xref: /openbmc/linux/drivers/mmc/host/dw_mmc.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /*
2  * Synopsys DesignWare Multimedia Card Interface driver
3  *  (Based on NXP driver for lpc 31xx)
4  *
5  * Copyright (C) 2009 NXP Semiconductors
6  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/iopoll.h>
23 #include <linux/ioport.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/seq_file.h>
28 #include <linux/slab.h>
29 #include <linux/stat.h>
30 #include <linux/delay.h>
31 #include <linux/irq.h>
32 #include <linux/mmc/card.h>
33 #include <linux/mmc/host.h>
34 #include <linux/mmc/mmc.h>
35 #include <linux/mmc/sd.h>
36 #include <linux/mmc/sdio.h>
37 #include <linux/bitops.h>
38 #include <linux/regulator/consumer.h>
39 #include <linux/of.h>
40 #include <linux/of_gpio.h>
41 #include <linux/mmc/slot-gpio.h>
42 
43 #include "dw_mmc.h"
44 
45 /* Common flag combinations */
46 #define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
47 				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
48 				 SDMMC_INT_EBE | SDMMC_INT_HLE)
49 #define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
50 				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
51 #define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
52 				 DW_MCI_CMD_ERROR_FLAGS)
53 #define DW_MCI_SEND_STATUS	1
54 #define DW_MCI_RECV_STATUS	2
55 #define DW_MCI_DMA_THRESHOLD	16
56 
57 #define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
58 #define DW_MCI_FREQ_MIN	100000		/* unit: HZ */
59 
60 #define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
61 				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
62 				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
63 				 SDMMC_IDMAC_INT_TI)
64 
65 #define DESC_RING_BUF_SZ	PAGE_SIZE
66 
67 struct idmac_desc_64addr {
68 	u32		des0;	/* Control Descriptor */
69 #define IDMAC_OWN_CLR64(x) \
70 	!((x) & cpu_to_le32(IDMAC_DES0_OWN))
71 
72 	u32		des1;	/* Reserved */
73 
74 	u32		des2;	/*Buffer sizes */
75 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
76 	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
77 	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
78 
79 	u32		des3;	/* Reserved */
80 
81 	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
82 	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
83 
84 	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
85 	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
86 };
87 
88 struct idmac_desc {
89 	__le32		des0;	/* Control Descriptor */
90 #define IDMAC_DES0_DIC	BIT(1)
91 #define IDMAC_DES0_LD	BIT(2)
92 #define IDMAC_DES0_FD	BIT(3)
93 #define IDMAC_DES0_CH	BIT(4)
94 #define IDMAC_DES0_ER	BIT(5)
95 #define IDMAC_DES0_CES	BIT(30)
96 #define IDMAC_DES0_OWN	BIT(31)
97 
98 	__le32		des1;	/* Buffer sizes */
99 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
100 	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
101 
102 	__le32		des2;	/* buffer 1 physical address */
103 
104 	__le32		des3;	/* buffer 2 physical address */
105 };
106 
107 /* Each descriptor can transfer up to 4KB of data in chained mode */
108 #define DW_MCI_DESC_DATA_LENGTH	0x1000
109 
110 #if defined(CONFIG_DEBUG_FS)
111 static int dw_mci_req_show(struct seq_file *s, void *v)
112 {
113 	struct dw_mci_slot *slot = s->private;
114 	struct mmc_request *mrq;
115 	struct mmc_command *cmd;
116 	struct mmc_command *stop;
117 	struct mmc_data	*data;
118 
119 	/* Make sure we get a consistent snapshot */
120 	spin_lock_bh(&slot->host->lock);
121 	mrq = slot->mrq;
122 
123 	if (mrq) {
124 		cmd = mrq->cmd;
125 		data = mrq->data;
126 		stop = mrq->stop;
127 
128 		if (cmd)
129 			seq_printf(s,
130 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
131 				   cmd->opcode, cmd->arg, cmd->flags,
132 				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
133 				   cmd->resp[2], cmd->error);
134 		if (data)
135 			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
136 				   data->bytes_xfered, data->blocks,
137 				   data->blksz, data->flags, data->error);
138 		if (stop)
139 			seq_printf(s,
140 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
141 				   stop->opcode, stop->arg, stop->flags,
142 				   stop->resp[0], stop->resp[1], stop->resp[2],
143 				   stop->resp[2], stop->error);
144 	}
145 
146 	spin_unlock_bh(&slot->host->lock);
147 
148 	return 0;
149 }
150 DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
151 
152 static int dw_mci_regs_show(struct seq_file *s, void *v)
153 {
154 	struct dw_mci *host = s->private;
155 
156 	pm_runtime_get_sync(host->dev);
157 
158 	seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
159 	seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
160 	seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
161 	seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
162 	seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
163 	seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
164 
165 	pm_runtime_put_autosuspend(host->dev);
166 
167 	return 0;
168 }
169 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
170 
171 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
172 {
173 	struct mmc_host	*mmc = slot->mmc;
174 	struct dw_mci *host = slot->host;
175 	struct dentry *root;
176 	struct dentry *node;
177 
178 	root = mmc->debugfs_root;
179 	if (!root)
180 		return;
181 
182 	node = debugfs_create_file("regs", S_IRUSR, root, host,
183 				   &dw_mci_regs_fops);
184 	if (!node)
185 		goto err;
186 
187 	node = debugfs_create_file("req", S_IRUSR, root, slot,
188 				   &dw_mci_req_fops);
189 	if (!node)
190 		goto err;
191 
192 	node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
193 	if (!node)
194 		goto err;
195 
196 	node = debugfs_create_x32("pending_events", S_IRUSR, root,
197 				  (u32 *)&host->pending_events);
198 	if (!node)
199 		goto err;
200 
201 	node = debugfs_create_x32("completed_events", S_IRUSR, root,
202 				  (u32 *)&host->completed_events);
203 	if (!node)
204 		goto err;
205 
206 	return;
207 
208 err:
209 	dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
210 }
211 #endif /* defined(CONFIG_DEBUG_FS) */
212 
213 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
214 {
215 	u32 ctrl;
216 
217 	ctrl = mci_readl(host, CTRL);
218 	ctrl |= reset;
219 	mci_writel(host, CTRL, ctrl);
220 
221 	/* wait till resets clear */
222 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
223 				      !(ctrl & reset),
224 				      1, 500 * USEC_PER_MSEC)) {
225 		dev_err(host->dev,
226 			"Timeout resetting block (ctrl reset %#x)\n",
227 			ctrl & reset);
228 		return false;
229 	}
230 
231 	return true;
232 }
233 
234 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
235 {
236 	u32 status;
237 
238 	/*
239 	 * Databook says that before issuing a new data transfer command
240 	 * we need to check to see if the card is busy.  Data transfer commands
241 	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
242 	 *
243 	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
244 	 * expected.
245 	 */
246 	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
247 	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
248 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
249 					      status,
250 					      !(status & SDMMC_STATUS_BUSY),
251 					      10, 500 * USEC_PER_MSEC))
252 			dev_err(host->dev, "Busy; trying anyway\n");
253 	}
254 }
255 
256 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
257 {
258 	struct dw_mci *host = slot->host;
259 	unsigned int cmd_status = 0;
260 
261 	mci_writel(host, CMDARG, arg);
262 	wmb(); /* drain writebuffer */
263 	dw_mci_wait_while_busy(host, cmd);
264 	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
265 
266 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
267 				      !(cmd_status & SDMMC_CMD_START),
268 				      1, 500 * USEC_PER_MSEC))
269 		dev_err(&slot->mmc->class_dev,
270 			"Timeout sending command (cmd %#x arg %#x status %#x)\n",
271 			cmd, arg, cmd_status);
272 }
273 
274 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
275 {
276 	struct dw_mci_slot *slot = mmc_priv(mmc);
277 	struct dw_mci *host = slot->host;
278 	u32 cmdr;
279 
280 	cmd->error = -EINPROGRESS;
281 	cmdr = cmd->opcode;
282 
283 	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
284 	    cmd->opcode == MMC_GO_IDLE_STATE ||
285 	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
286 	    (cmd->opcode == SD_IO_RW_DIRECT &&
287 	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
288 		cmdr |= SDMMC_CMD_STOP;
289 	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
290 		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
291 
292 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
293 		u32 clk_en_a;
294 
295 		/* Special bit makes CMD11 not die */
296 		cmdr |= SDMMC_CMD_VOLT_SWITCH;
297 
298 		/* Change state to continue to handle CMD11 weirdness */
299 		WARN_ON(slot->host->state != STATE_SENDING_CMD);
300 		slot->host->state = STATE_SENDING_CMD11;
301 
302 		/*
303 		 * We need to disable low power mode (automatic clock stop)
304 		 * while doing voltage switch so we don't confuse the card,
305 		 * since stopping the clock is a specific part of the UHS
306 		 * voltage change dance.
307 		 *
308 		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
309 		 * unconditionally turned back on in dw_mci_setup_bus() if it's
310 		 * ever called with a non-zero clock.  That shouldn't happen
311 		 * until the voltage change is all done.
312 		 */
313 		clk_en_a = mci_readl(host, CLKENA);
314 		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
315 		mci_writel(host, CLKENA, clk_en_a);
316 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
317 			     SDMMC_CMD_PRV_DAT_WAIT, 0);
318 	}
319 
320 	if (cmd->flags & MMC_RSP_PRESENT) {
321 		/* We expect a response, so set this bit */
322 		cmdr |= SDMMC_CMD_RESP_EXP;
323 		if (cmd->flags & MMC_RSP_136)
324 			cmdr |= SDMMC_CMD_RESP_LONG;
325 	}
326 
327 	if (cmd->flags & MMC_RSP_CRC)
328 		cmdr |= SDMMC_CMD_RESP_CRC;
329 
330 	if (cmd->data) {
331 		cmdr |= SDMMC_CMD_DAT_EXP;
332 		if (cmd->data->flags & MMC_DATA_WRITE)
333 			cmdr |= SDMMC_CMD_DAT_WR;
334 	}
335 
336 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
337 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
338 
339 	return cmdr;
340 }
341 
342 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
343 {
344 	struct mmc_command *stop;
345 	u32 cmdr;
346 
347 	if (!cmd->data)
348 		return 0;
349 
350 	stop = &host->stop_abort;
351 	cmdr = cmd->opcode;
352 	memset(stop, 0, sizeof(struct mmc_command));
353 
354 	if (cmdr == MMC_READ_SINGLE_BLOCK ||
355 	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
356 	    cmdr == MMC_WRITE_BLOCK ||
357 	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
358 	    cmdr == MMC_SEND_TUNING_BLOCK ||
359 	    cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
360 		stop->opcode = MMC_STOP_TRANSMISSION;
361 		stop->arg = 0;
362 		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
363 	} else if (cmdr == SD_IO_RW_EXTENDED) {
364 		stop->opcode = SD_IO_RW_DIRECT;
365 		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
366 			     ((cmd->arg >> 28) & 0x7);
367 		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
368 	} else {
369 		return 0;
370 	}
371 
372 	cmdr = stop->opcode | SDMMC_CMD_STOP |
373 		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
374 
375 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
376 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
377 
378 	return cmdr;
379 }
380 
381 static inline void dw_mci_set_cto(struct dw_mci *host)
382 {
383 	unsigned int cto_clks;
384 	unsigned int cto_div;
385 	unsigned int cto_ms;
386 	unsigned long irqflags;
387 
388 	cto_clks = mci_readl(host, TMOUT) & 0xff;
389 	cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
390 	if (cto_div == 0)
391 		cto_div = 1;
392 
393 	cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
394 				  host->bus_hz);
395 
396 	/* add a bit spare time */
397 	cto_ms += 10;
398 
399 	/*
400 	 * The durations we're working with are fairly short so we have to be
401 	 * extra careful about synchronization here.  Specifically in hardware a
402 	 * command timeout is _at most_ 5.1 ms, so that means we expect an
403 	 * interrupt (either command done or timeout) to come rather quickly
404 	 * after the mci_writel.  ...but just in case we have a long interrupt
405 	 * latency let's add a bit of paranoia.
406 	 *
407 	 * In general we'll assume that at least an interrupt will be asserted
408 	 * in hardware by the time the cto_timer runs.  ...and if it hasn't
409 	 * been asserted in hardware by that time then we'll assume it'll never
410 	 * come.
411 	 */
412 	spin_lock_irqsave(&host->irq_lock, irqflags);
413 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
414 		mod_timer(&host->cto_timer,
415 			jiffies + msecs_to_jiffies(cto_ms) + 1);
416 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
417 }
418 
419 static void dw_mci_start_command(struct dw_mci *host,
420 				 struct mmc_command *cmd, u32 cmd_flags)
421 {
422 	host->cmd = cmd;
423 	dev_vdbg(host->dev,
424 		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
425 		 cmd->arg, cmd_flags);
426 
427 	mci_writel(host, CMDARG, cmd->arg);
428 	wmb(); /* drain writebuffer */
429 	dw_mci_wait_while_busy(host, cmd_flags);
430 
431 	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
432 
433 	/* response expected command only */
434 	if (cmd_flags & SDMMC_CMD_RESP_EXP)
435 		dw_mci_set_cto(host);
436 }
437 
438 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
439 {
440 	struct mmc_command *stop = &host->stop_abort;
441 
442 	dw_mci_start_command(host, stop, host->stop_cmdr);
443 }
444 
445 /* DMA interface functions */
446 static void dw_mci_stop_dma(struct dw_mci *host)
447 {
448 	if (host->using_dma) {
449 		host->dma_ops->stop(host);
450 		host->dma_ops->cleanup(host);
451 	}
452 
453 	/* Data transfer was stopped by the interrupt handler */
454 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
455 }
456 
457 static void dw_mci_dma_cleanup(struct dw_mci *host)
458 {
459 	struct mmc_data *data = host->data;
460 
461 	if (data && data->host_cookie == COOKIE_MAPPED) {
462 		dma_unmap_sg(host->dev,
463 			     data->sg,
464 			     data->sg_len,
465 			     mmc_get_dma_dir(data));
466 		data->host_cookie = COOKIE_UNMAPPED;
467 	}
468 }
469 
470 static void dw_mci_idmac_reset(struct dw_mci *host)
471 {
472 	u32 bmod = mci_readl(host, BMOD);
473 	/* Software reset of DMA */
474 	bmod |= SDMMC_IDMAC_SWRESET;
475 	mci_writel(host, BMOD, bmod);
476 }
477 
478 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
479 {
480 	u32 temp;
481 
482 	/* Disable and reset the IDMAC interface */
483 	temp = mci_readl(host, CTRL);
484 	temp &= ~SDMMC_CTRL_USE_IDMAC;
485 	temp |= SDMMC_CTRL_DMA_RESET;
486 	mci_writel(host, CTRL, temp);
487 
488 	/* Stop the IDMAC running */
489 	temp = mci_readl(host, BMOD);
490 	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
491 	temp |= SDMMC_IDMAC_SWRESET;
492 	mci_writel(host, BMOD, temp);
493 }
494 
495 static void dw_mci_dmac_complete_dma(void *arg)
496 {
497 	struct dw_mci *host = arg;
498 	struct mmc_data *data = host->data;
499 
500 	dev_vdbg(host->dev, "DMA complete\n");
501 
502 	if ((host->use_dma == TRANS_MODE_EDMAC) &&
503 	    data && (data->flags & MMC_DATA_READ))
504 		/* Invalidate cache after read */
505 		dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
506 				    data->sg,
507 				    data->sg_len,
508 				    DMA_FROM_DEVICE);
509 
510 	host->dma_ops->cleanup(host);
511 
512 	/*
513 	 * If the card was removed, data will be NULL. No point in trying to
514 	 * send the stop command or waiting for NBUSY in this case.
