1 /* 2 * Synopsys DesignWare Multimedia Card Interface driver 3 * (Based on NXP driver for lpc 31xx) 4 * 5 * Copyright (C) 2009 NXP Semiconductors 6 * Copyright (C) 2009, 2010 Imagination Technologies Ltd. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/blkdev.h> 15 #include <linux/clk.h> 16 #include <linux/debugfs.h> 17 #include <linux/device.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/err.h> 20 #include <linux/init.h> 21 #include <linux/interrupt.h> 22 #include <linux/ioport.h> 23 #include <linux/module.h> 24 #include <linux/platform_device.h> 25 #include <linux/seq_file.h> 26 #include <linux/slab.h> 27 #include <linux/stat.h> 28 #include <linux/delay.h> 29 #include <linux/irq.h> 30 #include <linux/mmc/card.h> 31 #include <linux/mmc/host.h> 32 #include <linux/mmc/mmc.h> 33 #include <linux/mmc/sd.h> 34 #include <linux/mmc/sdio.h> 35 #include <linux/mmc/dw_mmc.h> 36 #include <linux/bitops.h> 37 #include <linux/regulator/consumer.h> 38 #include <linux/of.h> 39 #include <linux/of_gpio.h> 40 #include <linux/mmc/slot-gpio.h> 41 42 #include "dw_mmc.h" 43 44 /* Common flag combinations */ 45 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \ 46 SDMMC_INT_HTO | SDMMC_INT_SBE | \ 47 SDMMC_INT_EBE) 48 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \ 49 SDMMC_INT_RESP_ERR) 50 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \ 51 DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_HLE) 52 #define DW_MCI_SEND_STATUS 1 53 #define DW_MCI_RECV_STATUS 2 54 #define DW_MCI_DMA_THRESHOLD 16 55 56 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */ 57 #define DW_MCI_FREQ_MIN 400000 /* unit: HZ */ 58 59 #ifdef CONFIG_MMC_DW_IDMAC 60 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \ 61 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \ 62 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \ 63 SDMMC_IDMAC_INT_TI) 64 65 struct idmac_desc_64addr { 66 u32 des0; /* Control Descriptor */ 67 68 u32 des1; /* Reserved */ 69 70 u32 des2; /*Buffer sizes */ 71 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \ 72 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \ 73 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff))) 74 75 u32 des3; /* Reserved */ 76 77 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/ 78 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/ 79 80 u32 des6; /* Lower 32-bits of Next Descriptor Address */ 81 u32 des7; /* Upper 32-bits of Next Descriptor Address */ 82 }; 83 84 struct idmac_desc { 85 __le32 des0; /* Control Descriptor */ 86 #define IDMAC_DES0_DIC BIT(1) 87 #define IDMAC_DES0_LD BIT(2) 88 #define IDMAC_DES0_FD BIT(3) 89 #define IDMAC_DES0_CH BIT(4) 90 #define IDMAC_DES0_ER BIT(5) 91 #define IDMAC_DES0_CES BIT(30) 92 #define IDMAC_DES0_OWN BIT(31) 93 94 __le32 des1; /* Buffer sizes */ 95 #define IDMAC_SET_BUFFER1_SIZE(d, s) \ 96 ((d)->des1 = ((d)->des1 & 0x03ffe000) | ((s) & 0x1fff)) 97 98 __le32 des2; /* buffer 1 physical address */ 99 100 __le32 des3; /* buffer 2 physical address */ 101 }; 102 #endif /* CONFIG_MMC_DW_IDMAC */ 103 104 static bool dw_mci_reset(struct dw_mci *host); 105 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset); 106 static int dw_mci_card_busy(struct mmc_host *mmc); 107 108 #if defined(CONFIG_DEBUG_FS) 109 static int dw_mci_req_show(struct seq_file *s, void *v) 110 { 111 struct dw_mci_slot *slot = s->private; 112 struct mmc_request *mrq; 113 struct mmc_command *cmd; 114 struct mmc_command *stop; 115 struct mmc_data *data; 116 117 /* Make sure we get a consistent snapshot */ 118 spin_lock_bh(&slot->host->lock); 119 mrq = slot->mrq; 120 121 if (mrq) { 122 cmd = mrq->cmd; 123 data = mrq->data; 124 stop = mrq->stop; 125 126 if (cmd) 127 seq_printf(s, 128 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n", 129 cmd->opcode, cmd->arg, cmd->flags, 130 cmd->resp[0], cmd->resp[1], cmd->resp[2], 131 cmd->resp[2], cmd->error); 132 if (data) 133 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n", 134 data->bytes_xfered, data->blocks, 135 data->blksz, data->flags, data->error); 136 if (stop) 137 seq_printf(s, 138 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n", 139 stop->opcode, stop->arg, stop->flags, 140 stop->resp[0], stop->resp[1], stop->resp[2], 141 stop->resp[2], stop->error); 142 } 143 144 spin_unlock_bh(&slot->host->lock); 145 146 return 0; 147 } 148 149 static int dw_mci_req_open(struct inode *inode, struct file *file) 150 { 151 return single_open(file, dw_mci_req_show, inode->i_private); 152 } 153 154 static const struct file_operations dw_mci_req_fops = { 155 .owner = THIS_MODULE, 156 .open = dw_mci_req_open, 157 .read = seq_read, 158 .llseek = seq_lseek, 159 .release = single_release, 160 }; 161 162 static int dw_mci_regs_show(struct seq_file *s, void *v) 163 { 164 seq_printf(s, "STATUS:\t0x%08x\n", SDMMC_STATUS); 165 seq_printf(s, "RINTSTS:\t0x%08x\n", SDMMC_RINTSTS); 166 seq_printf(s, "CMD:\t0x%08x\n", SDMMC_CMD); 167 seq_printf(s, "CTRL:\t0x%08x\n", SDMMC_CTRL); 168 seq_printf(s, "INTMASK:\t0x%08x\n", SDMMC_INTMASK); 169 seq_printf(s, "CLKENA:\t0x%08x\n", SDMMC_CLKENA); 170 171 return 0; 172 } 173 174 static int dw_mci_regs_open(struct inode *inode, struct file *file) 175 { 176 return single_open(file, dw_mci_regs_show, inode->i_private); 177 } 178 179 static const struct file_operations dw_mci_regs_fops = { 180 .owner = THIS_MODULE, 181 .open = dw_mci_regs_open, 182 .read = seq_read, 183 .llseek = seq_lseek, 184 .release = single_release, 185 }; 186 187 static void dw_mci_init_debugfs(struct dw_mci_slot *slot) 188 { 189 struct mmc_host *mmc = slot->mmc; 190 struct dw_mci *host = slot->host; 191 struct dentry *root; 192 struct dentry *node; 193 194 root = mmc->debugfs_root; 195 if (!root) 196 return; 197 198 node = debugfs_create_file("regs", S_IRUSR, root, host, 199 &dw_mci_regs_fops); 200 