xref: /openbmc/linux/drivers/mmc/host/dw_mmc.c (revision 7aacf86b)
1 /*
2  * Synopsys DesignWare Multimedia Card Interface driver
3  *  (Based on NXP driver for lpc 31xx)
4  *
5  * Copyright (C) 2009 NXP Semiconductors
6  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/iopoll.h>
23 #include <linux/ioport.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/seq_file.h>
28 #include <linux/slab.h>
29 #include <linux/stat.h>
30 #include <linux/delay.h>
31 #include <linux/irq.h>
32 #include <linux/mmc/card.h>
33 #include <linux/mmc/host.h>
34 #include <linux/mmc/mmc.h>
35 #include <linux/mmc/sd.h>
36 #include <linux/mmc/sdio.h>
37 #include <linux/bitops.h>
38 #include <linux/regulator/consumer.h>
39 #include <linux/of.h>
40 #include <linux/of_gpio.h>
41 #include <linux/mmc/slot-gpio.h>
42 
43 #include "dw_mmc.h"
44 
45 /* Common flag combinations */
46 #define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
47 				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
48 				 SDMMC_INT_EBE | SDMMC_INT_HLE)
49 #define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
50 				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
51 #define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
52 				 DW_MCI_CMD_ERROR_FLAGS)
53 #define DW_MCI_SEND_STATUS	1
54 #define DW_MCI_RECV_STATUS	2
55 #define DW_MCI_DMA_THRESHOLD	16
56 
57 #define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
58 #define DW_MCI_FREQ_MIN	100000		/* unit: HZ */
59 
60 #define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
61 				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
62 				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
63 				 SDMMC_IDMAC_INT_TI)
64 
65 #define DESC_RING_BUF_SZ	PAGE_SIZE
66 
67 struct idmac_desc_64addr {
68 	u32		des0;	/* Control Descriptor */
69 #define IDMAC_OWN_CLR64(x) \
70 	!((x) & cpu_to_le32(IDMAC_DES0_OWN))
71 
72 	u32		des1;	/* Reserved */
73 
74 	u32		des2;	/*Buffer sizes */
75 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
76 	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
77 	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
78 
79 	u32		des3;	/* Reserved */
80 
81 	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
82 	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
83 
84 	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
85 	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
86 };
87 
88 struct idmac_desc {
89 	__le32		des0;	/* Control Descriptor */
90 #define IDMAC_DES0_DIC	BIT(1)
91 #define IDMAC_DES0_LD	BIT(2)
92 #define IDMAC_DES0_FD	BIT(3)
93 #define IDMAC_DES0_CH	BIT(4)
94 #define IDMAC_DES0_ER	BIT(5)
95 #define IDMAC_DES0_CES	BIT(30)
96 #define IDMAC_DES0_OWN	BIT(31)
97 
98 	__le32		des1;	/* Buffer sizes */
99 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
100 	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
101 
102 	__le32		des2;	/* buffer 1 physical address */
103 
104 	__le32		des3;	/* buffer 2 physical address */
105 };
106 
107 /* Each descriptor can transfer up to 4KB of data in chained mode */
108 #define DW_MCI_DESC_DATA_LENGTH	0x1000
109 
110 #if defined(CONFIG_DEBUG_FS)
111 static int dw_mci_req_show(struct seq_file *s, void *v)
112 {
113 	struct dw_mci_slot *slot = s->private;
114 	struct mmc_request *mrq;
115 	struct mmc_command *cmd;
116 	struct mmc_command *stop;
117 	struct mmc_data	*data;
118 
119 	/* Make sure we get a consistent snapshot */
120 	spin_lock_bh(&slot->host->lock);
121 	mrq = slot->mrq;
122 
123 	if (mrq) {
124 		cmd = mrq->cmd;
125 		data = mrq->data;
126 		stop = mrq->stop;
127 
128 		if (cmd)
129 			seq_printf(s,
130 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
131 				   cmd->opcode, cmd->arg, cmd->flags,
132 				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
133 				   cmd->resp[2], cmd->error);
134 		if (data)
135 			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
136 				   data->bytes_xfered, data->blocks,
137 				   data->blksz, data->flags, data->error);
138 		if (stop)
139 			seq_printf(s,
140 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
141 				   stop->opcode, stop->arg, stop->flags,
142 				   stop->resp[0], stop->resp[1], stop->resp[2],
143 				   stop->resp[2], stop->error);
144 	}
145 
146 	spin_unlock_bh(&slot->host->lock);
147 
148 	return 0;
149 }
150 
151 static int dw_mci_req_open(struct inode *inode, struct file *file)
152 {
153 	return single_open(file, dw_mci_req_show, inode->i_private);
154 }
155 
156 static const struct file_operations dw_mci_req_fops = {
157 	.owner		= THIS_MODULE,
158 	.open		= dw_mci_req_open,
159 	.read		= seq_read,
160 	.llseek		= seq_lseek,
161 	.release	= single_release,
162 };
163 
164 static int dw_mci_regs_show(struct seq_file *s, void *v)
165 {
166 	struct dw_mci *host = s->private;
167 
168 	seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
169 	seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
170 	seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
171 	seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
172 	seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
173 	seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
174 
175 	return 0;
176 }
177 
178 static int dw_mci_regs_open(struct inode *inode, struct file *file)
179 {
180 	return single_open(file, dw_mci_regs_show, inode->i_private);
181 }
182 
183 static const struct file_operations dw_mci_regs_fops = {
184 	.owner		= THIS_MODULE,
185 	.open		= dw_mci_regs_open,
186 	.read		= seq_read,
187 	.llseek		= seq_lseek,
188 	.release	= single_release,
189 };
190 
191 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
192 {
193 	struct mmc_host	*mmc = slot->mmc;
194 	struct dw_mci *host = slot->host;
195 	struct dentry *root;
196 	struct dentry *node;
197 
198 	root = mmc->debugfs_root;
199 	if (!root)
200 		return;
201 
202 	node = debugfs_create_file("regs", S_IRUSR, root, host,
203 				   &dw_mci_regs_fops);
204 	if (!node)
205 		goto err;
206 
207 	node = debugfs_create_file("req", S_IRUSR, root, slot,
208 				   &dw_mci_req_fops);
209 	if (!node)
210 		goto err;
211 
212 	node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
213 	if (!node)
214 		goto err;
215 
216 	node = debugfs_create_x32("pending_events", S_IRUSR, root,
217 				  (u32 *)&host->pending_events);
218 	if (!node)
219 		goto err;
220 
221 	node = debugfs_create_x32("completed_events", S_IRUSR, root,
222 				  (u32 *)&host->completed_events);
223 	if (!node)
224 		goto err;
225 
226 	return;
227 
228 err:
229 	dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
230 }
231 #endif /* defined(CONFIG_DEBUG_FS) */
232 
233 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
234 {
235 	u32 ctrl;
236 
237 	ctrl = mci_readl(host, CTRL);
238 	ctrl |= reset;
239 	mci_writel(host, CTRL, ctrl);
240 
241 	/* wait till resets clear */
242 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
243 				      !(ctrl & reset),
244 				      1, 500 * USEC_PER_MSEC)) {
245 		dev_err(host->dev,
246 			"Timeout resetting block (ctrl reset %#x)\n",
247 			ctrl & reset);
248 		return false;
249 	}
250 
251 	return true;
252 }
253 
254 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
255 {
256 	u32 status;
257 
258 	/*
259 	 * Databook says that before issuing a new data transfer command
260 	 * we need to check to see if the card is busy.  Data transfer commands
261 	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
262 	 *
263 	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
264 	 * expected.
265 	 */
266 	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
267 	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
268 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
269 					      status,
270 					      !(status & SDMMC_STATUS_BUSY),
271 					      10, 500 * USEC_PER_MSEC))
272 			dev_err(host->dev, "Busy; trying anyway\n");
273 	}
274 }
275 
276 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
277 {
278 	struct dw_mci *host = slot->host;
279 	unsigned int cmd_status = 0;
280 
281 	mci_writel(host, CMDARG, arg);
282 	wmb(); /* drain writebuffer */
283 	dw_mci_wait_while_busy(host, cmd);
284 	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
285 
286 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
287 				      !(cmd_status & SDMMC_CMD_START),
288 				      1, 500 * USEC_PER_MSEC))
289 		dev_err(&slot->mmc->class_dev,
290 			"Timeout sending command (cmd %#x arg %#x status %#x)\n",
291 			cmd, arg, cmd_status);
292 }
293 
294 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
295 {
296 	struct dw_mci_slot *slot = mmc_priv(mmc);
297 	struct dw_mci *host = slot->host;
298 	u32 cmdr;
299 
300 	cmd->error = -EINPROGRESS;
301 	cmdr = cmd->opcode;
302 
303 	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
304 	    cmd->opcode == MMC_GO_IDLE_STATE ||
305 	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
306 	    (cmd->opcode == SD_IO_RW_DIRECT &&
307 	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
308 		cmdr |= SDMMC_CMD_STOP;
309 	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
310 		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
311 
312 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
313 		u32 clk_en_a;
314 
315 		/* Special bit makes CMD11 not die */
316 		cmdr |= SDMMC_CMD_VOLT_SWITCH;
317 
318 		/* Change state to continue to handle CMD11 weirdness */
319 		WARN_ON(slot->host->state != STATE_SENDING_CMD);
320 		slot->host->state = STATE_SENDING_CMD11;
321 
322 		/*
323 		 * We need to disable low power mode (automatic clock stop)
324 		 * while doing voltage switch so we don't confuse the card,
325 		 * since stopping the clock is a specific part of the UHS
326 		 * voltage change dance.
327 		 *
328 		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
329 		 * unconditionally turned back on in dw_mci_setup_bus() if it's
330 		 * ever called with a non-zero clock.  That shouldn't happen
331 		 * until the voltage change is all done.
332 		 */
333 		clk_en_a = mci_readl(host, CLKENA);
334 		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
335 		mci_writel(host, CLKENA, clk_en_a);
336 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
337 			     SDMMC_CMD_PRV_DAT_WAIT, 0);
338 	}
339 
340 	if (cmd->flags & MMC_RSP_PRESENT) {
341 		/* We expect a response, so set this bit */
342 		cmdr |= SDMMC_CMD_RESP_EXP;
343 		if (cmd->flags & MMC_RSP_136)
344 			cmdr |= SDMMC_CMD_RESP_LONG;
345 	}
346 
347 	if (cmd->flags & MMC_RSP_CRC)
348 		cmdr |= SDMMC_CMD_RESP_CRC;
349 
350 	if (cmd->data) {
351 		cmdr |= SDMMC_CMD_DAT_EXP;
352 		if (cmd->data->flags & MMC_DATA_WRITE)
353 			cmdr |= SDMMC_CMD_DAT_WR;
354 	}
355 
356 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
357 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
358 
359 	return cmdr;
360 }
361 
362 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
363 {
364 	struct mmc_command *stop;
365 	u32 cmdr;
366 
367 	if (!cmd->data)
368 		return 0;
369 
370 	stop = &host->stop_abort;
371 	cmdr = cmd->opcode;
372 	memset(stop, 0, sizeof(struct mmc_command));
373 
374 	if (cmdr == MMC_READ_SINGLE_BLOCK ||
375 	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
376 	    cmdr == MMC_WRITE_BLOCK ||
377 	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
378 	    cmdr == MMC_SEND_TUNING_BLOCK ||
379 	    cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
380 		stop->opcode = MMC_STOP_TRANSMISSION;
381 		stop->arg = 0;
382 		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
383 	} else if (cmdr == SD_IO_RW_EXTENDED) {
384 		stop->opcode = SD_IO_RW_DIRECT;
385 		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
386 			     ((cmd->arg >> 28) & 0x7);
387 		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
388 	} else {
389 		return 0;
390 	}
391 
392 	cmdr = stop->opcode | SDMMC_CMD_STOP |
393 		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
394 
395 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
396 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
397 
398 	return cmdr;
399 }
400 
401 static void dw_mci_start_command(struct dw_mci *host,
402 				 struct mmc_command *cmd, u32 cmd_flags)
403 {
404 	host->cmd = cmd;
405 	dev_vdbg(host->dev,
406 		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
407 		 cmd->arg, cmd_flags);
408 
409 	mci_writel(host, CMDARG, cmd->arg);
410 	wmb(); /* drain writebuffer */
411 	dw_mci_wait_while_busy(host, cmd_flags);
412 
413 	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
414 }
415 
416 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
417 {
418 	struct mmc_command *stop = &host->stop_abort;
419 
420 	dw_mci_start_command(host, stop, host->stop_cmdr);
421 }
422 
423 /* DMA interface functions */
424 static void dw_mci_stop_dma(struct dw_mci *host)
425 {
426 	if (host->using_dma) {
427 		host->dma_ops->stop(host);
428 		host->dma_ops->cleanup(host);
429 	}
430 
431 	/* Data transfer was stopped by the interrupt handler */
432 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
433 }
434 
435 static void dw_mci_dma_cleanup(struct dw_mci *host)
436 {
437 	struct mmc_data *data = host->data;
438 
439 	if (data && data->host_cookie == COOKIE_MAPPED) {
440 		dma_unmap_sg(host->dev,
441 			     data->sg,
442 			     data->sg_len,
443 			     mmc_get_dma_dir(data));
444 		data->host_cookie = COOKIE_UNMAPPED;
445 	}
446 }
447 
448 static void dw_mci_idmac_reset(struct dw_mci *host)
449 {
450 	u32 bmod = mci_readl(host, BMOD);
451 	/* Software reset of DMA */
452 	bmod |= SDMMC_IDMAC_SWRESET;
453 	mci_writel(host, BMOD, bmod);
454 }
455 
456 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
457 {
458 	u32 temp;
459 
460 	/* Disable and reset the IDMAC interface */
461 	temp = mci_readl(host, CTRL);
462 	temp &= ~SDMMC_CTRL_USE_IDMAC;
463 	temp |= SDMMC_CTRL_DMA_RESET;
464 	mci_writel(host, CTRL, temp);
465 
466 	/* Stop the IDMAC running */
467 	temp = mci_readl(host, BMOD);
468 	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
469 	temp |= SDMMC_IDMAC_SWRESET;
470 	mci_writel(host, BMOD, temp);
471 }
472 
473 static void dw_mci_dmac_complete_dma(void *arg)
474 {
475 	struct dw_mci *host = arg;
476 	struct mmc_data *data = host->data;
477 
478 	dev_vdbg(host->dev, "DMA complete\n");
479 
480 	if ((host->use_dma == TRANS_MODE_EDMAC) &&
481 	    data && (data->flags & MMC_DATA_READ))
482 		/* Invalidate cache after read */
483 		dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
484 				    data->sg,
485 				    data->sg_len,
486 				    DMA_FROM_DEVICE);
487 
488 	host->dma_ops->cleanup(host);
489 
490 	/*
491 	 * If the card was removed, data will be NULL. No point in trying to
492 	 * send the stop command or waiting for NBUSY in this case.