515 	 */
516 	if (data) {
517 		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
518 		tasklet_schedule(&host->tasklet);
519 	}
520 }
521 
522 static int dw_mci_idmac_init(struct dw_mci *host)
523 {
524 	int i;
525 
526 	if (host->dma_64bit_address == 1) {
527 		struct idmac_desc_64addr *p;
528 		/* Number of descriptors in the ring buffer */
529 		host->ring_size =
530 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
531 
532 		/* Forward link the descriptor list */
533 		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
534 								i++, p++) {
535 			p->des6 = (host->sg_dma +
536 					(sizeof(struct idmac_desc_64addr) *
537 							(i + 1))) & 0xffffffff;
538 
539 			p->des7 = (u64)(host->sg_dma +
540 					(sizeof(struct idmac_desc_64addr) *
541 							(i + 1))) >> 32;
542 			/* Initialize reserved and buffer size fields to "0" */
543 			p->des0 = 0;
544 			p->des1 = 0;
545 			p->des2 = 0;
546 			p->des3 = 0;
547 		}
548 
549 		/* Set the last descriptor as the end-of-ring descriptor */
550 		p->des6 = host->sg_dma & 0xffffffff;
551 		p->des7 = (u64)host->sg_dma >> 32;
552 		p->des0 = IDMAC_DES0_ER;
553 
554 	} else {
555 		struct idmac_desc *p;
556 		/* Number of descriptors in the ring buffer */
557 		host->ring_size =
558 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
559 
560 		/* Forward link the descriptor list */
561 		for (i = 0, p = host->sg_cpu;
562 		     i < host->ring_size - 1;
563 		     i++, p++) {
564 			p->des3 = cpu_to_le32(host->sg_dma +
565 					(sizeof(struct idmac_desc) * (i + 1)));
566 			p->des0 = 0;
567 			p->des1 = 0;
568 		}
569 
570 		/* Set the last descriptor as the end-of-ring descriptor */
571 		p->des3 = cpu_to_le32(host->sg_dma);
572 		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
573 	}
574 
575 	dw_mci_idmac_reset(host);
576 
577 	if (host->dma_64bit_address == 1) {
578 		/* Mask out interrupts - get Tx & Rx complete only */
579 		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
580 		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
581 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
582 
583 		/* Set the descriptor base address */
584 		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
585 		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
586 
587 	} else {
588 		/* Mask out interrupts - get Tx & Rx complete only */
589 		mci_writel(host, IDSTS, IDMAC_INT_CLR);
590 		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
591 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
592 
593 		/* Set the descriptor base address */
594 		mci_writel(host, DBADDR, host->sg_dma);
595 	}
596 
597 	return 0;
598 }
599 
600 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
601 					 struct mmc_data *data,
602 					 unsigned int sg_len)
603 {
604 	unsigned int desc_len;
605 	struct idmac_desc_64addr *desc_first, *desc_last, *desc;
606 	u32 val;
607 	int i;
608 
609 	desc_first = desc_last = desc = host->sg_cpu;
610 
611 	for (i = 0; i < sg_len; i++) {
612 		unsigned int length = sg_dma_len(&data->sg[i]);
613 
614 		u64 mem_addr = sg_dma_address(&data->sg[i]);
615 
616 		for ( ; length ; desc++) {
617 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
618 				   length : DW_MCI_DESC_DATA_LENGTH;
619 
620 			length -= desc_len;
621 
622 			/*
623 			 * Wait for the former clear OWN bit operation
624 			 * of IDMAC to make sure that this descriptor
625 			 * isn't still owned by IDMAC as IDMAC's write
626 			 * ops and CPU's read ops are asynchronous.
627 			 */
628 			if (readl_poll_timeout_atomic(&desc->des0, val,
629 						!(val & IDMAC_DES0_OWN),
630 						10, 100 * USEC_PER_MSEC))
631 				goto err_own_bit;
632 
633 			/*
634 			 * Set the OWN bit and disable interrupts
635 			 * for this descriptor
636 			 */
637 			desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
638 						IDMAC_DES0_CH;
639 
640 			/* Buffer length */
641 			IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
642 
643 			/* Physical address to DMA to/from */
644 			desc->des4 = mem_addr & 0xffffffff;
645 			desc->des5 = mem_addr >> 32;
646 
647 			/* Update physical address for the next desc */
648 			mem_addr += desc_len;
649 
650 			/* Save pointer to the last descriptor */
651 			desc_last = desc;
652 		}
653 	}
654 
655 	/* Set first descriptor */
656 	desc_first->des0 |= IDMAC_DES0_FD;
657 
658 	/* Set last descriptor */
659 	desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
660 	desc_last->des0 |= IDMAC_DES0_LD;
661 
662 	return 0;
663 err_own_bit:
664 	/* restore the descriptor chain as it's polluted */
665 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
666 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
667 	dw_mci_idmac_init(host);
668 	return -EINVAL;
669 }
670 
671 
672 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
673 					 struct mmc_data *data,
674 					 unsigned int sg_len)
675 {
676 	unsigned int desc_len;
677 	struct idmac_desc *desc_first, *desc_last, *desc;
678 	u32 val;
679 	int i;
680 
681 	desc_first = desc_last = desc = host->sg_cpu;
682 
683 	for (i = 0; i < sg_len; i++) {
684 		unsigned int length = sg_dma_len(&data->sg[i]);
685 
686 		u32 mem_addr = sg_dma_address(&data->sg[i]);
687 
688 		for ( ; length ; desc++) {
689 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
690 				   length : DW_MCI_DESC_DATA_LENGTH;
691 
692 			length -= desc_len;
693 
694 			/*
695 			 * Wait for the former clear OWN bit operation
696 			 * of IDMAC to make sure that this descriptor
697 			 * isn't still owned by IDMAC as IDMAC's write
698 			 * ops and CPU's read ops are asynchronous.
699 			 */
700 			if (readl_poll_timeout_atomic(&desc->des0, val,
701 						      IDMAC_OWN_CLR64(val),
702 						      10,
703 						      100 * USEC_PER_MSEC))
704 				goto err_own_bit;
705 
706 			/*
707 			 * Set the OWN bit and disable interrupts
708 			 * for this descriptor
709 			 */
710 			desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
711 						 IDMAC_DES0_DIC |
712 						 IDMAC_DES0_CH);
713 
714 			/* Buffer length */
715 			IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
716 
717 			/* Physical address to DMA to/from */
718 			desc->des2 = cpu_to_le32(mem_addr);
719 
720 			/* Update physical address for the next desc */
721 			mem_addr += desc_len;
722 
723 			/* Save pointer to the last descriptor */
724 			desc_last = desc;
725 		}
726 	}
727 
728 	/* Set first descriptor */
729 	desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
730 
731 	/* Set last descriptor */
732 	desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
733 				       IDMAC_DES0_DIC));
734 	desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
735 
736 	return 0;
737 err_own_bit:
738 	/* restore the descriptor chain as it's polluted */
739 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
740 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
741 	dw_mci_idmac_init(host);
742 	return -EINVAL;
743 }
744 
745 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
746 {
747 	u32 temp;
748 	int ret;
749 
750 	if (host->dma_64bit_address == 1)
751 		ret = dw_mci_prepare_desc64(host, host->data, sg_len);
752 	else
753 		ret = dw_mci_prepare_desc32(host, host->data, sg_len);
754 
755 	if (ret)
756 		goto out;
757 
758 	/* drain writebuffer */
759 	wmb();
760 
761 	/* Make sure to reset DMA in case we did PIO before this */
762 	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
763 	dw_mci_idmac_reset(host);
764 
765 	/* Select IDMAC interface */
766 	temp = mci_readl(host, CTRL);
767 	temp |= SDMMC_CTRL_USE_IDMAC;
768 	mci_writel(host, CTRL, temp);
769 
770 	/* drain writebuffer */
771 	wmb();
772 
773 	/* Enable the IDMAC */
774 	temp = mci_readl(host, BMOD);
775 	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
776 	mci_writel(host, BMOD, temp);
777 
778 	/* Start it running */
779 	mci_writel(host, PLDMND, 1);
780 
781 out:
782 	return ret;
783 }
784 
785 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
786 	.init = dw_mci_idmac_init,
787 	.start = dw_mci_idmac_start_dma,
788 	.stop = dw_mci_idmac_stop_dma,
789 	.complete = dw_mci_dmac_complete_dma,
790 	.cleanup = dw_mci_dma_cleanup,
791 };
792 
793 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
794 {
795 	dmaengine_terminate_async(host->dms->ch);
796 }
797 
798 static int dw_mci_edmac_start_dma(struct dw_mci *host,
799 					    unsigned int sg_len)
800 {
801 	struct dma_slave_config cfg;
802 	struct dma_async_tx_descriptor *desc = NULL;
803 	struct scatterlist *sgl = host->data->sg;
804 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
805 	u32 sg_elems = host->data->sg_len;
806 	u32 fifoth_val;
807 	u32 fifo_offset = host->fifo_reg - host->regs;
808 	int ret = 0;
809 
810 	/* Set external dma config: burst size, burst width */
811 	cfg.dst_addr = host->phy_regs + fifo_offset;
812 	cfg.src_addr = cfg.dst_addr;
813 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
814 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
815 
816 	/* Match burst msize with external dma config */
817 	fifoth_val = mci_readl(host, FIFOTH);
818 	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
819 	cfg.src_maxburst = cfg.dst_maxburst;
820 
821 	if (host->data->flags & MMC_DATA_WRITE)
822 		cfg.direction = DMA_MEM_TO_DEV;
823 	else
824 		cfg.direction = DMA_DEV_TO_MEM;
825 
826 	ret = dmaengine_slave_config(host->dms->ch, &cfg);
827 	if (ret) {
828 		dev_err(host->dev, "Failed to config edmac.\n");
829 		return -EBUSY;
830 	}
831 
832 	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
833 				       sg_len, cfg.direction,
834 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
835 	if (!desc) {
836 		dev_err(host->dev, "Can't prepare slave sg.\n");
837 		return -EBUSY;
838 	}
839 
840 	/* Set dw_mci_dmac_complete_dma as callback */
841 	desc->callback = dw_mci_dmac_complete_dma;
842 	desc->callback_param = (void *)host;
843 	dmaengine_submit(desc);
844 
845 	/* Flush cache before write */
846 	if (host->data->flags & MMC_DATA_WRITE)
847 		dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
848 				       sg_elems, DMA_TO_DEVICE);
849 
850 	dma_async_issue_pending(host->dms->ch);
851 
852 	return 0;
853 }
854 
855 static int dw_mci_edmac_init(struct dw_mci *host)
856 {
857 	/* Request external dma channel */
858 	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
859 	if (!host->dms)
860 		return -ENOMEM;
861 
862 	host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
863 	if (!host->dms->ch) {
864 		dev_err(host->dev, "Failed to get external DMA channel.\n");
865 		kfree(host->dms);
866 		host->dms = NULL;
867 		return -ENXIO;
868 	}
869 
870 	return 0;
871 }
872 
873 static void dw_mci_edmac_exit(struct dw_mci *host)
874 {
875 	if (host->dms) {
876 		if (host->dms->ch) {
877 			dma_release_channel(host->dms->ch);
878 			host->dms->ch = NULL;
879 		}
880 		kfree(host->dms);
881 		host->dms = NULL;
882 	}
883 }
884 
885 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
886 	.init = dw_mci_edmac_init,
887 	.exit = dw_mci_edmac_exit,
888 	.start = dw_mci_edmac_start_dma,
889 	.stop = dw_mci_edmac_stop_dma,
890 	.complete = dw_mci_dmac_complete_dma,
891 	.cleanup = dw_mci_dma_cleanup,
892 };
893 
894 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
895 				   struct mmc_data *data,
896 				   int cookie)
897 {
898 	struct scatterlist *sg;
899 	unsigned int i, sg_len;
900 
901 	if (data->host_cookie == COOKIE_PRE_MAPPED)
902 		return data->sg_len;
903 
904 	/*
905 	 * We don't do DMA on "complex" transfers, i.e. with
906 	 * non-word-aligned buffers or lengths. Also, we don't bother
907 	 * with all the DMA setup overhead for short transfers.