if (!node) 201 goto err; 202 203 node = debugfs_create_file("req", S_IRUSR, root, slot, 204 &dw_mci_req_fops); 205 if (!node) 206 goto err; 207 208 node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state); 209 if (!node) 210 goto err; 211 212 node = debugfs_create_x32("pending_events", S_IRUSR, root, 213 (u32 *)&host->pending_events); 214 if (!node) 215 goto err; 216 217 node = debugfs_create_x32("completed_events", S_IRUSR, root, 218 (u32 *)&host->completed_events); 219 if (!node) 220 goto err; 221 222 return; 223 224 err: 225 dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n"); 226 } 227 #endif /* defined(CONFIG_DEBUG_FS) */ 228 229 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg); 230 231 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd) 232 { 233 struct mmc_data *data; 234 struct dw_mci_slot *slot = mmc_priv(mmc); 235 struct dw_mci *host = slot->host; 236 const struct dw_mci_drv_data *drv_data = slot->host->drv_data; 237 u32 cmdr; 238 cmd->error = -EINPROGRESS; 239 240 cmdr = cmd->opcode; 241 242 if (cmd->opcode == MMC_STOP_TRANSMISSION || 243 cmd->opcode == MMC_GO_IDLE_STATE || 244 cmd->opcode == MMC_GO_INACTIVE_STATE || 245 (cmd->opcode == SD_IO_RW_DIRECT && 246 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT)) 247 cmdr |= SDMMC_CMD_STOP; 248 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data) 249 cmdr |= SDMMC_CMD_PRV_DAT_WAIT; 250 251 if (cmd->opcode == SD_SWITCH_VOLTAGE) { 252 u32 clk_en_a; 253 254 /* Special bit makes CMD11 not die */ 255 cmdr |= SDMMC_CMD_VOLT_SWITCH; 256 257 /* Change state to continue to handle CMD11 weirdness */ 258 WARN_ON(slot->host->state != STATE_SENDING_CMD); 259 slot->host->state = STATE_SENDING_CMD11; 260 261 /* 262 * We need to disable low power mode (automatic clock stop) 263 * while doing voltage switch so we don't confuse the card, 264 * since stopping the clock is a specific part of the UHS 265 * voltage change dance. 266 * 267 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be 268 * unconditionally turned back on in dw_mci_setup_bus() if it's 269 * ever called with a non-zero clock. That shouldn't happen 270 * until the voltage change is all done. 271 */ 272 clk_en_a = mci_readl(host, CLKENA); 273 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id); 274 mci_writel(host, CLKENA, clk_en_a); 275 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | 276 SDMMC_CMD_PRV_DAT_WAIT, 0); 277 } 278 279 if (cmd->flags & MMC_RSP_PRESENT) { 280 /* We expect a response, so set this bit */ 281 cmdr |= SDMMC_CMD_RESP_EXP; 282 if (cmd->flags & MMC_RSP_136) 283 cmdr |= SDMMC_CMD_RESP_LONG; 284 } 285 286 if (cmd->flags & MMC_RSP_CRC) 287 cmdr |= SDMMC_CMD_RESP_CRC; 288 289 data = cmd->data; 290 if (data) { 291 cmdr |= SDMMC_CMD_DAT_EXP; 292 if (data->flags & MMC_DATA_STREAM) 293 cmdr |= SDMMC_CMD_STRM_MODE; 294 if (data->flags & MMC_DATA_WRITE) 295 cmdr |= SDMMC_CMD_DAT_WR; 296 } 297 298 if (drv_data && drv_data->prepare_command) 299 drv_data->prepare_command(slot->host, &cmdr); 300 301 return cmdr; 302 } 303 304 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd) 305 { 306 struct mmc_command *stop; 307 u32 cmdr; 308 309 if (!cmd->data) 310 return 0; 311 312 stop = &host->stop_abort; 313 cmdr = cmd->opcode; 314 memset(stop, 0, sizeof(struct mmc_command)); 315 316 if (cmdr == MMC_READ_SINGLE_BLOCK || 317 cmdr == MMC_READ_MULTIPLE_BLOCK || 318 cmdr == MMC_WRITE_BLOCK || 319 cmdr == MMC_WRITE_MULTIPLE_BLOCK || 320 cmdr == MMC_SEND_TUNING_BLOCK || 321 cmdr == MMC_SEND_TUNING_BLOCK_HS200) { 322 stop->opcode = MMC_STOP_TRANSMISSION; 323 stop->arg = 0; 324 stop->flags = MMC_RSP_R1B | MMC_CMD_AC; 325 } else if (cmdr == SD_IO_RW_EXTENDED) { 326 stop->opcode = SD_IO_RW_DIRECT; 327 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) | 328 ((cmd->arg >> 28) & 0x7); 329 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC; 330 } else { 331 return 0; 332 } 333 334 cmdr = stop->opcode | SDMMC_CMD_STOP | 335 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP; 336 337 return cmdr; 338 } 339 340 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags) 341 { 342 unsigned long timeout = jiffies + msecs_to_jiffies(500); 343 344 /* 345 * Databook says that before issuing a new data transfer command 346 * we need to check to see if the card is busy. Data transfer commands 347 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that. 348 * 349 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is 350 * expected. 351 */ 352 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) && 353 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) { 354 while (mci_readl(host, STATUS) & SDMMC_STATUS_BUSY) { 355 if (time_after(jiffies, timeout)) { 356 /* Command will fail; we'll pass error then */ 357 dev_err(host->dev, "Busy; trying anyway\n"); 358 break; 359 } 360 udelay(10); 361 } 362 } 363 } 364 365 static void dw_mci_start_command(struct dw_mci *host, 366 struct mmc_command *cmd, u32 cmd_flags) 367 { 368 host->cmd = cmd; 369 dev_vdbg(host->dev, 370 "start command: ARGR=0x%08x CMDR=0x%08x\n", 371 cmd->arg, cmd_flags); 372 373 mci_writel(host, CMDARG, cmd->arg); 374 wmb(); 375 dw_mci_wait_while_busy(host, cmd_flags); 376 377 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START); 378 } 379 380 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data) 381 { 382 struct mmc_command *stop = data->stop ? data->stop : &host->stop_abort; 383 dw_mci_start_command(host, stop, host->stop_cmdr); 384 } 385 386 /* DMA interface functions */ 387 static void dw_mci_stop_dma(struct dw_mci *host) 388 { 389 if (host->using_dma) { 390 host->dma_ops->stop(host); 391 host->dma_ops->cleanup(host); 392 } 393 394 /* Data transfer was stopped by the interrupt handler */ 395 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 396 } 397 398 static int dw_mci_get_dma_dir(struct