xref: /openbmc/linux/drivers/mmc/host/dw_mmc.c (revision 6aa7de05)
1 /*
2  * Synopsys DesignWare Multimedia Card Interface driver
3  *  (Based on NXP driver for lpc 31xx)
4  *
5  * Copyright (C) 2009 NXP Semiconductors
6  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/iopoll.h>
23 #include <linux/ioport.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/seq_file.h>
28 #include <linux/slab.h>
29 #include <linux/stat.h>
30 #include <linux/delay.h>
31 #include <linux/irq.h>
32 #include <linux/mmc/card.h>
33 #include <linux/mmc/host.h>
34 #include <linux/mmc/mmc.h>
35 #include <linux/mmc/sd.h>
36 #include <linux/mmc/sdio.h>
37 #include <linux/bitops.h>
38 #include <linux/regulator/consumer.h>
39 #include <linux/of.h>
40 #include <linux/of_gpio.h>
41 #include <linux/mmc/slot-gpio.h>
42 
43 #include "dw_mmc.h"
44 
45 /* Common flag combinations */
46 #define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
47 				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
48 				 SDMMC_INT_EBE | SDMMC_INT_HLE)
49 #define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
50 				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
51 #define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
52 				 DW_MCI_CMD_ERROR_FLAGS)
53 #define DW_MCI_SEND_STATUS	1
54 #define DW_MCI_RECV_STATUS	2
55 #define DW_MCI_DMA_THRESHOLD	16
56 
57 #define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
58 #define DW_MCI_FREQ_MIN	100000		/* unit: HZ */
59 
60 #define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
61 				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
62 				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
63 				 SDMMC_IDMAC_INT_TI)
64 
65 #define DESC_RING_BUF_SZ	PAGE_SIZE
66 
67 struct idmac_desc_64addr {
68 	u32		des0;	/* Control Descriptor */
69 #define IDMAC_OWN_CLR64(x) \
70 	!((x) & cpu_to_le32(IDMAC_DES0_OWN))
71 
72 	u32		des1;	/* Reserved */
73 
74 	u32		des2;	/*Buffer sizes */
75 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
76 	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
77 	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
78 
79 	u32		des3;	/* Reserved */
80 
81 	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
82 	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
83 
84 	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
85 	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
86 };
87 
88 struct idmac_desc {
89 	__le32		des0;	/* Control Descriptor */
90 #define IDMAC_DES0_DIC	BIT(1)
91 #define IDMAC_DES0_LD	BIT(2)
92 #define IDMAC_DES0_FD	BIT(3)
93 #define IDMAC_DES0_CH	BIT(4)
94 #define IDMAC_DES0_ER	BIT(5)
95 #define IDMAC_DES0_CES	BIT(30)
96 #define IDMAC_DES0_OWN	BIT(31)
97 
98 	__le32		des1;	/* Buffer sizes */
99 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
100 	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
101 
102 	__le32		des2;	/* buffer 1 physical address */
103 
104 	__le32		des3;	/* buffer 2 physical address */
105 };
106 
107 /* Each descriptor can transfer up to 4KB of data in chained mode */
108 #define DW_MCI_DESC_DATA_LENGTH	0x1000
109 
110 #if defined(CONFIG_DEBUG_FS)
111 static int dw_mci_req_show(struct seq_file *s, void *v)
112 {
113 	struct dw_mci_slot *slot = s->private;
114 	struct mmc_request *mrq;
115 	struct mmc_command *cmd;
116 	struct mmc_command *stop;
117 	struct mmc_data	*data;
118 
119 	/* Make sure we get a consistent snapshot */
120 	spin_lock_bh(&slot->host->lock);
121 	mrq = slot->mrq;
122 
123 	if (mrq) {
124 		cmd = mrq->cmd;
125 		data = mrq->data;
126 		stop = mrq->stop;
127 
128 		if (cmd)
129 			seq_printf(s,
130 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
131 				   cmd->opcode, cmd->arg, cmd->flags,
132 				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
133 				   cmd->resp[2], cmd->error);
134 		if (data)
135 			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
136 				   data->bytes_xfered, data->blocks,
137 				   data->blksz, data->flags, data->error);
138 		if (stop)
139 			seq_printf(s,
140 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
141 				   stop->opcode, stop->arg, stop->flags,
142 				   stop->resp[0], stop->resp[1], stop->resp[2],
143 				   stop->resp[2], stop->error);
144 	}
145 
146 	spin_unlock_bh(&slot->host->lock);
147 
148 	return 0;
149 }
150 
151 static int dw_mci_req_open(struct inode *inode, struct file *file)
152 {
153 	return single_open(file, dw_mci_req_show, inode->i_private);
154 }
155 
156 static const struct file_operations dw_mci_req_fops = {
157 	.owner		= THIS_MODULE,
158 	.open		= dw_mci_req_open,
159 	.read		= seq_read,
160 	.llseek		= seq_lseek,
161 	.release	= single_release,
162 };
163 
164 static int dw_mci_regs_show(struct seq_file *s, void *v)
165 {
166 	struct dw_mci *host = s->private;
167 
168 	seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
169 	seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
170 	seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
171 	seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
172 	seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
173 	seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
174 
175 	return 0;
176 }
177 
178 static int dw_mci_regs_open(struct inode *inode, struct file *file)
179 {
180 	return single_open(file, dw_mci_regs_show, inode->i_private);
181 }
182 
183 static const struct file_operations dw_mci_regs_fops = {
184 	.owner		= THIS_MODULE,
185 	.open		= dw_mci_regs_open,
186 	.read		= seq_read,
187 	.llseek		= seq_lseek,
188 	.release	= single_release,
189 };
190 
191 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
192 {
193 	struct mmc_host	*mmc = slot->mmc;
194 	struct dw_mci *host = slot->host;
195 	struct dentry *root;
196 	struct dentry *node;
197 
198 	root = mmc->debugfs_root;
199 	if (!root)
200 		return;
201 
202 	node = debugfs_create_file("regs", S_IRUSR, root, host,
203 				   &dw_mci_regs_fops);
204 	if (!node)
205 		goto err;
206 
207 	node = debugfs_create_file("req", S_IRUSR, root, slot,
208 				   &dw_mci_req_fops);
209 	if (!node)
210 		goto err;
211 
212 	node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
213 	if (!node)
214 		goto err;
215 
216 	node = debugfs_create_x32("pending_events", S_IRUSR, root,
217 				  (u32 *)&host->pending_events);
218 	if (!node)
219 		goto err;
220 
221 	node = debugfs_create_x32("completed_events", S_IRUSR, root,
222 				  (u32 *)&host->completed_events);
223 	if (!node)
224 		goto err;
225 
226 	return;
227 
228 err:
229 	dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
230 }
231 #endif /* defined(CONFIG_DEBUG_FS) */
232 
233 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
234 {
235 	u32 ctrl;
236 
237 	ctrl = mci_readl(host, CTRL);
238 	ctrl |= reset;
239 	mci_writel(host, CTRL, ctrl);
240 
241 	/* wait till resets clear */
242 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
243 				      !(ctrl & reset),
244 				      1, 500 * USEC_PER_MSEC)) {
245 		dev_err(host->dev,
246 			"Timeout resetting block (ctrl reset %#x)\n",
247 			ctrl & reset);
248 		return false;
249 	}
250 
251 	return true;
252 }
253 
254 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
255 {
256 	u32 status;
257 
258 	/*
259 	 * Databook says that before issuing a new data transfer command
260 	 * we need to check to see if the card is busy.  Data transfer commands
261 	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
262 	 *
263 	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
264 	 * expected.
265 	 */
266 	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
267 	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
268 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
269 					      status,
270 					      !(status & SDMMC_STATUS_BUSY),
271 					      10, 500 * USEC_PER_MSEC))
272 			dev_err(host->dev, "Busy; trying anyway\n");
273 	}
274 }
275 
276 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
277 {
278 	struct dw_mci *host = slot->host;
279 	unsigned int cmd_status = 0;
280 
281 	mci_writel(host, CMDARG, arg);
282 	wmb(); /* drain writebuffer */
283 	dw_mci_wait_while_busy(host, cmd);
284 	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
285 
286 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
287 				      !(cmd_status & SDMMC_CMD_START),
288 				      1, 500 * USEC_PER_MSEC))
289 		dev_err(&slot->mmc->class_dev,
290 			"Timeout sending command (cmd %#x arg %#x status %#x)\n",
291 			cmd, arg, cmd_status);
292 }
293 
294 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
295 {
296 	struct dw_mci_slot *slot = mmc_priv(mmc);
297 	struct dw_mci *host = slot->host;
298 	u32 cmdr;
299 
300 	cmd->error = -EINPROGRESS;
301 	cmdr = cmd->opcode;
302 
303 	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
304 	    cmd->opcode == MMC_GO_IDLE_STATE ||
305 	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
306 	    (cmd->opcode == SD_IO_RW_DIRECT &&
307 	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
308 		cmdr |= SDMMC_CMD_STOP;
309 	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
310 		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
311 
312 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
313 		u32 clk_en_a;
314 
315 		/* Special bit makes CMD11 not die */
316 		cmdr |= SDMMC_CMD_VOLT_SWITCH;
317 
318 		/* Change state to continue to handle CMD11 weirdness */
319 		WARN_ON(slot->host->state != STATE_SENDING_CMD);
320 		slot->host->state = STATE_SENDING_CMD11;
321 
322 		/*
323 		 * We need to disable low power mode (automatic clock stop)
324 		 * while doing voltage switch so we don't confuse the card,
325 		 * since stopping the clock is a specific part of the UHS
326 		 * voltage change dance.
327 		 *
328 		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
329 		 * unconditionally turned back on in dw_mci_setup_bus() if it's
330 		 * ever called with a non-zero clock.  That shouldn't happen
331 		 * until the voltage change is all done.
332 		 */
333 		clk_en_a = mci_readl(host, CLKENA);
334 		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
335 		mci_writel(host, CLKENA, clk_en_a);
336 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
337 			     SDMMC_CMD_PRV_DAT_WAIT, 0);
338 	}
339 
340 	if (cmd->flags & MMC_RSP_PRESENT) {
341 		/* We expect a response, so set this bit */
342 		cmdr |= SDMMC_CMD_RESP_EXP;
343 		if (cmd->flags & MMC_RSP_136)
344 			cmdr |= SDMMC_CMD_RESP_LONG;
345 	}
346 
347 	if (cmd->flags & MMC_RSP_CRC)
348 		cmdr |= SDMMC_CMD_RESP_CRC;
349 
350 	if (cmd->data) {
351 		cmdr |= SDMMC_CMD_DAT_EXP;
352 		if (cmd->data->flags & MMC_DATA_WRITE)
353 			cmdr |= SDMMC_CMD_DAT_WR;
354 	}
355 
356 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
357 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
358 
359 	return cmdr;
360 }
361 
362 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
363 {
364 	struct mmc_command *stop;
365 	u32 cmdr;
366 
367 	if (!cmd->data)
368 		return 0;
369 
370 	stop = &host->stop_abort;
371 	cmdr = cmd->opcode;
372 	memset(stop, 0, sizeof(struct mmc_command));
373 
374 	if (cmdr == MMC_READ_SINGLE_BLOCK ||
375 	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
376 	    cmdr == MMC_WRITE_BLOCK ||
377 	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
378 	    cmdr == MMC_SEND_TUNING_BLOCK ||
379 	    cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
380 		stop->opcode = MMC_STOP_TRANSMISSION;
381 		stop->arg = 0;
382 		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
383 	} else if (cmdr == SD_IO_RW_EXTENDED) {
384 		stop->opcode = SD_IO_RW_DIRECT;
385 		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
386 			     ((cmd->arg >> 28) & 0x7);
387 		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
388 	} else {
389 		return 0;
390 	}
391 
392 	cmdr = stop->opcode | SDMMC_CMD_STOP |
393 		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
394 
395 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
396 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
397 
398 	return cmdr;
399 }
400 
401 static inline void dw_mci_set_cto(struct dw_mci *host)
402 {
403 	unsigned int cto_clks;
404 	unsigned int cto_ms;
405 
406 	cto_clks = mci_readl(host, TMOUT) & 0xff;
407 	cto_ms = DIV_ROUND_UP(cto_clks, host->bus_hz / 1000);
408 
409 	/* add a bit spare time */
410 	cto_ms += 10;
411 
412 	mod_timer(&host->cto_timer,
413 		  jiffies + msecs_to_jiffies(cto_ms) + 1);
414 }
415 
416 static void dw_mci_start_command(struct dw_mci *host,
417 				 struct mmc_command *cmd, u32 cmd_flags)
418 {
419 	host->cmd = cmd;
420 	dev_vdbg(host->dev,
421 		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
422 		 cmd->arg, cmd_flags);
423 
424 	mci_writel(host, CMDARG, cmd->arg);
425 	wmb(); /* drain writebuffer */
426 	dw_mci_wait_while_busy(host, cmd_flags);
427 
428 	/* response expected command only */
429 	if (cmd_flags & SDMMC_CMD_RESP_EXP)
430 		dw_mci_set_cto(host);
431 
432 	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
433 }
434 
435 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
436 {
437 	struct mmc_command *stop = &host->stop_abort;
438 
439 	dw_mci_start_command(host, stop, host->stop_cmdr);
440 }
441 
442 /* DMA interface functions */
443 static void dw_mci_stop_dma(struct dw_mci *host)
444 {
445 	if (host->using_dma) {
446 		host->dma_ops->stop(host);
447 		host->dma_ops->cleanup(host);
448 	}
449 
450 	/* Data transfer was stopped by the interrupt handler */
451 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
452 }
453 
454 static void dw_mci_dma_cleanup(struct dw_mci *host)
455 {
456 	struct mmc_data *data = host->data;
457 
458 	if (data && data->host_cookie == COOKIE_MAPPED) {
459 		dma_unmap_sg(host->dev,
460 			     data->sg,
461 			     data->sg_len,
462 			     mmc_get_dma_dir(data));
463 		data->host_cookie = COOKIE_UNMAPPED;
464 	}
465 }
466 
467 static void dw_mci_idmac_reset(struct dw_mci *host)
468 {
469 	u32 bmod = mci_readl(host, BMOD);
470 	/* Software reset of DMA */
471 	bmod |= SDMMC_IDMAC_SWRESET;
472 	mci_writel(host, BMOD, bmod);
473 }
474 
475 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
476 {
477 	u32 temp;
478 
479 	/* Disable and reset the IDMAC interface */
480 	temp = mci_readl(host, CTRL);
481 	temp &= ~SDMMC_CTRL_USE_IDMAC;
482 	temp |= SDMMC_CTRL_DMA_RESET;
483 	mci_writel(host, CTRL, temp);
484 
485 	/* Stop the IDMAC running */
486 	temp = mci_readl(host, BMOD);
487 	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
488 	temp |= SDMMC_IDMAC_SWRESET;
489 	mci_writel(host, BMOD, temp);
490 }
491 
492 static void dw_mci_dmac_complete_dma(void *arg)
493 {
494 	struct dw_mci *host = arg;
495 	struct mmc_data *data = host->data;
496 
497 	dev_vdbg(host->dev, "DMA complete\n");
498 
499 	if ((host->use_dma == TRANS_MODE_EDMAC) &&
500 	    data && (data->flags & MMC_DATA_READ))
501 		/* Invalidate cache after read */
502 		dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
503 				    data->sg,
504 				    data->sg_len,
505 				    DMA_FROM_DEVICE);
506 
507 	host->dma_ops->cleanup(host);
508 
509 	/*
510 	 * If the card was removed, data will be NULL. No point in trying to
511 	 * send the stop command or waiting for NBUSY in this case.