908 	 */
909 	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
910 		return -EINVAL;
911 
912 	if (data->blksz & 3)
913 		return -EINVAL;
914 
915 	for_each_sg(data->sg, sg, data->sg_len, i) {
916 		if (sg->offset & 3 || sg->length & 3)
917 			return -EINVAL;
918 	}
919 
920 	sg_len = dma_map_sg(host->dev,
921 			    data->sg,
922 			    data->sg_len,
923 			    mmc_get_dma_dir(data));
924 	if (sg_len == 0)
925 		return -EINVAL;
926 
927 	data->host_cookie = cookie;
928 
929 	return sg_len;
930 }
931 
932 static void dw_mci_pre_req(struct mmc_host *mmc,
933 			   struct mmc_request *mrq)
934 {
935 	struct dw_mci_slot *slot = mmc_priv(mmc);
936 	struct mmc_data *data = mrq->data;
937 
938 	if (!slot->host->use_dma || !data)
939 		return;
940 
941 	/* This data might be unmapped at this time */
942 	data->host_cookie = COOKIE_UNMAPPED;
943 
944 	if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
945 				COOKIE_PRE_MAPPED) < 0)
946 		data->host_cookie = COOKIE_UNMAPPED;
947 }
948 
949 static void dw_mci_post_req(struct mmc_host *mmc,
950 			    struct mmc_request *mrq,
951 			    int err)
952 {
953 	struct dw_mci_slot *slot = mmc_priv(mmc);
954 	struct mmc_data *data = mrq->data;
955 
956 	if (!slot->host->use_dma || !data)
957 		return;
958 
959 	if (data->host_cookie != COOKIE_UNMAPPED)
960 		dma_unmap_sg(slot->host->dev,
961 			     data->sg,
962 			     data->sg_len,
963 			     mmc_get_dma_dir(data));
964 	data->host_cookie = COOKIE_UNMAPPED;
965 }
966 
967 static int dw_mci_get_cd(struct mmc_host *mmc)
968 {
969 	int present;
970 	struct dw_mci_slot *slot = mmc_priv(mmc);
971 	struct dw_mci *host = slot->host;
972 	int gpio_cd = mmc_gpio_get_cd(mmc);
973 
974 	/* Use platform get_cd function, else try onboard card detect */
975 	if (((mmc->caps & MMC_CAP_NEEDS_POLL)
976 				|| !mmc_card_is_removable(mmc))) {
977 		present = 1;
978 
979 		if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
980 			if (mmc->caps & MMC_CAP_NEEDS_POLL) {
981 				dev_info(&mmc->class_dev,
982 					"card is polling.\n");
983 			} else {
984 				dev_info(&mmc->class_dev,
985 					"card is non-removable.\n");
986 			}
987 			set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
988 		}
989 
990 		return present;
991 	} else if (gpio_cd >= 0)
992 		present = gpio_cd;
993 	else
994 		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
995 			== 0 ? 1 : 0;
996 
997 	spin_lock_bh(&host->lock);
998 	if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
999 		dev_dbg(&mmc->class_dev, "card is present\n");
1000 	else if (!present &&
1001 			!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
1002 		dev_dbg(&mmc->class_dev, "card is not present\n");
1003 	spin_unlock_bh(&host->lock);
1004 
1005 	return present;
1006 }
1007 
1008 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
1009 {
1010 	unsigned int blksz = data->blksz;
1011 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
1012 	u32 fifo_width = 1 << host->data_shift;
1013 	u32 blksz_depth = blksz / fifo_width, fifoth_val;
1014 	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
1015 	int idx = ARRAY_SIZE(mszs) - 1;
1016 
1017 	/* pio should ship this scenario */
1018 	if (!host->use_dma)
1019 		return;
1020 
1021 	tx_wmark = (host->fifo_depth) / 2;
1022 	tx_wmark_invers = host->fifo_depth - tx_wmark;
1023 
1024 	/*
1025 	 * MSIZE is '1',
1026 	 * if blksz is not a multiple of the FIFO width
1027 	 */
1028 	if (blksz % fifo_width)
1029 		goto done;
1030 
1031 	do {
1032 		if (!((blksz_depth % mszs[idx]) ||
1033 		     (tx_wmark_invers % mszs[idx]))) {
1034 			msize = idx;
1035 			rx_wmark = mszs[idx] - 1;
1036 			break;
1037 		}
1038 	} while (--idx > 0);
1039 	/*
1040 	 * If idx is '0', it won't be tried
1041 	 * Thus, initial values are uesed
1042 	 */
1043 done:
1044 	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1045 	mci_writel(host, FIFOTH, fifoth_val);
1046 }
1047 
1048 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1049 {
1050 	unsigned int blksz = data->blksz;
1051 	u32 blksz_depth, fifo_depth;
1052 	u16 thld_size;
1053 	u8 enable;
1054 
1055 	/*
1056 	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1057 	 * in the FIFO region, so we really shouldn't access it).
1058 	 */
1059 	if (host->verid < DW_MMC_240A ||
1060 		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1061 		return;
1062 
1063 	/*
1064 	 * Card write Threshold is introduced since 2.80a
1065 	 * It's used when HS400 mode is enabled.
1066 	 */
1067 	if (data->flags & MMC_DATA_WRITE &&
1068 		!(host->timing != MMC_TIMING_MMC_HS400))
1069 		return;
1070 
1071 	if (data->flags & MMC_DATA_WRITE)
1072 		enable = SDMMC_CARD_WR_THR_EN;
1073 	else
1074 		enable = SDMMC_CARD_RD_THR_EN;
1075 
1076 	if (host->timing != MMC_TIMING_MMC_HS200 &&
1077 	    host->timing != MMC_TIMING_UHS_SDR104)
1078 		goto disable;
1079 
1080 	blksz_depth = blksz / (1 << host->data_shift);
1081 	fifo_depth = host->fifo_depth;
1082 
1083 	if (blksz_depth > fifo_depth)
1084 		goto disable;
1085 
1086 	/*
1087 	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1088 	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1089 	 * Currently just choose blksz.
1090 	 */
1091 	thld_size = blksz;
1092 	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1093 	return;
1094 
1095 disable:
1096 	mci_writel(host, CDTHRCTL, 0);
1097 }
1098 
1099 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1100 {
1101 	unsigned long irqflags;
1102 	int sg_len;
1103 	u32 temp;
1104 
1105 	host->using_dma = 0;
1106 
1107 	/* If we don't have a channel, we can't do DMA */
1108 	if (!host->use_dma)
1109 		return -ENODEV;
1110 
1111 	sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1112 	if (sg_len < 0) {
1113 		host->dma_ops->stop(host);
1114 		return sg_len;
1115 	}
1116 
1117 	host->using_dma = 1;
1118 
1119 	if (host->use_dma == TRANS_MODE_IDMAC)
1120 		dev_vdbg(host->dev,
1121 			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1122 			 (unsigned long)host->sg_cpu,
1123 			 (unsigned long)host->sg_dma,
1124 			 sg_len);
1125 
1126 	/*
1127 	 * Decide the MSIZE and RX/TX Watermark.
1128 	 * If current block size is same with previous size,
1129 	 * no need to update fifoth.
1130 	 */
1131 	if (host->prev_blksz != data->blksz)
1132 		dw_mci_adjust_fifoth(host, data);
1133 
1134 	/* Enable the DMA interface */
1135 	temp = mci_readl(host, CTRL);
1136 	temp |= SDMMC_CTRL_DMA_ENABLE;
1137 	mci_writel(host, CTRL, temp);
1138 
1139 	/* Disable RX/TX IRQs, let DMA handle it */
1140 	spin_lock_irqsave(&host->irq_lock, irqflags);
1141 	temp = mci_readl(host, INTMASK);
1142 	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1143 	mci_writel(host, INTMASK, temp);
1144 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1145 
1146 	if (host->dma_ops->start(host, sg_len)) {
1147 		host->dma_ops->stop(host);
1148 		/* We can't do DMA, try PIO for this one */
1149 		dev_dbg(host->dev,
1150 			"%s: fall back to PIO mode for current transfer\n",
1151 			__func__);
1152 		return -ENODEV;
1153 	}
1154 
1155 	return 0;
1156 }
1157 
1158 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1159 {
1160 	unsigned long irqflags;
1161 	int flags = SG_MITER_ATOMIC;
1162 	u32 temp;
1163 
1164 	data->error = -EINPROGRESS;
1165 
1166 	WARN_ON(host->data);
1167 	host->sg = NULL;
1168 	host->data = data;
1169 
1170 	if (data->flags & MMC_DATA_READ)
1171 		host->dir_status = DW_MCI_RECV_STATUS;
1172 	else
1173 		host->dir_status = DW_MCI_SEND_STATUS;
1174 
1175 	dw_mci_ctrl_thld(host, data);
1176 
1177 	if (dw_mci_submit_data_dma(host, data)) {
1178 		if (host->data->flags & MMC_DATA_READ)
1179 			flags |= SG_MITER_TO_SG;
1180 		else
1181 			flags |= SG_MITER_FROM_SG;
1182 
1183 		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1184 		host->sg = data->sg;
1185 		host->part_buf_start = 0;
1186 		host->part_buf_count = 0;
1187 
1188 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1189 
1190 		spin_lock_irqsave(&host->irq_lock, irqflags);
1191 		temp = mci_readl(host, INTMASK);
1192 		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1193 		mci_writel(host, INTMASK, temp);
1194 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1195 
1196 		temp = mci_readl(host, CTRL);
1197 		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1198 		mci_writel(host, CTRL, temp);
1199 
1200 		/*
1201 		 * Use the initial fifoth_val for PIO mode. If wm_algined
1202 		 * is set, we set watermark same as data size.
1203 		 * If next issued data may be transfered by DMA mode,
1204 		 * prev_blksz should be invalidated.
1205 		 */
1206 		if (host->wm_aligned)
1207 			dw_mci_adjust_fifoth(host, data);
1208 		else
1209 			mci_writel(host, FIFOTH, host->fifoth_val);
1210 		host->prev_blksz = 0;
1211 	} else {
1212 		/*
1213 		 * Keep the current block size.
1214 		 * It will be used to decide whether to update
1215 		 * fifoth register next time.
1216 		 */
1217 		host->prev_blksz = data->blksz;
1218 	}
1219 }
1220 
1221 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1222 {
1223 	struct dw_mci *host = slot->host;
1224 	unsigned int clock = slot->clock;
1225 	u32 div;
1226 	u32 clk_en_a;
1227 	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1228 
1229 	/* We must continue to set bit 28 in CMD until the change is complete */
1230 	if (host->state == STATE_WAITING_CMD11_DONE)
1231 		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1232 
1233 	if (!clock) {
1234 		mci_writel(host, CLKENA, 0);
1235 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1236 	} else if (clock != host->current_speed || force_clkinit) {
1237 		div = host->bus_hz / clock;
1238 		if (host->bus_hz % clock && host->bus_hz > clock)
1239 			/*
1240 			 * move the + 1 after the divide to prevent
1241 			 * over-clocking the card.
1242 			 */
1243 			div += 1;
1244 
1245 		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1246 
1247 		if ((clock != slot->__clk_old &&
1248 			!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1249 			force_clkinit) {
1250 			/* Silent the verbose log if calling from PM context */
1251 			if (!force_clkinit)
1252 				dev_info(&slot->mmc->class_dev,
1253 					 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1254 					 slot->id, host->bus_hz, clock,
1255 					 div ? ((host->bus_hz / div) >> 1) :
1256 					 host->bus_hz, div);
1257 
1258 			/*
1259 			 * If card is polling, display the message only
1260 			 * one time at boot time.
1261 			 */
1262 			if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1263 					slot->mmc->f_min == clock)
1264 				set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1265 		}
1266 
1267 		/* disable clock */
1268 		mci_writel(host, CLKENA, 0);
1269 		mci_writel(host, CLKSRC, 0);
1270 
1271 		/* inform CIU */
1272 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1273 
1274 		/* set clock to desired speed */
1275 		mci_writel(host, CLKDIV, div);
1276 
1277 		/* inform CIU */
1278 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1279 
1280 		/* enable clock; only low power if no SDIO */
1281 		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1282 		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1283 			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1284 		mci_writel(host, CLKENA, clk_en_a);
1285 
1286 		/* inform CIU */
1287 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1288 
1289 		/* keep the last clock value that was requested from core */
1290 		slot->__clk_old = clock;
1291 	}
1292 
1293 	host->current_speed = clock;
1294 
1295 	/* Set the current slot bus width */
1296 	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1297 }
1298 
1299 static void __dw_mci_start_request(struct dw_mci *host,
1300 				   struct dw_mci_slot *slot,
1301 				   struct mmc_command *cmd)
1302 {
1303 	struct mmc_request *mrq;
1304 	struct mmc_data	*data;
1305 	u32 cmdflags;
1306 
1307 	mrq = slot->mrq;
1308 
1309 	host->mrq = mrq;
1310 
1311 	host->pending_events = 0;
1312 	host->completed_events = 0;
1313 	host->cmd_status = 0;
1314 	host->data_status = 0;
1315 	host->dir_status = 0;
1316 
1317 	data = cmd->data;
1318 	if (data) {
1319 		mci_writel(host, TMOUT, 0xFFFFFFFF);
1320 		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1321 		mci_writel(host, BLKSIZ, data->blksz);
1322 	}
1323 
1324 	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1325 
1326 	/* this is the first command, send the initialization clock */
1327 	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1328 		cmdflags |= SDMMC_CMD_INIT;
1329 
1330 	if (data) {
1331 		dw_mci_submit_data(host, data);
1332 		wmb(); /* drain writebuffer */
1333 	}
1334 
1335 	dw_mci_start_command(host, cmd, cmdflags);
1336 
1337 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1338 		unsigned long irqflags;
1339 
1340 		/*
1341 		 * Databook says to fail after 2ms w/ no response, but evidence
1342 		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1343 		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1344 		 * is just about to roll over.
1345 		 *
1346 		 * We do this whole thing under spinlock and only if the
1347 		 * command hasn't already completed (indicating the the irq
1348 		 * already ran so we don't want the timeout).