mmc_data *data) 399 { 400 if (data->flags & MMC_DATA_WRITE) 401 return DMA_TO_DEVICE; 402 else 403 return DMA_FROM_DEVICE; 404 } 405 406 #ifdef CONFIG_MMC_DW_IDMAC 407 static void dw_mci_dma_cleanup(struct dw_mci *host) 408 { 409 struct mmc_data *data = host->data; 410 411 if (data) 412 if (!data->host_cookie) 413 dma_unmap_sg(host->dev, 414 data->sg, 415 data->sg_len, 416 dw_mci_get_dma_dir(data)); 417 } 418 419 static void dw_mci_idmac_reset(struct dw_mci *host) 420 { 421 u32 bmod = mci_readl(host, BMOD); 422 /* Software reset of DMA */ 423 bmod |= SDMMC_IDMAC_SWRESET; 424 mci_writel(host, BMOD, bmod); 425 } 426 427 static void dw_mci_idmac_stop_dma(struct dw_mci *host) 428 { 429 u32 temp; 430 431 /* Disable and reset the IDMAC interface */ 432 temp = mci_readl(host, CTRL); 433 temp &= ~SDMMC_CTRL_USE_IDMAC; 434 temp |= SDMMC_CTRL_DMA_RESET; 435 mci_writel(host, CTRL, temp); 436 437 /* Stop the IDMAC running */ 438 temp = mci_readl(host, BMOD); 439 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB); 440 temp |= SDMMC_IDMAC_SWRESET; 441 mci_writel(host, BMOD, temp); 442 } 443 444 static void dw_mci_idmac_complete_dma(struct dw_mci *host) 445 { 446 struct mmc_data *data = host->data; 447 448 dev_vdbg(host->dev, "DMA complete\n"); 449 450 host->dma_ops->cleanup(host); 451 452 /* 453 * If the card was removed, data will be NULL. No point in trying to 454 * send the stop command or waiting for NBUSY in this case. 455 */ 456 if (data) { 457 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 458 tasklet_schedule(&host->tasklet); 459 } 460 } 461 462 static void dw_mci_translate_sglist(struct dw_mci *host, struct mmc_data *data, 463 unsigned int sg_len) 464 { 465 int i; 466 if (host->dma_64bit_address == 1) { 467 struct idmac_desc_64addr *desc = host->sg_cpu; 468 469 for (i = 0; i < sg_len; i++, desc++) { 470 unsigned int length = sg_dma_len(&data->sg[i]); 471 u64 mem_addr = sg_dma_address(&data->sg[i]); 472 473 /* 474 * Set the OWN bit and disable interrupts for this 475 * descriptor 476 */ 477 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC | 478 IDMAC_DES0_CH; 479 /* Buffer length */ 480 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, length); 481 482 /* Physical address to DMA to/from */ 483 desc->des4 = mem_addr & 0xffffffff; 484 desc->des5 = mem_addr >> 32; 485 } 486 487 /* Set first descriptor */ 488 desc = host->sg_cpu; 489 desc->des0 |= IDMAC_DES0_FD; 490 491 /* Set last descriptor */ 492 desc = host->sg_cpu + (i - 1) * 493 sizeof(struct idmac_desc_64addr); 494 desc->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC); 495 desc->des0 |= IDMAC_DES0_LD; 496 497 } else { 498 struct idmac_desc *desc = host->sg_cpu; 499 500 for (i = 0; i < sg_len; i++, desc++) { 501 unsigned int length = sg_dma_len(&data->sg[i]); 502 u32 mem_addr = sg_dma_address(&data->sg[i]); 503 504 /* 505 * Set the OWN bit and disable interrupts for this 506 * descriptor 507 */ 508 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN | 509 IDMAC_DES0_DIC | IDMAC_DES0_CH); 510 /* Buffer length */ 511 IDMAC_SET_BUFFER1_SIZE(desc, length); 512 513 /* Physical address to DMA to/from */ 514 desc->des2 = cpu_to_le32(mem_addr); 515 } 516 517 /* Set first descriptor */ 518 desc = host->sg_cpu; 519 desc->des0 |= cpu_to_le32(IDMAC_DES0_FD); 520 521 /* Set last descriptor */ 522 desc = host->sg_cpu + (i - 1) * sizeof(struct idmac_desc); 523 desc->des0 &= cpu_to_le32(~(IDMAC_DES0_CH | IDMAC_DES0_DIC)); 524 desc->des0 |= cpu_to_le32(IDMAC_DES0_LD); 525 } 526 527 wmb(); 528 } 529 530 static void dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len) 531 { 532 u32 temp; 533 534 dw_mci_translate_sglist(host, host->data, sg_len); 535 536 /* Make sure to reset DMA in case we did PIO before this */ 537 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET); 538 dw_mci_idmac_reset(host); 539 540 /* Select IDMAC interface */ 541 temp = mci_readl(host, CTRL); 542 temp |= SDMMC_CTRL_USE_IDMAC; 543 mci_writel(host, CTRL, temp); 544 545 wmb(); 546 547 /* Enable the IDMAC */ 548 temp = mci_readl(host, BMOD); 549 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB; 550 mci_writel(host, BMOD, temp); 551 552 /* Start it running */ 553 mci_writel(host, PLDMND, 1); 554 } 555 556 static int dw_mci_idmac_init(struct dw_mci *host) 557 { 558 int i; 559 560 if (host->dma_64bit_address == 1) { 561 struct idmac_desc_64addr *p; 562 /* Number of descriptors in the ring buffer */ 563 host->ring_size = PAGE_SIZE / sizeof(struct idmac_desc_64addr); 564 565 /* Forward link the descriptor list */ 566 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1; 567 i++, p++) { 568 p->des6 = (host->sg_dma + 569 (sizeof(struct idmac_desc_64addr) * 570 (i + 1))) & 0xffffffff; 571 572 p->des7 = (u64)(host->sg_dma + 573 (sizeof(struct idmac_desc_64addr) * 574 (i + 1))) >> 32; 575 /* Initialize reserved and buffer size fields to "0" */ 576 p->des1 = 0; 577 p->des2 = 0; 578 p->des3 = 0; 579 } 580 581 /* Set the last descriptor as the end-of-ring descriptor */ 582 p->des6 = host->sg_dma & 0xffffffff; 583 p->des7 = (u64)host->sg_dma >> 32; 584 p->des0 = IDMAC_DES0_ER; 585 586 } else { 587 struct idmac_desc *p; 588 /* Number of descriptors in the ring buffer */ 589 host->ring_size = PAGE_SIZE / sizeof(struct idmac_desc); 590 591 /* Forward link the descriptor list */ 592 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1; i++, p++) { 593 p->des3 = cpu_to_le32(host->sg_dma + 594 (sizeof(struct idmac_desc) * (i + 1))); 595 p->des1 = 0; 596 } 597 598 /* Set the last descriptor as the end-of-ring descriptor */ 599 p->des3 = cpu_to_le32(host->sg_dma); 600 p->des0 = cpu_to_le32(IDMAC_DES0_ER); 601 } 602 603 dw_mci_idmac_reset(host); 604 605 if (host->dma_64bit_address == 1) { 606 /* Mask out interrupts - get Tx & Rx complete only */ 607 