512 	 */
513 	if (data) {
514 		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
515 		tasklet_schedule(&host->tasklet);
516 	}
517 }
518 
519 static int dw_mci_idmac_init(struct dw_mci *host)
520 {
521 	int i;
522 
523 	if (host->dma_64bit_address == 1) {
524 		struct idmac_desc_64addr *p;
525 		/* Number of descriptors in the ring buffer */
526 		host->ring_size =
527 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
528 
529 		/* Forward link the descriptor list */
530 		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
531 								i++, p++) {
532 			p->des6 = (host->sg_dma +
533 					(sizeof(struct idmac_desc_64addr) *
534 							(i + 1))) & 0xffffffff;
535 
536 			p->des7 = (u64)(host->sg_dma +
537 					(sizeof(struct idmac_desc_64addr) *
538 							(i + 1))) >> 32;
539 			/* Initialize reserved and buffer size fields to "0" */
540 			p->des1 = 0;
541 			p->des2 = 0;
542 			p->des3 = 0;
543 		}
544 
545 		/* Set the last descriptor as the end-of-ring descriptor */
546 		p->des6 = host->sg_dma & 0xffffffff;
547 		p->des7 = (u64)host->sg_dma >> 32;
548 		p->des0 = IDMAC_DES0_ER;
549 
550 	} else {
551 		struct idmac_desc *p;
552 		/* Number of descriptors in the ring buffer */
553 		host->ring_size =
554 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
555 
556 		/* Forward link the descriptor list */
557 		for (i = 0, p = host->sg_cpu;
558 		     i < host->ring_size - 1;
559 		     i++, p++) {
560 			p->des3 = cpu_to_le32(host->sg_dma +
561 					(sizeof(struct idmac_desc) * (i + 1)));
562 			p->des1 = 0;
563 		}
564 
565 		/* Set the last descriptor as the end-of-ring descriptor */
566 		p->des3 = cpu_to_le32(host->sg_dma);
567 		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
568 	}
569 
570 	dw_mci_idmac_reset(host);
571 
572 	if (host->dma_64bit_address == 1) {
573 		/* Mask out interrupts - get Tx & Rx complete only */
574 		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
575 		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
576 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
577 
578 		/* Set the descriptor base address */
579 		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
580 		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
581 
582 	} else {
583 		/* Mask out interrupts - get Tx & Rx complete only */
584 		mci_writel(host, IDSTS, IDMAC_INT_CLR);
585 		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
586 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
587 
588 		/* Set the descriptor base address */
589 		mci_writel(host, DBADDR, host->sg_dma);
590 	}
591 
592 	return 0;
593 }
594 
595 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
596 					 struct mmc_data *data,
597 					 unsigned int sg_len)
598 {
599 	unsigned int desc_len;
600 	struct idmac_desc_64addr *desc_first, *desc_last, *desc;
601 	u32 val;
602 	int i;
603 
604 	desc_first = desc_last = desc = host->sg_cpu;
605 
606 	for (i = 0; i < sg_len; i++) {
607 		unsigned int length = sg_dma_len(&data->sg[i]);
608 
609 		u64 mem_addr = sg_dma_address(&data->sg[i]);
610 
611 		for ( ; length ; desc++) {
612 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
613 				   length : DW_MCI_DESC_DATA_LENGTH;
614 
615 			length -= desc_len;
616 
617 			/*
618 			 * Wait for the former clear OWN bit operation
619 			 * of IDMAC to make sure that this descriptor
620 			 * isn't still owned by IDMAC as IDMAC's write
621 			 * ops and CPU's read ops are asynchronous.
622 			 */
623 			if (readl_poll_timeout_atomic(&desc->des0, val,
624 						!(val & IDMAC_DES0_OWN),
625 						10, 100 * USEC_PER_MSEC))
626 				goto err_own_bit;
627 
628 			/*
629 			 * Set the OWN bit and disable interrupts
630 			 * for this descriptor
631 			 */
632 			desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
633 						IDMAC_DES0_CH;
634 
635 			/* Buffer length */
636 			IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
637 
638 			/* Physical address to DMA to/from */
639 			desc->des4 = mem_addr & 0xffffffff;
640 			desc->des5 = mem_addr >> 32;
641 
642 			/* Update physical address for the next desc */
643 			mem_addr += desc_len;
644 
645 			/* Save pointer to the last descriptor */
646 			desc_last = desc;
647 		}
648 	}
649 
650 	/* Set first descriptor */
651 	desc_first->des0 |= IDMAC_DES0_FD;
652 
653 	/* Set last descriptor */
654 	desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
655 	desc_last->des0 |= IDMAC_DES0_LD;
656 
657 	return 0;
658 err_own_bit:
659 	/* restore the descriptor chain as it's polluted */
660 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
661 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
662 	dw_mci_idmac_init(host);
663 	return -EINVAL;
664 }
665 
666 
667 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
668 					 struct mmc_data *data,
669 					 unsigned int sg_len)
670 {
671 	unsigned int desc_len;
672 	struct idmac_desc *desc_first, *desc_last, *desc;
673 	u32 val;
674 	int i;
675 
676 	desc_first = desc_last = desc = host->sg_cpu;
677 
678 	for (i = 0; i < sg_len; i++) {
679 		unsigned int length = sg_dma_len(&data->sg[i]);
680 
681 		u32 mem_addr = sg_dma_address(&data->sg[i]);
682 
683 		for ( ; length ; desc++) {
684 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
685 				   length : DW_MCI_DESC_DATA_LENGTH;
686 
687 			length -= desc_len;
688 
689 			/*
690 			 * Wait for the former clear OWN bit operation
691 			 * of IDMAC to make sure that this descriptor
692 			 * isn't still owned by IDMAC as IDMAC's write
693 			 * ops and CPU's read ops are asynchronous.
694 			 */
695 			if (readl_poll_timeout_atomic(&desc->des0, val,
696 						      IDMAC_OWN_CLR64(val),
697 						      10,
698 						      100 * USEC_PER_MSEC))
699 				goto err_own_bit;
700 
701 			/*
702 			 * Set the OWN bit and disable interrupts
703 			 * for this descriptor
704 			 */
705 			desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
706 						 IDMAC_DES0_DIC |
707 						 IDMAC_DES0_CH);
708 
709 			/* Buffer length */
710 			IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
711 
712 			/* Physical address to DMA to/from */
713 			desc->des2 = cpu_to_le32(mem_addr);
714 
715 			/* Update physical address for the next desc */
716 			mem_addr += desc_len;
717 
718 			/* Save pointer to the last descriptor */
719 			desc_last = desc;
720 		}
721 	}
722 
723 	/* Set first descriptor */
724 	desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
725 
726 	/* Set last descriptor */
727 	desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
728 				       IDMAC_DES0_DIC));
729 	desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
730 
731 	return 0;
732 err_own_bit:
733 	/* restore the descriptor chain as it's polluted */
734 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
735 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
736 	dw_mci_idmac_init(host);
737 	return -EINVAL;
738 }
739 
740 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
741 {
742 	u32 temp;
743 	int ret;
744 
745 	if (host->dma_64bit_address == 1)
746 		ret = dw_mci_prepare_desc64(host, host->data, sg_len);
747 	else
748 		ret = dw_mci_prepare_desc32(host, host->data, sg_len);
749 
750 	if (ret)
751 		goto out;
752 
753 	/* drain writebuffer */
754 	wmb();
755 
756 	/* Make sure to reset DMA in case we did PIO before this */
757 	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
758 	dw_mci_idmac_reset(host);
759 
760 	/* Select IDMAC interface */
761 	temp = mci_readl(host, CTRL);
762 	temp |= SDMMC_CTRL_USE_IDMAC;
763 	mci_writel(host, CTRL, temp);
764 
765 	/* drain writebuffer */
766 	wmb();
767 
768 	/* Enable the IDMAC */
769 	temp = mci_readl(host, BMOD);
770 	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
771 	mci_writel(host, BMOD, temp);
772 
773 	/* Start it running */
774 	mci_writel(host, PLDMND, 1);
775 
776 out:
777 	return ret;
778 }
779 
780 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
781 	.init = dw_mci_idmac_init,
782 	.start = dw_mci_idmac_start_dma,
783 	.stop = dw_mci_idmac_stop_dma,
784 	.complete = dw_mci_dmac_complete_dma,
785 	.cleanup = dw_mci_dma_cleanup,
786 };
787 
788 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
789 {
790 	dmaengine_terminate_async(host->dms->ch);
791 }
792 
793 static int dw_mci_edmac_start_dma(struct dw_mci *host,
794 					    unsigned int sg_len)
795 {
796 	struct dma_slave_config cfg;
797 	struct dma_async_tx_descriptor *desc = NULL;
798 	struct scatterlist *sgl = host->data->sg;
799 	const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
800 	u32 sg_elems = host->data->sg_len;
801 	u32 fifoth_val;
802 	u32 fifo_offset = host->fifo_reg - host->regs;
803 	int ret = 0;
804 
805 	/* Set external dma config: burst size, burst width */
806 	cfg.dst_addr = host->phy_regs + fifo_offset;
807 	cfg.src_addr = cfg.dst_addr;
808 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
809 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
810 
811 	/* Match burst msize with external dma config */
812 	fifoth_val = mci_readl(host, FIFOTH);
813 	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
814 	cfg.src_maxburst = cfg.dst_maxburst;
815 
816 	if (host->data->flags & MMC_DATA_WRITE)
817 		cfg.direction = DMA_MEM_TO_DEV;
818 	else
819 		cfg.direction = DMA_DEV_TO_MEM;
820 
821 	ret = dmaengine_slave_config(host->dms->ch, &cfg);
822 	if (ret) {
823 		dev_err(host->dev, "Failed to config edmac.\n");
824 		return -EBUSY;
825 	}
826 
827 	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
828 				       sg_len, cfg.direction,
829 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
830 	if (!desc) {
831 		dev_err(host->dev, "Can't prepare slave sg.\n");
832 		return -EBUSY;
833 	}
834 
835 	/* Set dw_mci_dmac_complete_dma as callback */
836 	desc->callback = dw_mci_dmac_complete_dma;
837 	desc->callback_param = (void *)host;
838 	dmaengine_submit(desc);
839 
840 	/* Flush cache before write */
841 	if (host->data->flags & MMC_DATA_WRITE)
842 		dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
843 				       sg_elems, DMA_TO_DEVICE);
844 
845 	dma_async_issue_pending(host->dms->ch);
846 
847 	return 0;
848 }
849 
850 static int dw_mci_edmac_init(struct dw_mci *host)
851 {
852 	/* Request external dma channel */
853 	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
854 	if (!host->dms)
855 		return -ENOMEM;
856 
857 	host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
858 	if (!host->dms->ch) {
859 		dev_err(host->dev, "Failed to get external DMA channel.\n");
860 		kfree(host->dms);
861 		host->dms = NULL;
862 		return -ENXIO;
863 	}
864 
865 	return 0;
866 }
867 
868 static void dw_mci_edmac_exit(struct dw_mci *host)
869 {
870 	if (host->dms) {
871 		if (host->dms->ch) {
872 			dma_release_channel(host->dms->ch);
873 			host->dms->ch = NULL;
874 		}
875 		kfree(host->dms);
876 		host->dms = NULL;
877 	}
878 }
879 
880 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
881 	.init = dw_mci_edmac_init,
882 	.exit = dw_mci_edmac_exit,
883 	.start = dw_mci_edmac_start_dma,
884 	.stop = dw_mci_edmac_stop_dma,
885 	.complete = dw_mci_dmac_complete_dma,
886 	.cleanup = dw_mci_dma_cleanup,
887 };
888 
889 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
890 				   struct mmc_data *data,
891 				   int cookie)
892 {
893 	struct scatterlist *sg;
894 	unsigned int i, sg_len;
895 
896 	if (data->host_cookie == COOKIE_PRE_MAPPED)
897 		return data->sg_len;
898 
899 	/*
900 	 * We don't do DMA on "complex" transfers, i.e. with
901 	 * non-word-aligned buffers or lengths. Also, we don't bother
902 	 * with all the DMA setup overhead for short transfers.