493 	 */
494 	if (data) {
495 		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
496 		tasklet_schedule(&host->tasklet);
497 	}
498 }
499 
500 static int dw_mci_idmac_init(struct dw_mci *host)
501 {
502 	int i;
503 
504 	if (host->dma_64bit_address == 1) {
505 		struct idmac_desc_64addr *p;
506 		/* Number of descriptors in the ring buffer */
507 		host->ring_size =
508 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
509 
510 		/* Forward link the descriptor list */
511 		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
512 								i++, p++) {
513 			p->des6 = (host->sg_dma +
514 					(sizeof(struct idmac_desc_64addr) *
515 							(i + 1))) & 0xffffffff;
516 
517 			p->des7 = (u64)(host->sg_dma +
518 					(sizeof(struct idmac_desc_64addr) *
519 							(i + 1))) >> 32;
520 			/* Initialize reserved and buffer size fields to "0" */
521 			p->des1 = 0;
522 			p->des2 = 0;
523 			p->des3 = 0;
524 		}
525 
526 		/* Set the last descriptor as the end-of-ring descriptor */
527 		p->des6 = host->sg_dma & 0xffffffff;
528 		p->des7 = (u64)host->sg_dma >> 32;
529 		p->des0 = IDMAC_DES0_ER;
530 
531 	} else {
532 		struct idmac_desc *p;
533 		/* Number of descriptors in the ring buffer */
534 		host->ring_size =
535 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
536 
537 		/* Forward link the descriptor list */
538 		for (i = 0, p = host->sg_cpu;
539 		     i < host->ring_size - 1;
540 		     i++, p++) {
541 			p->des3 = cpu_to_le32(host->sg_dma +
542 					(sizeof(struct idmac_desc) * (i + 1)));
543 			p->des1 = 0;
544 		}
545 
546 		/* Set the last descriptor as the end-of-ring descriptor */
547 		p->des3 = cpu_to_le32(host->sg_dma);
548 		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
549 	}
550 
551 	dw_mci_idmac_reset(host);
552 
553 	if (host->dma_64bit_address == 1) {
554 		/* Mask out interrupts - get Tx & Rx complete only */
555 		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
556 		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
557 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
558 
559 		/* Set the descriptor base address */
560 		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
561 		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
562 
563 	} else {
564 		/* Mask out interrupts - get Tx & Rx complete only */
565 		mci_writel(host, IDSTS, IDMAC_INT_CLR);
566 		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
567 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
568 
569 		/* Set the descriptor base address */
570 		mci_writel(host, DBADDR, host->sg_dma);
571 	}
572 
573 	return 0;
574 }
575 
576 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
577 					 struct mmc_data *data,
578 					 unsigned int sg_len)
579 {
580 	unsigned int desc_len;
581 	struct idmac_desc_64addr *desc_first, *desc_last, *desc;
582 	u32 val;
583 	int i;
584 
585 	desc_first = desc_last = desc = host->sg_cpu;
586 
587 	for (i = 0; i < sg_len; i++) {
588 		unsigned int length = sg_dma_len(&data->sg[i]);
589 
590 		u64 mem_addr = sg_dma_address(&data->sg[i]);
591 
592 		for ( ; length ; desc++) {
593 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
594 				   length : DW_MCI_DESC_DATA_LENGTH;
595 
596 			length -= desc_len;
597 
598 			/*
599 			 * Wait for the former clear OWN bit operation
600 			 * of IDMAC to make sure that this descriptor
601 			 * isn't still owned by IDMAC as IDMAC's write
602 			 * ops and CPU's read ops are asynchronous.
603 			 */
604 			if (readl_poll_timeout_atomic(&desc->des0, val,
605 						!(val & IDMAC_DES0_OWN),
606 						10, 100 * USEC_PER_MSEC))
607 				goto err_own_bit;
608 
609 			/*
610 			 * Set the OWN bit and disable interrupts
611 			 * for this descriptor
612 			 */
613 			desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
614 						IDMAC_DES0_CH;
615 
616 			/* Buffer length */
617 			IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
618 
619 			/* Physical address to DMA to/from */
620 			desc->des4 = mem_addr & 0xffffffff;
621 			desc->des5 = mem_addr >> 32;
622 
623 			/* Update physical address for the next desc */
624 			mem_addr += desc_len;
625 
626 			/* Save pointer to the last descriptor */
627 			desc_last = desc;
628 		}
629 	}
630 
631 	/* Set first descriptor */
632 	desc_first->des0 |= IDMAC_DES0_FD;
633 
634 	/* Set last descriptor */
635 	desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
636 	desc_last->des0 |= IDMAC_DES0_LD;
637 
638 	return 0;
639 err_own_bit:
640 	/* restore the descriptor chain as it's polluted */
641 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
642 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
643 	dw_mci_idmac_init(host);
644 	return -EINVAL;
645 }
646 
647 
648 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
649 					 struct mmc_data *data,
650 					 unsigned int sg_len)
651 {
652 	unsigned int desc_len;
653 	struct idmac_desc *desc_first, *desc_last, *desc;
654 	u32 val;
655 	int i;
656 
657 	desc_first = desc_last = desc = host->sg_cpu;
658 
659 	for (i = 0; i < sg_len; i++) {
660 		unsigned int length = sg_dma_len(&data->sg[i]);
661 
662 		u32 mem_addr = sg_dma_address(&data->sg[i]);
663 
664 		for ( ; length ; desc++) {
665 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
666 				   length : DW_MCI_DESC_DATA_LENGTH;
667 
668 			length -= desc_len;
669 
670 			/*
671 			 * Wait for the former clear OWN bit operation
672 			 * of IDMAC to make sure that this descriptor
673 			 * isn't still owned by IDMAC as IDMAC's write
674 			 * ops and CPU's read ops are asynchronous.
675 			 */
676 			if (readl_poll_timeout_atomic(&desc->des0, val,
677 						      IDMAC_OWN_CLR64(val),
678 						      10,
679 						      100 * USEC_PER_MSEC))
680 				goto err_own_bit;
681 
682 			/*
683 			 * Set the OWN bit and disable interrupts
684 			 * for this descriptor
685 			 */
686 			desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
687 						 IDMAC_DES0_DIC |
688 						 IDMAC_DES0_CH);
689 
690 			/* Buffer length */
691 			IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
692 
693 			/* Physical address to DMA to/from */
694 			desc->des2 = cpu_to_le32(mem_addr);
695 
696 			/* Update physical address for the next desc */
697 			mem_addr += desc_len;
698 
699 			/* Save pointer to the last descriptor */
700 			desc_last = desc;
701 		}
702 	}
703 
704 	/* Set first descriptor */
705 	desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
706 
707 	/* Set last descriptor */
708 	desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
709 				       IDMAC_DES0_DIC));
710 	desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
711 
712 	return 0;
713 err_own_bit:
714 	/* restore the descriptor chain as it's polluted */
715 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
716 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
717 	dw_mci_idmac_init(host);
718 	return -EINVAL;
719 }
720 
721 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
722 {
723 	u32 temp;
724 	int ret;
725 
726 	if (host->dma_64bit_address == 1)
727 		ret = dw_mci_prepare_desc64(host, host->data, sg_len);
728 	else
729 		ret = dw_mci_prepare_desc32(host, host->data, sg_len);
730 
731 	if (ret)
732 		goto out;
733 
734 	/* drain writebuffer */
735 	wmb();
736 
737 	/* Make sure to reset DMA in case we did PIO before this */
738 	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
739 	dw_mci_idmac_reset(host);
740 
741 	/* Select IDMAC interface */
742 	temp = mci_readl(host, CTRL);
743 	temp |= SDMMC_CTRL_USE_IDMAC;
744 	mci_writel(host, CTRL, temp);
745 
746 	/* drain writebuffer */
747 	wmb();
748 
749 	/* Enable the IDMAC */
750 	temp = mci_readl(host, BMOD);
751 	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
752 	mci_writel(host, BMOD, temp);
753 
754 	/* Start it running */
755 	mci_writel(host, PLDMND, 1);
756 
757 out:
758 	return ret;
759 }
760 
761 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
762 	.init = dw_mci_idmac_init,
763 	.start = dw_mci_idmac_start_dma,
764 	.stop = dw_mci_idmac_stop_dma,
765 	.complete = dw_mci_dmac_complete_dma,
766 	.cleanup = dw_mci_dma_cleanup,
767 };
768 
769 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
770 {
771 	dmaengine_terminate_async(host->dms->ch);
772 }
773 
774 static int dw_mci_edmac_start_dma(struct dw_mci *host,
775 					    unsigned int sg_len)
776 {
777 	struct dma_slave_config cfg;
778 	struct dma_async_tx_descriptor *desc = NULL;
779 	struct scatterlist *sgl = host->data->sg;
780 	const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
781 	u32 sg_elems = host->data->sg_len;
782 	u32 fifoth_val;
783 	u32 fifo_offset = host->fifo_reg - host->regs;
784 	int ret = 0;
785 
786 	/* Set external dma config: burst size, burst width */
787 	cfg.dst_addr = host->phy_regs + fifo_offset;
788 	cfg.src_addr = cfg.dst_addr;
789 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
790 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
791 
792 	/* Match burst msize with external dma config */
793 	fifoth_val = mci_readl(host, FIFOTH);
794 	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
795 	cfg.src_maxburst = cfg.dst_maxburst;
796 
797 	if (host->data->flags & MMC_DATA_WRITE)
798 		cfg.direction = DMA_MEM_TO_DEV;
799 	else
800 		cfg.direction = DMA_DEV_TO_MEM;
801 
802 	ret = dmaengine_slave_config(host->dms->ch, &cfg);
803 	if (ret) {
804 		dev_err(host->dev, "Failed to config edmac.\n");
805 		return -EBUSY;
806 	}
807 
808 	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
809 				       sg_len, cfg.direction,
810 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
811 	if (!desc) {
812 		dev_err(host->dev, "Can't prepare slave sg.\n");
813 		return -EBUSY;
814 	}
815 
816 	/* Set dw_mci_dmac_complete_dma as callback */
817 	desc->callback = dw_mci_dmac_complete_dma;
818 	desc->callback_param = (void *)host;
819 	dmaengine_submit(desc);
820 
821 	/* Flush cache before write */
822 	if (host->data->flags & MMC_DATA_WRITE)
823 		dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
824 				       sg_elems, DMA_TO_DEVICE);
825 
826 	dma_async_issue_pending(host->dms->ch);
827 
828 	return 0;
829 }
830 
831 static int dw_mci_edmac_init(struct dw_mci *host)
832 {
833 	/* Request external dma channel */
834 	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
835 	if (!host->dms)
836 		return -ENOMEM;
837 
838 	host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
839 	if (!host->dms->ch) {
840 		dev_err(host->dev, "Failed to get external DMA channel.\n");
841 		kfree(host->dms);
842 		host->dms = NULL;
843 		return -ENXIO;
844 	}
845 
846 	return 0;
847 }
848 
849 static void dw_mci_edmac_exit(struct dw_mci *host)
850 {
851 	if (host->dms) {
852 		if (host->dms->ch) {
853 			dma_release_channel(host->dms->ch);
854 			host->dms->ch = NULL;
855 		}
856 		kfree(host->dms);
857 		host->dms = NULL;
858 	}
859 }
860 
861 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
862 	.init = dw_mci_edmac_init,
863 	.exit = dw_mci_edmac_exit,
864 	.start = dw_mci_edmac_start_dma,
865 	.stop = dw_mci_edmac_stop_dma,
866 	.complete = dw_mci_dmac_complete_dma,
867 	.cleanup = dw_mci_dma_cleanup,
868 };
869 
870 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
871 				   struct mmc_data *data,
872 				   int cookie)
873 {
874 	struct scatterlist *sg;
875 	unsigned int i, sg_len;
876 
877 	if (data->host_cookie == COOKIE_PRE_MAPPED)
878 		return data->sg_len;
879 
880 	/*
881 	 * We don't do DMA on "complex" transfers, i.e. with
882 	 * non-word-aligned buffers or lengths. Also, we don't bother
883 	 * with all the DMA setup overhead for short transfers.