mci_writel(host, IDSTS64, IDMAC_INT_CLR); 608 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI | 609 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI); 610 611 /* Set the descriptor base address */ 612 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff); 613 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32); 614 615 } else { 616 /* Mask out interrupts - get Tx & Rx complete only */ 617 mci_writel(host, IDSTS, IDMAC_INT_CLR); 618 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI | 619 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI); 620 621 /* Set the descriptor base address */ 622 mci_writel(host, DBADDR, host->sg_dma); 623 } 624 625 return 0; 626 } 627 628 static const struct dw_mci_dma_ops dw_mci_idmac_ops = { 629 .init = dw_mci_idmac_init, 630 .start = dw_mci_idmac_start_dma, 631 .stop = dw_mci_idmac_stop_dma, 632 .complete = dw_mci_idmac_complete_dma, 633 .cleanup = dw_mci_dma_cleanup, 634 }; 635 #endif /* CONFIG_MMC_DW_IDMAC */ 636 637 static int dw_mci_pre_dma_transfer(struct dw_mci *host, 638 struct mmc_data *data, 639 bool next) 640 { 641 struct scatterlist *sg; 642 unsigned int i, sg_len; 643 644 if (!next && data->host_cookie) 645 return data->host_cookie; 646 647 /* 648 * We don't do DMA on "complex" transfers, i.e. with 649 * non-word-aligned buffers or lengths. Also, we don't bother 650 * with all the DMA setup overhead for short transfers. 651 */ 652 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD) 653 return -EINVAL; 654 655 if (data->blksz & 3) 656 return -EINVAL; 657 658 for_each_sg(data->sg, sg, data->sg_len, i) { 659 if (sg->offset & 3 || sg->length & 3) 660 return -EINVAL; 661 } 662 663 sg_len = dma_map_sg(host->dev, 664 data->sg, 665 data->sg_len, 666 dw_mci_get_dma_dir(data)); 667 if (sg_len == 0) 668 return -EINVAL; 669 670 if (next) 671 data->host_cookie = sg_len; 672 673 return sg_len; 674 } 675 676 static void dw_mci_pre_req(struct mmc_host *mmc, 677 struct mmc_request *mrq, 678 bool is_first_req) 679 { 680 struct dw_mci_slot *slot = mmc_priv(mmc); 681 struct mmc_data *data = mrq->data; 682 683 if (!slot->host->use_dma || !data) 684 return; 685 686 if (data->host_cookie) { 687 data->host_cookie = 0; 688 return; 689 } 690 691 if (dw_mci_pre_dma_transfer(slot->host, mrq->data, 1) < 0) 692 data->host_cookie = 0; 693 } 694 695 static void dw_mci_post_req(struct mmc_host *mmc, 696 struct mmc_request *mrq, 697 int err) 698 { 699 struct dw_mci_slot *slot = mmc_priv(mmc); 700 struct mmc_data *data = mrq->data; 701 702 if (!slot->host->use_dma || !data) 703 return; 704 705 if (data->host_cookie) 706 dma_unmap_sg(slot->host->dev, 707 data->sg, 708 data->sg_len, 709 dw_mci_get_dma_dir(data)); 710 data->host_cookie = 0; 711 } 712 713 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data) 714 { 715 #ifdef CONFIG_MMC_DW_IDMAC 716 unsigned int blksz = data->blksz; 717 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256}; 718 u32 fifo_width = 1 << host->data_shift; 719 u32 blksz_depth = blksz / fifo_width, fifoth_val; 720 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers; 721 int idx = (sizeof(mszs) / sizeof(mszs[0])) - 1; 722 723 tx_wmark = (host->fifo_depth) / 2; 724 tx_wmark_invers = host->fifo_depth - tx_wmark; 725 726 /* 727 * MSIZE is '1', 728 * if blksz is not a multiple of the FIFO width 729 */ 730 if (blksz % fifo_width) { 731 msize = 0; 732 rx_wmark = 1; 733 goto done; 734 } 735 736 do { 737 if (!((blksz_depth % mszs[idx]) || 738 (tx_wmark_invers % mszs[idx]))) { 739 msize = idx; 740 rx_wmark = mszs[idx] - 1; 741 break; 742 } 743 } while (--idx > 0); 744 /* 745 * If idx is '0', it won't be tried 746 * Thus, initial values are uesed 747 */ 748 done: 749 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark); 750 mci_writel(host, FIFOTH, fifoth_val); 751 #endif 752 } 753 754 static void dw_mci_ctrl_rd_thld(struct dw_mci *host, struct mmc_data *data) 755 { 756 unsigned int blksz = data->blksz; 757 u32 blksz_depth, fifo_depth; 758 u16 thld_size; 759 760 WARN_ON(!(data->flags & MMC_DATA_READ)); 761 762 /* 763 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is 764 * in the FIFO region, so we really shouldn't access it). 765 */ 766 if (host->verid < DW_MMC_240A) 767 return; 768 769 if (host->timing != MMC_TIMING_MMC_HS200 && 770 host->timing != MMC_TIMING_MMC_HS400 && 771 host->timing != MMC_TIMING_UHS_SDR104) 772 goto disable; 773 774 blksz_depth = blksz / (1 << host->data_shift); 775 fifo_depth = host->fifo_depth; 776 777 if (blksz_depth > fifo_depth) 778 goto disable; 779 780 /* 781 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz' 782 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz 783 * Currently just choose blksz. 784 */ 785 thld_size = blksz; 786 mci_writel(host, CDTHRCTL, SDMMC_SET_RD_THLD(thld_size, 1)); 787 return; 788 789 disable: 790 mci_writel(host, CDTHRCTL, SDMMC_SET_RD_THLD(0, 0)); 791 } 792 793 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data) 794 { 795 unsigned long irqflags; 796 int sg_len; 797 u32 temp; 798 799 host->using_dma = 0; 800 801 /* If we don't have a channel, we can't do DMA */ 802 if (!host->use_dma) 803 return -ENODEV; 804 805 sg_len = dw_mci_pre_dma_transfer(host, data, 0); 806 if (sg_len < 0) { 807 host->dma_ops->stop(host); 808 return sg_len; 809 } 810 811 host->using_dma = 1; 812 813 dev_vdbg(host->dev, 814 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n", 815 (unsigned long)host->sg_cpu, (unsigned long)host->sg_dma, 816 sg_len); 817 818 /* 819 * Decide the MSIZE and RX/TX Watermark. 820 * If current block size is same with previous size, 821 * no need to update fifoth. 