903 	 */
904 	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
905 		return -EINVAL;
906 
907 	if (data->blksz & 3)
908 		return -EINVAL;
909 
910 	for_each_sg(data->sg, sg, data->sg_len, i) {
911 		if (sg->offset & 3 || sg->length & 3)
912 			return -EINVAL;
913 	}
914 
915 	sg_len = dma_map_sg(host->dev,
916 			    data->sg,
917 			    data->sg_len,
918 			    mmc_get_dma_dir(data));
919 	if (sg_len == 0)
920 		return -EINVAL;
921 
922 	data->host_cookie = cookie;
923 
924 	return sg_len;
925 }
926 
927 static void dw_mci_pre_req(struct mmc_host *mmc,
928 			   struct mmc_request *mrq)
929 {
930 	struct dw_mci_slot *slot = mmc_priv(mmc);
931 	struct mmc_data *data = mrq->data;
932 
933 	if (!slot->host->use_dma || !data)
934 		return;
935 
936 	/* This data might be unmapped at this time */
937 	data->host_cookie = COOKIE_UNMAPPED;
938 
939 	if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
940 				COOKIE_PRE_MAPPED) < 0)
941 		data->host_cookie = COOKIE_UNMAPPED;
942 }
943 
944 static void dw_mci_post_req(struct mmc_host *mmc,
945 			    struct mmc_request *mrq,
946 			    int err)
947 {
948 	struct dw_mci_slot *slot = mmc_priv(mmc);
949 	struct mmc_data *data = mrq->data;
950 
951 	if (!slot->host->use_dma || !data)
952 		return;
953 
954 	if (data->host_cookie != COOKIE_UNMAPPED)
955 		dma_unmap_sg(slot->host->dev,
956 			     data->sg,
957 			     data->sg_len,
958 			     mmc_get_dma_dir(data));
959 	data->host_cookie = COOKIE_UNMAPPED;
960 }
961 
962 static int dw_mci_get_cd(struct mmc_host *mmc)
963 {
964 	int present;
965 	struct dw_mci_slot *slot = mmc_priv(mmc);
966 	struct dw_mci *host = slot->host;
967 	int gpio_cd = mmc_gpio_get_cd(mmc);
968 
969 	/* Use platform get_cd function, else try onboard card detect */
970 	if (((mmc->caps & MMC_CAP_NEEDS_POLL)
971 				|| !mmc_card_is_removable(mmc))) {
972 		present = 1;
973 
974 		if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
975 			if (mmc->caps & MMC_CAP_NEEDS_POLL) {
976 				dev_info(&mmc->class_dev,
977 					"card is polling.\n");
978 			} else {
979 				dev_info(&mmc->class_dev,
980 					"card is non-removable.\n");
981 			}
982 			set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
983 		}
984 
985 		return present;
986 	} else if (gpio_cd >= 0)
987 		present = gpio_cd;
988 	else
989 		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
990 			== 0 ? 1 : 0;
991 
992 	spin_lock_bh(&host->lock);
993 	if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
994 		dev_dbg(&mmc->class_dev, "card is present\n");
995 	else if (!present &&
996 			!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
997 		dev_dbg(&mmc->class_dev, "card is not present\n");
998 	spin_unlock_bh(&host->lock);
999 
1000 	return present;
1001 }
1002 
1003 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
1004 {
1005 	unsigned int blksz = data->blksz;
1006 	const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
1007 	u32 fifo_width = 1 << host->data_shift;
1008 	u32 blksz_depth = blksz / fifo_width, fifoth_val;
1009 	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
1010 	int idx = ARRAY_SIZE(mszs) - 1;
1011 
1012 	/* pio should ship this scenario */
1013 	if (!host->use_dma)
1014 		return;
1015 
1016 	tx_wmark = (host->fifo_depth) / 2;
1017 	tx_wmark_invers = host->fifo_depth - tx_wmark;
1018 
1019 	/*
1020 	 * MSIZE is '1',
1021 	 * if blksz is not a multiple of the FIFO width
1022 	 */
1023 	if (blksz % fifo_width)
1024 		goto done;
1025 
1026 	do {
1027 		if (!((blksz_depth % mszs[idx]) ||
1028 		     (tx_wmark_invers % mszs[idx]))) {
1029 			msize = idx;
1030 			rx_wmark = mszs[idx] - 1;
1031 			break;
1032 		}
1033 	} while (--idx > 0);
1034 	/*
1035 	 * If idx is '0', it won't be tried
1036 	 * Thus, initial values are uesed
1037 	 */
1038 done:
1039 	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1040 	mci_writel(host, FIFOTH, fifoth_val);
1041 }
1042 
1043 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1044 {
1045 	unsigned int blksz = data->blksz;
1046 	u32 blksz_depth, fifo_depth;
1047 	u16 thld_size;
1048 	u8 enable;
1049 
1050 	/*
1051 	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1052 	 * in the FIFO region, so we really shouldn't access it).
1053 	 */
1054 	if (host->verid < DW_MMC_240A ||
1055 		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1056 		return;
1057 
1058 	/*
1059 	 * Card write Threshold is introduced since 2.80a
1060 	 * It's used when HS400 mode is enabled.
1061 	 */
1062 	if (data->flags & MMC_DATA_WRITE &&
1063 		!(host->timing != MMC_TIMING_MMC_HS400))
1064 		return;
1065 
1066 	if (data->flags & MMC_DATA_WRITE)
1067 		enable = SDMMC_CARD_WR_THR_EN;
1068 	else
1069 		enable = SDMMC_CARD_RD_THR_EN;
1070 
1071 	if (host->timing != MMC_TIMING_MMC_HS200 &&
1072 	    host->timing != MMC_TIMING_UHS_SDR104)
1073 		goto disable;
1074 
1075 	blksz_depth = blksz / (1 << host->data_shift);
1076 	fifo_depth = host->fifo_depth;
1077 
1078 	if (blksz_depth > fifo_depth)
1079 		goto disable;
1080 
1081 	/*
1082 	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1083 	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1084 	 * Currently just choose blksz.
1085 	 */
1086 	thld_size = blksz;
1087 	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1088 	return;
1089 
1090 disable:
1091 	mci_writel(host, CDTHRCTL, 0);
1092 }
1093 
1094 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1095 {
1096 	unsigned long irqflags;
1097 	int sg_len;
1098 	u32 temp;
1099 
1100 	host->using_dma = 0;
1101 
1102 	/* If we don't have a channel, we can't do DMA */
1103 	if (!host->use_dma)
1104 		return -ENODEV;
1105 
1106 	sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1107 	if (sg_len < 0) {
1108 		host->dma_ops->stop(host);
1109 		return sg_len;
1110 	}
1111 
1112 	host->using_dma = 1;
1113 
1114 	if (host->use_dma == TRANS_MODE_IDMAC)
1115 		dev_vdbg(host->dev,
1116 			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1117 			 (unsigned long)host->sg_cpu,
1118 			 (unsigned long)host->sg_dma,
1119 			 sg_len);
1120 
1121 	/*
1122 	 * Decide the MSIZE and RX/TX Watermark.
1123 	 * If current block size is same with previous size,
1124 	 * no need to update fifoth.
1125 	 */
1126 	if (host->prev_blksz != data->blksz)
1127 		dw_mci_adjust_fifoth(host, data);
1128 
1129 	/* Enable the DMA interface */
1130 	temp = mci_readl(host, CTRL);
1131 	temp |= SDMMC_CTRL_DMA_ENABLE;
1132 	mci_writel(host, CTRL, temp);
1133 
1134 	/* Disable RX/TX IRQs, let DMA handle it */
1135 	spin_lock_irqsave(&host->irq_lock, irqflags);
1136 	temp = mci_readl(host, INTMASK);
1137 	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1138 	mci_writel(host, INTMASK, temp);
1139 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1140 
1141 	if (host->dma_ops->start(host, sg_len)) {
1142 		host->dma_ops->stop(host);
1143 		/* We can't do DMA, try PIO for this one */
1144 		dev_dbg(host->dev,
1145 			"%s: fall back to PIO mode for current transfer\n",
1146 			__func__);
1147 		return -ENODEV;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1154 {
1155 	unsigned long irqflags;
1156 	int flags = SG_MITER_ATOMIC;
1157 	u32 temp;
1158 
1159 	data->error = -EINPROGRESS;
1160 
1161 	WARN_ON(host->data);
1162 	host->sg = NULL;
1163 	host->data = data;
1164 
1165 	if (data->flags & MMC_DATA_READ)
1166 		host->dir_status = DW_MCI_RECV_STATUS;
1167 	else
1168 		host->dir_status = DW_MCI_SEND_STATUS;
1169 
1170 	dw_mci_ctrl_thld(host, data);
1171 
1172 	if (dw_mci_submit_data_dma(host, data)) {
1173 		if (host->data->flags & MMC_DATA_READ)
1174 			flags |= SG_MITER_TO_SG;
1175 		else
1176 			flags |= SG_MITER_FROM_SG;
1177 
1178 		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1179 		host->sg = data->sg;
1180 		host->part_buf_start = 0;
1181 		host->part_buf_count = 0;
1182 
1183 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1184 
1185 		spin_lock_irqsave(&host->irq_lock, irqflags);
1186 		temp = mci_readl(host, INTMASK);
1187 		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1188 		mci_writel(host, INTMASK, temp);
1189 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1190 
1191 		temp = mci_readl(host, CTRL);
1192 		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1193 		mci_writel(host, CTRL, temp);
1194 
1195 		/*
1196 		 * Use the initial fifoth_val for PIO mode. If wm_algined
1197 		 * is set, we set watermark same as data size.
1198 		 * If next issued data may be transfered by DMA mode,
1199 		 * prev_blksz should be invalidated.
1200 		 */
1201 		if (host->wm_aligned)
1202 			dw_mci_adjust_fifoth(host, data);
1203 		else
1204 			mci_writel(host, FIFOTH, host->fifoth_val);
1205 		host->prev_blksz = 0;
1206 	} else {
1207 		/*
1208 		 * Keep the current block size.
1209 		 * It will be used to decide whether to update
1210 		 * fifoth register next time.
1211 		 */
1212 		host->prev_blksz = data->blksz;
1213 	}
1214 }
1215 
1216 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1217 {
1218 	struct dw_mci *host = slot->host;
1219 	unsigned int clock = slot->clock;
1220 	u32 div;
1221 	u32 clk_en_a;
1222 	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1223 
1224 	/* We must continue to set bit 28 in CMD until the change is complete */
1225 	if (host->state == STATE_WAITING_CMD11_DONE)
1226 		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1227 
1228 	if (!clock) {
1229 		mci_writel(host, CLKENA, 0);
1230 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1231 	} else if (clock != host->current_speed || force_clkinit) {
1232 		div = host->bus_hz / clock;
1233 		if (host->bus_hz % clock && host->bus_hz > clock)
1234 			/*
1235 			 * move the + 1 after the divide to prevent
1236 			 * over-clocking the card.
1237 			 */
1238 			div += 1;
1239 
1240 		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1241 
1242 		if ((clock != slot->__clk_old &&
1243 			!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1244 			force_clkinit) {
1245 			/* Silent the verbose log if calling from PM context */
1246 			if (!force_clkinit)
1247 				dev_info(&slot->mmc->class_dev,
1248 					 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1249 					 slot->id, host->bus_hz, clock,
1250 					 div ? ((host->bus_hz / div) >> 1) :
1251 					 host->bus_hz, div);
1252 
1253 			/*
1254 			 * If card is polling, display the message only
1255 			 * one time at boot time.
1256 			 */
1257 			if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1258 					slot->mmc->f_min == clock)
1259 				set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1260 		}
1261 
1262 		/* disable clock */
1263 		mci_writel(host, CLKENA, 0);
1264 		mci_writel(host, CLKSRC, 0);
1265 
1266 		/* inform CIU */
1267 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1268 
1269 		/* set clock to desired speed */
1270 		mci_writel(host, CLKDIV, div);
1271 
1272 		/* inform CIU */
1273 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1274 
1275 		/* enable clock; only low power if no SDIO */
1276 		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1277 		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1278 			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1279 		mci_writel(host, CLKENA, clk_en_a);
1280 
1281 		/* inform CIU */
1282 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1283 
1284 		/* keep the last clock value that was requested from core */
1285 		slot->__clk_old = clock;
1286 	}
1287 
1288 	host->current_speed = clock;
1289 
1290 	/* Set the current slot bus width */
1291 	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1292 }
1293 
1294 static void __dw_mci_start_request(struct dw_mci *host,
1295 				   struct dw_mci_slot *slot,
1296 				   struct mmc_command *cmd)
1297 {
1298 	struct mmc_request *mrq;
1299 	struct mmc_data	*data;
1300 	u32 cmdflags;
1301 
1302 	mrq = slot->mrq;
1303 
1304 	host->mrq = mrq;
1305 
1306 	host->pending_events = 0;
1307 	host->completed_events = 0;
1308 	host->cmd_status = 0;
1309 	host->data_status = 0;
1310 	host->dir_status = 0;
1311 
1312 	data = cmd->data;
1313 	if (data) {
1314 		mci_writel(host, TMOUT, 0xFFFFFFFF);
1315 		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1316 		mci_writel(host, BLKSIZ, data->blksz);
1317 	}
1318 
1319 	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1320 
1321 	/* this is the first command, send the initialization clock */
1322 	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1323 		cmdflags |= SDMMC_CMD_INIT;
1324 
1325 	if (data) {
1326 		dw_mci_submit_data(host, data);
1327 		wmb(); /* drain writebuffer */
1328 	}
1329 
1330 	dw_mci_start_command(host, cmd, cmdflags);
1331 
1332 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1333 		unsigned long irqflags;
1334 
1335 		/*
1336 		 * Databook says to fail after 2ms w/ no response, but evidence
1337 		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1338 		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1339 		 * is just about to roll over.