1349 		 */
1350 		spin_lock_irqsave(&host->irq_lock, irqflags);
1351 		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1352 			mod_timer(&host->cmd11_timer,
1353 				jiffies + msecs_to_jiffies(500) + 1);
1354 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1355 	}
1356 
1357 	host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1358 }
1359 
1360 static void dw_mci_start_request(struct dw_mci *host,
1361 				 struct dw_mci_slot *slot)
1362 {
1363 	struct mmc_request *mrq = slot->mrq;
1364 	struct mmc_command *cmd;
1365 
1366 	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1367 	__dw_mci_start_request(host, slot, cmd);
1368 }
1369 
1370 /* must be called with host->lock held */
1371 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1372 				 struct mmc_request *mrq)
1373 {
1374 	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1375 		 host->state);
1376 
1377 	slot->mrq = mrq;
1378 
1379 	if (host->state == STATE_WAITING_CMD11_DONE) {
1380 		dev_warn(&slot->mmc->class_dev,
1381 			 "Voltage change didn't complete\n");
1382 		/*
1383 		 * this case isn't expected to happen, so we can
1384 		 * either crash here or just try to continue on
1385 		 * in the closest possible state
1386 		 */
1387 		host->state = STATE_IDLE;
1388 	}
1389 
1390 	if (host->state == STATE_IDLE) {
1391 		host->state = STATE_SENDING_CMD;
1392 		dw_mci_start_request(host, slot);
1393 	} else {
1394 		list_add_tail(&slot->queue_node, &host->queue);
1395 	}
1396 }
1397 
1398 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1399 {
1400 	struct dw_mci_slot *slot = mmc_priv(mmc);
1401 	struct dw_mci *host = slot->host;
1402 
1403 	WARN_ON(slot->mrq);
1404 
1405 	/*
1406 	 * The check for card presence and queueing of the request must be
1407 	 * atomic, otherwise the card could be removed in between and the
1408 	 * request wouldn't fail until another card was inserted.
1409 	 */
1410 
1411 	if (!dw_mci_get_cd(mmc)) {
1412 		mrq->cmd->error = -ENOMEDIUM;
1413 		mmc_request_done(mmc, mrq);
1414 		return;
1415 	}
1416 
1417 	spin_lock_bh(&host->lock);
1418 
1419 	dw_mci_queue_request(host, slot, mrq);
1420 
1421 	spin_unlock_bh(&host->lock);
1422 }
1423 
1424 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1425 {
1426 	struct dw_mci_slot *slot = mmc_priv(mmc);
1427 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1428 	u32 regs;
1429 	int ret;
1430 
1431 	switch (ios->bus_width) {
1432 	case MMC_BUS_WIDTH_4:
1433 		slot->ctype = SDMMC_CTYPE_4BIT;
1434 		break;
1435 	case MMC_BUS_WIDTH_8:
1436 		slot->ctype = SDMMC_CTYPE_8BIT;
1437 		break;
1438 	default:
1439 		/* set default 1 bit mode */
1440 		slot->ctype = SDMMC_CTYPE_1BIT;
1441 	}
1442 
1443 	regs = mci_readl(slot->host, UHS_REG);
1444 
1445 	/* DDR mode set */
1446 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1447 	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1448 	    ios->timing == MMC_TIMING_MMC_HS400)
1449 		regs |= ((0x1 << slot->id) << 16);
1450 	else
1451 		regs &= ~((0x1 << slot->id) << 16);
1452 
1453 	mci_writel(slot->host, UHS_REG, regs);
1454 	slot->host->timing = ios->timing;
1455 
1456 	/*
1457 	 * Use mirror of ios->clock to prevent race with mmc
1458 	 * core ios update when finding the minimum.
1459 	 */
1460 	slot->clock = ios->clock;
1461 
1462 	if (drv_data && drv_data->set_ios)
1463 		drv_data->set_ios(slot->host, ios);
1464 
1465 	switch (ios->power_mode) {
1466 	case MMC_POWER_UP:
1467 		if (!IS_ERR(mmc->supply.vmmc)) {
1468 			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1469 					ios->vdd);
1470 			if (ret) {
1471 				dev_err(slot->host->dev,
1472 					"failed to enable vmmc regulator\n");
1473 				/*return, if failed turn on vmmc*/
1474 				return;
1475 			}
1476 		}
1477 		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1478 		regs = mci_readl(slot->host, PWREN);
1479 		regs |= (1 << slot->id);
1480 		mci_writel(slot->host, PWREN, regs);
1481 		break;
1482 	case MMC_POWER_ON:
1483 		if (!slot->host->vqmmc_enabled) {
1484 			if (!IS_ERR(mmc->supply.vqmmc)) {
1485 				ret = regulator_enable(mmc->supply.vqmmc);
1486 				if (ret < 0)
1487 					dev_err(slot->host->dev,
1488 						"failed to enable vqmmc\n");
1489 				else
1490 					slot->host->vqmmc_enabled = true;
1491 
1492 			} else {
1493 				/* Keep track so we don't reset again */
1494 				slot->host->vqmmc_enabled = true;
1495 			}
1496 
1497 			/* Reset our state machine after powering on */
1498 			dw_mci_ctrl_reset(slot->host,
1499 					  SDMMC_CTRL_ALL_RESET_FLAGS);
1500 		}
1501 
1502 		/* Adjust clock / bus width after power is up */
1503 		dw_mci_setup_bus(slot, false);
1504 
1505 		break;
1506 	case MMC_POWER_OFF:
1507 		/* Turn clock off before power goes down */
1508 		dw_mci_setup_bus(slot, false);
1509 
1510 		if (!IS_ERR(mmc->supply.vmmc))
1511 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1512 
1513 		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1514 			regulator_disable(mmc->supply.vqmmc);
1515 		slot->host->vqmmc_enabled = false;
1516 
1517 		regs = mci_readl(slot->host, PWREN);
1518 		regs &= ~(1 << slot->id);
1519 		mci_writel(slot->host, PWREN, regs);
1520 		break;
1521 	default:
1522 		break;
1523 	}
1524 
1525 	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1526 		slot->host->state = STATE_IDLE;
1527 }
1528 
1529 static int dw_mci_card_busy(struct mmc_host *mmc)
1530 {
1531 	struct dw_mci_slot *slot = mmc_priv(mmc);
1532 	u32 status;
1533 
1534 	/*
1535 	 * Check the busy bit which is low when DAT[3:0]
1536 	 * (the data lines) are 0000
1537 	 */
1538 	status = mci_readl(slot->host, STATUS);
1539 
1540 	return !!(status & SDMMC_STATUS_BUSY);
1541 }
1542 
1543 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1544 {
1545 	struct dw_mci_slot *slot = mmc_priv(mmc);
1546 	struct dw_mci *host = slot->host;
1547 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1548 	u32 uhs;
1549 	u32 v18 = SDMMC_UHS_18V << slot->id;
1550 	int ret;
1551 
1552 	if (drv_data && drv_data->switch_voltage)
1553 		return drv_data->switch_voltage(mmc, ios);
1554 
1555 	/*
1556 	 * Program the voltage.  Note that some instances of dw_mmc may use
1557 	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1558 	 * does no harm but you need to set the regulator directly.  Try both.
1559 	 */
1560 	uhs = mci_readl(host, UHS_REG);
1561 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1562 		uhs &= ~v18;
1563 	else
1564 		uhs |= v18;
1565 
1566 	if (!IS_ERR(mmc->supply.vqmmc)) {
1567 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1568 
1569 		if (ret) {
1570 			dev_dbg(&mmc->class_dev,
1571 					 "Regulator set error %d - %s V\n",
1572 					 ret, uhs & v18 ? "1.8" : "3.3");
1573 			return ret;
1574 		}
1575 	}
1576 	mci_writel(host, UHS_REG, uhs);
1577 
1578 	return 0;
1579 }
1580 
1581 static int dw_mci_get_ro(struct mmc_host *mmc)
1582 {
1583 	int read_only;
1584 	struct dw_mci_slot *slot = mmc_priv(mmc);
1585 	int gpio_ro = mmc_gpio_get_ro(mmc);
1586 
1587 	/* Use platform get_ro function, else try on board write protect */
1588 	if (gpio_ro >= 0)
1589 		read_only = gpio_ro;
1590 	else
1591 		read_only =
1592 			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1593 
1594 	dev_dbg(&mmc->class_dev, "card is %s\n",
1595 		read_only ? "read-only" : "read-write");
1596 
1597 	return read_only;
1598 }
1599 
1600 static void dw_mci_hw_reset(struct mmc_host *mmc)
1601 {
1602 	struct dw_mci_slot *slot = mmc_priv(mmc);
1603 	struct dw_mci *host = slot->host;
1604 	int reset;
1605 
1606 	if (host->use_dma == TRANS_MODE_IDMAC)
1607 		dw_mci_idmac_reset(host);
1608 
1609 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1610 				     SDMMC_CTRL_FIFO_RESET))
1611 		return;
1612 
1613 	/*
1614 	 * According to eMMC spec, card reset procedure:
1615 	 * tRstW >= 1us:   RST_n pulse width
1616 	 * tRSCA >= 200us: RST_n to Command time
1617 	 * tRSTH >= 1us:   RST_n high period
1618 	 */
1619 	reset = mci_readl(host, RST_N);
1620 	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1621 	mci_writel(host, RST_N, reset);
1622 	usleep_range(1, 2);
1623 	reset |= SDMMC_RST_HWACTIVE << slot->id;
1624 	mci_writel(host, RST_N, reset);
1625 	usleep_range(200, 300);
1626 }
1627 
1628 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1629 {
1630 	struct dw_mci_slot *slot = mmc_priv(mmc);
1631 	struct dw_mci *host = slot->host;
1632 
1633 	/*
1634 	 * Low power mode will stop the card clock when idle.  According to the
1635 	 * description of the CLKENA register we should disable low power mode
1636 	 * for SDIO cards if we need SDIO interrupts to work.
1637 	 */
1638 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1639 		const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1640 		u32 clk_en_a_old;
1641 		u32 clk_en_a;
1642 
1643 		clk_en_a_old = mci_readl(host, CLKENA);
1644 
1645 		if (card->type == MMC_TYPE_SDIO ||
1646 		    card->type == MMC_TYPE_SD_COMBO) {
1647 			set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1648 			clk_en_a = clk_en_a_old & ~clken_low_pwr;
1649 		} else {
1650 			clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1651 			clk_en_a = clk_en_a_old | clken_low_pwr;
1652 		}
1653 
1654 		if (clk_en_a != clk_en_a_old) {
1655 			mci_writel(host, CLKENA, clk_en_a);
1656 			mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1657 				     SDMMC_CMD_PRV_DAT_WAIT, 0);
1658 		}
1659 	}
1660 }
1661 
1662 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1663 {
1664 	struct dw_mci *host = slot->host;
1665 	unsigned long irqflags;
1666 	u32 int_mask;
1667 
1668 	spin_lock_irqsave(&host->irq_lock, irqflags);
1669 
1670 	/* Enable/disable Slot Specific SDIO interrupt */
1671 	int_mask = mci_readl(host, INTMASK);
1672 	if (enb)
1673 		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1674 	else
1675 		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1676 	mci_writel(host, INTMASK, int_mask);
1677 
1678 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1679 }
1680 
1681 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1682 {
1683 	struct dw_mci_slot *slot = mmc_priv(mmc);
1684 	struct dw_mci *host = slot->host;
1685 
1686 	__dw_mci_enable_sdio_irq(slot, enb);
1687 
1688 	/* Avoid runtime suspending the device when SDIO IRQ is enabled */
1689 	if (enb)
1690 		pm_runtime_get_noresume(host->dev);
1691 	else
1692 		pm_runtime_put_noidle(host->dev);
1693 }
1694 
1695 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1696 {
1697 	struct dw_mci_slot *slot = mmc_priv(mmc);
1698 
1699 	__dw_mci_enable_sdio_irq(slot, 1);
1700 }
1701 
1702 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1703 {
1704 	struct dw_mci_slot *slot = mmc_priv(mmc);
1705 	struct dw_mci *host = slot->host;
1706 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1707 	int err = -EINVAL;
1708 
1709 	if (drv_data && drv_data->execute_tuning)
1710 		err = drv_data->execute_tuning(slot, opcode);
1711 	return err;
1712 }
1713 
1714 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1715 				       struct mmc_ios *ios)
1716 {
1717 	struct dw_mci_slot *slot = mmc_priv(mmc);
1718 	struct dw_mci *host = slot->host;
1719 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1720 
1721 	if (drv_data && drv_data->prepare_hs400_tuning)
1722 		return drv_data->prepare_hs400_tuning(host, ios);
1723 
1724 	return 0;
1725 }
1726 
1727 static bool dw_mci_reset(struct dw_mci *host)
1728 {
1729 	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1730 	bool ret = false;
1731 	u32 status = 0;
1732 
1733 	/*
1734 	 * Resetting generates a block interrupt, hence setting
1735 	 * the scatter-gather pointer to NULL.
1736 	 */
1737 	if (host->sg) {
1738 		sg_miter_stop(&host->sg_miter);
1739 		host->sg = NULL;
1740 	}
1741 
1742 	if (host->use_dma)
1743 		flags |= SDMMC_CTRL_DMA_RESET;
1744 
1745 	if (dw_mci_ctrl_reset(host, flags)) {
1746 		/*
1747 		 * In all cases we clear the RAWINTS
1748 		 * register to clear any interrupts.