822 */ 823 if (host->prev_blksz != data->blksz) 824 dw_mci_adjust_fifoth(host, data); 825 826 /* Enable the DMA interface */ 827 temp = mci_readl(host, CTRL); 828 temp |= SDMMC_CTRL_DMA_ENABLE; 829 mci_writel(host, CTRL, temp); 830 831 /* Disable RX/TX IRQs, let DMA handle it */ 832 spin_lock_irqsave(&host->irq_lock, irqflags); 833 temp = mci_readl(host, INTMASK); 834 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR); 835 mci_writel(host, INTMASK, temp); 836 spin_unlock_irqrestore(&host->irq_lock, irqflags); 837 838 host->dma_ops->start(host, sg_len); 839 840 return 0; 841 } 842 843 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data) 844 { 845 unsigned long irqflags; 846 u32 temp; 847 848 data->error = -EINPROGRESS; 849 850 WARN_ON(host->data); 851 host->sg = NULL; 852 host->data = data; 853 854 if (data->flags & MMC_DATA_READ) { 855 host->dir_status = DW_MCI_RECV_STATUS; 856 dw_mci_ctrl_rd_thld(host, data); 857 } else { 858 host->dir_status = DW_MCI_SEND_STATUS; 859 } 860 861 if (dw_mci_submit_data_dma(host, data)) { 862 int flags = SG_MITER_ATOMIC; 863 if (host->data->flags & MMC_DATA_READ) 864 flags |= SG_MITER_TO_SG; 865 else 866 flags |= SG_MITER_FROM_SG; 867 868 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); 869 host->sg = data->sg; 870 host->part_buf_start = 0; 871 host->part_buf_count = 0; 872 873 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR); 874 875 spin_lock_irqsave(&host->irq_lock, irqflags); 876 temp = mci_readl(host, INTMASK); 877 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR; 878 mci_writel(host, INTMASK, temp); 879 spin_unlock_irqrestore(&host->irq_lock, irqflags); 880 881 temp = mci_readl(host, CTRL); 882 temp &= ~SDMMC_CTRL_DMA_ENABLE; 883 mci_writel(host, CTRL, temp); 884 885 /* 886 * Use the initial fifoth_val for PIO mode. 887 * If next issued data may be transfered by DMA mode, 888 * prev_blksz should be invalidated. 889 */ 890 mci_writel(host, FIFOTH, host->fifoth_val); 891 host->prev_blksz = 0; 892 } else { 893 /* 894 * Keep the current block size. 895 * It will be used to decide whether to update 896 * fifoth register next time. 897 */ 898 host->prev_blksz = data->blksz; 899 } 900 } 901 902 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg) 903 { 904 struct dw_mci *host = slot->host; 905 unsigned long timeout = jiffies + msecs_to_jiffies(500); 906 unsigned int cmd_status = 0; 907 908 mci_writel(host, CMDARG, arg); 909 wmb(); 910 dw_mci_wait_while_busy(host, cmd); 911 mci_writel(host, CMD, SDMMC_CMD_START | cmd); 912 913 while (time_before(jiffies, timeout)) { 914 cmd_status = mci_readl(host, CMD); 915 if (!(cmd_status & SDMMC_CMD_START)) 916 return; 917 } 918 dev_err(&slot->mmc->class_dev, 919 "Timeout sending command (cmd %#x arg %#x status %#x)\n", 920 cmd, arg, cmd_status); 921 } 922 923 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit) 924 { 925 struct dw_mci *host = slot->host; 926 unsigned int clock = slot->clock; 927 u32 div; 928 u32 clk_en_a; 929 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT; 930 931 /* We must continue to set bit 28 in CMD until the change is complete */ 932 if (host->state == STATE_WAITING_CMD11_DONE) 933 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH; 934 935 if (!clock) { 936 mci_writel(host, CLKENA, 0); 937 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 938 } else if (clock != host->current_speed || force_clkinit) { 939 div = host->bus_hz / clock; 940 if (host->bus_hz % clock && host->bus_hz > clock) 941 /* 942 * move the + 1 after the divide to prevent 943 * over-clocking the card. 944 */ 945 div += 1; 946 947 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0; 948 949 if ((clock << div) != slot->__clk_old || force_clkinit) 950 dev_info(&slot->mmc->class_dev, 951 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n", 952 slot->id, host->bus_hz, clock, 953 div ? ((host->bus_hz / div) >> 1) : 954 host->bus_hz, div); 955 956 /* disable clock */ 957 mci_writel(host, CLKENA, 0); 958 mci_writel(host, CLKSRC, 0); 959 960 /* inform CIU */ 961 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 962 963 /* set clock to desired speed */ 964 mci_writel(host, CLKDIV, div); 965 966 /* inform CIU */ 967 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 968 969 /* enable clock; only low power if no SDIO */ 970 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id; 971 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags)) 972 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id; 973 mci_writel(host, CLKENA, clk_en_a); 974 975 /* inform CIU */ 976 mci_send_cmd(slot, sdmmc_cmd_bits, 0); 977 978 /* keep the clock with reflecting clock dividor */ 979 slot->__clk_old = clock << div; 980 } 981 982 host->current_speed = clock; 983 984 /* Set the current slot bus width */ 985 mci_writel(host, CTYPE, (slot->ctype << slot->id)); 986 } 987 988 static void __dw_mci_start_request(struct dw_mci *host, 989 struct dw_mci_slot *slot, 990 struct mmc_command *cmd) 991 { 992 struct mmc_request *mrq; 993 struct mmc_data *data; 994 u32 cmdflags; 995 996 mrq = slot->mrq; 997 998 host->cur_slot = slot; 999 host->mrq = mrq; 1000 1001 host->pending_events = 0; 1002 host->completed_events = 0; 1003 host->cmd_status = 0; 1004 host->data_status = 0; 1005 host->dir_status = 0; 1006 1007 data = cmd->data; 1008 if (data) { 1009 mci_writel(host, TMOUT, 0xFFFFFFFF); 1010 mci_writel(host, BYTCNT, data->blksz*data->blocks); 1011 mci_writel(host, BLKSIZ, data->blksz); 1012 } 1013 1014 cmdflags = dw_mci_prepare_command(slot->mmc, cmd); 1015 1016 /* this is the first command, send the initialization clock */ 1017 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags)) 1018 cmdflags |= SDMMC_CMD_INIT; 1019 1020 if (data) { 1021 dw_mci_submit_data(host, data); 1022 wmb(); 1023 } 1024 1025 dw_mci_start_command(host, cmd, cmdflags); 1026 1027 if (cmd->opcode == SD_SWITCH_VOLTAGE) { 1028 unsigned long irqflags; 1029 1030 /* 1031 * Databook says to fail after 2ms w/ no response, but evidence 1032 * shows that sometimes the cmd11 interrupt takes over 130ms. 1033 * We'll set to 500ms, plus an extra jiffy just in case jiffies 1034 * is just about to roll over. 1035 * 1036 * We do this whole thing under spinlock and only if the 1037 * command hasn't already completed (indicating the the irq 1038 * already ran so we don't want the timeout). 