1340 		 *
1341 		 * We do this whole thing under spinlock and only if the
1342 		 * command hasn't already completed (indicating the the irq
1343 		 * already ran so we don't want the timeout).
1344 		 */
1345 		spin_lock_irqsave(&host->irq_lock, irqflags);
1346 		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1347 			mod_timer(&host->cmd11_timer,
1348 				jiffies + msecs_to_jiffies(500) + 1);
1349 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1350 	}
1351 
1352 	host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1353 }
1354 
1355 static void dw_mci_start_request(struct dw_mci *host,
1356 				 struct dw_mci_slot *slot)
1357 {
1358 	struct mmc_request *mrq = slot->mrq;
1359 	struct mmc_command *cmd;
1360 
1361 	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1362 	__dw_mci_start_request(host, slot, cmd);
1363 }
1364 
1365 /* must be called with host->lock held */
1366 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1367 				 struct mmc_request *mrq)
1368 {
1369 	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1370 		 host->state);
1371 
1372 	slot->mrq = mrq;
1373 
1374 	if (host->state == STATE_WAITING_CMD11_DONE) {
1375 		dev_warn(&slot->mmc->class_dev,
1376 			 "Voltage change didn't complete\n");
1377 		/*
1378 		 * this case isn't expected to happen, so we can
1379 		 * either crash here or just try to continue on
1380 		 * in the closest possible state
1381 		 */
1382 		host->state = STATE_IDLE;
1383 	}
1384 
1385 	if (host->state == STATE_IDLE) {
1386 		host->state = STATE_SENDING_CMD;
1387 		dw_mci_start_request(host, slot);
1388 	} else {
1389 		list_add_tail(&slot->queue_node, &host->queue);
1390 	}
1391 }
1392 
1393 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1394 {
1395 	struct dw_mci_slot *slot = mmc_priv(mmc);
1396 	struct dw_mci *host = slot->host;
1397 
1398 	WARN_ON(slot->mrq);
1399 
1400 	/*
1401 	 * The check for card presence and queueing of the request must be
1402 	 * atomic, otherwise the card could be removed in between and the
1403 	 * request wouldn't fail until another card was inserted.
1404 	 */
1405 
1406 	if (!dw_mci_get_cd(mmc)) {
1407 		mrq->cmd->error = -ENOMEDIUM;
1408 		mmc_request_done(mmc, mrq);
1409 		return;
1410 	}
1411 
1412 	spin_lock_bh(&host->lock);
1413 
1414 	dw_mci_queue_request(host, slot, mrq);
1415 
1416 	spin_unlock_bh(&host->lock);
1417 }
1418 
1419 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1420 {
1421 	struct dw_mci_slot *slot = mmc_priv(mmc);
1422 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1423 	u32 regs;
1424 	int ret;
1425 
1426 	switch (ios->bus_width) {
1427 	case MMC_BUS_WIDTH_4:
1428 		slot->ctype = SDMMC_CTYPE_4BIT;
1429 		break;
1430 	case MMC_BUS_WIDTH_8:
1431 		slot->ctype = SDMMC_CTYPE_8BIT;
1432 		break;
1433 	default:
1434 		/* set default 1 bit mode */
1435 		slot->ctype = SDMMC_CTYPE_1BIT;
1436 	}
1437 
1438 	regs = mci_readl(slot->host, UHS_REG);
1439 
1440 	/* DDR mode set */
1441 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1442 	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1443 	    ios->timing == MMC_TIMING_MMC_HS400)
1444 		regs |= ((0x1 << slot->id) << 16);
1445 	else
1446 		regs &= ~((0x1 << slot->id) << 16);
1447 
1448 	mci_writel(slot->host, UHS_REG, regs);
1449 	slot->host->timing = ios->timing;
1450 
1451 	/*
1452 	 * Use mirror of ios->clock to prevent race with mmc
1453 	 * core ios update when finding the minimum.
1454 	 */
1455 	slot->clock = ios->clock;
1456 
1457 	if (drv_data && drv_data->set_ios)
1458 		drv_data->set_ios(slot->host, ios);
1459 
1460 	switch (ios->power_mode) {
1461 	case MMC_POWER_UP:
1462 		if (!IS_ERR(mmc->supply.vmmc)) {
1463 			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1464 					ios->vdd);
1465 			if (ret) {
1466 				dev_err(slot->host->dev,
1467 					"failed to enable vmmc regulator\n");
1468 				/*return, if failed turn on vmmc*/
1469 				return;
1470 			}
1471 		}
1472 		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1473 		regs = mci_readl(slot->host, PWREN);
1474 		regs |= (1 << slot->id);
1475 		mci_writel(slot->host, PWREN, regs);
1476 		break;
1477 	case MMC_POWER_ON:
1478 		if (!slot->host->vqmmc_enabled) {
1479 			if (!IS_ERR(mmc->supply.vqmmc)) {
1480 				ret = regulator_enable(mmc->supply.vqmmc);
1481 				if (ret < 0)
1482 					dev_err(slot->host->dev,
1483 						"failed to enable vqmmc\n");
1484 				else
1485 					slot->host->vqmmc_enabled = true;
1486 
1487 			} else {
1488 				/* Keep track so we don't reset again */
1489 				slot->host->vqmmc_enabled = true;
1490 			}
1491 
1492 			/* Reset our state machine after powering on */
1493 			dw_mci_ctrl_reset(slot->host,
1494 					  SDMMC_CTRL_ALL_RESET_FLAGS);
1495 		}
1496 
1497 		/* Adjust clock / bus width after power is up */
1498 		dw_mci_setup_bus(slot, false);
1499 
1500 		break;
1501 	case MMC_POWER_OFF:
1502 		/* Turn clock off before power goes down */
1503 		dw_mci_setup_bus(slot, false);
1504 
1505 		if (!IS_ERR(mmc->supply.vmmc))
1506 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1507 
1508 		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1509 			regulator_disable(mmc->supply.vqmmc);
1510 		slot->host->vqmmc_enabled = false;
1511 
1512 		regs = mci_readl(slot->host, PWREN);
1513 		regs &= ~(1 << slot->id);
1514 		mci_writel(slot->host, PWREN, regs);
1515 		break;
1516 	default:
1517 		break;
1518 	}
1519 
1520 	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1521 		slot->host->state = STATE_IDLE;
1522 }
1523 
1524 static int dw_mci_card_busy(struct mmc_host *mmc)
1525 {
1526 	struct dw_mci_slot *slot = mmc_priv(mmc);
1527 	u32 status;
1528 
1529 	/*
1530 	 * Check the busy bit which is low when DAT[3:0]
1531 	 * (the data lines) are 0000
1532 	 */
1533 	status = mci_readl(slot->host, STATUS);
1534 
1535 	return !!(status & SDMMC_STATUS_BUSY);
1536 }
1537 
1538 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1539 {
1540 	struct dw_mci_slot *slot = mmc_priv(mmc);
1541 	struct dw_mci *host = slot->host;
1542 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1543 	u32 uhs;
1544 	u32 v18 = SDMMC_UHS_18V << slot->id;
1545 	int ret;
1546 
1547 	if (drv_data && drv_data->switch_voltage)
1548 		return drv_data->switch_voltage(mmc, ios);
1549 
1550 	/*
1551 	 * Program the voltage.  Note that some instances of dw_mmc may use
1552 	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1553 	 * does no harm but you need to set the regulator directly.  Try both.
1554 	 */
1555 	uhs = mci_readl(host, UHS_REG);
1556 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1557 		uhs &= ~v18;
1558 	else
1559 		uhs |= v18;
1560 
1561 	if (!IS_ERR(mmc->supply.vqmmc)) {
1562 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1563 
1564 		if (ret) {
1565 			dev_dbg(&mmc->class_dev,
1566 					 "Regulator set error %d - %s V\n",
1567 					 ret, uhs & v18 ? "1.8" : "3.3");
1568 			return ret;
1569 		}
1570 	}
1571 	mci_writel(host, UHS_REG, uhs);
1572 
1573 	return 0;
1574 }
1575 
1576 static int dw_mci_get_ro(struct mmc_host *mmc)
1577 {
1578 	int read_only;
1579 	struct dw_mci_slot *slot = mmc_priv(mmc);
1580 	int gpio_ro = mmc_gpio_get_ro(mmc);
1581 
1582 	/* Use platform get_ro function, else try on board write protect */
1583 	if (gpio_ro >= 0)
1584 		read_only = gpio_ro;
1585 	else
1586 		read_only =
1587 			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1588 
1589 	dev_dbg(&mmc->class_dev, "card is %s\n",
1590 		read_only ? "read-only" : "read-write");
1591 
1592 	return read_only;
1593 }
1594 
1595 static void dw_mci_hw_reset(struct mmc_host *mmc)
1596 {
1597 	struct dw_mci_slot *slot = mmc_priv(mmc);
1598 	struct dw_mci *host = slot->host;
1599 	int reset;
1600 
1601 	if (host->use_dma == TRANS_MODE_IDMAC)
1602 		dw_mci_idmac_reset(host);
1603 
1604 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1605 				     SDMMC_CTRL_FIFO_RESET))
1606 		return;
1607 
1608 	/*
1609 	 * According to eMMC spec, card reset procedure:
1610 	 * tRstW >= 1us:   RST_n pulse width
1611 	 * tRSCA >= 200us: RST_n to Command time
1612 	 * tRSTH >= 1us:   RST_n high period
1613 	 */
1614 	reset = mci_readl(host, RST_N);
1615 	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1616 	mci_writel(host, RST_N, reset);
1617 	usleep_range(1, 2);
1618 	reset |= SDMMC_RST_HWACTIVE << slot->id;
1619 	mci_writel(host, RST_N, reset);
1620 	usleep_range(200, 300);
1621 }
1622 
1623 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1624 {
1625 	struct dw_mci_slot *slot = mmc_priv(mmc);
1626 	struct dw_mci *host = slot->host;
1627 
1628 	/*
1629 	 * Low power mode will stop the card clock when idle.  According to the
1630 	 * description of the CLKENA register we should disable low power mode
1631 	 * for SDIO cards if we need SDIO interrupts to work.
1632 	 */
1633 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1634 		const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1635 		u32 clk_en_a_old;
1636 		u32 clk_en_a;
1637 
1638 		clk_en_a_old = mci_readl(host, CLKENA);
1639 
1640 		if (card->type == MMC_TYPE_SDIO ||
1641 		    card->type == MMC_TYPE_SD_COMBO) {
1642 			set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1643 			clk_en_a = clk_en_a_old & ~clken_low_pwr;
1644 		} else {
1645 			clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1646 			clk_en_a = clk_en_a_old | clken_low_pwr;
1647 		}
1648 
1649 		if (clk_en_a != clk_en_a_old) {
1650 			mci_writel(host, CLKENA, clk_en_a);
1651 			mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1652 				     SDMMC_CMD_PRV_DAT_WAIT, 0);
1653 		}
1654 	}
1655 }
1656 
1657 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1658 {
1659 	struct dw_mci *host = slot->host;
1660 	unsigned long irqflags;
1661 	u32 int_mask;
1662 
1663 	spin_lock_irqsave(&host->irq_lock, irqflags);
1664 
1665 	/* Enable/disable Slot Specific SDIO interrupt */
1666 	int_mask = mci_readl(host, INTMASK);
1667 	if (enb)
1668 		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1669 	else
1670 		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1671 	mci_writel(host, INTMASK, int_mask);
1672 
1673 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1674 }
1675 
1676 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1677 {
1678 	struct dw_mci_slot *slot = mmc_priv(mmc);
1679 	struct dw_mci *host = slot->host;
1680 
1681 	__dw_mci_enable_sdio_irq(slot, enb);
1682 
1683 	/* Avoid runtime suspending the device when SDIO IRQ is enabled */
1684 	if (enb)
1685 		pm_runtime_get_noresume(host->dev);
1686 	else
1687 		pm_runtime_put_noidle(host->dev);
1688 }
1689 
1690 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1691 {
1692 	struct dw_mci_slot *slot = mmc_priv(mmc);
1693 
1694 	__dw_mci_enable_sdio_irq(slot, 1);
1695 }
1696 
1697 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1698 {
1699 	struct dw_mci_slot *slot = mmc_priv(mmc);
1700 	struct dw_mci *host = slot->host;
1701 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1702 	int err = -EINVAL;
1703 
1704 	if (drv_data && drv_data->execute_tuning)
1705 		err = drv_data->execute_tuning(slot, opcode);
1706 	return err;
1707 }
1708 
1709 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1710 				       struct mmc_ios *ios)
1711 {
1712 	struct dw_mci_slot *slot = mmc_priv(mmc);
1713 	struct dw_mci *host = slot->host;
1714 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1715 
1716 	if (drv_data && drv_data->prepare_hs400_tuning)
1717 		return drv_data->prepare_hs400_tuning(host, ios);
1718 
1719 	return 0;
1720 }
1721 
1722 static bool dw_mci_reset(struct dw_mci *host)
1723 {
1724 	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1725 	bool ret = false;
1726 	u32 status = 0;
1727 
1728 	/*
1729 	 * Resetting generates a block interrupt, hence setting
1730 	 * the scatter-gather pointer to NULL.