884 	 */
885 	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
886 		return -EINVAL;
887 
888 	if (data->blksz & 3)
889 		return -EINVAL;
890 
891 	for_each_sg(data->sg, sg, data->sg_len, i) {
892 		if (sg->offset & 3 || sg->length & 3)
893 			return -EINVAL;
894 	}
895 
896 	sg_len = dma_map_sg(host->dev,
897 			    data->sg,
898 			    data->sg_len,
899 			    mmc_get_dma_dir(data));
900 	if (sg_len == 0)
901 		return -EINVAL;
902 
903 	data->host_cookie = cookie;
904 
905 	return sg_len;
906 }
907 
908 static void dw_mci_pre_req(struct mmc_host *mmc,
909 			   struct mmc_request *mrq)
910 {
911 	struct dw_mci_slot *slot = mmc_priv(mmc);
912 	struct mmc_data *data = mrq->data;
913 
914 	if (!slot->host->use_dma || !data)
915 		return;
916 
917 	/* This data might be unmapped at this time */
918 	data->host_cookie = COOKIE_UNMAPPED;
919 
920 	if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
921 				COOKIE_PRE_MAPPED) < 0)
922 		data->host_cookie = COOKIE_UNMAPPED;
923 }
924 
925 static void dw_mci_post_req(struct mmc_host *mmc,
926 			    struct mmc_request *mrq,
927 			    int err)
928 {
929 	struct dw_mci_slot *slot = mmc_priv(mmc);
930 	struct mmc_data *data = mrq->data;
931 
932 	if (!slot->host->use_dma || !data)
933 		return;
934 
935 	if (data->host_cookie != COOKIE_UNMAPPED)
936 		dma_unmap_sg(slot->host->dev,
937 			     data->sg,
938 			     data->sg_len,
939 			     mmc_get_dma_dir(data));
940 	data->host_cookie = COOKIE_UNMAPPED;
941 }
942 
943 static int dw_mci_get_cd(struct mmc_host *mmc)
944 {
945 	int present;
946 	struct dw_mci_slot *slot = mmc_priv(mmc);
947 	struct dw_mci *host = slot->host;
948 	int gpio_cd = mmc_gpio_get_cd(mmc);
949 
950 	/* Use platform get_cd function, else try onboard card detect */
951 	if (((mmc->caps & MMC_CAP_NEEDS_POLL)
952 				|| !mmc_card_is_removable(mmc))) {
953 		present = 1;
954 
955 		if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
956 			if (mmc->caps & MMC_CAP_NEEDS_POLL) {
957 				dev_info(&mmc->class_dev,
958 					"card is polling.\n");
959 			} else {
960 				dev_info(&mmc->class_dev,
961 					"card is non-removable.\n");
962 			}
963 			set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
964 		}
965 
966 		return present;
967 	} else if (gpio_cd >= 0)
968 		present = gpio_cd;
969 	else
970 		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
971 			== 0 ? 1 : 0;
972 
973 	spin_lock_bh(&host->lock);
974 	if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
975 		dev_dbg(&mmc->class_dev, "card is present\n");
976 	else if (!present &&
977 			!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
978 		dev_dbg(&mmc->class_dev, "card is not present\n");
979 	spin_unlock_bh(&host->lock);
980 
981 	return present;
982 }
983 
984 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
985 {
986 	unsigned int blksz = data->blksz;
987 	const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
988 	u32 fifo_width = 1 << host->data_shift;
989 	u32 blksz_depth = blksz / fifo_width, fifoth_val;
990 	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
991 	int idx = ARRAY_SIZE(mszs) - 1;
992 
993 	/* pio should ship this scenario */
994 	if (!host->use_dma)
995 		return;
996 
997 	tx_wmark = (host->fifo_depth) / 2;
998 	tx_wmark_invers = host->fifo_depth - tx_wmark;
999 
1000 	/*
1001 	 * MSIZE is '1',
1002 	 * if blksz is not a multiple of the FIFO width
1003 	 */
1004 	if (blksz % fifo_width)
1005 		goto done;
1006 
1007 	do {
1008 		if (!((blksz_depth % mszs[idx]) ||
1009 		     (tx_wmark_invers % mszs[idx]))) {
1010 			msize = idx;
1011 			rx_wmark = mszs[idx] - 1;
1012 			break;
1013 		}
1014 	} while (--idx > 0);
1015 	/*
1016 	 * If idx is '0', it won't be tried
1017 	 * Thus, initial values are uesed
1018 	 */
1019 done:
1020 	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1021 	mci_writel(host, FIFOTH, fifoth_val);
1022 }
1023 
1024 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1025 {
1026 	unsigned int blksz = data->blksz;
1027 	u32 blksz_depth, fifo_depth;
1028 	u16 thld_size;
1029 	u8 enable;
1030 
1031 	/*
1032 	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1033 	 * in the FIFO region, so we really shouldn't access it).
1034 	 */
1035 	if (host->verid < DW_MMC_240A ||
1036 		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1037 		return;
1038 
1039 	/*
1040 	 * Card write Threshold is introduced since 2.80a
1041 	 * It's used when HS400 mode is enabled.
1042 	 */
1043 	if (data->flags & MMC_DATA_WRITE &&
1044 		!(host->timing != MMC_TIMING_MMC_HS400))
1045 		return;
1046 
1047 	if (data->flags & MMC_DATA_WRITE)
1048 		enable = SDMMC_CARD_WR_THR_EN;
1049 	else
1050 		enable = SDMMC_CARD_RD_THR_EN;
1051 
1052 	if (host->timing != MMC_TIMING_MMC_HS200 &&
1053 	    host->timing != MMC_TIMING_UHS_SDR104)
1054 		goto disable;
1055 
1056 	blksz_depth = blksz / (1 << host->data_shift);
1057 	fifo_depth = host->fifo_depth;
1058 
1059 	if (blksz_depth > fifo_depth)
1060 		goto disable;
1061 
1062 	/*
1063 	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1064 	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1065 	 * Currently just choose blksz.
1066 	 */
1067 	thld_size = blksz;
1068 	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1069 	return;
1070 
1071 disable:
1072 	mci_writel(host, CDTHRCTL, 0);
1073 }
1074 
1075 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1076 {
1077 	unsigned long irqflags;
1078 	int sg_len;
1079 	u32 temp;
1080 
1081 	host->using_dma = 0;
1082 
1083 	/* If we don't have a channel, we can't do DMA */
1084 	if (!host->use_dma)
1085 		return -ENODEV;
1086 
1087 	sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1088 	if (sg_len < 0) {
1089 		host->dma_ops->stop(host);
1090 		return sg_len;
1091 	}
1092 
1093 	host->using_dma = 1;
1094 
1095 	if (host->use_dma == TRANS_MODE_IDMAC)
1096 		dev_vdbg(host->dev,
1097 			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1098 			 (unsigned long)host->sg_cpu,
1099 			 (unsigned long)host->sg_dma,
1100 			 sg_len);
1101 
1102 	/*
1103 	 * Decide the MSIZE and RX/TX Watermark.
1104 	 * If current block size is same with previous size,
1105 	 * no need to update fifoth.
1106 	 */
1107 	if (host->prev_blksz != data->blksz)
1108 		dw_mci_adjust_fifoth(host, data);
1109 
1110 	/* Enable the DMA interface */
1111 	temp = mci_readl(host, CTRL);
1112 	temp |= SDMMC_CTRL_DMA_ENABLE;
1113 	mci_writel(host, CTRL, temp);
1114 
1115 	/* Disable RX/TX IRQs, let DMA handle it */
1116 	spin_lock_irqsave(&host->irq_lock, irqflags);
1117 	temp = mci_readl(host, INTMASK);
1118 	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1119 	mci_writel(host, INTMASK, temp);
1120 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1121 
1122 	if (host->dma_ops->start(host, sg_len)) {
1123 		host->dma_ops->stop(host);
1124 		/* We can't do DMA, try PIO for this one */
1125 		dev_dbg(host->dev,
1126 			"%s: fall back to PIO mode for current transfer\n",
1127 			__func__);
1128 		return -ENODEV;
1129 	}
1130 
1131 	return 0;
1132 }
1133 
1134 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1135 {
1136 	unsigned long irqflags;
1137 	int flags = SG_MITER_ATOMIC;
1138 	u32 temp;
1139 
1140 	data->error = -EINPROGRESS;
1141 
1142 	WARN_ON(host->data);
1143 	host->sg = NULL;
1144 	host->data = data;
1145 
1146 	if (data->flags & MMC_DATA_READ)
1147 		host->dir_status = DW_MCI_RECV_STATUS;
1148 	else
1149 		host->dir_status = DW_MCI_SEND_STATUS;
1150 
1151 	dw_mci_ctrl_thld(host, data);
1152 
1153 	if (dw_mci_submit_data_dma(host, data)) {
1154 		if (host->data->flags & MMC_DATA_READ)
1155 			flags |= SG_MITER_TO_SG;
1156 		else
1157 			flags |= SG_MITER_FROM_SG;
1158 
1159 		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1160 		host->sg = data->sg;
1161 		host->part_buf_start = 0;
1162 		host->part_buf_count = 0;
1163 
1164 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1165 
1166 		spin_lock_irqsave(&host->irq_lock, irqflags);
1167 		temp = mci_readl(host, INTMASK);
1168 		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1169 		mci_writel(host, INTMASK, temp);
1170 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1171 
1172 		temp = mci_readl(host, CTRL);
1173 		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1174 		mci_writel(host, CTRL, temp);
1175 
1176 		/*
1177 		 * Use the initial fifoth_val for PIO mode. If wm_algined
1178 		 * is set, we set watermark same as data size.
1179 		 * If next issued data may be transfered by DMA mode,
1180 		 * prev_blksz should be invalidated.
1181 		 */
1182 		if (host->wm_aligned)
1183 			dw_mci_adjust_fifoth(host, data);
1184 		else
1185 			mci_writel(host, FIFOTH, host->fifoth_val);
1186 		host->prev_blksz = 0;
1187 	} else {
1188 		/*
1189 		 * Keep the current block size.
1190 		 * It will be used to decide whether to update
1191 		 * fifoth register next time.
1192 		 */
1193 		host->prev_blksz = data->blksz;
1194 	}
1195 }
1196 
1197 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1198 {
1199 	struct dw_mci *host = slot->host;
1200 	unsigned int clock = slot->clock;
1201 	u32 div;
1202 	u32 clk_en_a;
1203 	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1204 
1205 	/* We must continue to set bit 28 in CMD until the change is complete */
1206 	if (host->state == STATE_WAITING_CMD11_DONE)
1207 		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1208 
1209 	if (!clock) {
1210 		mci_writel(host, CLKENA, 0);
1211 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1212 	} else if (clock != host->current_speed || force_clkinit) {
1213 		div = host->bus_hz / clock;
1214 		if (host->bus_hz % clock && host->bus_hz > clock)
1215 			/*
1216 			 * move the + 1 after the divide to prevent
1217 			 * over-clocking the card.
1218 			 */
1219 			div += 1;
1220 
1221 		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1222 
1223 		if ((clock != slot->__clk_old &&
1224 			!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1225 			force_clkinit) {
1226 			/* Silent the verbose log if calling from PM context */
1227 			if (!force_clkinit)
1228 				dev_info(&slot->mmc->class_dev,
1229 					 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1230 					 slot->id, host->bus_hz, clock,
1231 					 div ? ((host->bus_hz / div) >> 1) :
1232 					 host->bus_hz, div);
1233 
1234 			/*
1235 			 * If card is polling, display the message only
1236 			 * one time at boot time.
1237 			 */
1238 			if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1239 					slot->mmc->f_min == clock)
1240 				set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1241 		}
1242 
1243 		/* disable clock */
1244 		mci_writel(host, CLKENA, 0);
1245 		mci_writel(host, CLKSRC, 0);
1246 
1247 		/* inform CIU */
1248 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1249 
1250 		/* set clock to desired speed */
1251 		mci_writel(host, CLKDIV, div);
1252 
1253 		/* inform CIU */
1254 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1255 
1256 		/* enable clock; only low power if no SDIO */
1257 		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1258 		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1259 			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1260 		mci_writel(host, CLKENA, clk_en_a);
1261 
1262 		/* inform CIU */
1263 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1264 
1265 		/* keep the last clock value that was requested from core */
1266 		slot->__clk_old = clock;
1267 	}
1268 
1269 	host->current_speed = clock;
1270 
1271 	/* Set the current slot bus width */
1272 	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1273 }
1274 
1275 static void __dw_mci_start_request(struct dw_mci *host,
1276 				   struct dw_mci_slot *slot,
1277 				   struct mmc_command *cmd)
1278 {
1279 	struct mmc_request *mrq;
1280 	struct mmc_data	*data;
1281 	u32 cmdflags;
1282 
1283 	mrq = slot->mrq;
1284 
1285 	host->mrq = mrq;
1286 
1287 	host->pending_events = 0;
1288 	host->completed_events = 0;
1289 	host->cmd_status = 0;
1290 	host->data_status = 0;
1291 	host->dir_status = 0;
1292 
1293 	data = cmd->data;
1294 	if (data) {
1295 		mci_writel(host, TMOUT, 0xFFFFFFFF);
1296 		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1297 		mci_writel(host, BLKSIZ, data->blksz);
1298 	}
1299 
1300 	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1301 
1302 	/* this is the first command, send the initialization clock */
1303 	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1304 		cmdflags |= SDMMC_CMD_INIT;
1305 
1306 	if (data) {
1307 		dw_mci_submit_data(host, data);
1308 		wmb(); /* drain writebuffer */
1309 	}
1310 
1311 	dw_mci_start_command(host, cmd, cmdflags);
1312 
1313 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1314 		unsigned long irqflags;
1315 
1316 		/*
1317 		 * Databook says to fail after 2ms w/ no response, but evidence
1318 		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1319 		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1320 		 * is just about to roll over.