1039 */ 1040 spin_lock_irqsave(&host->irq_lock, irqflags); 1041 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) 1042 mod_timer(&host->cmd11_timer, 1043 jiffies + msecs_to_jiffies(500) + 1); 1044 spin_unlock_irqrestore(&host->irq_lock, irqflags); 1045 } 1046 1047 if (mrq->stop) 1048 host->stop_cmdr = dw_mci_prepare_command(slot->mmc, mrq->stop); 1049 else 1050 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd); 1051 } 1052 1053 static void dw_mci_start_request(struct dw_mci *host, 1054 struct dw_mci_slot *slot) 1055 { 1056 struct mmc_request *mrq = slot->mrq; 1057 struct mmc_command *cmd; 1058 1059 cmd = mrq->sbc ? mrq->sbc : mrq->cmd; 1060 __dw_mci_start_request(host, slot, cmd); 1061 } 1062 1063 /* must be called with host->lock held */ 1064 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot, 1065 struct mmc_request *mrq) 1066 { 1067 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n", 1068 host->state); 1069 1070 slot->mrq = mrq; 1071 1072 if (host->state == STATE_WAITING_CMD11_DONE) { 1073 dev_warn(&slot->mmc->class_dev, 1074 "Voltage change didn't complete\n"); 1075 /* 1076 * this case isn't expected to happen, so we can 1077 * either crash here or just try to continue on 1078 * in the closest possible state 1079 */ 1080 host->state = STATE_IDLE; 1081 } 1082 1083 if (host->state == STATE_IDLE) { 1084 host->state = STATE_SENDING_CMD; 1085 dw_mci_start_request(host, slot); 1086 } else { 1087 list_add_tail(&slot->queue_node, &host->queue); 1088 } 1089 } 1090 1091 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq) 1092 { 1093 struct dw_mci_slot *slot = mmc_priv(mmc); 1094 struct dw_mci *host = slot->host; 1095 1096 WARN_ON(slot->mrq); 1097 1098 /* 1099 * The check for card presence and queueing of the request must be 1100 * atomic, otherwise the card could be removed in between and the 1101 * request wouldn't fail until another card was inserted. 1102 */ 1103 spin_lock_bh(&host->lock); 1104 1105 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) { 1106 spin_unlock_bh(&host->lock); 1107 mrq->cmd->error = -ENOMEDIUM; 1108 mmc_request_done(mmc, mrq); 1109 return; 1110 } 1111 1112 dw_mci_queue_request(host, slot, mrq); 1113 1114 spin_unlock_bh(&host->lock); 1115 } 1116 1117 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1118 { 1119 struct dw_mci_slot *slot = mmc_priv(mmc); 1120 const struct dw_mci_drv_data *drv_data = slot->host->drv_data; 1121 u32 regs; 1122 int ret; 1123 1124 switch (ios->bus_width) { 1125 case MMC_BUS_WIDTH_4: 1126 slot->ctype = SDMMC_CTYPE_4BIT; 1127 break; 1128 case MMC_BUS_WIDTH_8: 1129 slot->ctype = SDMMC_CTYPE_8BIT; 1130 break; 1131 default: 1132 /* set default 1 bit mode */ 1133 slot->ctype = SDMMC_CTYPE_1BIT; 1134 } 1135 1136 regs = mci_readl(slot->host, UHS_REG); 1137 1138 /* DDR mode set */ 1139 if (ios->timing == MMC_TIMING_MMC_DDR52 || 1140 ios->timing == MMC_TIMING_MMC_HS400) 1141 regs |= ((0x1 << slot->id) << 16); 1142 else 1143 regs &= ~((0x1 << slot->id) << 16); 1144 1145 mci_writel(slot->host, UHS_REG, regs); 1146 slot->host->timing = ios->timing; 1147 1148 /* 1149 * Use mirror of ios->clock to prevent race with mmc 1150 * core ios update when finding the minimum. 1151 */ 1152 slot->clock = ios->clock; 1153 1154 if (drv_data && drv_data->set_ios) 1155 drv_data->set_ios(slot->host, ios); 1156 1157 switch (ios->power_mode) { 1158 case MMC_POWER_UP: 1159 if (!IS_ERR(mmc->supply.vmmc)) { 1160 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 1161 ios->vdd); 1162 if (ret) { 1163 dev_err(slot->host->dev, 1164 "failed to enable vmmc regulator\n"); 1165 /*return, if failed turn on vmmc*/ 1166 return; 1167 } 1168 } 1169 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags); 1170 regs = mci_readl(slot->host, PWREN); 1171 regs |= (1 << slot->id); 1172 mci_writel(slot->host, PWREN, regs); 1173 break; 1174 case MMC_POWER_ON: 1175 if (!slot->host->vqmmc_enabled) { 1176 if (!IS_ERR(mmc->supply.vqmmc)) { 1177 ret = regulator_enable(mmc->supply.vqmmc); 1178 if (ret < 0) 1179 dev_err(slot->host->dev, 1180 "failed to enable vqmmc\n"); 1181 else 1182 slot->host->vqmmc_enabled = true; 1183 1184 } else { 1185 /* Keep track so we don't reset again */ 1186 slot->host->vqmmc_enabled = true; 1187 } 1188 1189 /* Reset our state machine after powering on */ 1190 dw_mci_ctrl_reset(slot->host, 1191 SDMMC_CTRL_ALL_RESET_FLAGS); 1192 } 1193 1194 /* Adjust clock / bus width after power is up */ 1195 dw_mci_setup_bus(slot, false); 1196 1197 break; 1198 case MMC_POWER_OFF: 1199 /* Turn clock off before power goes down */ 1200 dw_mci_setup_bus(slot, false); 1201 1202 if (!IS_ERR(mmc->supply.vmmc)) 1203 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 1204 1205 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled) 1206 regulator_disable(mmc->supply.vqmmc); 1207 slot->host->vqmmc_enabled = false; 1208 1209 regs = mci_readl(slot->host, PWREN); 1210 regs &= ~(1 << slot->id); 1211 mci_writel(slot->host, PWREN, regs); 1212 break; 1213 default: 1214 break; 1215 } 1216 1217 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0) 1218 slot->host->state = STATE_IDLE; 1219 } 1220 1221 static int dw_mci_card_busy(struct mmc_host *mmc) 1222 { 1223 struct dw_mci_slot *slot = mmc_priv(mmc); 1224 u32 status; 1225 1226 /* 1227 * Check the busy bit which is low when DAT[3:0] 1228 * (the data lines) are 0000 1229 */ 1230 status = mci_readl(slot->host, STATUS); 1231 1232 return !!