1731 	 */
1732 	if (host->sg) {
1733 		sg_miter_stop(&host->sg_miter);
1734 		host->sg = NULL;
1735 	}
1736 
1737 	if (host->use_dma)
1738 		flags |= SDMMC_CTRL_DMA_RESET;
1739 
1740 	if (dw_mci_ctrl_reset(host, flags)) {
1741 		/*
1742 		 * In all cases we clear the RAWINTS
1743 		 * register to clear any interrupts.
1744 		 */
1745 		mci_writel(host, RINTSTS, 0xFFFFFFFF);
1746 
1747 		if (!host->use_dma) {
1748 			ret = true;
1749 			goto ciu_out;
1750 		}
1751 
1752 		/* Wait for dma_req to be cleared */
1753 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1754 					      status,
1755 					      !(status & SDMMC_STATUS_DMA_REQ),
1756 					      1, 500 * USEC_PER_MSEC)) {
1757 			dev_err(host->dev,
1758 				"%s: Timeout waiting for dma_req to be cleared\n",
1759 				__func__);
1760 			goto ciu_out;
1761 		}
1762 
1763 		/* when using DMA next we reset the fifo again */
1764 		if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1765 			goto ciu_out;
1766 	} else {
1767 		/* if the controller reset bit did clear, then set clock regs */
1768 		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1769 			dev_err(host->dev,
1770 				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1771 				__func__);
1772 			goto ciu_out;
1773 		}
1774 	}
1775 
1776 	if (host->use_dma == TRANS_MODE_IDMAC)
1777 		/* It is also recommended that we reset and reprogram idmac */
1778 		dw_mci_idmac_reset(host);
1779 
1780 	ret = true;
1781 
1782 ciu_out:
1783 	/* After a CTRL reset we need to have CIU set clock registers  */
1784 	mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1785 
1786 	return ret;
1787 }
1788 
1789 static const struct mmc_host_ops dw_mci_ops = {
1790 	.request		= dw_mci_request,
1791 	.pre_req		= dw_mci_pre_req,
1792 	.post_req		= dw_mci_post_req,
1793 	.set_ios		= dw_mci_set_ios,
1794 	.get_ro			= dw_mci_get_ro,
1795 	.get_cd			= dw_mci_get_cd,
1796 	.hw_reset               = dw_mci_hw_reset,
1797 	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1798 	.ack_sdio_irq		= dw_mci_ack_sdio_irq,
1799 	.execute_tuning		= dw_mci_execute_tuning,
1800 	.card_busy		= dw_mci_card_busy,
1801 	.start_signal_voltage_switch = dw_mci_switch_voltage,
1802 	.init_card		= dw_mci_init_card,
1803 	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1804 };
1805 
1806 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1807 	__releases(&host->lock)
1808 	__acquires(&host->lock)
1809 {
1810 	struct dw_mci_slot *slot;
1811 	struct mmc_host	*prev_mmc = host->slot->mmc;
1812 
1813 	WARN_ON(host->cmd || host->data);
1814 
1815 	host->slot->mrq = NULL;
1816 	host->mrq = NULL;
1817 	if (!list_empty(&host->queue)) {
1818 		slot = list_entry(host->queue.next,
1819 				  struct dw_mci_slot, queue_node);
1820 		list_del(&slot->queue_node);
1821 		dev_vdbg(host->dev, "list not empty: %s is next\n",
1822 			 mmc_hostname(slot->mmc));
1823 		host->state = STATE_SENDING_CMD;
1824 		dw_mci_start_request(host, slot);
1825 	} else {
1826 		dev_vdbg(host->dev, "list empty\n");
1827 
1828 		if (host->state == STATE_SENDING_CMD11)
1829 			host->state = STATE_WAITING_CMD11_DONE;
1830 		else
1831 			host->state = STATE_IDLE;
1832 	}
1833 
1834 	spin_unlock(&host->lock);
1835 	mmc_request_done(prev_mmc, mrq);
1836 	spin_lock(&host->lock);
1837 }
1838 
1839 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1840 {
1841 	u32 status = host->cmd_status;
1842 
1843 	host->cmd_status = 0;
1844 
1845 	/* Read the response from the card (up to 16 bytes) */
1846 	if (cmd->flags & MMC_RSP_PRESENT) {
1847 		if (cmd->flags & MMC_RSP_136) {
1848 			cmd->resp[3] = mci_readl(host, RESP0);
1849 			cmd->resp[2] = mci_readl(host, RESP1);
1850 			cmd->resp[1] = mci_readl(host, RESP2);
1851 			cmd->resp[0] = mci_readl(host, RESP3);
1852 		} else {
1853 			cmd->resp[0] = mci_readl(host, RESP0);
1854 			cmd->resp[1] = 0;
1855 			cmd->resp[2] = 0;
1856 			cmd->resp[3] = 0;
1857 		}
1858 	}
1859 
1860 	if (status & SDMMC_INT_RTO)
1861 		cmd->error = -ETIMEDOUT;
1862 	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1863 		cmd->error = -EILSEQ;
1864 	else if (status & SDMMC_INT_RESP_ERR)
1865 		cmd->error = -EIO;
1866 	else
1867 		cmd->error = 0;
1868 
1869 	return cmd->error;
1870 }
1871 
1872 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1873 {
1874 	u32 status = host->data_status;
1875 
1876 	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1877 		if (status & SDMMC_INT_DRTO) {
1878 			data->error = -ETIMEDOUT;
1879 		} else if (status & SDMMC_INT_DCRC) {
1880 			data->error = -EILSEQ;
1881 		} else if (status & SDMMC_INT_EBE) {
1882 			if (host->dir_status ==
1883 				DW_MCI_SEND_STATUS) {
1884 				/*
1885 				 * No data CRC status was returned.
1886 				 * The number of bytes transferred
1887 				 * will be exaggerated in PIO mode.
1888 				 */
1889 				data->bytes_xfered = 0;
1890 				data->error = -ETIMEDOUT;
1891 			} else if (host->dir_status ==
1892 					DW_MCI_RECV_STATUS) {
1893 				data->error = -EILSEQ;
1894 			}
1895 		} else {
1896 			/* SDMMC_INT_SBE is included */
1897 			data->error = -EILSEQ;
1898 		}
1899 
1900 		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1901 
1902 		/*
1903 		 * After an error, there may be data lingering
1904 		 * in the FIFO
1905 		 */
1906 		dw_mci_reset(host);
1907 	} else {
1908 		data->bytes_xfered = data->blocks * data->blksz;
1909 		data->error = 0;
1910 	}
1911 
1912 	return data->error;
1913 }
1914 
1915 static void dw_mci_set_drto(struct dw_mci *host)
1916 {
1917 	unsigned int drto_clks;
1918 	unsigned int drto_ms;
1919 
1920 	drto_clks = mci_readl(host, TMOUT) >> 8;
1921 	drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
1922 
1923 	/* add a bit spare time */
1924 	drto_ms += 10;
1925 
1926 	mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1927 }
1928 
1929 static void dw_mci_tasklet_func(unsigned long priv)
1930 {
1931 	struct dw_mci *host = (struct dw_mci *)priv;
1932 	struct mmc_data	*data;
1933 	struct mmc_command *cmd;
1934 	struct mmc_request *mrq;
1935 	enum dw_mci_state state;
1936 	enum dw_mci_state prev_state;
1937 	unsigned int err;
1938 
1939 	spin_lock(&host->lock);
1940 
1941 	state = host->state;
1942 	data = host->data;
1943 	mrq = host->mrq;
1944 
1945 	do {
1946 		prev_state = state;
1947 
1948 		switch (state) {
1949 		case STATE_IDLE:
1950 		case STATE_WAITING_CMD11_DONE:
1951 			break;
1952 
1953 		case STATE_SENDING_CMD11:
1954 		case STATE_SENDING_CMD:
1955 			if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1956 						&host->pending_events))
1957 				break;
1958 
1959 			cmd = host->cmd;
1960 			host->cmd = NULL;
1961 			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1962 			err = dw_mci_command_complete(host, cmd);
1963 			if (cmd == mrq->sbc && !err) {
1964 				prev_state = state = STATE_SENDING_CMD;
1965 				__dw_mci_start_request(host, host->slot,
1966 						       mrq->cmd);
1967 				goto unlock;
1968 			}
1969 
1970 			if (cmd->data && err) {
1971 				/*
1972 				 * During UHS tuning sequence, sending the stop
1973 				 * command after the response CRC error would
1974 				 * throw the system into a confused state
1975 				 * causing all future tuning phases to report
1976 				 * failure.
1977 				 *
1978 				 * In such case controller will move into a data
1979 				 * transfer state after a response error or
1980 				 * response CRC error. Let's let that finish
1981 				 * before trying to send a stop, so we'll go to
1982 				 * STATE_SENDING_DATA.
1983 				 *
1984 				 * Although letting the data transfer take place
1985 				 * will waste a bit of time (we already know
1986 				 * the command was bad), it can't cause any
1987 				 * errors since it's possible it would have
1988 				 * taken place anyway if this tasklet got
1989 				 * delayed. Allowing the transfer to take place
1990 				 * avoids races and keeps things simple.
1991 				 */
1992 				if ((err != -ETIMEDOUT) &&
1993 				    (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
1994 					state = STATE_SENDING_DATA;
1995 					continue;
1996 				}
1997 
1998 				dw_mci_stop_dma(host);
1999 				send_stop_abort(host, data);
2000 				state = STATE_SENDING_STOP;
2001 				break;
2002 			}
2003 
2004 			if (!cmd->data || err) {
2005 				dw_mci_request_end(host, mrq);
2006 				goto unlock;
2007 			}
2008 
2009 			prev_state = state = STATE_SENDING_DATA;
2010 			/* fall through */
2011 
2012 		case STATE_SENDING_DATA:
2013 			/*
2014 			 * We could get a data error and never a transfer
2015 			 * complete so we'd better check for it here.
2016 			 *
2017 			 * Note that we don't really care if we also got a
2018 			 * transfer complete; stopping the DMA and sending an
2019 			 * abort won't hurt.
2020 			 */
2021 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2022 					       &host->pending_events)) {
2023 				dw_mci_stop_dma(host);
2024 				if (!(host->data_status & (SDMMC_INT_DRTO |
2025 							   SDMMC_INT_EBE)))
2026 					send_stop_abort(host, data);
2027 				state = STATE_DATA_ERROR;
2028 				break;
2029 			}
2030 
2031 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2032 						&host->pending_events)) {
2033 				/*
2034 				 * If all data-related interrupts don't come
2035 				 * within the given time in reading data state.
2036 				 */
2037 				if (host->dir_status == DW_MCI_RECV_STATUS)
2038 					dw_mci_set_drto(host);
2039 				break;
2040 			}
2041 
2042 			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2043 
2044 			/*
2045 			 * Handle an EVENT_DATA_ERROR that might have shown up
2046 			 * before the transfer completed.  This might not have
2047 			 * been caught by the check above because the interrupt
2048 			 * could have gone off between the previous check and
2049 			 * the check for transfer complete.
2050 			 *
2051 			 * Technically this ought not be needed assuming we
2052 			 * get a DATA_COMPLETE eventually (we'll notice the
2053 			 * error and end the request), but it shouldn't hurt.
2054 			 *
2055 			 * This has the advantage of sending the stop command.
2056 			 */
2057 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2058 					       &host->pending_events)) {
2059 				dw_mci_stop_dma(host);
2060 				if (!(host->data_status & (SDMMC_INT_DRTO |
2061 							   SDMMC_INT_EBE)))
2062 					send_stop_abort(host, data);
2063 				state = STATE_DATA_ERROR;
2064 				break;
2065 			}
2066 			prev_state = state = STATE_DATA_BUSY;
2067 
2068 			/* fall through */
2069 
2070 		case STATE_DATA_BUSY:
2071 			if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
2072 						&host->pending_events)) {
2073 				/*
2074 				 * If data error interrupt comes but data over
2075 				 * interrupt doesn't come within the given time.
2076 				 * in reading data state.
2077 				 */
2078 				if (host->dir_status == DW_MCI_RECV_STATUS)
2079 					dw_mci_set_drto(host);
2080 				break;
2081 			}
2082 
2083 			host->data = NULL;
2084 			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2085 			err = dw_mci_data_complete(host, data);
2086 
2087 			if (!err) {
2088 				if (!data->stop || mrq->sbc) {
2089 					if (mrq->sbc && data->stop)
2090 						data->stop->error = 0;
2091 					dw_mci_request_end(host, mrq);
2092 					goto unlock;
2093 				}
2094 
2095 				/* stop command for open-ended transfer*/
2096 				if (data->stop)
2097 					send_stop_abort(host, data);
2098 			} else {
2099 				/*
2100 				 * If we don't have a command complete now we'll
2101 				 * never get one since we just reset everything;
2102 				 * better end the request.
2103 				 *
2104 				 * If we do have a command complete we'll fall
2105 				 * through to the SENDING_STOP command and
2106 				 * everything will be peachy keen.
2107 				 */
2108 				if (!test_bit(EVENT_CMD_COMPLETE,
2109 					      &host->pending_events)) {
2110 					host->cmd = NULL;
2111 					dw_mci_request_end(host, mrq);
2112 					goto unlock;
2113 				}
2114 			}
2115 
2116 			/*
2117 			 * If err has non-zero,
2118 			 * stop-abort command has been already issued.