1749 		 */
1750 		mci_writel(host, RINTSTS, 0xFFFFFFFF);
1751 
1752 		if (!host->use_dma) {
1753 			ret = true;
1754 			goto ciu_out;
1755 		}
1756 
1757 		/* Wait for dma_req to be cleared */
1758 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1759 					      status,
1760 					      !(status & SDMMC_STATUS_DMA_REQ),
1761 					      1, 500 * USEC_PER_MSEC)) {
1762 			dev_err(host->dev,
1763 				"%s: Timeout waiting for dma_req to be cleared\n",
1764 				__func__);
1765 			goto ciu_out;
1766 		}
1767 
1768 		/* when using DMA next we reset the fifo again */
1769 		if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1770 			goto ciu_out;
1771 	} else {
1772 		/* if the controller reset bit did clear, then set clock regs */
1773 		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1774 			dev_err(host->dev,
1775 				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1776 				__func__);
1777 			goto ciu_out;
1778 		}
1779 	}
1780 
1781 	if (host->use_dma == TRANS_MODE_IDMAC)
1782 		/* It is also required that we reinit idmac */
1783 		dw_mci_idmac_init(host);
1784 
1785 	ret = true;
1786 
1787 ciu_out:
1788 	/* After a CTRL reset we need to have CIU set clock registers  */
1789 	mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1790 
1791 	return ret;
1792 }
1793 
1794 static const struct mmc_host_ops dw_mci_ops = {
1795 	.request		= dw_mci_request,
1796 	.pre_req		= dw_mci_pre_req,
1797 	.post_req		= dw_mci_post_req,
1798 	.set_ios		= dw_mci_set_ios,
1799 	.get_ro			= dw_mci_get_ro,
1800 	.get_cd			= dw_mci_get_cd,
1801 	.hw_reset               = dw_mci_hw_reset,
1802 	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1803 	.ack_sdio_irq		= dw_mci_ack_sdio_irq,
1804 	.execute_tuning		= dw_mci_execute_tuning,
1805 	.card_busy		= dw_mci_card_busy,
1806 	.start_signal_voltage_switch = dw_mci_switch_voltage,
1807 	.init_card		= dw_mci_init_card,
1808 	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1809 };
1810 
1811 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1812 	__releases(&host->lock)
1813 	__acquires(&host->lock)
1814 {
1815 	struct dw_mci_slot *slot;
1816 	struct mmc_host	*prev_mmc = host->slot->mmc;
1817 
1818 	WARN_ON(host->cmd || host->data);
1819 
1820 	host->slot->mrq = NULL;
1821 	host->mrq = NULL;
1822 	if (!list_empty(&host->queue)) {
1823 		slot = list_entry(host->queue.next,
1824 				  struct dw_mci_slot, queue_node);
1825 		list_del(&slot->queue_node);
1826 		dev_vdbg(host->dev, "list not empty: %s is next\n",
1827 			 mmc_hostname(slot->mmc));
1828 		host->state = STATE_SENDING_CMD;
1829 		dw_mci_start_request(host, slot);
1830 	} else {
1831 		dev_vdbg(host->dev, "list empty\n");
1832 
1833 		if (host->state == STATE_SENDING_CMD11)
1834 			host->state = STATE_WAITING_CMD11_DONE;
1835 		else
1836 			host->state = STATE_IDLE;
1837 	}
1838 
1839 	spin_unlock(&host->lock);
1840 	mmc_request_done(prev_mmc, mrq);
1841 	spin_lock(&host->lock);
1842 }
1843 
1844 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1845 {
1846 	u32 status = host->cmd_status;
1847 
1848 	host->cmd_status = 0;
1849 
1850 	/* Read the response from the card (up to 16 bytes) */
1851 	if (cmd->flags & MMC_RSP_PRESENT) {
1852 		if (cmd->flags & MMC_RSP_136) {
1853 			cmd->resp[3] = mci_readl(host, RESP0);
1854 			cmd->resp[2] = mci_readl(host, RESP1);
1855 			cmd->resp[1] = mci_readl(host, RESP2);
1856 			cmd->resp[0] = mci_readl(host, RESP3);
1857 		} else {
1858 			cmd->resp[0] = mci_readl(host, RESP0);
1859 			cmd->resp[1] = 0;
1860 			cmd->resp[2] = 0;
1861 			cmd->resp[3] = 0;
1862 		}
1863 	}
1864 
1865 	if (status & SDMMC_INT_RTO)
1866 		cmd->error = -ETIMEDOUT;
1867 	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1868 		cmd->error = -EILSEQ;
1869 	else if (status & SDMMC_INT_RESP_ERR)
1870 		cmd->error = -EIO;
1871 	else
1872 		cmd->error = 0;
1873 
1874 	return cmd->error;
1875 }
1876 
1877 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1878 {
1879 	u32 status = host->data_status;
1880 
1881 	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1882 		if (status & SDMMC_INT_DRTO) {
1883 			data->error = -ETIMEDOUT;
1884 		} else if (status & SDMMC_INT_DCRC) {
1885 			data->error = -EILSEQ;
1886 		} else if (status & SDMMC_INT_EBE) {
1887 			if (host->dir_status ==
1888 				DW_MCI_SEND_STATUS) {
1889 				/*
1890 				 * No data CRC status was returned.
1891 				 * The number of bytes transferred
1892 				 * will be exaggerated in PIO mode.
1893 				 */
1894 				data->bytes_xfered = 0;
1895 				data->error = -ETIMEDOUT;
1896 			} else if (host->dir_status ==
1897 					DW_MCI_RECV_STATUS) {
1898 				data->error = -EILSEQ;
1899 			}
1900 		} else {
1901 			/* SDMMC_INT_SBE is included */
1902 			data->error = -EILSEQ;
1903 		}
1904 
1905 		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1906 
1907 		/*
1908 		 * After an error, there may be data lingering
1909 		 * in the FIFO
1910 		 */
1911 		dw_mci_reset(host);
1912 	} else {
1913 		data->bytes_xfered = data->blocks * data->blksz;
1914 		data->error = 0;
1915 	}
1916 
1917 	return data->error;
1918 }
1919 
1920 static void dw_mci_set_drto(struct dw_mci *host)
1921 {
1922 	unsigned int drto_clks;
1923 	unsigned int drto_div;
1924 	unsigned int drto_ms;
1925 	unsigned long irqflags;
1926 
1927 	drto_clks = mci_readl(host, TMOUT) >> 8;
1928 	drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
1929 	if (drto_div == 0)
1930 		drto_div = 1;
1931 
1932 	drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
1933 				   host->bus_hz);
1934 
1935 	/* add a bit spare time */
1936 	drto_ms += 10;
1937 
1938 	spin_lock_irqsave(&host->irq_lock, irqflags);
1939 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1940 		mod_timer(&host->dto_timer,
1941 			  jiffies + msecs_to_jiffies(drto_ms));
1942 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1943 }
1944 
1945 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
1946 {
1947 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1948 		return false;
1949 
1950 	/*
1951 	 * Really be certain that the timer has stopped.  This is a bit of
1952 	 * paranoia and could only really happen if we had really bad
1953 	 * interrupt latency and the interrupt routine and timeout were
1954 	 * running concurrently so that the del_timer() in the interrupt
1955 	 * handler couldn't run.
1956 	 */
1957 	WARN_ON(del_timer_sync(&host->cto_timer));
1958 	clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
1959 
1960 	return true;
1961 }
1962 
1963 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
1964 {
1965 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1966 		return false;
1967 
1968 	/* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
1969 	WARN_ON(del_timer_sync(&host->dto_timer));
1970 	clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
1971 
1972 	return true;
1973 }
1974 
1975 static void dw_mci_tasklet_func(unsigned long priv)
1976 {
1977 	struct dw_mci *host = (struct dw_mci *)priv;
1978 	struct mmc_data	*data;
1979 	struct mmc_command *cmd;
1980 	struct mmc_request *mrq;
1981 	enum dw_mci_state state;
1982 	enum dw_mci_state prev_state;
1983 	unsigned int err;
1984 
1985 	spin_lock(&host->lock);
1986 
1987 	state = host->state;
1988 	data = host->data;
1989 	mrq = host->mrq;
1990 
1991 	do {
1992 		prev_state = state;
1993 
1994 		switch (state) {
1995 		case STATE_IDLE:
1996 		case STATE_WAITING_CMD11_DONE:
1997 			break;
1998 
1999 		case STATE_SENDING_CMD11:
2000 		case STATE_SENDING_CMD:
2001 			if (!dw_mci_clear_pending_cmd_complete(host))
2002 				break;
2003 
2004 			cmd = host->cmd;
2005 			host->cmd = NULL;
2006 			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
2007 			err = dw_mci_command_complete(host, cmd);
2008 			if (cmd == mrq->sbc && !err) {
2009 				__dw_mci_start_request(host, host->slot,
2010 						       mrq->cmd);
2011 				goto unlock;
2012 			}
2013 
2014 			if (cmd->data && err) {
2015 				/*
2016 				 * During UHS tuning sequence, sending the stop
2017 				 * command after the response CRC error would
2018 				 * throw the system into a confused state
2019 				 * causing all future tuning phases to report
2020 				 * failure.
2021 				 *
2022 				 * In such case controller will move into a data
2023 				 * transfer state after a response error or
2024 				 * response CRC error. Let's let that finish
2025 				 * before trying to send a stop, so we'll go to
2026 				 * STATE_SENDING_DATA.
2027 				 *
2028 				 * Although letting the data transfer take place
2029 				 * will waste a bit of time (we already know
2030 				 * the command was bad), it can't cause any
2031 				 * errors since it's possible it would have
2032 				 * taken place anyway if this tasklet got
2033 				 * delayed. Allowing the transfer to take place
2034 				 * avoids races and keeps things simple.
2035 				 */
2036 				if ((err != -ETIMEDOUT) &&
2037 				    (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
2038 					state = STATE_SENDING_DATA;
2039 					continue;
2040 				}
2041 
2042 				dw_mci_stop_dma(host);
2043 				send_stop_abort(host, data);
2044 				state = STATE_SENDING_STOP;
2045 				break;
2046 			}
2047 
2048 			if (!cmd->data || err) {
2049 				dw_mci_request_end(host, mrq);
2050 				goto unlock;
2051 			}
2052 
2053 			prev_state = state = STATE_SENDING_DATA;
2054 			/* fall through */
2055 
2056 		case STATE_SENDING_DATA:
2057 			/*
2058 			 * We could get a data error and never a transfer
2059 			 * complete so we'd better check for it here.
2060 			 *
2061 			 * Note that we don't really care if we also got a
2062 			 * transfer complete; stopping the DMA and sending an
2063 			 * abort won't hurt.
2064 			 */
2065 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2066 					       &host->pending_events)) {
2067 				dw_mci_stop_dma(host);
2068 				if (!(host->data_status & (SDMMC_INT_DRTO |
2069 							   SDMMC_INT_EBE)))
2070 					send_stop_abort(host, data);
2071 				state = STATE_DATA_ERROR;
2072 				break;
2073 			}
2074 
2075 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2076 						&host->pending_events)) {
2077 				/*
2078 				 * If all data-related interrupts don't come
2079 				 * within the given time in reading data state.
2080 				 */
2081 				if (host->dir_status == DW_MCI_RECV_STATUS)
2082 					dw_mci_set_drto(host);
2083 				break;
2084 			}
2085 
2086 			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2087 
2088 			/*
2089 			 * Handle an EVENT_DATA_ERROR that might have shown up
2090 			 * before the transfer completed.  This might not have
2091 			 * been caught by the check above because the interrupt
2092 			 * could have gone off between the previous check and
2093 			 * the check for transfer complete.
2094 			 *
2095 			 * Technically this ought not be needed assuming we
2096 			 * get a DATA_COMPLETE eventually (we'll notice the
2097 			 * error and end the request), but it shouldn't hurt.
2098 			 *
2099 			 * This has the advantage of sending the stop command.
2100 			 */
2101 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2102 					       &host->pending_events)) {
2103 				dw_mci_stop_dma(host);
2104 				if (!(host->data_status & (SDMMC_INT_DRTO |
2105 							   SDMMC_INT_EBE)))
2106 					send_stop_abort(host, data);
2107 				state = STATE_DATA_ERROR;
2108 				break;
2109 			}
2110 			prev_state = state = STATE_DATA_BUSY;
2111 
2112 			/* fall through */
2113 
2114 		case STATE_DATA_BUSY:
2115 			if (!dw_mci_clear_pending_data_complete(host)) {
2116 				/*
2117 				 * If data error interrupt comes but data over
2118 				 * interrupt doesn't come within the given time.
2119 				 * in reading data state.
2120 				 */
2121 				if (host->dir_status == DW_MCI_RECV_STATUS)
2122 					dw_mci_set_drto(host);
2123 				break;
2124 			}
2125 
2126 			host->data = NULL;
2127 			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2128 			err = dw_mci_data_complete(host, data);
2129 
2130 			if (!err) {
2131 				if (!data->stop || mrq->sbc) {
2132 					if (mrq->sbc && data->stop)
2133 						data->stop->error = 0;
2134 					dw_mci_request_end(host, mrq);
2135 					goto unlock;
2136 				}
2137 
2138 				/* stop command for open-ended transfer*/
2139 				if (data->stop)
2140 					send_stop_abort(host, data);
2141 			} else {
2142 				/*
2143 				 * If we don't have a command complete now we'll
2144 				 * never get one since we just reset everything;
2145 				 * better end the request.
2146 				 *
2147 				 * If we do have a command complete we'll fall
2148 				 * through to the SENDING_STOP command and
2149 				 * everything will be peachy keen.
2150 				 */
2151 				if (!test_bit(EVENT_CMD_COMPLETE,
2152 					      &host->pending_events)) {
2153 					host->cmd = NULL;
2154 					dw_mci_request_end(host, mrq);
2155 					goto unlock;
2156 				}
2157 			}
2158 
2159 			/*
2160 			 * If err has non-zero,
2161 			 * stop-abort command has been already issued.