1321 		 *
1322 		 * We do this whole thing under spinlock and only if the
1323 		 * command hasn't already completed (indicating the the irq
1324 		 * already ran so we don't want the timeout).
1325 		 */
1326 		spin_lock_irqsave(&host->irq_lock, irqflags);
1327 		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1328 			mod_timer(&host->cmd11_timer,
1329 				jiffies + msecs_to_jiffies(500) + 1);
1330 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1331 	}
1332 
1333 	host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1334 }
1335 
1336 static void dw_mci_start_request(struct dw_mci *host,
1337 				 struct dw_mci_slot *slot)
1338 {
1339 	struct mmc_request *mrq = slot->mrq;
1340 	struct mmc_command *cmd;
1341 
1342 	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1343 	__dw_mci_start_request(host, slot, cmd);
1344 }
1345 
1346 /* must be called with host->lock held */
1347 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1348 				 struct mmc_request *mrq)
1349 {
1350 	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1351 		 host->state);
1352 
1353 	slot->mrq = mrq;
1354 
1355 	if (host->state == STATE_WAITING_CMD11_DONE) {
1356 		dev_warn(&slot->mmc->class_dev,
1357 			 "Voltage change didn't complete\n");
1358 		/*
1359 		 * this case isn't expected to happen, so we can
1360 		 * either crash here or just try to continue on
1361 		 * in the closest possible state
1362 		 */
1363 		host->state = STATE_IDLE;
1364 	}
1365 
1366 	if (host->state == STATE_IDLE) {
1367 		host->state = STATE_SENDING_CMD;
1368 		dw_mci_start_request(host, slot);
1369 	} else {
1370 		list_add_tail(&slot->queue_node, &host->queue);
1371 	}
1372 }
1373 
1374 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1375 {
1376 	struct dw_mci_slot *slot = mmc_priv(mmc);
1377 	struct dw_mci *host = slot->host;
1378 
1379 	WARN_ON(slot->mrq);
1380 
1381 	/*
1382 	 * The check for card presence and queueing of the request must be
1383 	 * atomic, otherwise the card could be removed in between and the
1384 	 * request wouldn't fail until another card was inserted.
1385 	 */
1386 
1387 	if (!dw_mci_get_cd(mmc)) {
1388 		mrq->cmd->error = -ENOMEDIUM;
1389 		mmc_request_done(mmc, mrq);
1390 		return;
1391 	}
1392 
1393 	spin_lock_bh(&host->lock);
1394 
1395 	dw_mci_queue_request(host, slot, mrq);
1396 
1397 	spin_unlock_bh(&host->lock);
1398 }
1399 
1400 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1401 {
1402 	struct dw_mci_slot *slot = mmc_priv(mmc);
1403 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1404 	u32 regs;
1405 	int ret;
1406 
1407 	switch (ios->bus_width) {
1408 	case MMC_BUS_WIDTH_4:
1409 		slot->ctype = SDMMC_CTYPE_4BIT;
1410 		break;
1411 	case MMC_BUS_WIDTH_8:
1412 		slot->ctype = SDMMC_CTYPE_8BIT;
1413 		break;
1414 	default:
1415 		/* set default 1 bit mode */
1416 		slot->ctype = SDMMC_CTYPE_1BIT;
1417 	}
1418 
1419 	regs = mci_readl(slot->host, UHS_REG);
1420 
1421 	/* DDR mode set */
1422 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1423 	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1424 	    ios->timing == MMC_TIMING_MMC_HS400)
1425 		regs |= ((0x1 << slot->id) << 16);
1426 	else
1427 		regs &= ~((0x1 << slot->id) << 16);
1428 
1429 	mci_writel(slot->host, UHS_REG, regs);
1430 	slot->host->timing = ios->timing;
1431 
1432 	/*
1433 	 * Use mirror of ios->clock to prevent race with mmc
1434 	 * core ios update when finding the minimum.
1435 	 */
1436 	slot->clock = ios->clock;
1437 
1438 	if (drv_data && drv_data->set_ios)
1439 		drv_data->set_ios(slot->host, ios);
1440 
1441 	switch (ios->power_mode) {
1442 	case MMC_POWER_UP:
1443 		if (!IS_ERR(mmc->supply.vmmc)) {
1444 			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1445 					ios->vdd);
1446 			if (ret) {
1447 				dev_err(slot->host->dev,
1448 					"failed to enable vmmc regulator\n");
1449 				/*return, if failed turn on vmmc*/
1450 				return;
1451 			}
1452 		}
1453 		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1454 		regs = mci_readl(slot->host, PWREN);
1455 		regs |= (1 << slot->id);
1456 		mci_writel(slot->host, PWREN, regs);
1457 		break;
1458 	case MMC_POWER_ON:
1459 		if (!slot->host->vqmmc_enabled) {
1460 			if (!IS_ERR(mmc->supply.vqmmc)) {
1461 				ret = regulator_enable(mmc->supply.vqmmc);
1462 				if (ret < 0)
1463 					dev_err(slot->host->dev,
1464 						"failed to enable vqmmc\n");
1465 				else
1466 					slot->host->vqmmc_enabled = true;
1467 
1468 			} else {
1469 				/* Keep track so we don't reset again */
1470 				slot->host->vqmmc_enabled = true;
1471 			}
1472 
1473 			/* Reset our state machine after powering on */
1474 			dw_mci_ctrl_reset(slot->host,
1475 					  SDMMC_CTRL_ALL_RESET_FLAGS);
1476 		}
1477 
1478 		/* Adjust clock / bus width after power is up */
1479 		dw_mci_setup_bus(slot, false);
1480 
1481 		break;
1482 	case MMC_POWER_OFF:
1483 		/* Turn clock off before power goes down */
1484 		dw_mci_setup_bus(slot, false);
1485 
1486 		if (!IS_ERR(mmc->supply.vmmc))
1487 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1488 
1489 		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1490 			regulator_disable(mmc->supply.vqmmc);
1491 		slot->host->vqmmc_enabled = false;
1492 
1493 		regs = mci_readl(slot->host, PWREN);
1494 		regs &= ~(1 << slot->id);
1495 		mci_writel(slot->host, PWREN, regs);
1496 		break;
1497 	default:
1498 		break;
1499 	}
1500 
1501 	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1502 		slot->host->state = STATE_IDLE;
1503 }
1504 
1505 static int dw_mci_card_busy(struct mmc_host *mmc)
1506 {
1507 	struct dw_mci_slot *slot = mmc_priv(mmc);
1508 	u32 status;
1509 
1510 	/*
1511 	 * Check the busy bit which is low when DAT[3:0]
1512 	 * (the data lines) are 0000
1513 	 */
1514 	status = mci_readl(slot->host, STATUS);
1515 
1516 	return !!(status & SDMMC_STATUS_BUSY);
1517 }
1518 
1519 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1520 {
1521 	struct dw_mci_slot *slot = mmc_priv(mmc);
1522 	struct dw_mci *host = slot->host;
1523 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1524 	u32 uhs;
1525 	u32 v18 = SDMMC_UHS_18V << slot->id;
1526 	int ret;
1527 
1528 	if (drv_data && drv_data->switch_voltage)
1529 		return drv_data->switch_voltage(mmc, ios);
1530 
1531 	/*
1532 	 * Program the voltage.  Note that some instances of dw_mmc may use
1533 	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1534 	 * does no harm but you need to set the regulator directly.  Try both.
1535 	 */
1536 	uhs = mci_readl(host, UHS_REG);
1537 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1538 		uhs &= ~v18;
1539 	else
1540 		uhs |= v18;
1541 
1542 	if (!IS_ERR(mmc->supply.vqmmc)) {
1543 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1544 
1545 		if (ret) {
1546 			dev_dbg(&mmc->class_dev,
1547 					 "Regulator set error %d - %s V\n",
1548 					 ret, uhs & v18 ? "1.8" : "3.3");
1549 			return ret;
1550 		}
1551 	}
1552 	mci_writel(host, UHS_REG, uhs);
1553 
1554 	return 0;
1555 }
1556 
1557 static int dw_mci_get_ro(struct mmc_host *mmc)
1558 {
1559 	int read_only;
1560 	struct dw_mci_slot *slot = mmc_priv(mmc);
1561 	int gpio_ro = mmc_gpio_get_ro(mmc);
1562 
1563 	/* Use platform get_ro function, else try on board write protect */
1564 	if (gpio_ro >= 0)
1565 		read_only = gpio_ro;
1566 	else
1567 		read_only =
1568 			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1569 
1570 	dev_dbg(&mmc->class_dev, "card is %s\n",
1571 		read_only ? "read-only" : "read-write");
1572 
1573 	return read_only;
1574 }
1575 
1576 static void dw_mci_hw_reset(struct mmc_host *mmc)
1577 {
1578 	struct dw_mci_slot *slot = mmc_priv(mmc);
1579 	struct dw_mci *host = slot->host;
1580 	int reset;
1581 
1582 	if (host->use_dma == TRANS_MODE_IDMAC)
1583 		dw_mci_idmac_reset(host);
1584 
1585 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1586 				     SDMMC_CTRL_FIFO_RESET))
1587 		return;
1588 
1589 	/*
1590 	 * According to eMMC spec, card reset procedure:
1591 	 * tRstW >= 1us:   RST_n pulse width
1592 	 * tRSCA >= 200us: RST_n to Command time
1593 	 * tRSTH >= 1us:   RST_n high period
1594 	 */
1595 	reset = mci_readl(host, RST_N);
1596 	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1597 	mci_writel(host, RST_N, reset);
1598 	usleep_range(1, 2);
1599 	reset |= SDMMC_RST_HWACTIVE << slot->id;
1600 	mci_writel(host, RST_N, reset);
1601 	usleep_range(200, 300);
1602 }
1603 
1604 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1605 {
1606 	struct dw_mci_slot *slot = mmc_priv(mmc);
1607 	struct dw_mci *host = slot->host;
1608 
1609 	/*
1610 	 * Low power mode will stop the card clock when idle.  According to the
1611 	 * description of the CLKENA register we should disable low power mode
1612 	 * for SDIO cards if we need SDIO interrupts to work.
1613 	 */
1614 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1615 		const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1616 		u32 clk_en_a_old;
1617 		u32 clk_en_a;
1618 
1619 		clk_en_a_old = mci_readl(host, CLKENA);
1620 
1621 		if (card->type == MMC_TYPE_SDIO ||
1622 		    card->type == MMC_TYPE_SD_COMBO) {
1623 			set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1624 			clk_en_a = clk_en_a_old & ~clken_low_pwr;
1625 		} else {
1626 			clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1627 			clk_en_a = clk_en_a_old | clken_low_pwr;
1628 		}
1629 
1630 		if (clk_en_a != clk_en_a_old) {
1631 			mci_writel(host, CLKENA, clk_en_a);
1632 			mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1633 				     SDMMC_CMD_PRV_DAT_WAIT, 0);
1634 		}
1635 	}
1636 }
1637 
1638 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1639 {
1640 	struct dw_mci *host = slot->host;
1641 	unsigned long irqflags;
1642 	u32 int_mask;
1643 
1644 	spin_lock_irqsave(&host->irq_lock, irqflags);
1645 
1646 	/* Enable/disable Slot Specific SDIO interrupt */
1647 	int_mask = mci_readl(host, INTMASK);
1648 	if (enb)
1649 		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1650 	else
1651 		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1652 	mci_writel(host, INTMASK, int_mask);
1653 
1654 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1655 }
1656 
1657 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1658 {
1659 	struct dw_mci_slot *slot = mmc_priv(mmc);
1660 	struct dw_mci *host = slot->host;
1661 
1662 	__dw_mci_enable_sdio_irq(slot, enb);
1663 
1664 	/* Avoid runtime suspending the device when SDIO IRQ is enabled */
1665 	if (enb)
1666 		pm_runtime_get_noresume(host->dev);
1667 	else
1668 		pm_runtime_put_noidle(host->dev);
1669 }
1670 
1671 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1672 {
1673 	struct dw_mci_slot *slot = mmc_priv(mmc);
1674 
1675 	__dw_mci_enable_sdio_irq(slot, 1);
1676 }
1677 
1678 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1679 {
1680 	struct dw_mci_slot *slot = mmc_priv(mmc);
1681 	struct dw_mci *host = slot->host;
1682 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1683 	int err = -EINVAL;
1684 
1685 	if (drv_data && drv_data->execute_tuning)
1686 		err = drv_data->execute_tuning(slot, opcode);
1687 	return err;
1688 }
1689 
1690 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1691 				       struct mmc_ios *ios)
1692 {
1693 	struct dw_mci_slot *slot = mmc_priv(mmc);
1694 	struct dw_mci *host = slot->host;
1695 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1696 
1697 	if (drv_data && drv_data->prepare_hs400_tuning)
1698 		return drv_data->prepare_hs400_tuning(host, ios);
1699 
1700 	return 0;
1701 }
1702 
1703 static bool dw_mci_reset(struct dw_mci *host)
1704 {
1705 	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1706 	bool ret = false;
1707 	u32 status = 0;
1708 
1709 	/*
1710 	 * Resetting generates a block interrupt, hence setting
1711 	 * the scatter-gather pointer to NULL.