2119 			 */
2120 			prev_state = state = STATE_SENDING_STOP;
2121 
2122 			/* fall through */
2123 
2124 		case STATE_SENDING_STOP:
2125 			if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
2126 						&host->pending_events))
2127 				break;
2128 
2129 			/* CMD error in data command */
2130 			if (mrq->cmd->error && mrq->data)
2131 				dw_mci_reset(host);
2132 
2133 			host->cmd = NULL;
2134 			host->data = NULL;
2135 
2136 			if (!mrq->sbc && mrq->stop)
2137 				dw_mci_command_complete(host, mrq->stop);
2138 			else
2139 				host->cmd_status = 0;
2140 
2141 			dw_mci_request_end(host, mrq);
2142 			goto unlock;
2143 
2144 		case STATE_DATA_ERROR:
2145 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2146 						&host->pending_events))
2147 				break;
2148 
2149 			state = STATE_DATA_BUSY;
2150 			break;
2151 		}
2152 	} while (state != prev_state);
2153 
2154 	host->state = state;
2155 unlock:
2156 	spin_unlock(&host->lock);
2157 
2158 }
2159 
2160 /* push final bytes to part_buf, only use during push */
2161 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2162 {
2163 	memcpy((void *)&host->part_buf, buf, cnt);
2164 	host->part_buf_count = cnt;
2165 }
2166 
2167 /* append bytes to part_buf, only use during push */
2168 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2169 {
2170 	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2171 	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2172 	host->part_buf_count += cnt;
2173 	return cnt;
2174 }
2175 
2176 /* pull first bytes from part_buf, only use during pull */
2177 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2178 {
2179 	cnt = min_t(int, cnt, host->part_buf_count);
2180 	if (cnt) {
2181 		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2182 		       cnt);
2183 		host->part_buf_count -= cnt;
2184 		host->part_buf_start += cnt;
2185 	}
2186 	return cnt;
2187 }
2188 
2189 /* pull final bytes from the part_buf, assuming it's just been filled */
2190 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2191 {
2192 	memcpy(buf, &host->part_buf, cnt);
2193 	host->part_buf_start = cnt;
2194 	host->part_buf_count = (1 << host->data_shift) - cnt;
2195 }
2196 
2197 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2198 {
2199 	struct mmc_data *data = host->data;
2200 	int init_cnt = cnt;
2201 
2202 	/* try and push anything in the part_buf */
2203 	if (unlikely(host->part_buf_count)) {
2204 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2205 
2206 		buf += len;
2207 		cnt -= len;
2208 		if (host->part_buf_count == 2) {
2209 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2210 			host->part_buf_count = 0;
2211 		}
2212 	}
2213 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2214 	if (unlikely((unsigned long)buf & 0x1)) {
2215 		while (cnt >= 2) {
2216 			u16 aligned_buf[64];
2217 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2218 			int items = len >> 1;
2219 			int i;
2220 			/* memcpy from input buffer into aligned buffer */
2221 			memcpy(aligned_buf, buf, len);
2222 			buf += len;
2223 			cnt -= len;
2224 			/* push data from aligned buffer into fifo */
2225 			for (i = 0; i < items; ++i)
2226 				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2227 		}
2228 	} else
2229 #endif
2230 	{
2231 		u16 *pdata = buf;
2232 
2233 		for (; cnt >= 2; cnt -= 2)
2234 			mci_fifo_writew(host->fifo_reg, *pdata++);
2235 		buf = pdata;
2236 	}
2237 	/* put anything remaining in the part_buf */
2238 	if (cnt) {
2239 		dw_mci_set_part_bytes(host, buf, cnt);
2240 		 /* Push data if we have reached the expected data length */
2241 		if ((data->bytes_xfered + init_cnt) ==
2242 		    (data->blksz * data->blocks))
2243 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2244 	}
2245 }
2246 
2247 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2248 {
2249 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2250 	if (unlikely((unsigned long)buf & 0x1)) {
2251 		while (cnt >= 2) {
2252 			/* pull data from fifo into aligned buffer */
2253 			u16 aligned_buf[64];
2254 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2255 			int items = len >> 1;
2256 			int i;
2257 
2258 			for (i = 0; i < items; ++i)
2259 				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2260 			/* memcpy from aligned buffer into output buffer */
2261 			memcpy(buf, aligned_buf, len);
2262 			buf += len;
2263 			cnt -= len;
2264 		}
2265 	} else
2266 #endif
2267 	{
2268 		u16 *pdata = buf;
2269 
2270 		for (; cnt >= 2; cnt -= 2)
2271 			*pdata++ = mci_fifo_readw(host->fifo_reg);
2272 		buf = pdata;
2273 	}
2274 	if (cnt) {
2275 		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2276 		dw_mci_pull_final_bytes(host, buf, cnt);
2277 	}
2278 }
2279 
2280 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2281 {
2282 	struct mmc_data *data = host->data;
2283 	int init_cnt = cnt;
2284 
2285 	/* try and push anything in the part_buf */
2286 	if (unlikely(host->part_buf_count)) {
2287 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2288 
2289 		buf += len;
2290 		cnt -= len;
2291 		if (host->part_buf_count == 4) {
2292 			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2293 			host->part_buf_count = 0;
2294 		}
2295 	}
2296 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2297 	if (unlikely((unsigned long)buf & 0x3)) {
2298 		while (cnt >= 4) {
2299 			u32 aligned_buf[32];
2300 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2301 			int items = len >> 2;
2302 			int i;
2303 			/* memcpy from input buffer into aligned buffer */
2304 			memcpy(aligned_buf, buf, len);
2305 			buf += len;
2306 			cnt -= len;
2307 			/* push data from aligned buffer into fifo */
2308 			for (i = 0; i < items; ++i)
2309 				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2310 		}
2311 	} else
2312 #endif
2313 	{
2314 		u32 *pdata = buf;
2315 
2316 		for (; cnt >= 4; cnt -= 4)
2317 			mci_fifo_writel(host->fifo_reg, *pdata++);
2318 		buf = pdata;
2319 	}
2320 	/* put anything remaining in the part_buf */
2321 	if (cnt) {
2322 		dw_mci_set_part_bytes(host, buf, cnt);
2323 		 /* Push data if we have reached the expected data length */
2324 		if ((data->bytes_xfered + init_cnt) ==
2325 		    (data->blksz * data->blocks))
2326 			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2327 	}
2328 }
2329 
2330 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2331 {
2332 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2333 	if (unlikely((unsigned long)buf & 0x3)) {
2334 		while (cnt >= 4) {
2335 			/* pull data from fifo into aligned buffer */
2336 			u32 aligned_buf[32];
2337 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2338 			int items = len >> 2;
2339 			int i;
2340 
2341 			for (i = 0; i < items; ++i)
2342 				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2343 			/* memcpy from aligned buffer into output buffer */
2344 			memcpy(buf, aligned_buf, len);
2345 			buf += len;
2346 			cnt -= len;
2347 		}
2348 	} else
2349 #endif
2350 	{
2351 		u32 *pdata = buf;
2352 
2353 		for (; cnt >= 4; cnt -= 4)
2354 			*pdata++ = mci_fifo_readl(host->fifo_reg);
2355 		buf = pdata;
2356 	}
2357 	if (cnt) {
2358 		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2359 		dw_mci_pull_final_bytes(host, buf, cnt);
2360 	}
2361 }
2362 
2363 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2364 {
2365 	struct mmc_data *data = host->data;
2366 	int init_cnt = cnt;
2367 
2368 	/* try and push anything in the part_buf */
2369 	if (unlikely(host->part_buf_count)) {
2370 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2371 
2372 		buf += len;
2373 		cnt -= len;
2374 
2375 		if (host->part_buf_count == 8) {
2376 			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2377 			host->part_buf_count = 0;
2378 		}
2379 	}
2380 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2381 	if (unlikely((unsigned long)buf & 0x7)) {
2382 		while (cnt >= 8) {
2383 			u64 aligned_buf[16];
2384 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2385 			int items = len >> 3;
2386 			int i;
2387 			/* memcpy from input buffer into aligned buffer */
2388 			memcpy(aligned_buf, buf, len);
2389 			buf += len;
2390 			cnt -= len;
2391 			/* push data from aligned buffer into fifo */
2392 			for (i = 0; i < items; ++i)
2393 				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2394 		}
2395 	} else
2396 #endif
2397 	{
2398 		u64 *pdata = buf;
2399 
2400 		for (; cnt >= 8; cnt -= 8)
2401 			mci_fifo_writeq(host->fifo_reg, *pdata++);
2402 		buf = pdata;
2403 	}
2404 	/* put anything remaining in the part_buf */
2405 	if (cnt) {
2406 		dw_mci_set_part_bytes(host, buf, cnt);
2407 		/* Push data if we have reached the expected data length */
2408 		if ((data->bytes_xfered + init_cnt) ==
2409 		    (data->blksz * data->blocks))
2410 			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2411 	}
2412 }
2413 
2414 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2415 {
2416 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2417 	if (unlikely((unsigned long)buf & 0x7)) {
2418 		while (cnt >= 8) {
2419 			/* pull data from fifo into aligned buffer */
2420 			u64 aligned_buf[16];
2421 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2422 			int items = len >> 3;
2423 			int i;
2424 
2425 			for (i = 0; i < items; ++i)
2426 				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2427 
2428 			/* memcpy from aligned buffer into output buffer */
2429 			memcpy(buf, aligned_buf, len);
2430 			buf += len;
2431 			cnt -= len;
2432 		}
2433 	} else
2434 #endif
2435 	{
2436 		u64 *pdata = buf;
2437 
2438 		for (; cnt >= 8; cnt -= 8)
2439 			*pdata++ = mci_fifo_readq(host->fifo_reg);
2440 		buf = pdata;
2441 	}
2442 	if (cnt) {
2443 		host->part_buf = mci_fifo_readq(host->fifo_reg);
2444 		dw_mci_pull_final_bytes(host, buf, cnt);
2445 	}
2446 }
2447 
2448 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2449 {
2450 	int len;
2451 
2452 	/* get remaining partial bytes */
2453 	len = dw_mci_pull_part_bytes(host, buf, cnt);
2454 	if (unlikely(len == cnt))
2455 		return;
2456 	buf += len;
2457 	cnt -= len;
2458 
2459 	/* get the rest of the data */
2460 	host->pull_data(host, buf, cnt);
2461 }
2462 
2463 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2464 {
2465 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2466 	void *buf;
2467 	unsigned int offset;
2468 	struct mmc_data	*data = host->data;
2469 	int shift = host->data_shift;
2470 	u32 status;
2471 	unsigned int len;
2472 	unsigned int remain, fcnt;
2473 
2474 	do {
2475 		if (!sg_miter_next(sg_miter))
2476 			goto done;
2477 
2478 		host->sg = sg_miter->piter.sg;
2479 		buf = sg_miter->addr;
2480 		remain = sg_miter->length;
2481 		offset = 0;
2482 
2483 		do {
2484 			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2485 					<< shift) + host->part_buf_count;
2486 			len = min(remain, fcnt);
2487 			if (!len)
2488 				break;
2489 			dw_mci_pull_data(host, (void *)(buf + offset), len);
2490 			data->bytes_xfered += len;
2491 			offset += len;
2492 			remain -= len;
2493 		} while (remain);
2494 
2495 		sg_miter->consumed = offset;
2496 		status = mci_readl(host, MINTSTS);
2497 		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2498 	/* if the RXDR is ready read again */
2499 	} while ((status & SDMMC_INT_RXDR) ||
2500 		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2501 
2502 	if (!remain) {
2503 		if (!sg_miter_next(sg_miter))
2504 			goto done;
2505 		sg_miter->consumed = 0;
2506 	}
2507 	sg_miter_stop(sg_miter);
2508 	return;
2509 
2510 done:
2511 	sg_miter_stop(sg_miter);
2512 	host->sg = NULL;
2513 	smp_wmb(); /* drain writebuffer */
2514 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2515 }
2516 
2517 static void dw_mci_write_data_pio(struct dw_mci *host)
2518 {
2519 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2520 	void *buf;
2521 	unsigned int offset;
2522 	struct mmc_data	*data = host->data;
2523 	int shift = host->data_shift;
2524 	u32 status;
2525 	unsigned int len;
2526 	unsigned int fifo_depth = host->fifo_depth;
2527 	unsigned int remain, fcnt;
2528 
2529 	do {
2530 		if (!sg_miter_next(sg_miter))
2531 			goto done;
2532 
2533 		host->sg = sg_miter->piter.sg;
2534 		buf = sg_miter->addr;
2535 		remain = sg_miter->length;
2536 		offset = 0;
2537 
2538 		do {
2539 			fcnt = ((fifo_depth -
2540 				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2541 					<< shift) - host->part_buf_count;
2542 			len = min(remain, fcnt);
2543 			if (!len)
2544 				break;
2545 			host->push_data(host, (void *)(buf + offset), len);
2546 			data->bytes_xfered += len;
2547 			offset += len;
2548 			remain -= len;
2549 		} while (remain);
2550 
2551 		sg_miter->consumed = offset;
2552 		status = mci_readl(host, MINTSTS);
2553 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2554 	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2555 
2556 	if (!remain) {
2557 		if (!sg_miter_next(sg_miter))
2558 			goto done;
2559 		sg_miter->consumed = 0;
2560 	}
2561 	sg_miter_stop(sg_miter);
2562 	return;
2563 
2564 done:
2565 	sg_miter_stop(sg_miter);
2566 	host->sg = NULL;
2567 	smp_wmb(); /* drain writebuffer */
2568 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2569 }
2570 
2571 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2572 {
2573 	if (!host->cmd_status)
2574 		host->cmd_status = status;
2575 
2576 	smp_wmb(); /* drain writebuffer */
2577 
2578 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2579 	tasklet_schedule(&host->tasklet);
2580 }
2581 
2582 static void dw_mci_handle_cd(struct dw_mci *host)
2583 {
2584 	struct dw_mci_slot *slot = host->slot;
2585 
2586 	if (slot->mmc->ops->card_event)
2587 		slot->mmc->ops->card_event(slot->mmc);
2588 	mmc_detect_change(slot->mmc,
2589 		msecs_to_jiffies(host->pdata->detect_delay_ms));
2590 }
2591 
2592 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2593 {
2594 	struct dw_mci *host = dev_id;
2595 	u32 pending;
2596 	struct dw_mci_slot *slot = host->slot;
2597 
2598 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2599 
2600 	if (pending) {
2601 		/* Check volt switch first, since it can look like an error */
2602 		if ((host->state == STATE_SENDING_CMD11) &&
2603 		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2604 			unsigned long irqflags;
2605 
2606 			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2607 			pending &= ~SDMMC_INT_VOLT_SWITCH;
2608 
2609 			/*
2610 			 * Hold the lock; we know cmd11_timer can't be kicked
2611 			 * off after the lock is released, so safe to delete.
