mci_reset(struct dw_mci *host) 2823 { 2824 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET; 2825 bool ret = false; 2826 2827 /* 2828 * Reseting generates a block interrupt, hence setting 2829 * the scatter-gather pointer to NULL. 2830 */ 2831 if (host->sg) { 2832 sg_miter_stop(&host->sg_miter); 2833 host->sg = NULL; 2834 } 2835 2836 if (host->use_dma) 2837 flags |= SDMMC_CTRL_DMA_RESET; 2838 2839 if (dw_mci_ctrl_reset(host, flags)) { 2840 /* 2841 * In all cases we clear the RAWINTS register to clear any 2842 * interrupts. 2843 */ 2844 mci_writel(host, RINTSTS, 0xFFFFFFFF); 2845 2846 /* if using dma we wait for dma_req to clear */ 2847 if (host->use_dma) { 2848 unsigned long timeout = jiffies + msecs_to_jiffies(500); 2849 u32 status; 2850 2851 do { 2852 status = mci_readl(host, STATUS); 2853 if (!(status & SDMMC_STATUS_DMA_REQ)) 2854 break; 2855 cpu_relax(); 2856 } while (time_before(jiffies, timeout)); 2857 2858 if (status & SDMMC_STATUS_DMA_REQ) { 2859 dev_err(host->dev, 2860 "%s: Timeout waiting for dma_req to clear during reset\n", 2861 __func__); 2862 goto ciu_out; 2863 } 2864 2865 /* when using DMA next we reset the fifo again */ 2866 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET)) 2867 goto ciu_out; 2868 } 2869 } else { 2870 /* if the controller reset bit did clear, then set clock regs */ 2871 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) { 2872 dev_err(host->dev, 2873 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n", 2874 __func__); 2875 goto ciu_out; 2876 } 2877 } 2878 2879 if (host->use_dma == TRANS_MODE_IDMAC) 2880 /* It is also recommended that we reset and reprogram idmac */ 2881 dw_mci_idmac_reset(host); 2882 2883 ret = true; 2884 2885 ciu_out: 2886 /* After a CTRL reset we need to have CIU set clock registers */ 2887 mci_send_cmd(host->cur_slot, SDMMC_CMD_UPD_CLK, 0); 2888 2889 return ret; 2890 } 2891 2892 static void dw_mci_cmd11_timer(unsigned long arg) 2893 { 2894 struct dw_mci *host = (struct dw_mci *)arg; 2895 2896 if (host->state != STATE_SENDING_CMD11) { 2897 dev_warn(host->dev, "Unexpected CMD11 timeout\n"); 2898 return; 2899 } 2900 2901 host->cmd_status = SDMMC_INT_RTO; 2902 set_bit(EVENT_CMD_COMPLETE, &host->pending_events); 2903 tasklet_schedule(&host->tasklet); 2904 } 2905 2906 static void dw_mci_dto_timer(unsigned long arg) 2907 { 2908 struct dw_mci *host = (struct dw_mci *)arg; 2909 2910 switch (host->state) { 2911 case STATE_SENDING_DATA: 2912 case STATE_DATA_BUSY: 2913 /* 2914 * If DTO interrupt does NOT come in sending data state, 2915 * we should notify the driver to terminate current transfer 2916 * and report a data timeout to the core. 2917 */ 2918 host->data_status = SDMMC_INT_DRTO; 2919 set_bit(EVENT_DATA_ERROR, &host->pending_events); 2920 set_bit(EVENT_DATA_COMPLETE, &host->pending_events); 2921 tasklet_schedule(&host->tasklet); 2922 break; 2923 default: 2924 break; 2925 } 2926 } 2927 2928 #ifdef CONFIG_OF 2929 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host) 2930 { 2931 struct dw_mci_board *pdata; 2932 struct device *dev = host->dev; 2933 struct device_node *np = dev->of_node; 2934 const struct dw_mci_drv_data *drv_data = host->drv_data; 2935 int ret; 2936 u32 clock_frequency; 2937 2938 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 2939 if (!pdata) 2940 return ERR_PTR(-ENOMEM); 2941 2942 /* find reset controller when exist */ 2943 pdata->rstc = devm_reset_control_get_optional(dev, "reset"); 2944 if (IS_ERR(pdata->rstc)) { 2945 if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER) 2946 return ERR_PTR(-EPROBE_DEFER); 2947 } 2948 2949 /* find out number of slots supported */ 2950 of_property_read_u32(np, "num-slots", &pdata->num_slots); 2951 