2162 			 */
2163 			prev_state = state = STATE_SENDING_STOP;
2164 
2165 			/* fall through */
2166 
2167 		case STATE_SENDING_STOP:
2168 			if (!dw_mci_clear_pending_cmd_complete(host))
2169 				break;
2170 
2171 			/* CMD error in data command */
2172 			if (mrq->cmd->error && mrq->data)
2173 				dw_mci_reset(host);
2174 
2175 			host->cmd = NULL;
2176 			host->data = NULL;
2177 
2178 			if (!mrq->sbc && mrq->stop)
2179 				dw_mci_command_complete(host, mrq->stop);
2180 			else
2181 				host->cmd_status = 0;
2182 
2183 			dw_mci_request_end(host, mrq);
2184 			goto unlock;
2185 
2186 		case STATE_DATA_ERROR:
2187 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2188 						&host->pending_events))
2189 				break;
2190 
2191 			state = STATE_DATA_BUSY;
2192 			break;
2193 		}
2194 	} while (state != prev_state);
2195 
2196 	host->state = state;
2197 unlock:
2198 	spin_unlock(&host->lock);
2199 
2200 }
2201 
2202 /* push final bytes to part_buf, only use during push */
2203 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2204 {
2205 	memcpy((void *)&host->part_buf, buf, cnt);
2206 	host->part_buf_count = cnt;
2207 }
2208 
2209 /* append bytes to part_buf, only use during push */
2210 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2211 {
2212 	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2213 	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2214 	host->part_buf_count += cnt;
2215 	return cnt;
2216 }
2217 
2218 /* pull first bytes from part_buf, only use during pull */
2219 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2220 {
2221 	cnt = min_t(int, cnt, host->part_buf_count);
2222 	if (cnt) {
2223 		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2224 		       cnt);
2225 		host->part_buf_count -= cnt;
2226 		host->part_buf_start += cnt;
2227 	}
2228 	return cnt;
2229 }
2230 
2231 /* pull final bytes from the part_buf, assuming it's just been filled */
2232 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2233 {
2234 	memcpy(buf, &host->part_buf, cnt);
2235 	host->part_buf_start = cnt;
2236 	host->part_buf_count = (1 << host->data_shift) - cnt;
2237 }
2238 
2239 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2240 {
2241 	struct mmc_data *data = host->data;
2242 	int init_cnt = cnt;
2243 
2244 	/* try and push anything in the part_buf */
2245 	if (unlikely(host->part_buf_count)) {
2246 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2247 
2248 		buf += len;
2249 		cnt -= len;
2250 		if (host->part_buf_count == 2) {
2251 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2252 			host->part_buf_count = 0;
2253 		}
2254 	}
2255 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2256 	if (unlikely((unsigned long)buf & 0x1)) {
2257 		while (cnt >= 2) {
2258 			u16 aligned_buf[64];
2259 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2260 			int items = len >> 1;
2261 			int i;
2262 			/* memcpy from input buffer into aligned buffer */
2263 			memcpy(aligned_buf, buf, len);
2264 			buf += len;
2265 			cnt -= len;
2266 			/* push data from aligned buffer into fifo */
2267 			for (i = 0; i < items; ++i)
2268 				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2269 		}
2270 	} else
2271 #endif
2272 	{
2273 		u16 *pdata = buf;
2274 
2275 		for (; cnt >= 2; cnt -= 2)
2276 			mci_fifo_writew(host->fifo_reg, *pdata++);
2277 		buf = pdata;
2278 	}
2279 	/* put anything remaining in the part_buf */
2280 	if (cnt) {
2281 		dw_mci_set_part_bytes(host, buf, cnt);
2282 		 /* Push data if we have reached the expected data length */
2283 		if ((data->bytes_xfered + init_cnt) ==
2284 		    (data->blksz * data->blocks))
2285 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2286 	}
2287 }
2288 
2289 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2290 {
2291 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2292 	if (unlikely((unsigned long)buf & 0x1)) {
2293 		while (cnt >= 2) {
2294 			/* pull data from fifo into aligned buffer */
2295 			u16 aligned_buf[64];
2296 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2297 			int items = len >> 1;
2298 			int i;
2299 
2300 			for (i = 0; i < items; ++i)
2301 				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2302 			/* memcpy from aligned buffer into output buffer */
2303 			memcpy(buf, aligned_buf, len);
2304 			buf += len;
2305 			cnt -= len;
2306 		}
2307 	} else
2308 #endif
2309 	{
2310 		u16 *pdata = buf;
2311 
2312 		for (; cnt >= 2; cnt -= 2)
2313 			*pdata++ = mci_fifo_readw(host->fifo_reg);
2314 		buf = pdata;
2315 	}
2316 	if (cnt) {
2317 		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2318 		dw_mci_pull_final_bytes(host, buf, cnt);
2319 	}
2320 }
2321 
2322 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2323 {
2324 	struct mmc_data *data = host->data;
2325 	int init_cnt = cnt;
2326 
2327 	/* try and push anything in the part_buf */
2328 	if (unlikely(host->part_buf_count)) {
2329 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2330 
2331 		buf += len;
2332 		cnt -= len;
2333 		if (host->part_buf_count == 4) {
2334 			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2335 			host->part_buf_count = 0;
2336 		}
2337 	}
2338 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2339 	if (unlikely((unsigned long)buf & 0x3)) {
2340 		while (cnt >= 4) {
2341 			u32 aligned_buf[32];
2342 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2343 			int items = len >> 2;
2344 			int i;
2345 			/* memcpy from input buffer into aligned buffer */
2346 			memcpy(aligned_buf, buf, len);
2347 			buf += len;
2348 			cnt -= len;
2349 			/* push data from aligned buffer into fifo */
2350 			for (i = 0; i < items; ++i)
2351 				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2352 		}
2353 	} else
2354 #endif
2355 	{
2356 		u32 *pdata = buf;
2357 
2358 		for (; cnt >= 4; cnt -= 4)
2359 			mci_fifo_writel(host->fifo_reg, *pdata++);
2360 		buf = pdata;
2361 	}
2362 	/* put anything remaining in the part_buf */
2363 	if (cnt) {
2364 		dw_mci_set_part_bytes(host, buf, cnt);
2365 		 /* Push data if we have reached the expected data length */
2366 		if ((data->bytes_xfered + init_cnt) ==
2367 		    (data->blksz * data->blocks))
2368 			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2369 	}
2370 }
2371 
2372 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2373 {
2374 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2375 	if (unlikely((unsigned long)buf & 0x3)) {
2376 		while (cnt >= 4) {
2377 			/* pull data from fifo into aligned buffer */
2378 			u32 aligned_buf[32];
2379 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2380 			int items = len >> 2;
2381 			int i;
2382 
2383 			for (i = 0; i < items; ++i)
2384 				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2385 			/* memcpy from aligned buffer into output buffer */
2386 			memcpy(buf, aligned_buf, len);
2387 			buf += len;
2388 			cnt -= len;
2389 		}
2390 	} else
2391 #endif
2392 	{
2393 		u32 *pdata = buf;
2394 
2395 		for (; cnt >= 4; cnt -= 4)
2396 			*pdata++ = mci_fifo_readl(host->fifo_reg);
2397 		buf = pdata;
2398 	}
2399 	if (cnt) {
2400 		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2401 		dw_mci_pull_final_bytes(host, buf, cnt);
2402 	}
2403 }
2404 
2405 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2406 {
2407 	struct mmc_data *data = host->data;
2408 	int init_cnt = cnt;
2409 
2410 	/* try and push anything in the part_buf */
2411 	if (unlikely(host->part_buf_count)) {
2412 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2413 
2414 		buf += len;
2415 		cnt -= len;
2416 
2417 		if (host->part_buf_count == 8) {
2418 			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2419 			host->part_buf_count = 0;
2420 		}
2421 	}
2422 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2423 	if (unlikely((unsigned long)buf & 0x7)) {
2424 		while (cnt >= 8) {
2425 			u64 aligned_buf[16];
2426 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2427 			int items = len >> 3;
2428 			int i;
2429 			/* memcpy from input buffer into aligned buffer */
2430 			memcpy(aligned_buf, buf, len);
2431 			buf += len;
2432 			cnt -= len;
2433 			/* push data from aligned buffer into fifo */
2434 			for (i = 0; i < items; ++i)
2435 				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2436 		}
2437 	} else
2438 #endif
2439 	{
2440 		u64 *pdata = buf;
2441 
2442 		for (; cnt >= 8; cnt -= 8)
2443 			mci_fifo_writeq(host->fifo_reg, *pdata++);
2444 		buf = pdata;
2445 	}
2446 	/* put anything remaining in the part_buf */
2447 	if (cnt) {
2448 		dw_mci_set_part_bytes(host, buf, cnt);
2449 		/* Push data if we have reached the expected data length */
2450 		if ((data->bytes_xfered + init_cnt) ==
2451 		    (data->blksz * data->blocks))
2452 			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2453 	}
2454 }
2455 
2456 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2457 {
2458 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2459 	if (unlikely((unsigned long)buf & 0x7)) {
2460 		while (cnt >= 8) {
2461 			/* pull data from fifo into aligned buffer */
2462 			u64 aligned_buf[16];
2463 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2464 			int items = len >> 3;
2465 			int i;
2466 
2467 			for (i = 0; i < items; ++i)
2468 				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2469 
2470 			/* memcpy from aligned buffer into output buffer */
2471 			memcpy(buf, aligned_buf, len);
2472 			buf += len;
2473 			cnt -= len;
2474 		}
2475 	} else
2476 #endif
2477 	{
2478 		u64 *pdata = buf;
2479 
2480 		for (; cnt >= 8; cnt -= 8)
2481 			*pdata++ = mci_fifo_readq(host->fifo_reg);
2482 		buf = pdata;
2483 	}
2484 	if (cnt) {
2485 		host->part_buf = mci_fifo_readq(host->fifo_reg);
2486 		dw_mci_pull_final_bytes(host, buf, cnt);
2487 	}
2488 }
2489 
2490 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2491 {
2492 	int len;
2493 
2494 	/* get remaining partial bytes */
2495 	len = dw_mci_pull_part_bytes(host, buf, cnt);
2496 	if (unlikely(len == cnt))
2497 		return;
2498 	buf += len;
2499 	cnt -= len;
2500 
2501 	/* get the rest of the data */
2502 	host->pull_data(host, buf, cnt);
2503 }
2504 
2505 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2506 {
2507 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2508 	void *buf;
2509 	unsigned int offset;
2510 	struct mmc_data	*data = host->data;
2511 	int shift = host->data_shift;
2512 	u32 status;
2513 	unsigned int len;
2514 	unsigned int remain, fcnt;
2515 
2516 	do {
2517 		if (!sg_miter_next(sg_miter))
2518 			goto done;
2519 
2520 		host->sg = sg_miter->piter.sg;
2521 		buf = sg_miter->addr;
2522 		remain = sg_miter->length;
2523 		offset = 0;
2524 
2525 		do {
2526 			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2527 					<< shift) + host->part_buf_count;
2528 			len = min(remain, fcnt);
2529 			if (!len)
2530 				break;
2531 			dw_mci_pull_data(host, (void *)(buf + offset), len);
2532 			data->bytes_xfered += len;
2533 			offset += len;
2534 			remain -= len;
2535 		} while (remain);
2536 
2537 		sg_miter->consumed = offset;
2538 		status = mci_readl(host, MINTSTS);
2539 		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2540 	/* if the RXDR is ready read again */
2541 	} while ((status & SDMMC_INT_RXDR) ||
2542 		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2543 
2544 	if (!remain) {
2545 		if (!sg_miter_next(sg_miter))
2546 			goto done;
2547 		sg_miter->consumed = 0;
2548 	}
2549 	sg_miter_stop(sg_miter);
2550 	return;
2551 
2552 done:
2553 	sg_miter_stop(sg_miter);
2554 	host->sg = NULL;
2555 	smp_wmb(); /* drain writebuffer */
2556 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2557 }
2558 
2559 static void dw_mci_write_data_pio(struct dw_mci *host)
2560 {
2561 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2562 	void *buf;
2563 	unsigned int offset;
2564 	struct mmc_data	*data = host->data;
2565 	int shift = host->data_shift;
2566 	u32 status;
2567 	unsigned int len;
2568 	unsigned int fifo_depth = host->fifo_depth;
2569 	unsigned int remain, fcnt;
2570 
2571 	do {
2572 		if (!sg_miter_next(sg_miter))
2573 			goto done;
2574 
2575 		host->sg = sg_miter->piter.sg;
2576 		buf = sg_miter->addr;
2577 		remain = sg_miter->length;
2578 		offset = 0;
2579 
2580 		do {
2581 			fcnt = ((fifo_depth -
2582 				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2583 					<< shift) - host->part_buf_count;
2584 			len = min(remain, fcnt);
2585 			if (!len)
2586 				break;
2587 			host->push_data(host, (void *)(buf + offset), len);
2588 			data->bytes_xfered += len;
2589 			offset += len;
2590 			remain -= len;
2591 		} while (remain);
2592 
2593 		sg_miter->consumed = offset;
2594 		status = mci_readl(host, MINTSTS);
2595 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2596 	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2597 
2598 	if (!remain) {
2599 		if (!sg_miter_next(sg_miter))
2600 			goto done;
2601 		sg_miter->consumed = 0;
2602 	}
2603 	sg_miter_stop(sg_miter);
2604 	return;
2605 
2606 done:
2607 	sg_miter_stop(sg_miter);
2608 	host->sg = NULL;
2609 	smp_wmb(); /* drain writebuffer */
2610 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2611 }
2612 
2613 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2614 {
2615 	del_timer(&host->cto_timer);
2616 
2617 	if (!host->cmd_status)
2618 		host->cmd_status = status;
2619 
2620 	smp_wmb(); /* drain writebuffer */
2621 
2622 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2623 	tasklet_schedule(&host->tasklet);
2624 }
2625 
2626 static void dw_mci_handle_cd(struct dw_mci *host)
2627 {
2628 	struct dw_mci_slot *slot = host->slot;
2629 
2630 	if (slot->mmc->ops->card_event)
2631 		slot->mmc->ops->card_event(slot->mmc);
2632 	mmc_detect_change(slot->mmc,
2633 		msecs_to_jiffies(host->pdata->detect_delay_ms));
2634 }
2635 
2636 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2637 {
2638 	struct dw_mci *host = dev_id;
2639 	u32 pending;
2640 	struct dw_mci_slot *slot = host->slot;
2641 	unsigned long irqflags;
2642 
2643 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2644 
2645 	if (pending) {
2646 		/* Check volt switch first, since it can look like an error */
2647 		if ((host->state == STATE_SENDING_CMD11) &&
2648 		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2649 			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2650 			pending &= ~SDMMC_INT_VOLT_SWITCH;
2651 
2652 			/*
2653 			 * Hold the lock; we know cmd11_timer can't be kicked
2654 			 * off after the lock is released, so safe to delete.