2612 			 */
2613 			spin_lock_irqsave(&host->irq_lock, irqflags);
2614 			dw_mci_cmd_interrupt(host, pending);
2615 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2616 
2617 			del_timer(&host->cmd11_timer);
2618 		}
2619 
2620 		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2621 			del_timer(&host->cto_timer);
2622 			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2623 			host->cmd_status = pending;
2624 			smp_wmb(); /* drain writebuffer */
2625 			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2626 		}
2627 
2628 		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2629 			/* if there is an error report DATA_ERROR */
2630 			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2631 			host->data_status = pending;
2632 			smp_wmb(); /* drain writebuffer */
2633 			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2634 			tasklet_schedule(&host->tasklet);
2635 		}
2636 
2637 		if (pending & SDMMC_INT_DATA_OVER) {
2638 			del_timer(&host->dto_timer);
2639 
2640 			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2641 			if (!host->data_status)
2642 				host->data_status = pending;
2643 			smp_wmb(); /* drain writebuffer */
2644 			if (host->dir_status == DW_MCI_RECV_STATUS) {
2645 				if (host->sg != NULL)
2646 					dw_mci_read_data_pio(host, true);
2647 			}
2648 			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2649 			tasklet_schedule(&host->tasklet);
2650 		}
2651 
2652 		if (pending & SDMMC_INT_RXDR) {
2653 			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2654 			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2655 				dw_mci_read_data_pio(host, false);
2656 		}
2657 
2658 		if (pending & SDMMC_INT_TXDR) {
2659 			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2660 			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2661 				dw_mci_write_data_pio(host);
2662 		}
2663 
2664 		if (pending & SDMMC_INT_CMD_DONE) {
2665 			del_timer(&host->cto_timer);
2666 			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2667 			dw_mci_cmd_interrupt(host, pending);
2668 		}
2669 
2670 		if (pending & SDMMC_INT_CD) {
2671 			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2672 			dw_mci_handle_cd(host);
2673 		}
2674 
2675 		if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2676 			mci_writel(host, RINTSTS,
2677 				   SDMMC_INT_SDIO(slot->sdio_id));
2678 			__dw_mci_enable_sdio_irq(slot, 0);
2679 			sdio_signal_irq(slot->mmc);
2680 		}
2681 
2682 	}
2683 
2684 	if (host->use_dma != TRANS_MODE_IDMAC)
2685 		return IRQ_HANDLED;
2686 
2687 	/* Handle IDMA interrupts */
2688 	if (host->dma_64bit_address == 1) {
2689 		pending = mci_readl(host, IDSTS64);
2690 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2691 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2692 							SDMMC_IDMAC_INT_RI);
2693 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2694 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2695 				host->dma_ops->complete((void *)host);
2696 		}
2697 	} else {
2698 		pending = mci_readl(host, IDSTS);
2699 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2700 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2701 							SDMMC_IDMAC_INT_RI);
2702 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2703 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2704 				host->dma_ops->complete((void *)host);
2705 		}
2706 	}
2707 
2708 	return IRQ_HANDLED;
2709 }
2710 
2711 static int dw_mci_init_slot(struct dw_mci *host)
2712 {
2713 	struct mmc_host *mmc;
2714 	struct dw_mci_slot *slot;
2715 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2716 	int ctrl_id, ret;
2717 	u32 freq[2];
2718 
2719 	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2720 	if (!mmc)
2721 		return -ENOMEM;
2722 
2723 	slot = mmc_priv(mmc);
2724 	slot->id = 0;
2725 	slot->sdio_id = host->sdio_id0 + slot->id;
2726 	slot->mmc = mmc;
2727 	slot->host = host;
2728 	host->slot = slot;
2729 
2730 	mmc->ops = &dw_mci_ops;
2731 	if (device_property_read_u32_array(host->dev, "clock-freq-min-max",
2732 					   freq, 2)) {
2733 		mmc->f_min = DW_MCI_FREQ_MIN;
2734 		mmc->f_max = DW_MCI_FREQ_MAX;
2735 	} else {
2736 		dev_info(host->dev,
2737 			"'clock-freq-min-max' property was deprecated.\n");
2738 		mmc->f_min = freq[0];
2739 		mmc->f_max = freq[1];
2740 	}
2741 
2742 	/*if there are external regulators, get them*/
2743 	ret = mmc_regulator_get_supply(mmc);
2744 	if (ret == -EPROBE_DEFER)
2745 		goto err_host_allocated;
2746 
2747 	if (!mmc->ocr_avail)
2748 		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2749 
2750 	if (host->pdata->caps)
2751 		mmc->caps = host->pdata->caps;
2752 
2753 	/*
2754 	 * Support MMC_CAP_ERASE by default.
2755 	 * It needs to use trim/discard/erase commands.
2756 	 */
2757 	mmc->caps |= MMC_CAP_ERASE;
2758 
2759 	if (host->pdata->pm_caps)
2760 		mmc->pm_caps = host->pdata->pm_caps;
2761 
2762 	if (host->dev->of_node) {
2763 		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2764 		if (ctrl_id < 0)
2765 			ctrl_id = 0;
2766 	} else {
2767 		ctrl_id = to_platform_device(host->dev)->id;
2768 	}
2769 	if (drv_data && drv_data->caps)
2770 		mmc->caps |= drv_data->caps[ctrl_id];
2771 
2772 	if (host->pdata->caps2)
2773 		mmc->caps2 = host->pdata->caps2;
2774 
2775 	ret = mmc_of_parse(mmc);
2776 	if (ret)
2777 		goto err_host_allocated;
2778 
2779 	/* Process SDIO IRQs through the sdio_irq_work. */
2780 	if (mmc->caps & MMC_CAP_SDIO_IRQ)
2781 		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2782 
2783 	/* Useful defaults if platform data is unset. */
2784 	if (host->use_dma == TRANS_MODE_IDMAC) {
2785 		mmc->max_segs = host->ring_size;
2786 		mmc->max_blk_size = 65535;
2787 		mmc->max_seg_size = 0x1000;
2788 		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2789 		mmc->max_blk_count = mmc->max_req_size / 512;
2790 	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2791 		mmc->max_segs = 64;
2792 		mmc->max_blk_size = 65535;
2793 		mmc->max_blk_count = 65535;
2794 		mmc->max_req_size =
2795 				mmc->max_blk_size * mmc->max_blk_count;
2796 		mmc->max_seg_size = mmc->max_req_size;
2797 	} else {
2798 		/* TRANS_MODE_PIO */
2799 		mmc->max_segs = 64;
2800 		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2801 		mmc->max_blk_count = 512;
2802 		mmc->max_req_size = mmc->max_blk_size *
2803 				    mmc->max_blk_count;
2804 		mmc->max_seg_size = mmc->max_req_size;
2805 	}
2806 
2807 	dw_mci_get_cd(mmc);
2808 
2809 	ret = mmc_add_host(mmc);
2810 	if (ret)
2811 		goto err_host_allocated;
2812 
2813 #if defined(CONFIG_DEBUG_FS)
2814 	dw_mci_init_debugfs(slot);
2815 #endif
2816 
2817 	return 0;
2818 
2819 err_host_allocated:
2820 	mmc_free_host(mmc);
2821 	return ret;
2822 }
2823 
2824 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2825 {
2826 	/* Debugfs stuff is cleaned up by mmc core */
2827 	mmc_remove_host(slot->mmc);
2828 	slot->host->slot = NULL;
2829 	mmc_free_host(slot->mmc);
2830 }
2831 
2832 static void dw_mci_init_dma(struct dw_mci *host)
2833 {
2834 	int addr_config;
2835 	struct device *dev = host->dev;
2836 
2837 	/*
2838 	* Check tansfer mode from HCON[17:16]
2839 	* Clear the ambiguous description of dw_mmc databook:
2840 	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
2841 	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2842 	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2843 	* 2b'11: Non DW DMA Interface -> pio only
2844 	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
2845 	* simpler request/acknowledge handshake mechanism and both of them
2846 	* are regarded as external dma master for dw_mmc.
2847 	*/
2848 	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2849 	if (host->use_dma == DMA_INTERFACE_IDMA) {
2850 		host->use_dma = TRANS_MODE_IDMAC;
2851 	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2852 		   host->use_dma == DMA_INTERFACE_GDMA) {
2853 		host->use_dma = TRANS_MODE_EDMAC;
2854 	} else {
2855 		goto no_dma;
2856 	}
2857 
2858 	/* Determine which DMA interface to use */
2859 	if (host->use_dma == TRANS_MODE_IDMAC) {
2860 		/*
2861 		* Check ADDR_CONFIG bit in HCON to find
2862 		* IDMAC address bus width
2863 		*/
2864 		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2865 
2866 		if (addr_config == 1) {
2867 			/* host supports IDMAC in 64-bit address mode */
2868 			host->dma_64bit_address = 1;
2869 			dev_info(host->dev,
2870 				 "IDMAC supports 64-bit address mode.\n");
2871 			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2872 				dma_set_coherent_mask(host->dev,
2873 						      DMA_BIT_MASK(64));
2874 		} else {
2875 			/* host supports IDMAC in 32-bit address mode */
2876 			host->dma_64bit_address = 0;
2877 			dev_info(host->dev,
2878 				 "IDMAC supports 32-bit address mode.\n");
2879 		}
2880 
2881 		/* Alloc memory for sg translation */
2882 		host->sg_cpu = dmam_alloc_coherent(host->dev,
2883 						   DESC_RING_BUF_SZ,
2884 						   &host->sg_dma, GFP_KERNEL);
2885 		if (!host->sg_cpu) {
2886 			dev_err(host->dev,
2887 				"%s: could not alloc DMA memory\n",
2888 				__func__);
2889 			goto no_dma;
2890 		}
2891 
2892 		host->dma_ops = &dw_mci_idmac_ops;
2893 		dev_info(host->dev, "Using internal DMA controller.\n");
2894 	} else {
2895 		/* TRANS_MODE_EDMAC: check dma bindings again */
2896 		if ((device_property_read_string_array(dev, "dma-names",
2897 						       NULL, 0) < 0) ||
2898 		    !device_property_present(dev, "dmas")) {
2899 			goto no_dma;
2900 		}
2901 		host->dma_ops = &dw_mci_edmac_ops;
2902 		dev_info(host->dev, "Using external DMA controller.\n");
2903 	}
2904 
2905 	if (host->dma_ops->init && host->dma_ops->start &&
2906 	    host->dma_ops->stop && host->dma_ops->cleanup) {
2907 		if (host->dma_ops->init(host)) {
2908 			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2909 				__func__);
2910 			goto no_dma;
2911 		}
2912 	} else {
2913 		dev_err(host->dev, "DMA initialization not found.\n");
2914 		goto no_dma;
2915 	}
2916 
2917 	return;
2918 
2919 no_dma:
2920 	dev_info(host->dev, "Using PIO mode.\n");
2921 	host->use_dma = TRANS_MODE_PIO;
2922 }
2923 
2924 static void dw_mci_cmd11_timer(unsigned long arg)
2925 {
2926 	struct dw_mci *host = (struct dw_mci *)arg;
2927 
2928 	if (host->state != STATE_SENDING_CMD11) {
2929 		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2930 		return;
2931 	}
2932 
2933 	host->cmd_status = SDMMC_INT_RTO;
2934 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2935 	tasklet_schedule(&host->tasklet);
2936 }
2937 
2938 static void dw_mci_cto_timer(unsigned long arg)
2939 {
2940 	struct dw_mci *host = (struct dw_mci *)arg;
2941 
2942 	switch (host->state) {
2943 	case STATE_SENDING_CMD11:
2944 	case STATE_SENDING_CMD:
2945 	case STATE_SENDING_STOP:
2946 		/*
2947 		 * If CMD_DONE interrupt does NOT come in sending command
2948 		 * state, we should notify the driver to terminate current
2949 		 * transfer and report a command timeout to the core.
2950 		 */
2951 		host->cmd_status = SDMMC_INT_RTO;
2952 		set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2953 		tasklet_schedule(&host->tasklet);
2954 		break;
2955 	default:
2956 		dev_warn(host->dev, "Unexpected command timeout, state %d\n",
2957 			 host->state);
2958 		break;
2959 	}
2960 }
2961 
2962 static void dw_mci_dto_timer(unsigned long arg)
2963 {
2964 	struct dw_mci *host = (struct dw_mci *)arg;
2965 
2966 	switch (host->state) {
2967 	case STATE_SENDING_DATA:
2968 	case STATE_DATA_BUSY:
2969 		/*
2970 		 * If DTO interrupt does NOT come in sending data state,
2971 		 * we should notify the driver to terminate current transfer
2972 		 * and report a data timeout to the core.