2952 if (of_property_read_u32(np, "fifo-depth", &pdata->fifo_depth)) 2953 dev_info(dev, 2954 "fifo-depth property not found, using value of FIFOTH register as default\n"); 2955 2956 of_property_read_u32(np, "card-detect-delay", &pdata->detect_delay_ms); 2957 2958 if (!of_property_read_u32(np, "clock-frequency", &clock_frequency)) 2959 pdata->bus_hz = clock_frequency; 2960 2961 if (drv_data && drv_data->parse_dt) { 2962 ret = drv_data->parse_dt(host); 2963 if (ret) 2964 return ERR_PTR(ret); 2965 } 2966 2967 return pdata; 2968 } 2969 2970 #else /* CONFIG_OF */ 2971 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host) 2972 { 2973 return ERR_PTR(-EINVAL); 2974 } 2975 #endif /* CONFIG_OF */ 2976 2977 static void dw_mci_enable_cd(struct dw_mci *host) 2978 { 2979 unsigned long irqflags; 2980 u32 temp; 2981 int i; 2982 struct dw_mci_slot *slot; 2983 2984 /* 2985 * No need for CD if all slots have a non-error GPIO 2986 * as well as broken card detection is found. 2987 */ 2988 for (i = 0; i < host->num_slots; i++) { 2989 slot = host->slot[i]; 2990 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL) 2991 return; 2992 2993 if (mmc_gpio_get_cd(slot->mmc) < 0) 2994 break; 2995 } 2996 if (i == host->num_slots) 2997 return; 2998 2999 spin_lock_irqsave(&host->irq_lock, irqflags); 3000 temp = mci_readl(host, INTMASK); 3001 temp |= SDMMC_INT_CD; 3002 mci_writel(host, INTMASK, temp); 3003 spin_unlock_irqrestore(&host->irq_lock, irqflags); 3004 } 3005 3006 int dw_mci_probe(struct dw_mci *host) 3007 { 3008 const struct dw_mci_drv_data *drv_data = host->drv_data; 3009 int width, i, ret = 0; 3010 u32 fifo_size; 3011 int init_slots = 0; 3012 3013 if (!host->pdata) { 3014 host->pdata = dw_mci_parse_dt(host); 3015 if (PTR_ERR(host->pdata) == -EPROBE_DEFER) { 3016 return -EPROBE_DEFER; 3017 } else if (IS_ERR(host->pdata)) { 3018 dev_err(host->dev, "platform data not available\n"); 3019 return -EINVAL; 3020 } 3021 } 3022 3023 host->biu_clk = devm_clk_get(host->dev, "biu"); 3024 if (IS_ERR(host->biu_clk)) { 3025 dev_dbg(host->dev, "biu clock not available\n"); 3026 } else { 3027 ret = clk_prepare_enable(host->biu_clk); 3028 if (ret) { 3029 dev_err(host->dev, "failed to enable biu clock\n"); 3030 return ret; 3031 } 3032 } 3033 3034 host->ciu_clk = devm_clk_get(host->dev, "ciu"); 3035 if (IS_ERR(host->ciu_clk)) { 3036 dev_dbg(host->dev, "ciu clock not available\n"); 3037 host->bus_hz = host->pdata->bus_hz; 3038 } else { 3039 ret = clk_prepare_enable(host->ciu_clk); 3040 if (ret) { 3041 dev_err(host->dev, "failed to enable ciu clock\n"); 3042 goto err_clk_biu; 3043 } 3044 3045 if (host->pdata->bus_hz) { 3046 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz); 3047 if (ret) 3048 dev_warn(host->dev, 3049 "Unable to set bus rate to %uHz\n", 3050 host->pdata->bus_hz); 3051 } 3052 host->bus_hz = clk_get_rate(host->ciu_clk); 3053 } 3054 3055 if (!host->bus_hz) { 3056 dev_err(host->dev, 3057 "Platform data must supply bus speed\n"); 3058 ret = -ENODEV; 3059 goto err_clk_ciu; 3060 } 3061 3062 if (drv_data && drv_data->init) { 3063 ret = drv_data->init(host); 3064 if (ret) { 3065 dev_err(host->dev, 3066 "implementation specific init failed\n"); 3067 goto err_clk_ciu; 3068 } 3069 } 3070 3071 if (!IS_ERR(host->pdata->rstc)) { 3072 reset_control_assert(host->pdata->rstc); 3073 usleep_range(10, 50); 3074 reset_control_deassert(host->pdata->rstc); 3075 } 3076 3077 setup_timer(&host->cmd11_timer, 3078 dw_mci_cmd11_timer, (unsigned long)host); 3079 3080 setup_timer(&host->dto_timer, 3081 dw_mci_dto_timer, (unsigned long)host); 3082 3083 spin_lock_init(&host->lock); 3084 spin_lock_init(&host->irq_lock); 3085 INIT_LIST_HEAD(&host->queue); 3086 3087 /* 3088 * Get the host data width - this assumes that HCON has been set with 3089 * the correct values. 