1712 	 */
1713 	if (host->sg) {
1714 		sg_miter_stop(&host->sg_miter);
1715 		host->sg = NULL;
1716 	}
1717 
1718 	if (host->use_dma)
1719 		flags |= SDMMC_CTRL_DMA_RESET;
1720 
1721 	if (dw_mci_ctrl_reset(host, flags)) {
1722 		/*
1723 		 * In all cases we clear the RAWINTS
1724 		 * register to clear any interrupts.
1725 		 */
1726 		mci_writel(host, RINTSTS, 0xFFFFFFFF);
1727 
1728 		if (!host->use_dma) {
1729 			ret = true;
1730 			goto ciu_out;
1731 		}
1732 
1733 		/* Wait for dma_req to be cleared */
1734 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1735 					      status,
1736 					      !(status & SDMMC_STATUS_DMA_REQ),
1737 					      1, 500 * USEC_PER_MSEC)) {
1738 			dev_err(host->dev,
1739 				"%s: Timeout waiting for dma_req to be cleared\n",
1740 				__func__);
1741 			goto ciu_out;
1742 		}
1743 
1744 		/* when using DMA next we reset the fifo again */
1745 		if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1746 			goto ciu_out;
1747 	} else {
1748 		/* if the controller reset bit did clear, then set clock regs */
1749 		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1750 			dev_err(host->dev,
1751 				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1752 				__func__);
1753 			goto ciu_out;
1754 		}
1755 	}
1756 
1757 	if (host->use_dma == TRANS_MODE_IDMAC)
1758 		/* It is also recommended that we reset and reprogram idmac */
1759 		dw_mci_idmac_reset(host);
1760 
1761 	ret = true;
1762 
1763 ciu_out:
1764 	/* After a CTRL reset we need to have CIU set clock registers  */
1765 	mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1766 
1767 	return ret;
1768 }
1769 
1770 static const struct mmc_host_ops dw_mci_ops = {
1771 	.request		= dw_mci_request,
1772 	.pre_req		= dw_mci_pre_req,
1773 	.post_req		= dw_mci_post_req,
1774 	.set_ios		= dw_mci_set_ios,
1775 	.get_ro			= dw_mci_get_ro,
1776 	.get_cd			= dw_mci_get_cd,
1777 	.hw_reset               = dw_mci_hw_reset,
1778 	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1779 	.ack_sdio_irq		= dw_mci_ack_sdio_irq,
1780 	.execute_tuning		= dw_mci_execute_tuning,
1781 	.card_busy		= dw_mci_card_busy,
1782 	.start_signal_voltage_switch = dw_mci_switch_voltage,
1783 	.init_card		= dw_mci_init_card,
1784 	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1785 };
1786 
1787 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1788 	__releases(&host->lock)
1789 	__acquires(&host->lock)
1790 {
1791 	struct dw_mci_slot *slot;
1792 	struct mmc_host	*prev_mmc = host->slot->mmc;
1793 
1794 	WARN_ON(host->cmd || host->data);
1795 
1796 	host->slot->mrq = NULL;
1797 	host->mrq = NULL;
1798 	if (!list_empty(&host->queue)) {
1799 		slot = list_entry(host->queue.next,
1800 				  struct dw_mci_slot, queue_node);
1801 		list_del(&slot->queue_node);
1802 		dev_vdbg(host->dev, "list not empty: %s is next\n",
1803 			 mmc_hostname(slot->mmc));
1804 		host->state = STATE_SENDING_CMD;
1805 		dw_mci_start_request(host, slot);
1806 	} else {
1807 		dev_vdbg(host->dev, "list empty\n");
1808 
1809 		if (host->state == STATE_SENDING_CMD11)
1810 			host->state = STATE_WAITING_CMD11_DONE;
1811 		else
1812 			host->state = STATE_IDLE;
1813 	}
1814 
1815 	spin_unlock(&host->lock);
1816 	mmc_request_done(prev_mmc, mrq);
1817 	spin_lock(&host->lock);
1818 }
1819 
1820 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1821 {
1822 	u32 status = host->cmd_status;
1823 
1824 	host->cmd_status = 0;
1825 
1826 	/* Read the response from the card (up to 16 bytes) */
1827 	if (cmd->flags & MMC_RSP_PRESENT) {
1828 		if (cmd->flags & MMC_RSP_136) {
1829 			cmd->resp[3] = mci_readl(host, RESP0);
1830 			cmd->resp[2] = mci_readl(host, RESP1);
1831 			cmd->resp[1] = mci_readl(host, RESP2);
1832 			cmd->resp[0] = mci_readl(host, RESP3);
1833 		} else {
1834 			cmd->resp[0] = mci_readl(host, RESP0);
1835 			cmd->resp[1] = 0;
1836 			cmd->resp[2] = 0;
1837 			cmd->resp[3] = 0;
1838 		}
1839 	}
1840 
1841 	if (status & SDMMC_INT_RTO)
1842 		cmd->error = -ETIMEDOUT;
1843 	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1844 		cmd->error = -EILSEQ;
1845 	else if (status & SDMMC_INT_RESP_ERR)
1846 		cmd->error = -EIO;
1847 	else
1848 		cmd->error = 0;
1849 
1850 	return cmd->error;
1851 }
1852 
1853 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1854 {
1855 	u32 status = host->data_status;
1856 
1857 	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1858 		if (status & SDMMC_INT_DRTO) {
1859 			data->error = -ETIMEDOUT;
1860 		} else if (status & SDMMC_INT_DCRC) {
1861 			data->error = -EILSEQ;
1862 		} else if (status & SDMMC_INT_EBE) {
1863 			if (host->dir_status ==
1864 				DW_MCI_SEND_STATUS) {
1865 				/*
1866 				 * No data CRC status was returned.
1867 				 * The number of bytes transferred
1868 				 * will be exaggerated in PIO mode.
1869 				 */
1870 				data->bytes_xfered = 0;
1871 				data->error = -ETIMEDOUT;
1872 			} else if (host->dir_status ==
1873 					DW_MCI_RECV_STATUS) {
1874 				data->error = -EILSEQ;
1875 			}
1876 		} else {
1877 			/* SDMMC_INT_SBE is included */
1878 			data->error = -EILSEQ;
1879 		}
1880 
1881 		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1882 
1883 		/*
1884 		 * After an error, there may be data lingering
1885 		 * in the FIFO
1886 		 */
1887 		dw_mci_reset(host);
1888 	} else {
1889 		data->bytes_xfered = data->blocks * data->blksz;
1890 		data->error = 0;
1891 	}
1892 
1893 	return data->error;
1894 }
1895 
1896 static void dw_mci_set_drto(struct dw_mci *host)
1897 {
1898 	unsigned int drto_clks;
1899 	unsigned int drto_ms;
1900 
1901 	drto_clks = mci_readl(host, TMOUT) >> 8;
1902 	drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
1903 
1904 	/* add a bit spare time */
1905 	drto_ms += 10;
1906 
1907 	mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1908 }
1909 
1910 static void dw_mci_tasklet_func(unsigned long priv)
1911 {
1912 	struct dw_mci *host = (struct dw_mci *)priv;
1913 	struct mmc_data	*data;
1914 	struct mmc_command *cmd;
1915 	struct mmc_request *mrq;
1916 	enum dw_mci_state state;
1917 	enum dw_mci_state prev_state;
1918 	unsigned int err;
1919 
1920 	spin_lock(&host->lock);
1921 
1922 	state = host->state;
1923 	data = host->data;
1924 	mrq = host->mrq;
1925 
1926 	do {
1927 		prev_state = state;
1928 
1929 		switch (state) {
1930 		case STATE_IDLE:
1931 		case STATE_WAITING_CMD11_DONE:
1932 			break;
1933 
1934 		case STATE_SENDING_CMD11:
1935 		case STATE_SENDING_CMD:
1936 			if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1937 						&host->pending_events))
1938 				break;
1939 
1940 			cmd = host->cmd;
1941 			host->cmd = NULL;
1942 			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1943 			err = dw_mci_command_complete(host, cmd);
1944 			if (cmd == mrq->sbc && !err) {
1945 				prev_state = state = STATE_SENDING_CMD;
1946 				__dw_mci_start_request(host, host->slot,
1947 						       mrq->cmd);
1948 				goto unlock;
1949 			}
1950 
1951 			if (cmd->data && err) {
1952 				/*
1953 				 * During UHS tuning sequence, sending the stop
1954 				 * command after the response CRC error would
1955 				 * throw the system into a confused state
1956 				 * causing all future tuning phases to report
1957 				 * failure.
1958 				 *
1959 				 * In such case controller will move into a data
1960 				 * transfer state after a response error or
1961 				 * response CRC error. Let's let that finish
1962 				 * before trying to send a stop, so we'll go to
1963 				 * STATE_SENDING_DATA.
1964 				 *
1965 				 * Although letting the data transfer take place
1966 				 * will waste a bit of time (we already know
1967 				 * the command was bad), it can't cause any
1968 				 * errors since it's possible it would have
1969 				 * taken place anyway if this tasklet got
1970 				 * delayed. Allowing the transfer to take place
1971 				 * avoids races and keeps things simple.
1972 				 */
1973 				if ((err != -ETIMEDOUT) &&
1974 				    (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
1975 					state = STATE_SENDING_DATA;
1976 					continue;
1977 				}
1978 
1979 				dw_mci_stop_dma(host);
1980 				send_stop_abort(host, data);
1981 				state = STATE_SENDING_STOP;
1982 				break;
1983 			}
1984 
1985 			if (!cmd->data || err) {
1986 				dw_mci_request_end(host, mrq);
1987 				goto unlock;
1988 			}
1989 
1990 			prev_state = state = STATE_SENDING_DATA;
1991 			/* fall through */
1992 
1993 		case STATE_SENDING_DATA:
1994 			/*
1995 			 * We could get a data error and never a transfer
1996 			 * complete so we'd better check for it here.
1997 			 *
1998 			 * Note that we don't really care if we also got a
1999 			 * transfer complete; stopping the DMA and sending an
2000 			 * abort won't hurt.
2001 			 */
2002 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2003 					       &host->pending_events)) {
2004 				dw_mci_stop_dma(host);
2005 				if (!(host->data_status & (SDMMC_INT_DRTO |
2006 							   SDMMC_INT_EBE)))
2007 					send_stop_abort(host, data);
2008 				state = STATE_DATA_ERROR;
2009 				break;
2010 			}
2011 
2012 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2013 						&host->pending_events)) {
2014 				/*
2015 				 * If all data-related interrupts don't come
2016 				 * within the given time in reading data state.
2017 				 */
2018 				if (host->dir_status == DW_MCI_RECV_STATUS)
2019 					dw_mci_set_drto(host);
2020 				break;
2021 			}
2022 
2023 			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2024 
2025 			/*
2026 			 * Handle an EVENT_DATA_ERROR that might have shown up
2027 			 * before the transfer completed.  This might not have
2028 			 * been caught by the check above because the interrupt
2029 			 * could have gone off between the previous check and
2030 			 * the check for transfer complete.
2031 			 *
2032 			 * Technically this ought not be needed assuming we
2033 			 * get a DATA_COMPLETE eventually (we'll notice the
2034 			 * error and end the request), but it shouldn't hurt.
2035 			 *
2036 			 * This has the advantage of sending the stop command.
2037 			 */
2038 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2039 					       &host->pending_events)) {
2040 				dw_mci_stop_dma(host);
2041 				if (!(host->data_status & (SDMMC_INT_DRTO |
2042 							   SDMMC_INT_EBE)))
2043 					send_stop_abort(host, data);
2044 				state = STATE_DATA_ERROR;
2045 				break;
2046 			}
2047 			prev_state = state = STATE_DATA_BUSY;
2048 
2049 			/* fall through */
2050 
2051 		case STATE_DATA_BUSY:
2052 			if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
2053 						&host->pending_events)) {
2054 				/*
2055 				 * If data error interrupt comes but data over
2056 				 * interrupt doesn't come within the given time.
2057 				 * in reading data state.
2058 				 */
2059 				if (host->dir_status == DW_MCI_RECV_STATUS)
2060 					dw_mci_set_drto(host);
2061 				break;
2062 			}
2063 
2064 			host->data = NULL;
2065 			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2066 			err = dw_mci_data_complete(host, data);
2067 
2068 			if (!err) {
2069 				if (!data->stop || mrq->sbc) {
2070 					if (mrq->sbc && data->stop)
2071 						data->stop->error = 0;
2072 					dw_mci_request_end(host, mrq);
2073 					goto unlock;
2074 				}
2075 
2076 				/* stop command for open-ended transfer*/
2077 				if (data->stop)
2078 					send_stop_abort(host, data);
2079 			} else {
2080 				/*
2081 				 * If we don't have a command complete now we'll
2082 				 * never get one since we just reset everything;
2083 				 * better end the request.
2084 				 *
2085 				 * If we do have a command complete we'll fall
2086 				 * through to the SENDING_STOP command and
2087 				 * everything will be peachy keen.
2088 				 */
2089 				if (!test_bit(EVENT_CMD_COMPLETE,
2090 					      &host->pending_events)) {
2091 					host->cmd = NULL;
2092 					dw_mci_request_end(host, mrq);
2093 					goto unlock;
2094 				}
2095 			}
2096 
2097 			/*
2098 			 * If err has non-zero,
2099 			 * stop-abort command has been already issued.