2973 		 */
2974 		host->data_status = SDMMC_INT_DRTO;
2975 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
2976 		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2977 		tasklet_schedule(&host->tasklet);
2978 		break;
2979 	default:
2980 		break;
2981 	}
2982 }
2983 
2984 #ifdef CONFIG_OF
2985 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2986 {
2987 	struct dw_mci_board *pdata;
2988 	struct device *dev = host->dev;
2989 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2990 	int ret;
2991 	u32 clock_frequency;
2992 
2993 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2994 	if (!pdata)
2995 		return ERR_PTR(-ENOMEM);
2996 
2997 	/* find reset controller when exist */
2998 	pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
2999 	if (IS_ERR(pdata->rstc)) {
3000 		if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
3001 			return ERR_PTR(-EPROBE_DEFER);
3002 	}
3003 
3004 	/* find out number of slots supported */
3005 	if (!device_property_read_u32(dev, "num-slots", &pdata->num_slots))
3006 		dev_info(dev, "'num-slots' was deprecated.\n");
3007 
3008 	if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3009 		dev_info(dev,
3010 			 "fifo-depth property not found, using value of FIFOTH register as default\n");
3011 
3012 	device_property_read_u32(dev, "card-detect-delay",
3013 				 &pdata->detect_delay_ms);
3014 
3015 	device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3016 
3017 	if (device_property_present(dev, "fifo-watermark-aligned"))
3018 		host->wm_aligned = true;
3019 
3020 	if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3021 		pdata->bus_hz = clock_frequency;
3022 
3023 	if (drv_data && drv_data->parse_dt) {
3024 		ret = drv_data->parse_dt(host);
3025 		if (ret)
3026 			return ERR_PTR(ret);
3027 	}
3028 
3029 	return pdata;
3030 }
3031 
3032 #else /* CONFIG_OF */
3033 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3034 {
3035 	return ERR_PTR(-EINVAL);
3036 }
3037 #endif /* CONFIG_OF */
3038 
3039 static void dw_mci_enable_cd(struct dw_mci *host)
3040 {
3041 	unsigned long irqflags;
3042 	u32 temp;
3043 
3044 	/*
3045 	 * No need for CD if all slots have a non-error GPIO
3046 	 * as well as broken card detection is found.
3047 	 */
3048 	if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3049 		return;
3050 
3051 	if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3052 		spin_lock_irqsave(&host->irq_lock, irqflags);
3053 		temp = mci_readl(host, INTMASK);
3054 		temp  |= SDMMC_INT_CD;
3055 		mci_writel(host, INTMASK, temp);
3056 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
3057 	}
3058 }
3059 
3060 int dw_mci_probe(struct dw_mci *host)
3061 {
3062 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3063 	int width, i, ret = 0;
3064 	u32 fifo_size;
3065 
3066 	if (!host->pdata) {
3067 		host->pdata = dw_mci_parse_dt(host);
3068 		if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3069 			return -EPROBE_DEFER;
3070 		} else if (IS_ERR(host->pdata)) {
3071 			dev_err(host->dev, "platform data not available\n");
3072 			return -EINVAL;
3073 		}
3074 	}
3075 
3076 	host->biu_clk = devm_clk_get(host->dev, "biu");
3077 	if (IS_ERR(host->biu_clk)) {
3078 		dev_dbg(host->dev, "biu clock not available\n");
3079 	} else {
3080 		ret = clk_prepare_enable(host->biu_clk);
3081 		if (ret) {
3082 			dev_err(host->dev, "failed to enable biu clock\n");
3083 			return ret;
3084 		}
3085 	}
3086 
3087 	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3088 	if (IS_ERR(host->ciu_clk)) {
3089 		dev_dbg(host->dev, "ciu clock not available\n");
3090 		host->bus_hz = host->pdata->bus_hz;
3091 	} else {
3092 		ret = clk_prepare_enable(host->ciu_clk);
3093 		if (ret) {
3094 			dev_err(host->dev, "failed to enable ciu clock\n");
3095 			goto err_clk_biu;
3096 		}
3097 
3098 		if (host->pdata->bus_hz) {
3099 			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3100 			if (ret)
3101 				dev_warn(host->dev,
3102 					 "Unable to set bus rate to %uHz\n",
3103 					 host->pdata->bus_hz);
3104 		}
3105 		host->bus_hz = clk_get_rate(host->ciu_clk);
3106 	}
3107 
3108 	if (!host->bus_hz) {
3109 		dev_err(host->dev,
3110 			"Platform data must supply bus speed\n");
3111 		ret = -ENODEV;
3112 		goto err_clk_ciu;
3113 	}
3114 
3115 	if (!IS_ERR(host->pdata->rstc)) {
3116 		reset_control_assert(host->pdata->rstc);
3117 		usleep_range(10, 50);
3118 		reset_control_deassert(host->pdata->rstc);
3119 	}
3120 
3121 	if (drv_data && drv_data->init) {
3122 		ret = drv_data->init(host);
3123 		if (ret) {
3124 			dev_err(host->dev,
3125 				"implementation specific init failed\n");
3126 			goto err_clk_ciu;
3127 		}
3128 	}
3129 
3130 	setup_timer(&host->cmd11_timer,
3131 		    dw_mci_cmd11_timer, (unsigned long)host);
3132 
3133 	setup_timer(&host->cto_timer,
3134 		    dw_mci_cto_timer, (unsigned long)host);
3135 
3136 	setup_timer(&host->dto_timer,
3137 		    dw_mci_dto_timer, (unsigned long)host);
3138 
3139 	spin_lock_init(&host->lock);
3140 	spin_lock_init(&host->irq_lock);
3141 	INIT_LIST_HEAD(&host->queue);
3142 
3143 	/*
3144 	 * Get the host data width - this assumes that HCON has been set with
3145 	 * the correct values.
3146 	 */
3147 	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3148 	if (!i) {
3149 		host->push_data = dw_mci_push_data16;
3150 		host->pull_data = dw_mci_pull_data16;
3151 		width = 16;
3152 		host->data_shift = 1;
3153 	} else if (i == 2) {
3154 		host->push_data = dw_mci_push_data64;
3155 		host->pull_data = dw_mci_pull_data64;
3156 		width = 64;
3157 		host->data_shift = 3;
3158 	} else {
3159 		/* Check for a reserved value, and warn if it is */
3160 		WARN((i != 1),
3161 		     "HCON reports a reserved host data width!\n"
3162 		     "Defaulting to 32-bit access.\n");
3163 		host->push_data = dw_mci_push_data32;
3164 		host->pull_data = dw_mci_pull_data32;
3165 		width = 32;
3166 		host->data_shift = 2;
3167 	}
3168 
3169 	/* Reset all blocks */
3170 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3171 		ret = -ENODEV;
3172 		goto err_clk_ciu;
3173 	}
3174 
3175 	host->dma_ops = host->pdata->dma_ops;
3176 	dw_mci_init_dma(host);
3177 
3178 	/* Clear the interrupts for the host controller */
3179 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3180 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3181 
3182 	/* Put in max timeout */
3183 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3184 
3185 	/*
3186 	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3187 	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3188 	 */
3189 	if (!host->pdata->fifo_depth) {
3190 		/*
3191 		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3192 		 * have been overwritten by the bootloader, just like we're
3193 		 * about to do, so if you know the value for your hardware, you
3194 		 * should put it in the platform data.
3195 		 */
3196 		fifo_size = mci_readl(host, FIFOTH);
3197 		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3198 	} else {
3199 		fifo_size = host->pdata->fifo_depth;
3200 	}
3201 	host->fifo_depth = fifo_size;
3202 	host->fifoth_val =
3203 		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3204 	mci_writel(host, FIFOTH, host->fifoth_val);
3205 
3206 	/* disable clock to CIU */
3207 	mci_writel(host, CLKENA, 0);
3208 	mci_writel(host, CLKSRC, 0);
3209 
3210 	/*
3211 	 * In 2.40a spec, Data offset is changed.
3212 	 * Need to check the version-id and set data-offset for DATA register.
3213 	 */
3214 	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3215 	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3216 
3217 	if (host->data_addr_override)
3218 		host->fifo_reg = host->regs + host->data_addr_override;
3219 	else if (host->verid < DW_MMC_240A)
3220 		host->fifo_reg = host->regs + DATA_OFFSET;
3221 	else
3222 		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3223 
3224 	tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3225 	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3226 			       host->irq_flags, "dw-mci", host);
3227 	if (ret)
3228 		goto err_dmaunmap;
3229 
3230 	/*
3231 	 * Enable interrupts for command done, data over, data empty,
3232 	 * receive ready and error such as transmit, receive timeout, crc error
3233 	 */
3234 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3235 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3236 		   DW_MCI_ERROR_FLAGS);
3237 	/* Enable mci interrupt */
3238 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3239 
3240 	dev_info(host->dev,
3241 		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3242 		 host->irq, width, fifo_size);
3243 
3244 	/* We need at least one slot to succeed */
3245 	ret = dw_mci_init_slot(host);
3246 	if (ret) {
3247 		dev_dbg(host->dev, "slot %d init failed\n", i);
3248 		goto err_dmaunmap;
3249 	}
3250 
3251 	/* Now that slots are all setup, we can enable card detect */
3252 	dw_mci_enable_cd(host);
3253 
3254 	return 0;
3255 
3256 err_dmaunmap:
3257 	if (host->use_dma && host->dma_ops->exit)
3258 		host->dma_ops->exit(host);
3259 
3260 	if (!IS_ERR(host->pdata->rstc))
3261 		reset_control_assert(host->pdata->rstc);
3262 
3263 err_clk_ciu:
3264 	clk_disable_unprepare(host->ciu_clk);
3265 
3266 err_clk_biu:
3267 	clk_disable_unprepare(host->biu_clk);
3268 
3269 	return ret;
3270 }
3271 EXPORT_SYMBOL(dw_mci_probe);
3272 
3273 void dw_mci_remove(struct dw_mci *host)
3274 {
3275 	dev_dbg(host->dev, "remove slot\n");
3276 	if (host->slot)
3277 		dw_mci_cleanup_slot(host->slot);
3278 
3279 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3280 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3281 
3282 	/* disable clock to CIU */
3283 	mci_writel(host, CLKENA, 0);
3284 	mci_writel(host, CLKSRC, 0);
3285 
3286 	if (host->use_dma && host->dma_ops->exit)
3287 		host->dma_ops->exit(host);
3288 
3289 	if (!IS_ERR(host->pdata->rstc))
3290 		reset_control_assert(host->pdata->rstc);
3291 
3292 	clk_disable_unprepare(host->ciu_clk);
3293 	clk_disable_unprepare(host->biu_clk);
3294 }
3295 EXPORT_SYMBOL(dw_mci_remove);
3296 
3297 
3298 
3299 #ifdef CONFIG_PM
3300 int dw_mci_runtime_suspend(struct device *dev)
3301 {
3302 	struct dw_mci *host = dev_get_drvdata(dev);
3303 
3304 	if (host->use_dma && host->dma_ops->exit)
3305 		host->dma_ops->exit(host);
3306 
3307 	clk_disable_unprepare(host->ciu_clk);
3308 
3309 	if (host->slot &&
3310 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3311 	     !mmc_card_is_removable(host->slot->mmc)))
3312 		clk_disable_unprepare(host->biu_clk);
3313 
3314 	return 0;
3315 }
3316 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3317 
3318 int dw_mci_runtime_resume(struct device *dev)
3319 {
3320 	int ret = 0;
3321 	struct dw_mci *host = dev_get_drvdata(dev);
3322 
3323 	if (host->slot &&
3324 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3325 	     !mmc_card_is_removable(host->slot->mmc))) {
3326 		ret = clk_prepare_enable(host->biu_clk);
3327 		if (ret)
3328 			return ret;
3329 	}
3330 
3331 	ret = clk_prepare_enable(host->ciu_clk);
3332 	if (ret)
3333 		goto err;
3334 
3335 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3336 		clk_disable_unprepare(host->ciu_clk);
3337 		ret = -ENODEV;
3338 		goto err;
3339 	}
3340 
3341 	if (host->use_dma && host->dma_ops->init)
3342 		host->dma_ops->init(host);
3343 
3344 	/*
3345 	 * Restore the initial value at FIFOTH register
3346 	 * And Invalidate the prev_blksz with zero
3347 	 */
3348 	 mci_writel(host, FIFOTH, host->fifoth_val);
3349 	 host->prev_blksz = 0;
3350 
3351 	/* Put in max timeout */
3352 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3353 
3354 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3355 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3356 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3357 		   DW_MCI_ERROR_FLAGS);
3358 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3359 
3360 
3361 	if (host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3362 		dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3363 
3364 	/* Force setup bus to guarantee available clock output */
3365 	dw_mci_setup_bus(host->slot, true);
3366 
3367 	/* Now that slots are all setup, we can enable card detect */
3368 	dw_mci_enable_cd(host);
3369 
3370 	return 0;
3371 
3372 err:
3373 	if (host->slot &&
3374 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3375 	     !mmc_card_is_removable(host->slot->mmc)))
3376 		clk_disable_unprepare(host->biu_clk);
3377 
3378 	return ret;
3379 }
3380 EXPORT_SYMBOL(dw_mci_runtime_resume);
3381 #endif /* CONFIG_PM */
3382 
3383 static int __init dw_mci_init(void)
3384 {
3385 	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3386 	return 0;
3387 }
3388 
3389 static void __exit dw_mci_exit(void)
3390 {
3391 }
3392 
3393 module_init(dw_mci_init);
3394 module_exit(dw_mci_exit);
3395 
3396 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3397 MODULE_AUTHOR("NXP Semiconductor VietNam");
3398 MODULE_AUTHOR("Imagination Technologies Ltd");
3399 MODULE_LICENSE("GPL v2");
3400