2655 			 */
2656 			spin_lock_irqsave(&host->irq_lock, irqflags);
2657 			dw_mci_cmd_interrupt(host, pending);
2658 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2659 
2660 			del_timer(&host->cmd11_timer);
2661 		}
2662 
2663 		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2664 			spin_lock_irqsave(&host->irq_lock, irqflags);
2665 
2666 			del_timer(&host->cto_timer);
2667 			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2668 			host->cmd_status = pending;
2669 			smp_wmb(); /* drain writebuffer */
2670 			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2671 
2672 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2673 		}
2674 
2675 		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2676 			/* if there is an error report DATA_ERROR */
2677 			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2678 			host->data_status = pending;
2679 			smp_wmb(); /* drain writebuffer */
2680 			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2681 			tasklet_schedule(&host->tasklet);
2682 		}
2683 
2684 		if (pending & SDMMC_INT_DATA_OVER) {
2685 			spin_lock_irqsave(&host->irq_lock, irqflags);
2686 
2687 			del_timer(&host->dto_timer);
2688 
2689 			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2690 			if (!host->data_status)
2691 				host->data_status = pending;
2692 			smp_wmb(); /* drain writebuffer */
2693 			if (host->dir_status == DW_MCI_RECV_STATUS) {
2694 				if (host->sg != NULL)
2695 					dw_mci_read_data_pio(host, true);
2696 			}
2697 			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2698 			tasklet_schedule(&host->tasklet);
2699 
2700 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2701 		}
2702 
2703 		if (pending & SDMMC_INT_RXDR) {
2704 			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2705 			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2706 				dw_mci_read_data_pio(host, false);
2707 		}
2708 
2709 		if (pending & SDMMC_INT_TXDR) {
2710 			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2711 			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2712 				dw_mci_write_data_pio(host);
2713 		}
2714 
2715 		if (pending & SDMMC_INT_CMD_DONE) {
2716 			spin_lock_irqsave(&host->irq_lock, irqflags);
2717 
2718 			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2719 			dw_mci_cmd_interrupt(host, pending);
2720 
2721 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2722 		}
2723 
2724 		if (pending & SDMMC_INT_CD) {
2725 			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2726 			dw_mci_handle_cd(host);
2727 		}
2728 
2729 		if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2730 			mci_writel(host, RINTSTS,
2731 				   SDMMC_INT_SDIO(slot->sdio_id));
2732 			__dw_mci_enable_sdio_irq(slot, 0);
2733 			sdio_signal_irq(slot->mmc);
2734 		}
2735 
2736 	}
2737 
2738 	if (host->use_dma != TRANS_MODE_IDMAC)
2739 		return IRQ_HANDLED;
2740 
2741 	/* Handle IDMA interrupts */
2742 	if (host->dma_64bit_address == 1) {
2743 		pending = mci_readl(host, IDSTS64);
2744 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2745 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2746 							SDMMC_IDMAC_INT_RI);
2747 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2748 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2749 				host->dma_ops->complete((void *)host);
2750 		}
2751 	} else {
2752 		pending = mci_readl(host, IDSTS);
2753 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2754 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2755 							SDMMC_IDMAC_INT_RI);
2756 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2757 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2758 				host->dma_ops->complete((void *)host);
2759 		}
2760 	}
2761 
2762 	return IRQ_HANDLED;
2763 }
2764 
2765 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2766 {
2767 	struct dw_mci *host = slot->host;
2768 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2769 	struct mmc_host *mmc = slot->mmc;
2770 	int ctrl_id;
2771 
2772 	if (host->pdata->caps)
2773 		mmc->caps = host->pdata->caps;
2774 
2775 	/*
2776 	 * Support MMC_CAP_ERASE by default.
2777 	 * It needs to use trim/discard/erase commands.
2778 	 */
2779 	mmc->caps |= MMC_CAP_ERASE;
2780 
2781 	if (host->pdata->pm_caps)
2782 		mmc->pm_caps = host->pdata->pm_caps;
2783 
2784 	if (host->dev->of_node) {
2785 		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2786 		if (ctrl_id < 0)
2787 			ctrl_id = 0;
2788 	} else {
2789 		ctrl_id = to_platform_device(host->dev)->id;
2790 	}
2791 
2792 	if (drv_data && drv_data->caps) {
2793 		if (ctrl_id >= drv_data->num_caps) {
2794 			dev_err(host->dev, "invalid controller id %d\n",
2795 				ctrl_id);
2796 			return -EINVAL;
2797 		}
2798 		mmc->caps |= drv_data->caps[ctrl_id];
2799 	}
2800 
2801 	if (host->pdata->caps2)
2802 		mmc->caps2 = host->pdata->caps2;
2803 
2804 	mmc->f_min = DW_MCI_FREQ_MIN;
2805 	if (!mmc->f_max)
2806 		mmc->f_max = DW_MCI_FREQ_MAX;
2807 
2808 	/* Process SDIO IRQs through the sdio_irq_work. */
2809 	if (mmc->caps & MMC_CAP_SDIO_IRQ)
2810 		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2811 
2812 	return 0;
2813 }
2814 
2815 static int dw_mci_init_slot(struct dw_mci *host)
2816 {
2817 	struct mmc_host *mmc;
2818 	struct dw_mci_slot *slot;
2819 	int ret;
2820 
2821 	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2822 	if (!mmc)
2823 		return -ENOMEM;
2824 
2825 	slot = mmc_priv(mmc);
2826 	slot->id = 0;
2827 	slot->sdio_id = host->sdio_id0 + slot->id;
2828 	slot->mmc = mmc;
2829 	slot->host = host;
2830 	host->slot = slot;
2831 
2832 	mmc->ops = &dw_mci_ops;
2833 
2834 	/*if there are external regulators, get them*/
2835 	ret = mmc_regulator_get_supply(mmc);
2836 	if (ret)
2837 		goto err_host_allocated;
2838 
2839 	if (!mmc->ocr_avail)
2840 		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2841 
2842 	ret = mmc_of_parse(mmc);
2843 	if (ret)
2844 		goto err_host_allocated;
2845 
2846 	ret = dw_mci_init_slot_caps(slot);
2847 	if (ret)
2848 		goto err_host_allocated;
2849 
2850 	/* Useful defaults if platform data is unset. */
2851 	if (host->use_dma == TRANS_MODE_IDMAC) {
2852 		mmc->max_segs = host->ring_size;
2853 		mmc->max_blk_size = 65535;
2854 		mmc->max_seg_size = 0x1000;
2855 		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2856 		mmc->max_blk_count = mmc->max_req_size / 512;
2857 	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2858 		mmc->max_segs = 64;
2859 		mmc->max_blk_size = 65535;
2860 		mmc->max_blk_count = 65535;
2861 		mmc->max_req_size =
2862 				mmc->max_blk_size * mmc->max_blk_count;
2863 		mmc->max_seg_size = mmc->max_req_size;
2864 	} else {
2865 		/* TRANS_MODE_PIO */
2866 		mmc->max_segs = 64;
2867 		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2868 		mmc->max_blk_count = 512;
2869 		mmc->max_req_size = mmc->max_blk_size *
2870 				    mmc->max_blk_count;
2871 		mmc->max_seg_size = mmc->max_req_size;
2872 	}
2873 
2874 	dw_mci_get_cd(mmc);
2875 
2876 	ret = mmc_add_host(mmc);
2877 	if (ret)
2878 		goto err_host_allocated;
2879 
2880 #if defined(CONFIG_DEBUG_FS)
2881 	dw_mci_init_debugfs(slot);
2882 #endif
2883 
2884 	return 0;
2885 
2886 err_host_allocated:
2887 	mmc_free_host(mmc);
2888 	return ret;
2889 }
2890 
2891 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2892 {
2893 	/* Debugfs stuff is cleaned up by mmc core */
2894 	mmc_remove_host(slot->mmc);
2895 	slot->host->slot = NULL;
2896 	mmc_free_host(slot->mmc);
2897 }
2898 
2899 static void dw_mci_init_dma(struct dw_mci *host)
2900 {
2901 	int addr_config;
2902 	struct device *dev = host->dev;
2903 
2904 	/*
2905 	* Check tansfer mode from HCON[17:16]
2906 	* Clear the ambiguous description of dw_mmc databook:
2907 	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
2908 	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2909 	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2910 	* 2b'11: Non DW DMA Interface -> pio only
2911 	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
2912 	* simpler request/acknowledge handshake mechanism and both of them
2913 	* are regarded as external dma master for dw_mmc.
2914 	*/
2915 	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2916 	if (host->use_dma == DMA_INTERFACE_IDMA) {
2917 		host->use_dma = TRANS_MODE_IDMAC;
2918 	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2919 		   host->use_dma == DMA_INTERFACE_GDMA) {
2920 		host->use_dma = TRANS_MODE_EDMAC;
2921 	} else {
2922 		goto no_dma;
2923 	}
2924 
2925 	/* Determine which DMA interface to use */
2926 	if (host->use_dma == TRANS_MODE_IDMAC) {
2927 		/*
2928 		* Check ADDR_CONFIG bit in HCON to find
2929 		* IDMAC address bus width
2930 		*/
2931 		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2932 
2933 		if (addr_config == 1) {
2934 			/* host supports IDMAC in 64-bit address mode */
2935 			host->dma_64bit_address = 1;
2936 			dev_info(host->dev,
2937 				 "IDMAC supports 64-bit address mode.\n");
2938 			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2939 				dma_set_coherent_mask(host->dev,
2940 						      DMA_BIT_MASK(64));
2941 		} else {
2942 			/* host supports IDMAC in 32-bit address mode */
2943 			host->dma_64bit_address = 0;
2944 			dev_info(host->dev,
2945 				 "IDMAC supports 32-bit address mode.\n");
2946 		}
2947 
2948 		/* Alloc memory for sg translation */
2949 		host->sg_cpu = dmam_alloc_coherent(host->dev,
2950 						   DESC_RING_BUF_SZ,
2951 						   &host->sg_dma, GFP_KERNEL);
2952 		if (!host->sg_cpu) {
2953 			dev_err(host->dev,
2954 				"%s: could not alloc DMA memory\n",
2955 				__func__);
2956 			goto no_dma;
2957 		}
2958 
2959 		host->dma_ops = &dw_mci_idmac_ops;
2960 		dev_info(host->dev, "Using internal DMA controller.\n");
2961 	} else {
2962 		/* TRANS_MODE_EDMAC: check dma bindings again */
2963 		if ((device_property_read_string_array(dev, "dma-names",
2964 						       NULL, 0) < 0) ||
2965 		    !device_property_present(dev, "dmas")) {
2966 			goto no_dma;
2967 		}
2968 		host->dma_ops = &dw_mci_edmac_ops;
2969 		dev_info(host->dev, "Using external DMA controller.\n");
2970 	}
2971 
2972 	if (host->dma_ops->init && host->dma_ops->start &&
2973 	    host->dma_ops->stop && host->dma_ops->cleanup) {
2974 		if (host->dma_ops->init(host)) {
2975 			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2976 				__func__);
2977 			goto no_dma;
2978 		}
2979 	} else {
2980 		dev_err(host->dev, "DMA initialization not found.\n");
2981 		goto no_dma;
2982 	}
2983 
2984 	return;
2985 
2986 no_dma:
2987 	dev_info(host->dev, "Using PIO mode.\n");
2988 	host->use_dma = TRANS_MODE_PIO;
2989 }
2990 
2991 static void dw_mci_cmd11_timer(struct timer_list *t)
2992 {
2993 	struct dw_mci *host = from_timer(host, t, cmd11_timer);
2994 
2995 	if (host->state != STATE_SENDING_CMD11) {
2996 		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2997 		return;
2998 	}
2999 
3000 	host->cmd_status = SDMMC_INT_RTO;
3001 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3002 	tasklet_schedule(&host->tasklet);
3003 }
3004 
3005 static void dw_mci_cto_timer(struct timer_list *t)
3006 {
3007 	struct dw_mci *host = from_timer(host, t, cto_timer);
3008 	unsigned long irqflags;
3009 	u32 pending;
3010 
3011 	spin_lock_irqsave(&host->irq_lock, irqflags);
3012 
3013 	/*
3014 	 * If somehow we have very bad interrupt latency it's remotely possible
3015 	 * that the timer could fire while the interrupt is still pending or
3016 	 * while the interrupt is midway through running.  Let's be paranoid
3017 	 * and detect those two cases.  Note that this is paranoia is somewhat
3018 	 * justified because in this function we don't actually cancel the
3019 	 * pending command in the controller--we just assume it will never come.
3020 	 */
3021 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3022 	if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
3023 		/* The interrupt should fire; no need to act but we can warn */
3024 		dev_warn(host->dev, "Unexpected interrupt latency\n");
3025 		goto exit;
3026 	}
3027 	if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3028 		/* Presumably interrupt handler couldn't delete the timer */
3029 		dev_warn(host->dev, "CTO timeout when already completed\n");
3030 		goto exit;
3031 	}
3032 
3033 	/*
3034 	 * Continued paranoia to make sure we're in the state we expect.
3035 	 * This paranoia isn't really justified but it seems good to be safe.
3036 	 */
3037 	switch (host->state) {
3038 	case STATE_SENDING_CMD11:
3039 	case STATE_SENDING_CMD:
3040 	case STATE_SENDING_STOP:
3041 		/*
3042 		 * If CMD_DONE interrupt does NOT come in sending command
3043 		 * state, we should notify the driver to terminate current
3044 		 * transfer and report a command timeout to the core.
3045 		 */
3046 		host->cmd_status = SDMMC_INT_RTO;
3047 		set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3048 		tasklet_schedule(&host->tasklet);
3049 		break;
3050 	default:
3051 		dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3052 			 host->state);
3053 		break;
3054 	}
3055 
3056 exit:
3057 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3058 }
3059 
3060 static void dw_mci_dto_timer(struct timer_list *t)
3061 {
3062 	struct dw_mci *host = from_timer(host, t, dto_timer);
3063 	unsigned long irqflags;
3064 	u32 pending;
3065 
3066 	spin_lock_irqsave(&host->irq_lock, irqflags);
3067 
3068 	/*
3069 	 * The DTO timer is much longer than the CTO timer, so it's even less
3070 	 * likely that we'll these cases, but it pays to be paranoid.