2100 			 */
2101 			prev_state = state = STATE_SENDING_STOP;
2102 
2103 			/* fall through */
2104 
2105 		case STATE_SENDING_STOP:
2106 			if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
2107 						&host->pending_events))
2108 				break;
2109 
2110 			/* CMD error in data command */
2111 			if (mrq->cmd->error && mrq->data)
2112 				dw_mci_reset(host);
2113 
2114 			host->cmd = NULL;
2115 			host->data = NULL;
2116 
2117 			if (!mrq->sbc && mrq->stop)
2118 				dw_mci_command_complete(host, mrq->stop);
2119 			else
2120 				host->cmd_status = 0;
2121 
2122 			dw_mci_request_end(host, mrq);
2123 			goto unlock;
2124 
2125 		case STATE_DATA_ERROR:
2126 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2127 						&host->pending_events))
2128 				break;
2129 
2130 			state = STATE_DATA_BUSY;
2131 			break;
2132 		}
2133 	} while (state != prev_state);
2134 
2135 	host->state = state;
2136 unlock:
2137 	spin_unlock(&host->lock);
2138 
2139 }
2140 
2141 /* push final bytes to part_buf, only use during push */
2142 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2143 {
2144 	memcpy((void *)&host->part_buf, buf, cnt);
2145 	host->part_buf_count = cnt;
2146 }
2147 
2148 /* append bytes to part_buf, only use during push */
2149 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2150 {
2151 	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2152 	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2153 	host->part_buf_count += cnt;
2154 	return cnt;
2155 }
2156 
2157 /* pull first bytes from part_buf, only use during pull */
2158 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2159 {
2160 	cnt = min_t(int, cnt, host->part_buf_count);
2161 	if (cnt) {
2162 		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2163 		       cnt);
2164 		host->part_buf_count -= cnt;
2165 		host->part_buf_start += cnt;
2166 	}
2167 	return cnt;
2168 }
2169 
2170 /* pull final bytes from the part_buf, assuming it's just been filled */
2171 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2172 {
2173 	memcpy(buf, &host->part_buf, cnt);
2174 	host->part_buf_start = cnt;
2175 	host->part_buf_count = (1 << host->data_shift) - cnt;
2176 }
2177 
2178 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2179 {
2180 	struct mmc_data *data = host->data;
2181 	int init_cnt = cnt;
2182 
2183 	/* try and push anything in the part_buf */
2184 	if (unlikely(host->part_buf_count)) {
2185 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2186 
2187 		buf += len;
2188 		cnt -= len;
2189 		if (host->part_buf_count == 2) {
2190 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2191 			host->part_buf_count = 0;
2192 		}
2193 	}
2194 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2195 	if (unlikely((unsigned long)buf & 0x1)) {
2196 		while (cnt >= 2) {
2197 			u16 aligned_buf[64];
2198 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2199 			int items = len >> 1;
2200 			int i;
2201 			/* memcpy from input buffer into aligned buffer */
2202 			memcpy(aligned_buf, buf, len);
2203 			buf += len;
2204 			cnt -= len;
2205 			/* push data from aligned buffer into fifo */
2206 			for (i = 0; i < items; ++i)
2207 				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2208 		}
2209 	} else
2210 #endif
2211 	{
2212 		u16 *pdata = buf;
2213 
2214 		for (; cnt >= 2; cnt -= 2)
2215 			mci_fifo_writew(host->fifo_reg, *pdata++);
2216 		buf = pdata;
2217 	}
2218 	/* put anything remaining in the part_buf */
2219 	if (cnt) {
2220 		dw_mci_set_part_bytes(host, buf, cnt);
2221 		 /* Push data if we have reached the expected data length */
2222 		if ((data->bytes_xfered + init_cnt) ==
2223 		    (data->blksz * data->blocks))
2224 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2225 	}
2226 }
2227 
2228 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2229 {
2230 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2231 	if (unlikely((unsigned long)buf & 0x1)) {
2232 		while (cnt >= 2) {
2233 			/* pull data from fifo into aligned buffer */
2234 			u16 aligned_buf[64];
2235 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2236 			int items = len >> 1;
2237 			int i;
2238 
2239 			for (i = 0; i < items; ++i)
2240 				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2241 			/* memcpy from aligned buffer into output buffer */
2242 			memcpy(buf, aligned_buf, len);
2243 			buf += len;
2244 			cnt -= len;
2245 		}
2246 	} else
2247 #endif
2248 	{
2249 		u16 *pdata = buf;
2250 
2251 		for (; cnt >= 2; cnt -= 2)
2252 			*pdata++ = mci_fifo_readw(host->fifo_reg);
2253 		buf = pdata;
2254 	}
2255 	if (cnt) {
2256 		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2257 		dw_mci_pull_final_bytes(host, buf, cnt);
2258 	}
2259 }
2260 
2261 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2262 {
2263 	struct mmc_data *data = host->data;
2264 	int init_cnt = cnt;
2265 
2266 	/* try and push anything in the part_buf */
2267 	if (unlikely(host->part_buf_count)) {
2268 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2269 
2270 		buf += len;
2271 		cnt -= len;
2272 		if (host->part_buf_count == 4) {
2273 			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2274 			host->part_buf_count = 0;
2275 		}
2276 	}
2277 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2278 	if (unlikely((unsigned long)buf & 0x3)) {
2279 		while (cnt >= 4) {
2280 			u32 aligned_buf[32];
2281 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2282 			int items = len >> 2;
2283 			int i;
2284 			/* memcpy from input buffer into aligned buffer */
2285 			memcpy(aligned_buf, buf, len);
2286 			buf += len;
2287 			cnt -= len;
2288 			/* push data from aligned buffer into fifo */
2289 			for (i = 0; i < items; ++i)
2290 				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2291 		}
2292 	} else
2293 #endif
2294 	{
2295 		u32 *pdata = buf;
2296 
2297 		for (; cnt >= 4; cnt -= 4)
2298 			mci_fifo_writel(host->fifo_reg, *pdata++);
2299 		buf = pdata;
2300 	}
2301 	/* put anything remaining in the part_buf */
2302 	if (cnt) {
2303 		dw_mci_set_part_bytes(host, buf, cnt);
2304 		 /* Push data if we have reached the expected data length */
2305 		if ((data->bytes_xfered + init_cnt) ==
2306 		    (data->blksz * data->blocks))
2307 			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2308 	}
2309 }
2310 
2311 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2312 {
2313 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2314 	if (unlikely((unsigned long)buf & 0x3)) {
2315 		while (cnt >= 4) {
2316 			/* pull data from fifo into aligned buffer */
2317 			u32 aligned_buf[32];
2318 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2319 			int items = len >> 2;
2320 			int i;
2321 
2322 			for (i = 0; i < items; ++i)
2323 				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2324 			/* memcpy from aligned buffer into output buffer */
2325 			memcpy(buf, aligned_buf, len);
2326 			buf += len;
2327 			cnt -= len;
2328 		}
2329 	} else
2330 #endif
2331 	{
2332 		u32 *pdata = buf;
2333 
2334 		for (; cnt >= 4; cnt -= 4)
2335 			*pdata++ = mci_fifo_readl(host->fifo_reg);
2336 		buf = pdata;
2337 	}
2338 	if (cnt) {
2339 		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2340 		dw_mci_pull_final_bytes(host, buf, cnt);
2341 	}
2342 }
2343 
2344 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2345 {
2346 	struct mmc_data *data = host->data;
2347 	int init_cnt = cnt;
2348 
2349 	/* try and push anything in the part_buf */
2350 	if (unlikely(host->part_buf_count)) {
2351 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2352 
2353 		buf += len;
2354 		cnt -= len;
2355 
2356 		if (host->part_buf_count == 8) {
2357 			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2358 			host->part_buf_count = 0;
2359 		}
2360 	}
2361 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2362 	if (unlikely((unsigned long)buf & 0x7)) {
2363 		while (cnt >= 8) {
2364 			u64 aligned_buf[16];
2365 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2366 			int items = len >> 3;
2367 			int i;
2368 			/* memcpy from input buffer into aligned buffer */
2369 			memcpy(aligned_buf, buf, len);
2370 			buf += len;
2371 			cnt -= len;
2372 			/* push data from aligned buffer into fifo */
2373 			for (i = 0; i < items; ++i)
2374 				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2375 		}
2376 	} else
2377 #endif
2378 	{
2379 		u64 *pdata = buf;
2380 
2381 		for (; cnt >= 8; cnt -= 8)
2382 			mci_fifo_writeq(host->fifo_reg, *pdata++);
2383 		buf = pdata;
2384 	}
2385 	/* put anything remaining in the part_buf */
2386 	if (cnt) {
2387 		dw_mci_set_part_bytes(host, buf, cnt);
2388 		/* Push data if we have reached the expected data length */
2389 		if ((data->bytes_xfered + init_cnt) ==
2390 		    (data->blksz * data->blocks))
2391 			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2392 	}
2393 }
2394 
2395 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2396 {
2397 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2398 	if (unlikely((unsigned long)buf & 0x7)) {
2399 		while (cnt >= 8) {
2400 			/* pull data from fifo into aligned buffer */
2401 			u64 aligned_buf[16];
2402 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2403 			int items = len >> 3;
2404 			int i;
2405 
2406 			for (i = 0; i < items; ++i)
2407 				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2408 
2409 			/* memcpy from aligned buffer into output buffer */
2410 			memcpy(buf, aligned_buf, len);
2411 			buf += len;
2412 			cnt -= len;
2413 		}
2414 	} else
2415 #endif
2416 	{
2417 		u64 *pdata = buf;
2418 
2419 		for (; cnt >= 8; cnt -= 8)
2420 			*pdata++ = mci_fifo_readq(host->fifo_reg);
2421 		buf = pdata;
2422 	}
2423 	if (cnt) {
2424 		host->part_buf = mci_fifo_readq(host->fifo_reg);
2425 		dw_mci_pull_final_bytes(host, buf, cnt);
2426 	}
2427 }
2428 
2429 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2430 {
2431 	int len;
2432 
2433 	/* get remaining partial bytes */
2434 	len = dw_mci_pull_part_bytes(host, buf, cnt);
2435 	if (unlikely(len == cnt))
2436 		return;
2437 	buf += len;
2438 	cnt -= len;
2439 
2440 	/* get the rest of the data */
2441 	host->pull_data(host, buf, cnt);
2442 }
2443 
2444 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2445 {
2446 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2447 	void *buf;
2448 	unsigned int offset;
2449 	struct mmc_data	*data = host->data;
2450 	int shift = host->data_shift;
2451 	u32 status;
2452 	unsigned int len;
2453 	unsigned int remain, fcnt;
2454 
2455 	do {
2456 		if (!sg_miter_next(sg_miter))
2457 			goto done;
2458 
2459 		host->sg = sg_miter->piter.sg;
2460 		buf = sg_miter->addr;
2461 		remain = sg_miter->length;
2462 		offset = 0;
2463 
2464 		do {
2465 			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2466 					<< shift) + host->part_buf_count;
2467 			len = min(remain, fcnt);
2468 			if (!len)
2469 				break;
2470 			dw_mci_pull_data(host, (void *)(buf + offset), len);
2471 			data->bytes_xfered += len;
2472 			offset += len;
2473 			remain -= len;
2474 		} while (remain);
2475 
2476 		sg_miter->consumed = offset;
2477 		status = mci_readl(host, MINTSTS);
2478 		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2479 	/* if the RXDR is ready read again */
2480 	} while ((status & SDMMC_INT_RXDR) ||
2481 		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2482 
2483 	if (!remain) {
2484 		if (!sg_miter_next(sg_miter))
2485 			goto done;
2486 		sg_miter->consumed = 0;
2487 	}
2488 	sg_miter_stop(sg_miter);
2489 	return;
2490 
2491 done:
2492 	sg_miter_stop(sg_miter);
2493 	host->sg = NULL;
2494 	smp_wmb(); /* drain writebuffer */
2495 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2496 }
2497 
2498 static void dw_mci_write_data_pio(struct dw_mci *host)
2499 {
2500 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2501 	void *buf;
2502 	unsigned int offset;
2503 	struct mmc_data	*data = host->data;
2504 	int shift = host->data_shift;
2505 	u32 status;
2506 	unsigned int len;
2507 	unsigned int fifo_depth = host->fifo_depth;
2508 	unsigned int remain, fcnt;
2509 
2510 	do {
2511 		if (!sg_miter_next(sg_miter))
2512 			goto done;
2513 
2514 		host->sg = sg_miter->piter.sg;
2515 		buf = sg_miter->addr;
2516 		remain = sg_miter->length;
2517 		offset = 0;
2518 
2519 		do {
2520 			fcnt = ((fifo_depth -
2521 				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2522 					<< shift) - host->part_buf_count;
2523 			len = min(remain, fcnt);
2524 			if (!len)
2525 				break;
2526 			host->push_data(host, (void *)(buf + offset), len);
2527 			data->bytes_xfered += len;
2528 			offset += len;
2529 			remain -= len;
2530 		} while (remain);
2531 
2532 		sg_miter->consumed = offset;
2533 		status = mci_readl(host, MINTSTS);
2534 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2535 	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2536 
2537 	if (!remain) {
2538 		if (!sg_miter_next(sg_miter))
2539 			goto done;
2540 		sg_miter->consumed = 0;
2541 	}
2542 	sg_miter_stop(sg_miter);
2543 	return;
2544 
2545 done:
2546 	sg_miter_stop(sg_miter);
2547 	host->sg = NULL;
2548 	smp_wmb(); /* drain writebuffer */
2549 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2550 }
2551 
2552 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2553 {
2554 	if (!host->cmd_status)
2555 		host->cmd_status = status;
2556 
2557 	smp_wmb(); /* drain writebuffer */
2558 
2559 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2560 	tasklet_schedule(&host->tasklet);
2561 }
2562 
2563 static void dw_mci_handle_cd(struct dw_mci *host)
2564 {
2565 	struct dw_mci_slot *slot = host->slot;
2566 
2567 	if (slot->mmc->ops->card_event)
2568 		slot->mmc->ops->card_event(slot->mmc);
2569 	mmc_detect_change(slot->mmc,
2570 		msecs_to_jiffies(host->pdata->detect_delay_ms));
2571 }
2572 
2573 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2574 {
2575 	struct dw_mci *host = dev_id;
2576 	u32 pending;
2577 	struct dw_mci_slot *slot = host->slot;
2578 
2579 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2580 
2581 	if (pending) {
2582 		/* Check volt switch first, since it can look like an error */
2583 		if ((host->state == STATE_SENDING_CMD11) &&
2584 		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2585 			unsigned long irqflags;
2586 
2587 			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2588 			pending &= ~SDMMC_INT_VOLT_SWITCH;
2589 
2590 			/*
2591 			 * Hold the lock; we know cmd11_timer can't be kicked
2592 			 * off after the lock is released, so safe to delete.