3090 */ 3091 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON)); 3092 if (!i) { 3093 host->push_data = dw_mci_push_data16; 3094 host->pull_data = dw_mci_pull_data16; 3095 width = 16; 3096 host->data_shift = 1; 3097 } else if (i == 2) { 3098 host->push_data = dw_mci_push_data64; 3099 host->pull_data = dw_mci_pull_data64; 3100 width = 64; 3101 host->data_shift = 3; 3102 } else { 3103 /* Check for a reserved value, and warn if it is */ 3104 WARN((i != 1), 3105 "HCON reports a reserved host data width!\n" 3106 "Defaulting to 32-bit access.\n"); 3107 host->push_data = dw_mci_push_data32; 3108 host->pull_data = dw_mci_pull_data32; 3109 width = 32; 3110 host->data_shift = 2; 3111 } 3112 3113 /* Reset all blocks */ 3114 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) { 3115 ret = -ENODEV; 3116 goto err_clk_ciu; 3117 } 3118 3119 host->dma_ops = host->pdata->dma_ops; 3120 dw_mci_init_dma(host); 3121 3122 /* Clear the interrupts for the host controller */ 3123 mci_writel(host, RINTSTS, 0xFFFFFFFF); 3124 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */ 3125 3126 /* Put in max timeout */ 3127 mci_writel(host, TMOUT, 0xFFFFFFFF); 3128 3129 /* 3130 * FIFO threshold settings RxMark = fifo_size / 2 - 1, 3131 * Tx Mark = fifo_size / 2 DMA Size = 8 3132 */ 3133 if (!host->pdata->fifo_depth) { 3134 /* 3135 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may 3136 * have been overwritten by the bootloader, just like we're 3137 * about to do, so if you know the value for your hardware, you 3138 * should put it in the platform data. 3139 */ 3140 fifo_size = mci_readl(host, FIFOTH); 3141 fifo_size = 1 + ((fifo_size >> 16) & 0xfff); 3142 } else { 3143 fifo_size = host->pdata->fifo_depth; 3144 } 3145 host->fifo_depth = fifo_size; 3146 host->fifoth_val = 3147 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2); 3148 mci_writel(host, FIFOTH, host->fifoth_val); 3149 3150 /* disable clock to CIU */ 3151 mci_writel(host, CLKENA, 0); 3152 mci_writel(host, CLKSRC, 0); 3153 3154 /* 3155 * In 2.40a spec, Data offset is changed. 3156 * Need to check the version-id and set data-offset for DATA register. 3157 */ 3158 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID)); 3159 dev_info(host->dev, "Version ID is %04x\n", host->verid); 3160 3161 if (host->verid < DW_MMC_240A) 3162 host->fifo_reg = host->regs + DATA_OFFSET; 3163 else 3164 host->fifo_reg = host->regs + DATA_240A_OFFSET; 3165 3166 tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host); 3167 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt, 3168 host->irq_flags, "dw-mci", host); 3169 if (ret) 3170 goto err_dmaunmap; 3171 3172 if (host->pdata->num_slots) 3173 host->num_slots = host->pdata->num_slots; 3174 else 3175 host->num_slots = 1; 3176 3177 if (host->num_slots < 1 || 3178 host->num_slots > SDMMC_GET_SLOT_NUM(mci_readl(host, HCON))) { 3179 dev_err(host->dev, 3180 "Platform data must supply correct num_slots.\n"); 3181 ret = -ENODEV; 3182 goto err_clk_ciu; 3183 } 3184 3185 /* 3186 * Enable interrupts for command done, data over, data empty, 3187 * receive ready and error such as transmit, receive timeout, crc error 3188 */ 3189 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER | 3190 SDMMC_INT_TXDR | SDMMC_INT_RXDR | 3191 DW_MCI_ERROR_FLAGS); 3192 /* Enable mci interrupt */ 3193 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE); 3194 3195 dev_info(host->dev, 3196 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n", 3197 host->irq, width, fifo_size); 3198 3199 /* We need at least one slot to succeed */ 3200 for (i = 0; i < host->num_slots; i++) { 3201 ret = dw_mci_init_slot(host, i); 