3071 	 */
3072 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3073 	if (pending & SDMMC_INT_DATA_OVER) {
3074 		/* The interrupt should fire; no need to act but we can warn */
3075 		dev_warn(host->dev, "Unexpected data interrupt latency\n");
3076 		goto exit;
3077 	}
3078 	if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3079 		/* Presumably interrupt handler couldn't delete the timer */
3080 		dev_warn(host->dev, "DTO timeout when already completed\n");
3081 		goto exit;
3082 	}
3083 
3084 	/*
3085 	 * Continued paranoia to make sure we're in the state we expect.
3086 	 * This paranoia isn't really justified but it seems good to be safe.
3087 	 */
3088 	switch (host->state) {
3089 	case STATE_SENDING_DATA:
3090 	case STATE_DATA_BUSY:
3091 		/*
3092 		 * If DTO interrupt does NOT come in sending data state,
3093 		 * we should notify the driver to terminate current transfer
3094 		 * and report a data timeout to the core.
3095 		 */
3096 		host->data_status = SDMMC_INT_DRTO;
3097 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
3098 		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3099 		tasklet_schedule(&host->tasklet);
3100 		break;
3101 	default:
3102 		dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3103 			 host->state);
3104 		break;
3105 	}
3106 
3107 exit:
3108 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3109 }
3110 
3111 #ifdef CONFIG_OF
3112 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3113 {
3114 	struct dw_mci_board *pdata;
3115 	struct device *dev = host->dev;
3116 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3117 	int ret;
3118 	u32 clock_frequency;
3119 
3120 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3121 	if (!pdata)
3122 		return ERR_PTR(-ENOMEM);
3123 
3124 	/* find reset controller when exist */
3125 	pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3126 	if (IS_ERR(pdata->rstc)) {
3127 		if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
3128 			return ERR_PTR(-EPROBE_DEFER);
3129 	}
3130 
3131 	if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3132 		dev_info(dev,
3133 			 "fifo-depth property not found, using value of FIFOTH register as default\n");
3134 
3135 	device_property_read_u32(dev, "card-detect-delay",
3136 				 &pdata->detect_delay_ms);
3137 
3138 	device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3139 
3140 	if (device_property_present(dev, "fifo-watermark-aligned"))
3141 		host->wm_aligned = true;
3142 
3143 	if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3144 		pdata->bus_hz = clock_frequency;
3145 
3146 	if (drv_data && drv_data->parse_dt) {
3147 		ret = drv_data->parse_dt(host);
3148 		if (ret)
3149 			return ERR_PTR(ret);
3150 	}
3151 
3152 	return pdata;
3153 }
3154 
3155 #else /* CONFIG_OF */
3156 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3157 {
3158 	return ERR_PTR(-EINVAL);
3159 }
3160 #endif /* CONFIG_OF */
3161 
3162 static void dw_mci_enable_cd(struct dw_mci *host)
3163 {
3164 	unsigned long irqflags;
3165 	u32 temp;
3166 
3167 	/*
3168 	 * No need for CD if all slots have a non-error GPIO
3169 	 * as well as broken card detection is found.
3170 	 */
3171 	if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3172 		return;
3173 
3174 	if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3175 		spin_lock_irqsave(&host->irq_lock, irqflags);
3176 		temp = mci_readl(host, INTMASK);
3177 		temp  |= SDMMC_INT_CD;
3178 		mci_writel(host, INTMASK, temp);
3179 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
3180 	}
3181 }
3182 
3183 int dw_mci_probe(struct dw_mci *host)
3184 {
3185 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3186 	int width, i, ret = 0;
3187 	u32 fifo_size;
3188 
3189 	if (!host->pdata) {
3190 		host->pdata = dw_mci_parse_dt(host);
3191 		if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3192 			return -EPROBE_DEFER;
3193 		} else if (IS_ERR(host->pdata)) {
3194 			dev_err(host->dev, "platform data not available\n");
3195 			return -EINVAL;
3196 		}
3197 	}
3198 
3199 	host->biu_clk = devm_clk_get(host->dev, "biu");
3200 	if (IS_ERR(host->biu_clk)) {
3201 		dev_dbg(host->dev, "biu clock not available\n");
3202 	} else {
3203 		ret = clk_prepare_enable(host->biu_clk);
3204 		if (ret) {
3205 			dev_err(host->dev, "failed to enable biu clock\n");
3206 			return ret;
3207 		}
3208 	}
3209 
3210 	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3211 	if (IS_ERR(host->ciu_clk)) {
3212 		dev_dbg(host->dev, "ciu clock not available\n");
3213 		host->bus_hz = host->pdata->bus_hz;
3214 	} else {
3215 		ret = clk_prepare_enable(host->ciu_clk);
3216 		if (ret) {
3217 			dev_err(host->dev, "failed to enable ciu clock\n");
3218 			goto err_clk_biu;
3219 		}
3220 
3221 		if (host->pdata->bus_hz) {
3222 			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3223 			if (ret)
3224 				dev_warn(host->dev,
3225 					 "Unable to set bus rate to %uHz\n",
3226 					 host->pdata->bus_hz);
3227 		}
3228 		host->bus_hz = clk_get_rate(host->ciu_clk);
3229 	}
3230 
3231 	if (!host->bus_hz) {
3232 		dev_err(host->dev,
3233 			"Platform data must supply bus speed\n");
3234 		ret = -ENODEV;
3235 		goto err_clk_ciu;
3236 	}
3237 
3238 	if (!IS_ERR(host->pdata->rstc)) {
3239 		reset_control_assert(host->pdata->rstc);
3240 		usleep_range(10, 50);
3241 		reset_control_deassert(host->pdata->rstc);
3242 	}
3243 
3244 	if (drv_data && drv_data->init) {
3245 		ret = drv_data->init(host);
3246 		if (ret) {
3247 			dev_err(host->dev,
3248 				"implementation specific init failed\n");
3249 			goto err_clk_ciu;
3250 		}
3251 	}
3252 
3253 	timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3254 	timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3255 	timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3256 
3257 	spin_lock_init(&host->lock);
3258 	spin_lock_init(&host->irq_lock);
3259 	INIT_LIST_HEAD(&host->queue);
3260 
3261 	/*
3262 	 * Get the host data width - this assumes that HCON has been set with
3263 	 * the correct values.
3264 	 */
3265 	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3266 	if (!i) {
3267 		host->push_data = dw_mci_push_data16;
3268 		host->pull_data = dw_mci_pull_data16;
3269 		width = 16;
3270 		host->data_shift = 1;
3271 	} else if (i == 2) {
3272 		host->push_data = dw_mci_push_data64;
3273 		host->pull_data = dw_mci_pull_data64;
3274 		width = 64;
3275 		host->data_shift = 3;
3276 	} else {
3277 		/* Check for a reserved value, and warn if it is */
3278 		WARN((i != 1),
3279 		     "HCON reports a reserved host data width!\n"
3280 		     "Defaulting to 32-bit access.\n");
3281 		host->push_data = dw_mci_push_data32;
3282 		host->pull_data = dw_mci_pull_data32;
3283 		width = 32;
3284 		host->data_shift = 2;
3285 	}
3286 
3287 	/* Reset all blocks */
3288 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3289 		ret = -ENODEV;
3290 		goto err_clk_ciu;
3291 	}
3292 
3293 	host->dma_ops = host->pdata->dma_ops;
3294 	dw_mci_init_dma(host);
3295 
3296 	/* Clear the interrupts for the host controller */
3297 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3298 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3299 
3300 	/* Put in max timeout */
3301 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3302 
3303 	/*
3304 	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3305 	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3306 	 */
3307 	if (!host->pdata->fifo_depth) {
3308 		/*
3309 		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3310 		 * have been overwritten by the bootloader, just like we're
3311 		 * about to do, so if you know the value for your hardware, you
3312 		 * should put it in the platform data.
3313 		 */
3314 		fifo_size = mci_readl(host, FIFOTH);
3315 		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3316 	} else {
3317 		fifo_size = host->pdata->fifo_depth;
3318 	}
3319 	host->fifo_depth = fifo_size;
3320 	host->fifoth_val =
3321 		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3322 	mci_writel(host, FIFOTH, host->fifoth_val);
3323 
3324 	/* disable clock to CIU */
3325 	mci_writel(host, CLKENA, 0);
3326 	mci_writel(host, CLKSRC, 0);
3327 
3328 	/*
3329 	 * In 2.40a spec, Data offset is changed.
3330 	 * Need to check the version-id and set data-offset for DATA register.
3331 	 */
3332 	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3333 	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3334 
3335 	if (host->data_addr_override)
3336 		host->fifo_reg = host->regs + host->data_addr_override;
3337 	else if (host->verid < DW_MMC_240A)
3338 		host->fifo_reg = host->regs + DATA_OFFSET;
3339 	else
3340 		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3341 
3342 	tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3343 	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3344 			       host->irq_flags, "dw-mci", host);
3345 	if (ret)
3346 		goto err_dmaunmap;
3347 
3348 	/*
3349 	 * Enable interrupts for command done, data over, data empty,
3350 	 * receive ready and error such as transmit, receive timeout, crc error
3351 	 */
3352 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3353 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3354 		   DW_MCI_ERROR_FLAGS);
3355 	/* Enable mci interrupt */
3356 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3357 
3358 	dev_info(host->dev,
3359 		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3360 		 host->irq, width, fifo_size);
3361 
3362 	/* We need at least one slot to succeed */
3363 	ret = dw_mci_init_slot(host);
3364 	if (ret) {
3365 		dev_dbg(host->dev, "slot %d init failed\n", i);
3366 		goto err_dmaunmap;
3367 	}
3368 
3369 	/* Now that slots are all setup, we can enable card detect */
3370 	dw_mci_enable_cd(host);
3371 
3372 	return 0;
3373 
3374 err_dmaunmap:
3375 	if (host->use_dma && host->dma_ops->exit)
3376 		host->dma_ops->exit(host);
3377 
3378 	if (!IS_ERR(host->pdata->rstc))
3379 		reset_control_assert(host->pdata->rstc);
3380 
3381 err_clk_ciu:
3382 	clk_disable_unprepare(host->ciu_clk);
3383 
3384 err_clk_biu:
3385 	clk_disable_unprepare(host->biu_clk);
3386 
3387 	return ret;
3388 }
3389 EXPORT_SYMBOL(dw_mci_probe);
3390 
3391 void dw_mci_remove(struct dw_mci *host)
3392 {
3393 	dev_dbg(host->dev, "remove slot\n");
3394 	if (host->slot)
3395 		dw_mci_cleanup_slot(host->slot);
3396 
3397 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3398 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3399 
3400 	/* disable clock to CIU */
3401 	mci_writel(host, CLKENA, 0);
3402 	mci_writel(host, CLKSRC, 0);
3403 
3404 	if (host->use_dma && host->dma_ops->exit)
3405 		host->dma_ops->exit(host);
3406 
3407 	if (!IS_ERR(host->pdata->rstc))
3408 		reset_control_assert(host->pdata->rstc);
3409 
3410 	clk_disable_unprepare(host->ciu_clk);
3411 	clk_disable_unprepare(host->biu_clk);
3412 }
3413 EXPORT_SYMBOL(dw_mci_remove);
3414 
3415 
3416 
3417 #ifdef CONFIG_PM
3418 int dw_mci_runtime_suspend(struct device *dev)
3419 {
3420 	struct dw_mci *host = dev_get_drvdata(dev);
3421 
3422 	if (host->use_dma && host->dma_ops->exit)
3423 		host->dma_ops->exit(host);
3424 
3425 	clk_disable_unprepare(host->ciu_clk);
3426 
3427 	if (host->slot &&
3428 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3429 	     !mmc_card_is_removable(host->slot->mmc)))
3430 		clk_disable_unprepare(host->biu_clk);
3431 
3432 	return 0;
3433 }
3434 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3435 
3436 int dw_mci_runtime_resume(struct device *dev)
3437 {
3438 	int ret = 0;
3439 	struct dw_mci *host = dev_get_drvdata(dev);
3440 
3441 	if (host->slot &&
3442 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3443 	     !mmc_card_is_removable(host->slot->mmc))) {
3444 		ret = clk_prepare_enable(host->biu_clk);
3445 		if (ret)
3446 			return ret;
3447 	}
3448 
3449 	ret = clk_prepare_enable(host->ciu_clk);
3450 	if (ret)
3451 		goto err;
3452 
3453 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3454 		clk_disable_unprepare(host->ciu_clk);
3455 		ret = -ENODEV;
3456 		goto err;
3457 	}
3458 
3459 	if (host->use_dma && host->dma_ops->init)
3460 		host->dma_ops->init(host);
3461 
3462 	/*
3463 	 * Restore the initial value at FIFOTH register
3464 	 * And Invalidate the prev_blksz with zero
3465 	 */
3466 	 mci_writel(host, FIFOTH, host->fifoth_val);
3467 	 host->prev_blksz = 0;
3468 
3469 	/* Put in max timeout */
3470 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3471 
3472 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3473 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3474 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3475 		   DW_MCI_ERROR_FLAGS);
3476 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3477 
3478 
3479 	if (host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3480 		dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3481 
3482 	/* Force setup bus to guarantee available clock output */
3483 	dw_mci_setup_bus(host->slot, true);
3484 
3485 	/* Now that slots are all setup, we can enable card detect */
3486 	dw_mci_enable_cd(host);
3487 
3488 	return 0;
3489 
3490 err:
3491 	if (host->slot &&
3492 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3493 	     !mmc_card_is_removable(host->slot->mmc)))
3494 		clk_disable_unprepare(host->biu_clk);
3495 
3496 	return ret;
3497 }
3498 EXPORT_SYMBOL(dw_mci_runtime_resume);
3499 #endif /* CONFIG_PM */
3500 
3501 static int __init dw_mci_init(void)
3502 {
3503 	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3504 	return 0;
3505 }
3506 
3507 static void __exit dw_mci_exit(void)
3508 {
3509 }
3510 
3511 module_init(dw_mci_init);
3512 module_exit(dw_mci_exit);
3513 
3514 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3515 MODULE_AUTHOR("NXP Semiconductor VietNam");
3516 MODULE_AUTHOR("Imagination Technologies Ltd");
3517 MODULE_LICENSE("GPL v2");
3518