2593 			 */
2594 			spin_lock_irqsave(&host->irq_lock, irqflags);
2595 			dw_mci_cmd_interrupt(host, pending);
2596 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2597 
2598 			del_timer(&host->cmd11_timer);
2599 		}
2600 
2601 		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2602 			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2603 			host->cmd_status = pending;
2604 			smp_wmb(); /* drain writebuffer */
2605 			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2606 		}
2607 
2608 		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2609 			/* if there is an error report DATA_ERROR */
2610 			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2611 			host->data_status = pending;
2612 			smp_wmb(); /* drain writebuffer */
2613 			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2614 			tasklet_schedule(&host->tasklet);
2615 		}
2616 
2617 		if (pending & SDMMC_INT_DATA_OVER) {
2618 			del_timer(&host->dto_timer);
2619 
2620 			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2621 			if (!host->data_status)
2622 				host->data_status = pending;
2623 			smp_wmb(); /* drain writebuffer */
2624 			if (host->dir_status == DW_MCI_RECV_STATUS) {
2625 				if (host->sg != NULL)
2626 					dw_mci_read_data_pio(host, true);
2627 			}
2628 			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2629 			tasklet_schedule(&host->tasklet);
2630 		}
2631 
2632 		if (pending & SDMMC_INT_RXDR) {
2633 			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2634 			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2635 				dw_mci_read_data_pio(host, false);
2636 		}
2637 
2638 		if (pending & SDMMC_INT_TXDR) {
2639 			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2640 			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2641 				dw_mci_write_data_pio(host);
2642 		}
2643 
2644 		if (pending & SDMMC_INT_CMD_DONE) {
2645 			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2646 			dw_mci_cmd_interrupt(host, pending);
2647 		}
2648 
2649 		if (pending & SDMMC_INT_CD) {
2650 			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2651 			dw_mci_handle_cd(host);
2652 		}
2653 
2654 		if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2655 			mci_writel(host, RINTSTS,
2656 				   SDMMC_INT_SDIO(slot->sdio_id));
2657 			__dw_mci_enable_sdio_irq(slot, 0);
2658 			sdio_signal_irq(slot->mmc);
2659 		}
2660 
2661 	}
2662 
2663 	if (host->use_dma != TRANS_MODE_IDMAC)
2664 		return IRQ_HANDLED;
2665 
2666 	/* Handle IDMA interrupts */
2667 	if (host->dma_64bit_address == 1) {
2668 		pending = mci_readl(host, IDSTS64);
2669 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2670 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2671 							SDMMC_IDMAC_INT_RI);
2672 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2673 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2674 				host->dma_ops->complete((void *)host);
2675 		}
2676 	} else {
2677 		pending = mci_readl(host, IDSTS);
2678 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2679 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2680 							SDMMC_IDMAC_INT_RI);
2681 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2682 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2683 				host->dma_ops->complete((void *)host);
2684 		}
2685 	}
2686 
2687 	return IRQ_HANDLED;
2688 }
2689 
2690 static int dw_mci_init_slot(struct dw_mci *host)
2691 {
2692 	struct mmc_host *mmc;
2693 	struct dw_mci_slot *slot;
2694 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2695 	int ctrl_id, ret;
2696 	u32 freq[2];
2697 
2698 	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2699 	if (!mmc)
2700 		return -ENOMEM;
2701 
2702 	slot = mmc_priv(mmc);
2703 	slot->id = 0;
2704 	slot->sdio_id = host->sdio_id0 + slot->id;
2705 	slot->mmc = mmc;
2706 	slot->host = host;
2707 	host->slot = slot;
2708 
2709 	mmc->ops = &dw_mci_ops;
2710 	if (device_property_read_u32_array(host->dev, "clock-freq-min-max",
2711 					   freq, 2)) {
2712 		mmc->f_min = DW_MCI_FREQ_MIN;
2713 		mmc->f_max = DW_MCI_FREQ_MAX;
2714 	} else {
2715 		dev_info(host->dev,
2716 			"'clock-freq-min-max' property was deprecated.\n");
2717 		mmc->f_min = freq[0];
2718 		mmc->f_max = freq[1];
2719 	}
2720 
2721 	/*if there are external regulators, get them*/
2722 	ret = mmc_regulator_get_supply(mmc);
2723 	if (ret == -EPROBE_DEFER)
2724 		goto err_host_allocated;
2725 
2726 	if (!mmc->ocr_avail)
2727 		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2728 
2729 	if (host->pdata->caps)
2730 		mmc->caps = host->pdata->caps;
2731 
2732 	/*
2733 	 * Support MMC_CAP_ERASE by default.
2734 	 * It needs to use trim/discard/erase commands.
2735 	 */
2736 	mmc->caps |= MMC_CAP_ERASE;
2737 
2738 	if (host->pdata->pm_caps)
2739 		mmc->pm_caps = host->pdata->pm_caps;
2740 
2741 	if (host->dev->of_node) {
2742 		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2743 		if (ctrl_id < 0)
2744 			ctrl_id = 0;
2745 	} else {
2746 		ctrl_id = to_platform_device(host->dev)->id;
2747 	}
2748 	if (drv_data && drv_data->caps)
2749 		mmc->caps |= drv_data->caps[ctrl_id];
2750 
2751 	if (host->pdata->caps2)
2752 		mmc->caps2 = host->pdata->caps2;
2753 
2754 	ret = mmc_of_parse(mmc);
2755 	if (ret)
2756 		goto err_host_allocated;
2757 
2758 	/* Process SDIO IRQs through the sdio_irq_work. */
2759 	if (mmc->caps & MMC_CAP_SDIO_IRQ)
2760 		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2761 
2762 	/* Useful defaults if platform data is unset. */
2763 	if (host->use_dma == TRANS_MODE_IDMAC) {
2764 		mmc->max_segs = host->ring_size;
2765 		mmc->max_blk_size = 65535;
2766 		mmc->max_seg_size = 0x1000;
2767 		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2768 		mmc->max_blk_count = mmc->max_req_size / 512;
2769 	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2770 		mmc->max_segs = 64;
2771 		mmc->max_blk_size = 65535;
2772 		mmc->max_blk_count = 65535;
2773 		mmc->max_req_size =
2774 				mmc->max_blk_size * mmc->max_blk_count;
2775 		mmc->max_seg_size = mmc->max_req_size;
2776 	} else {
2777 		/* TRANS_MODE_PIO */
2778 		mmc->max_segs = 64;
2779 		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2780 		mmc->max_blk_count = 512;
2781 		mmc->max_req_size = mmc->max_blk_size *
2782 				    mmc->max_blk_count;
2783 		mmc->max_seg_size = mmc->max_req_size;
2784 	}
2785 
2786 	dw_mci_get_cd(mmc);
2787 
2788 	ret = mmc_add_host(mmc);
2789 	if (ret)
2790 		goto err_host_allocated;
2791 
2792 #if defined(CONFIG_DEBUG_FS)
2793 	dw_mci_init_debugfs(slot);
2794 #endif
2795 
2796 	return 0;
2797 
2798 err_host_allocated:
2799 	mmc_free_host(mmc);
2800 	return ret;
2801 }
2802 
2803 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2804 {
2805 	/* Debugfs stuff is cleaned up by mmc core */
2806 	mmc_remove_host(slot->mmc);
2807 	slot->host->slot = NULL;
2808 	mmc_free_host(slot->mmc);
2809 }
2810 
2811 static void dw_mci_init_dma(struct dw_mci *host)
2812 {
2813 	int addr_config;
2814 	struct device *dev = host->dev;
2815 
2816 	/*
2817 	* Check tansfer mode from HCON[17:16]
2818 	* Clear the ambiguous description of dw_mmc databook:
2819 	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
2820 	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2821 	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2822 	* 2b'11: Non DW DMA Interface -> pio only
2823 	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
2824 	* simpler request/acknowledge handshake mechanism and both of them
2825 	* are regarded as external dma master for dw_mmc.
2826 	*/
2827 	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2828 	if (host->use_dma == DMA_INTERFACE_IDMA) {
2829 		host->use_dma = TRANS_MODE_IDMAC;
2830 	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2831 		   host->use_dma == DMA_INTERFACE_GDMA) {
2832 		host->use_dma = TRANS_MODE_EDMAC;
2833 	} else {
2834 		goto no_dma;
2835 	}
2836 
2837 	/* Determine which DMA interface to use */
2838 	if (host->use_dma == TRANS_MODE_IDMAC) {
2839 		/*
2840 		* Check ADDR_CONFIG bit in HCON to find
2841 		* IDMAC address bus width
2842 		*/
2843 		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2844 
2845 		if (addr_config == 1) {
2846 			/* host supports IDMAC in 64-bit address mode */
2847 			host->dma_64bit_address = 1;
2848 			dev_info(host->dev,
2849 				 "IDMAC supports 64-bit address mode.\n");
2850 			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2851 				dma_set_coherent_mask(host->dev,
2852 						      DMA_BIT_MASK(64));
2853 		} else {
2854 			/* host supports IDMAC in 32-bit address mode */
2855 			host->dma_64bit_address = 0;
2856 			dev_info(host->dev,
2857 				 "IDMAC supports 32-bit address mode.\n");
2858 		}
2859 
2860 		/* Alloc memory for sg translation */
2861 		host->sg_cpu = dmam_alloc_coherent(host->dev,
2862 						   DESC_RING_BUF_SZ,
2863 						   &host->sg_dma, GFP_KERNEL);
2864 		if (!host->sg_cpu) {
2865 			dev_err(host->dev,
2866 				"%s: could not alloc DMA memory\n",
2867 				__func__);
2868 			goto no_dma;
2869 		}
2870 
2871 		host->dma_ops = &dw_mci_idmac_ops;
2872 		dev_info(host->dev, "Using internal DMA controller.\n");
2873 	} else {
2874 		/* TRANS_MODE_EDMAC: check dma bindings again */
2875 		if ((device_property_read_string_array(dev, "dma-names",
2876 						       NULL, 0) < 0) ||
2877 		    !device_property_present(dev, "dmas")) {
2878 			goto no_dma;
2879 		}
2880 		host->dma_ops = &dw_mci_edmac_ops;
2881 		dev_info(host->dev, "Using external DMA controller.\n");
2882 	}
2883 
2884 	if (host->dma_ops->init && host->dma_ops->start &&
2885 	    host->dma_ops->stop && host->dma_ops->cleanup) {
2886 		if (host->dma_ops->init(host)) {
2887 			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2888 				__func__);
2889 			goto no_dma;
2890 		}
2891 	} else {
2892 		dev_err(host->dev, "DMA initialization not found.\n");
2893 		goto no_dma;
2894 	}
2895 
2896 	return;
2897 
2898 no_dma:
2899 	dev_info(host->dev, "Using PIO mode.\n");
2900 	host->use_dma = TRANS_MODE_PIO;
2901 }
2902 
2903 static void dw_mci_cmd11_timer(unsigned long arg)
2904 {
2905 	struct dw_mci *host = (struct dw_mci *)arg;
2906 
2907 	if (host->state != STATE_SENDING_CMD11) {
2908 		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2909 		return;
2910 	}
2911 
2912 	host->cmd_status = SDMMC_INT_RTO;
2913 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2914 	tasklet_schedule(&host->tasklet);
2915 }
2916 
2917 static void dw_mci_dto_timer(unsigned long arg)
2918 {
2919 	struct dw_mci *host = (struct dw_mci *)arg;
2920 
2921 	switch (host->state) {
2922 	case STATE_SENDING_DATA:
2923 	case STATE_DATA_BUSY:
2924 		/*
2925 		 * If DTO interrupt does NOT come in sending data state,
2926 		 * we should notify the driver to terminate current transfer
2927 		 * and report a data timeout to the core.