3202 if (ret) 3203 dev_dbg(host->dev, "slot %d init failed\n", i); 3204 else 3205 init_slots++; 3206 } 3207 3208 if (init_slots) { 3209 dev_info(host->dev, "%d slots initialized\n", init_slots); 3210 } else { 3211 dev_dbg(host->dev, 3212 "attempted to initialize %d slots, but failed on all\n", 3213 host->num_slots); 3214 goto err_dmaunmap; 3215 } 3216 3217 /* Now that slots are all setup, we can enable card detect */ 3218 dw_mci_enable_cd(host); 3219 3220 return 0; 3221 3222 err_dmaunmap: 3223 if (host->use_dma && host->dma_ops->exit) 3224 host->dma_ops->exit(host); 3225 3226 if (!IS_ERR(host->pdata->rstc)) 3227 reset_control_assert(host->pdata->rstc); 3228 3229 err_clk_ciu: 3230 clk_disable_unprepare(host->ciu_clk); 3231 3232 err_clk_biu: 3233 clk_disable_unprepare(host->biu_clk); 3234 3235 return ret; 3236 } 3237 EXPORT_SYMBOL(dw_mci_probe); 3238 3239 void dw_mci_remove(struct dw_mci *host) 3240 { 3241 int i; 3242 3243 for (i = 0; i < host->num_slots; i++) { 3244 dev_dbg(host->dev, "remove slot %d\n", i); 3245 if (host->slot[i]) 3246 dw_mci_cleanup_slot(host->slot[i], i); 3247 } 3248 3249 mci_writel(host, RINTSTS, 0xFFFFFFFF); 3250 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */ 3251 3252 /* disable clock to CIU */ 3253 mci_writel(host, CLKENA, 0); 3254 mci_writel(host, CLKSRC, 0); 3255 3256 if (host->use_dma && host->dma_ops->exit) 3257 host->dma_ops->exit(host); 3258 3259 if (!IS_ERR(host->pdata->rstc)) 3260 reset_control_assert(host->pdata->rstc); 3261 3262 clk_disable_unprepare(host->ciu_clk); 3263 clk_disable_unprepare(host->biu_clk); 3264 } 3265 EXPORT_SYMBOL(dw_mci_remove); 3266 3267 3268 3269 #ifdef CONFIG_PM_SLEEP 3270 /* 3271 * TODO: we should probably disable the clock to the card in the suspend path. 3272 */ 3273 int dw_mci_suspend(struct dw_mci *host) 3274 { 3275 if (host->use_dma && host->dma_ops->exit) 3276 host->dma_ops->exit(host); 3277 3278 return 0; 3279 } 3280 EXPORT_SYMBOL(dw_mci_suspend); 3281 3282 int dw_mci_resume(struct dw_mci *host) 3283 { 3284 int i, ret; 3285 3286 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) { 3287 ret = -ENODEV; 3288 return ret; 3289 } 3290 3291 if (host->use_dma && host->dma_ops->init) 3292 host->dma_ops->init(host); 3293 3294 /* 3295 * Restore the initial value at FIFOTH register 3296 * And Invalidate the prev_blksz with zero 3297 */ 3298 mci_writel(host, FIFOTH, host->fifoth_val); 3299 host->prev_blksz = 0; 3300 3301 /* Put in max timeout */ 3302 mci_writel(host, TMOUT, 0xFFFFFFFF); 3303 3304 mci_writel(host, RINTSTS, 0xFFFFFFFF); 3305 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER | 3306 SDMMC_INT_TXDR | SDMMC_INT_RXDR | 3307 DW_MCI_ERROR_FLAGS); 3308 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE); 3309 3310 for (i = 0; i < host->num_slots; i++) { 3311 struct dw_mci_slot *slot = host->slot[i]; 3312 3313 if (!slot) 3314 continue; 3315 if (slot->mmc->pm_flags & MMC_PM_KEEP_POWER) { 3316 dw_mci_set_ios(slot->mmc, &slot->mmc->ios); 3317 dw_mci_setup_bus(slot, true); 3318 } 3319 } 3320 3321 /* Now that slots are all setup, we can enable card detect */ 3322 dw_mci_enable_cd(host); 3323 3324 return 0; 3325 } 3326 EXPORT_SYMBOL(dw_mci_resume); 3327 #endif /* CONFIG_PM_SLEEP */ 3328 3329 static int __init dw_mci_init(void) 3330 { 3331 pr_info("Synopsys Designware Multimedia Card Interface Driver\n"); 3332 return 0; 3333 } 3334 3335 static void __exit dw_mci_exit(void) 3336 { 3337 } 3338 3339 module_init(dw_mci_init); 3340 module_exit(dw_mci_exit); 3341 3342 MODULE_DESCRIPTION("DW Multimedia Card Interface driver"); 3343 MODULE_AUTHOR("NXP Semiconductor VietNam"); 3344 MODULE_AUTHOR("Imagination Technologies Ltd"); 3345 MODULE_LICENSE("GPL v2"); 3346