2928 		 */
2929 		host->data_status = SDMMC_INT_DRTO;
2930 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
2931 		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2932 		tasklet_schedule(&host->tasklet);
2933 		break;
2934 	default:
2935 		break;
2936 	}
2937 }
2938 
2939 #ifdef CONFIG_OF
2940 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2941 {
2942 	struct dw_mci_board *pdata;
2943 	struct device *dev = host->dev;
2944 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2945 	int ret;
2946 	u32 clock_frequency;
2947 
2948 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2949 	if (!pdata)
2950 		return ERR_PTR(-ENOMEM);
2951 
2952 	/* find reset controller when exist */
2953 	pdata->rstc = devm_reset_control_get_optional(dev, "reset");
2954 	if (IS_ERR(pdata->rstc)) {
2955 		if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
2956 			return ERR_PTR(-EPROBE_DEFER);
2957 	}
2958 
2959 	/* find out number of slots supported */
2960 	if (!device_property_read_u32(dev, "num-slots", &pdata->num_slots))
2961 		dev_info(dev, "'num-slots' was deprecated.\n");
2962 
2963 	if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
2964 		dev_info(dev,
2965 			 "fifo-depth property not found, using value of FIFOTH register as default\n");
2966 
2967 	device_property_read_u32(dev, "card-detect-delay",
2968 				 &pdata->detect_delay_ms);
2969 
2970 	device_property_read_u32(dev, "data-addr", &host->data_addr_override);
2971 
2972 	if (device_property_present(dev, "fifo-watermark-aligned"))
2973 		host->wm_aligned = true;
2974 
2975 	if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
2976 		pdata->bus_hz = clock_frequency;
2977 
2978 	if (drv_data && drv_data->parse_dt) {
2979 		ret = drv_data->parse_dt(host);
2980 		if (ret)
2981 			return ERR_PTR(ret);
2982 	}
2983 
2984 	return pdata;
2985 }
2986 
2987 #else /* CONFIG_OF */
2988 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2989 {
2990 	return ERR_PTR(-EINVAL);
2991 }
2992 #endif /* CONFIG_OF */
2993 
2994 static void dw_mci_enable_cd(struct dw_mci *host)
2995 {
2996 	unsigned long irqflags;
2997 	u32 temp;
2998 
2999 	/*
3000 	 * No need for CD if all slots have a non-error GPIO
3001 	 * as well as broken card detection is found.
3002 	 */
3003 	if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3004 		return;
3005 
3006 	if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3007 		spin_lock_irqsave(&host->irq_lock, irqflags);
3008 		temp = mci_readl(host, INTMASK);
3009 		temp  |= SDMMC_INT_CD;
3010 		mci_writel(host, INTMASK, temp);
3011 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
3012 	}
3013 }
3014 
3015 int dw_mci_probe(struct dw_mci *host)
3016 {
3017 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3018 	int width, i, ret = 0;
3019 	u32 fifo_size;
3020 
3021 	if (!host->pdata) {
3022 		host->pdata = dw_mci_parse_dt(host);
3023 		if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3024 			return -EPROBE_DEFER;
3025 		} else if (IS_ERR(host->pdata)) {
3026 			dev_err(host->dev, "platform data not available\n");
3027 			return -EINVAL;
3028 		}
3029 	}
3030 
3031 	host->biu_clk = devm_clk_get(host->dev, "biu");
3032 	if (IS_ERR(host->biu_clk)) {
3033 		dev_dbg(host->dev, "biu clock not available\n");
3034 	} else {
3035 		ret = clk_prepare_enable(host->biu_clk);
3036 		if (ret) {
3037 			dev_err(host->dev, "failed to enable biu clock\n");
3038 			return ret;
3039 		}
3040 	}
3041 
3042 	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3043 	if (IS_ERR(host->ciu_clk)) {
3044 		dev_dbg(host->dev, "ciu clock not available\n");
3045 		host->bus_hz = host->pdata->bus_hz;
3046 	} else {
3047 		ret = clk_prepare_enable(host->ciu_clk);
3048 		if (ret) {
3049 			dev_err(host->dev, "failed to enable ciu clock\n");
3050 			goto err_clk_biu;
3051 		}
3052 
3053 		if (host->pdata->bus_hz) {
3054 			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3055 			if (ret)
3056 				dev_warn(host->dev,
3057 					 "Unable to set bus rate to %uHz\n",
3058 					 host->pdata->bus_hz);
3059 		}
3060 		host->bus_hz = clk_get_rate(host->ciu_clk);
3061 	}
3062 
3063 	if (!host->bus_hz) {
3064 		dev_err(host->dev,
3065 			"Platform data must supply bus speed\n");
3066 		ret = -ENODEV;
3067 		goto err_clk_ciu;
3068 	}
3069 
3070 	if (drv_data && drv_data->init) {
3071 		ret = drv_data->init(host);
3072 		if (ret) {
3073 			dev_err(host->dev,
3074 				"implementation specific init failed\n");
3075 			goto err_clk_ciu;
3076 		}
3077 	}
3078 
3079 	if (!IS_ERR(host->pdata->rstc)) {
3080 		reset_control_assert(host->pdata->rstc);
3081 		usleep_range(10, 50);
3082 		reset_control_deassert(host->pdata->rstc);
3083 	}
3084 
3085 	setup_timer(&host->cmd11_timer,
3086 		    dw_mci_cmd11_timer, (unsigned long)host);
3087 
3088 	setup_timer(&host->dto_timer,
3089 		    dw_mci_dto_timer, (unsigned long)host);
3090 
3091 	spin_lock_init(&host->lock);
3092 	spin_lock_init(&host->irq_lock);
3093 	INIT_LIST_HEAD(&host->queue);
3094 
3095 	/*
3096 	 * Get the host data width - this assumes that HCON has been set with
3097 	 * the correct values.
3098 	 */
3099 	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3100 	if (!i) {
3101 		host->push_data = dw_mci_push_data16;
3102 		host->pull_data = dw_mci_pull_data16;
3103 		width = 16;
3104 		host->data_shift = 1;
3105 	} else if (i == 2) {
3106 		host->push_data = dw_mci_push_data64;
3107 		host->pull_data = dw_mci_pull_data64;
3108 		width = 64;
3109 		host->data_shift = 3;
3110 	} else {
3111 		/* Check for a reserved value, and warn if it is */
3112 		WARN((i != 1),
3113 		     "HCON reports a reserved host data width!\n"
3114 		     "Defaulting to 32-bit access.\n");
3115 		host->push_data = dw_mci_push_data32;
3116 		host->pull_data = dw_mci_pull_data32;
3117 		width = 32;
3118 		host->data_shift = 2;
3119 	}
3120 
3121 	/* Reset all blocks */
3122 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3123 		ret = -ENODEV;
3124 		goto err_clk_ciu;
3125 	}
3126 
3127 	host->dma_ops = host->pdata->dma_ops;
3128 	dw_mci_init_dma(host);
3129 
3130 	/* Clear the interrupts for the host controller */
3131 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3132 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3133 
3134 	/* Put in max timeout */
3135 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3136 
3137 	/*
3138 	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3139 	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3140 	 */
3141 	if (!host->pdata->fifo_depth) {
3142 		/*
3143 		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3144 		 * have been overwritten by the bootloader, just like we're
3145 		 * about to do, so if you know the value for your hardware, you
3146 		 * should put it in the platform data.
3147 		 */
3148 		fifo_size = mci_readl(host, FIFOTH);
3149 		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3150 	} else {
3151 		fifo_size = host->pdata->fifo_depth;
3152 	}
3153 	host->fifo_depth = fifo_size;
3154 	host->fifoth_val =
3155 		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3156 	mci_writel(host, FIFOTH, host->fifoth_val);
3157 
3158 	/* disable clock to CIU */
3159 	mci_writel(host, CLKENA, 0);
3160 	mci_writel(host, CLKSRC, 0);
3161 
3162 	/*
3163 	 * In 2.40a spec, Data offset is changed.
3164 	 * Need to check the version-id and set data-offset for DATA register.
3165 	 */
3166 	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3167 	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3168 
3169 	if (host->data_addr_override)
3170 		host->fifo_reg = host->regs + host->data_addr_override;
3171 	else if (host->verid < DW_MMC_240A)
3172 		host->fifo_reg = host->regs + DATA_OFFSET;
3173 	else
3174 		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3175 
3176 	tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3177 	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3178 			       host->irq_flags, "dw-mci", host);
3179 	if (ret)
3180 		goto err_dmaunmap;
3181 
3182 	/*
3183 	 * Enable interrupts for command done, data over, data empty,
3184 	 * receive ready and error such as transmit, receive timeout, crc error
3185 	 */
3186 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3187 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3188 		   DW_MCI_ERROR_FLAGS);
3189 	/* Enable mci interrupt */
3190 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3191 
3192 	dev_info(host->dev,
3193 		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3194 		 host->irq, width, fifo_size);
3195 
3196 	/* We need at least one slot to succeed */
3197 	ret = dw_mci_init_slot(host);
3198 	if (ret) {
3199 		dev_dbg(host->dev, "slot %d init failed\n", i);
3200 		goto err_dmaunmap;
3201 	}
3202 
3203 	/* Now that slots are all setup, we can enable card detect */
3204 	dw_mci_enable_cd(host);
3205 
3206 	return 0;
3207 
3208 err_dmaunmap:
3209 	if (host->use_dma && host->dma_ops->exit)
3210 		host->dma_ops->exit(host);
3211 
3212 	if (!IS_ERR(host->pdata->rstc))
3213 		reset_control_assert(host->pdata->rstc);
3214 
3215 err_clk_ciu:
3216 	clk_disable_unprepare(host->ciu_clk);
3217 
3218 err_clk_biu:
3219 	clk_disable_unprepare(host->biu_clk);
3220 
3221 	return ret;
3222 }
3223 EXPORT_SYMBOL(dw_mci_probe);
3224 
3225 void dw_mci_remove(struct dw_mci *host)
3226 {
3227 	dev_dbg(host->dev, "remove slot\n");
3228 	if (host->slot)
3229 		dw_mci_cleanup_slot(host->slot);
3230 
3231 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3232 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3233 
3234 	/* disable clock to CIU */
3235 	mci_writel(host, CLKENA, 0);
3236 	mci_writel(host, CLKSRC, 0);
3237 
3238 	if (host->use_dma && host->dma_ops->exit)
3239 		host->dma_ops->exit(host);
3240 
3241 	if (!IS_ERR(host->pdata->rstc))
3242 		reset_control_assert(host->pdata->rstc);
3243 
3244 	clk_disable_unprepare(host->ciu_clk);
3245 	clk_disable_unprepare(host->biu_clk);
3246 }
3247 EXPORT_SYMBOL(dw_mci_remove);
3248 
3249 
3250 
3251 #ifdef CONFIG_PM
3252 int dw_mci_runtime_suspend(struct device *dev)
3253 {
3254 	struct dw_mci *host = dev_get_drvdata(dev);
3255 
3256 	if (host->use_dma && host->dma_ops->exit)
3257 		host->dma_ops->exit(host);
3258 
3259 	clk_disable_unprepare(host->ciu_clk);
3260 
3261 	if (host->slot &&
3262 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3263 	     !mmc_card_is_removable(host->slot->mmc)))
3264 		clk_disable_unprepare(host->biu_clk);
3265 
3266 	return 0;
3267 }
3268 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3269 
3270 int dw_mci_runtime_resume(struct device *dev)
3271 {
3272 	int ret = 0;
3273 	struct dw_mci *host = dev_get_drvdata(dev);
3274 
3275 	if (host->slot &&
3276 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3277 	     !mmc_card_is_removable(host->slot->mmc))) {
3278 		ret = clk_prepare_enable(host->biu_clk);
3279 		if (ret)
3280 			return ret;
3281 	}
3282 
3283 	ret = clk_prepare_enable(host->ciu_clk);
3284 	if (ret)
3285 		goto err;
3286 
3287 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3288 		clk_disable_unprepare(host->ciu_clk);
3289 		ret = -ENODEV;
3290 		goto err;
3291 	}
3292 
3293 	if (host->use_dma && host->dma_ops->init)
3294 		host->dma_ops->init(host);
3295 
3296 	/*
3297 	 * Restore the initial value at FIFOTH register
3298 	 * And Invalidate the prev_blksz with zero
3299 	 */
3300 	 mci_writel(host, FIFOTH, host->fifoth_val);
3301 	 host->prev_blksz = 0;
3302 
3303 	/* Put in max timeout */
3304 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3305 
3306 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3307 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3308 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3309 		   DW_MCI_ERROR_FLAGS);
3310 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3311 
3312 
3313 	if (host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3314 		dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3315 
3316 	/* Force setup bus to guarantee available clock output */
3317 	dw_mci_setup_bus(host->slot, true);
3318 
3319 	/* Now that slots are all setup, we can enable card detect */
3320 	dw_mci_enable_cd(host);
3321 
3322 	return 0;
3323 
3324 err:
3325 	if (host->slot &&
3326 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3327 	     !mmc_card_is_removable(host->slot->mmc)))
3328 		clk_disable_unprepare(host->biu_clk);
3329 
3330 	return ret;
3331 }
3332 EXPORT_SYMBOL(dw_mci_runtime_resume);
3333 #endif /* CONFIG_PM */
3334 
3335 static int __init dw_mci_init(void)
3336 {
3337 	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3338 	return 0;
3339 }
3340 
3341 static void __exit dw_mci_exit(void)
3342 {
3343 }
3344 
3345 module_init(dw_mci_init);
3346 module_exit(dw_mci_exit);
3347 
3348 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3349 MODULE_AUTHOR("NXP Semiconductor VietNam");
3350 MODULE_AUTHOR("Imagination Technologies Ltd");
3351 MODULE_LICENSE("GPL v2");
3352