(status & SDMMC_STATUS_BUSY); 1233 } 1234 1235 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios) 1236 { 1237 struct dw_mci_slot *slot = mmc_priv(mmc); 1238 struct dw_mci *host = slot->host; 1239 u32 uhs; 1240 u32 v18 = SDMMC_UHS_18V << slot->id; 1241 int min_uv, max_uv; 1242 int ret; 1243 1244 /* 1245 * Program the voltage. Note that some instances of dw_mmc may use 1246 * the UHS_REG for this. For other instances (like exynos) the UHS_REG 1247 * does no harm but you need to set the regulator directly. Try both. 1248 */ 1249 uhs = mci_readl(host, UHS_REG); 1250 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1251 min_uv = 2700000; 1252 max_uv = 3600000; 1253 uhs &= ~v18; 1254 } else { 1255 min_uv = 1700000; 1256 max_uv = 1950000; 1257 uhs |= v18; 1258 } 1259 if (!IS_ERR(mmc->supply.vqmmc)) { 1260 ret = regulator_set_voltage(mmc->supply.vqmmc, min_uv, max_uv); 1261 1262 if (ret) { 1263 dev_dbg(&mmc->class_dev, 1264 "Regulator set error %d: %d - %d\n", 1265 ret, min_uv, max_uv); 1266 return ret; 1267 } 1268 } 1269 mci_writel(host, UHS_REG, uhs); 1270 1271 return 0; 1272 } 1273 1274 static int dw_mci_get_ro(struct mmc_host *mmc) 1275 { 1276 int read_only; 1277 struct dw_mci_slot *slot = mmc_priv(mmc); 1278 int gpio_ro = mmc_gpio_get_ro(mmc); 1279 1280 /* Use platform get_ro function, else try on board write protect */ 1281 if ((slot->quirks & DW_MCI_SLOT_QUIRK_NO_WRITE_PROTECT) || 1282 (slot->host->quirks & DW_MCI_QUIRK_NO_WRITE_PROTECT)) 1283 read_only = 0; 1284 else if (!IS_ERR_VALUE(gpio_ro)) 1285 read_only = gpio_ro; 1286 else 1287 read_only = 1288 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0; 1289 1290 dev_dbg(&mmc->class_dev, "card is %s\n", 1291 read_only ? "read-only" : "read-write"); 1292 1293 return read_only; 1294 } 1295 1296 static int dw_mci_get_cd(struct mmc_host *mmc) 1297 { 1298 int present; 1299 struct dw_mci_slot *slot = mmc_priv(mmc); 1300 struct dw_mci_board *brd = slot->host->pdata; 1301 struct dw_mci *host = slot->host; 1302 int gpio_cd = mmc_gpio_get_cd(mmc); 1303 1304 /* Use platform get_cd function, else try onboard card detect */ 1305 if ((brd->quirks & DW_MCI_QUIRK_BROKEN_CARD_DETECTION) || 1306 (mmc->caps & MMC_CAP_NONREMOVABLE)) 1307 present = 1; 1308 else if (!IS_ERR_VALUE(gpio_cd)) 1309 present = gpio_cd; 1310 else 1311 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id)) 1312 == 0 ? 1 : 0; 1313 1314 spin_lock_bh(&host->lock); 1315 if (present) { 1316 set_bit(DW_MMC_CARD_PRESENT, &slot->flags); 1317 dev_dbg(&mmc->class_dev, "card is present\n"); 1318 } else { 1319 clear_bit(DW_MMC_CARD_PRESENT, &slot->flags); 1320 dev_dbg(&mmc->class_dev, "card is not present\n"); 1321 } 1322 spin_unlock_bh(&host->lock); 1323 1324 return present; 1325 } 1326 1327 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card) 1328 { 1329 struct dw_mci_slot *slot = mmc_priv(mmc); 1330 struct dw_mci *host = slot->host; 1331 1332 /* 1333 * Low power mode will stop the card clock when idle. According to the 1334 * description of the CLKENA register we should disable low power mode 1335 * for SDIO cards if we need SDIO interrupts to work. 1336 */ 1337 if (mmc->caps & MMC_CAP_SDIO_IRQ) { 1338 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id; 1339 u32 clk_en_a_old; 1340 u32 clk_en_a; 1341 1342 clk_en_a_old = mci_readl(host, CLKENA); 1343 1344 if (card->type == MMC_TYPE_SDIO || 1345 card->type == MMC_TYPE_SD_COMBO) { 1346 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags); 1347 clk_en_a = clk_en_a_old & ~clken_low_pwr; 1348 } else { 1349 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags); 1350 clk_en_a = clk_en_a_old | clken_low_pwr; 1351 } 1352 1353 if (clk_en_a != clk_en_a_old) { 1354 mci_writel(host, CLKENA, clk_en_a); 1355 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | 1356 SDMMC_CMD_PRV_DAT_WAIT, 0); 1357 } 1358 } 1359 } 1360 1361 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb) 1362 { 1363 struct dw_mci_slot *slot = mmc_priv(mmc); 1364 struct dw_mci *host = slot->host; 1365 unsigned long irqflags; 1366 u32 int_mask; 1367 1368 spin_lock_irqsave(&host->irq_lock, irqflags); 1369 1370 /* Enable/disable Slot Specific SDIO interrupt */ 1371 int_mask = mci_readl(host, INTMASK); 1372 if (enb) 1373 int_mask |= SDMMC_INT_SDIO(slot->sdio_id); 1374 else 1375 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id); 1376 mci_writel(host, INTMASK, int_mask); 1377 1378 spin_unlock_irqrestore(&host->irq_lock, irqflags); 1379 } 1380 1381 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode) 1382 { 1383 struct dw_mci_slot *slot = mmc_priv(mmc); 1384 struct dw_mci *host = slot->host; 1385 const struct dw_mci_drv_data *drv_data = host->drv_data; 1386 int err = -ENOSYS; 1387 1388 if (drv_data && drv_data->execute_tuning) 1389 err = drv_data->execute_tuning(slot); 1390 return err; 1391 } 1392 1393 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc, struct mmc_ios *ios) 1394 { 1395 struct dw_mci_slot *slot = mmc_priv(mmc); 1396 struct dw_mci *host = slot->host; 1397 const struct dw_mci_drv_data *drv_data = host->drv_data; 1398 1399 if (drv_data && drv_data->prepare_hs400_tuning) 1400 return drv_data->prepare_hs400_tuning(host, ios); 1401 1402 return 0; 1403 } 1404 1405 static const struct mmc_host_ops dw_mci_ops = { 1406 .request = dw_mci_request, 1407 .pre_req = dw_mci_pre_req, 1408 .post_req = dw_mci_post_req, 1409 .set_ios = dw_mci_set_ios, 1410 .get_ro = dw_mci_get_ro, 1411 .get_cd = dw_mci_get_cd, 1412 .enable_sdio_irq = dw_mci_enable_sdio_irq, 1413 .execute_tuning = dw_mci_execute_tuning, 1414 .card_busy = dw_mci_card_busy, 1415 .start_signal_voltage_switch = dw_mci_switch_voltage, 1416 .init_card = dw_mci_init_card, 1417 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning, 1418 }; 1419 1420 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq) 1421 __releases(&host->lock) 1422 __acquires(&host->lock) 1423 { 1424 struct dw_mci_slot *slot; 1425 struct mmc_host *prev_mmc = host->cur_slot->mmc; 1426 1427 WARN_ON(host->cmd || host->data); 1428 1429 host->cur_slot->mrq = NULL; 1430 host->mrq = NULL; 1431 if (!list_empty(&host->queue)) { 1432 slot = list_entry(host->queue.next, 1433 struct dw_mci_slot, queue_node); 1434 list_del(&slot->queue_node); 1435 dev_vdbg(host->dev, "list not empty: %s is next\n", 1436 mmc_hostname(slot->mmc)); 1437 host->state = STATE_SENDING_CMD; 1438 dw_mci_start_request(host, slot); 1439 } else { 1440 dev_vdbg(host->dev, "list empty\n"); 1441 1442 if (host->state == STATE_SENDING_CMD11) 1443 host->state = STATE_WAITING_CMD11_DONE; 1444 else 1445 host->state = STATE_IDLE; 1446 } 1447 1448 spin_unlock(&host->lock); 1449 mmc_request_done(prev_mmc, mrq); 1450 spin_lock(&host->lock); 1451 } 1452 1453 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd) 1454 { 1455 u32 status = host->cmd_status; 1456 1457 host->cmd_status = 0; 1458 1459 /* Read the response from the card (up to 16 bytes) */ 1460 if (cmd->flags & MMC_RSP_PRESENT) { 1461 if (cmd->flags & MMC_RSP_136) { 1462 cmd->resp[3] = mci_readl(host, RESP0); 1463 cmd->resp[2] = mci_readl(host, RESP1); 1464 cmd->resp[1] = mci_readl(host, RESP2); 1465 cmd->resp[0] = mci_readl(host, RESP3); 1466 } else { 1467 cmd->resp[0] = mci_readl(host, RESP0); 1468 cmd->resp[1] = 0; 1469 cmd->resp[2] = 0; 1470 cmd->resp[3] = 0; 1471 } 1472 } 1473 1474 if (status & SDMMC_INT_RTO) 1475 cmd->error = -ETIMEDOUT; 1476 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC)) 1477 cmd->error = -EILSEQ; 1478 else if (status & SDMMC_INT_RESP_ERR) 1479 cmd->error = -EIO; 1480 else 1481 cmd->error = 0; 1482 1483 if (cmd->error) { 1484 /* newer ip versions need a delay between retries */ 1485 if (host->quirks & DW_MCI_QUIRK_RETRY_DELAY) 1486 mdelay(20); 1487 } 1488 1489 return cmd->error; 1490 } 1491 1492 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data) 1493 { 1494 u32 status = host->data_status; 1495 1496 if (status & DW_MCI_DATA_ERROR_FLAGS) { 1497 if (status & SDMMC_INT_DRTO) { 1498 data->error = -ETIMEDOUT; 1499 } else if (status & SDMMC_INT_DCRC) { 1500 data->error = -EILSEQ; 1501 } else if (status & SDMMC_INT_EBE) { 1502 if (host->dir_status == 1503 DW_MCI_SEND_STATUS) { 1504 /* 1505 * No data CRC status was returned. 1506 * The number of bytes transferred 1507 * will be exaggerated in PIO mode. 1508 */ 1509 data->bytes_xfered = 0; 1510 data->error = -ETIMEDOUT; 1511 } else if (host->dir_status == 1512 DW_MCI_RECV_STATUS) { 1513 data->error = -EIO; 1514 } 1515 } else { 1516 /* SDMMC_INT_SBE is included */ 1517 data->error = -EIO; 1518 } 1519 1520 dev_dbg(host->dev, "data error, status 0x%08x\n", status); 1521 1522 /* 1523 * After an error, there may be data lingering 1524 * in the FIFO 1525 */ 1526 dw_mci_reset(host); 1527 } else { 1528 data->bytes_xfered = data->blocks * data->blksz; 1529 data->error = 0; 1530 } 1531 1532 return data->error; 1533 } 1534 1535 static void dw_mci_tasklet_func(unsigned long priv) 1536 { 1537 struct dw_mci *host = (struct dw_mci *)priv; 1538 struct mmc_data *data; 1539 struct mmc_command *cmd; 1540 struct mmc_request *mrq; 1541 enum dw_mci_state state; 1542 enum dw_mci_state prev_state; 1543 unsigned int err; 1544 1545 spin_lock(&host->lock); 1546 1547 state = host->state; 1548 data = host->data; 1549 mrq = host->mrq; 1550 1551 do { 1552 prev_state = state; 1553 1554 switch (state) { 1555 case STATE_IDLE: 1556 case STATE_WAITING_CMD11_DONE: 1557 break; 1558 1559 case STATE_SENDING_CMD11: 1560 case STATE_SENDING_CMD: 1561 if (!test_and_clear_bit(EVENT_CMD_COMPLETE, 1562 &host->pending_events)) 1563 break; 1564 1565 cmd = host->cmd; 1566 host->cmd = NULL; 1567 set_bit(EVENT_CMD_COMPLETE, &host->completed_events); 1568 err = dw_mci_command_complete(host, cmd); 1569 if (cmd == mrq->sbc && !err) { 1570 prev_state = state = STATE_SENDING_CMD; 1571 __dw_mci_start_request(host, host->cur_slot, 1572 mrq->cmd); 1573 goto unlock; 1574 } 1575 1576 if (cmd->data && err) { 1577 dw_mci_stop_dma(host); 1578 send_stop_abort(host, data); 1579 state = STATE_SENDING_STOP; 1580 break; 1581 } 1582 1583 if (!cmd->data || err) { 1584 dw_mci_request_end(host, mrq); 1585 goto unlock; 1586 } 1587 1588 prev_state = state = STATE_SENDING_DATA; 1589 /* fall through */ 1590 1591 case STATE_SENDING_DATA: 1592 /* 1593 * We could get a data error and never a transfer 1594 * complete so we'd better check for it here. 1595 * 1596 * Note that we don't really care if we also got a 1597 * transfer complete; stopping the DMA and sending an 1598 * abort won't hurt. 1599 */ 1600 if (test_and_clear_bit(EVENT_DATA_ERROR, 1601 &host->pending_events)) { 1602 dw_mci_stop_dma(host); 1603 if (data->stop || 1604 !(host->data_status & (SDMMC_INT_DRTO | 1605 SDMMC_INT_EBE))) 1606 send_stop_abort(host, data); 1607 state = STATE_DATA_ERROR; 1608 break; 1609 } 1610 1611 if (!test_and_clear_bit(EVENT_XFER_COMPLETE, 1612 &host->pending_events)) 1613 break; 1614 1615 set_bit(EVENT_XFER_COMPLETE, &host->completed_events); 1616 1617 /* 1618 * Handle an EVENT_DATA_ERROR that might have shown up 1619 * before the transfer completed. This might not have 1620 * been caught by the check above because the interrupt 1621 * could have gone off between the previous check and 1622 * the check for transfer complete. 1623 * 1624 * Technically this ought not be needed assuming we 1625 * get a DATA_COMPLETE eventually (we'll notice the 1626 * error and end the request), but it shouldn't hurt. 1627 * 1628 * This has the advantage of sending the stop command. 1629 */ 1630 if (test_and_clear_bit(EVENT_DATA_ERROR, 1631 &host->pending_events)) { 1632 dw_mci_stop_dma(host); 1633 if (data->stop || 1634 !(host->data_status & (SDMMC_INT_DRTO | 1635 SDMMC_INT_EBE))) 1636 send_stop_abort(host, data); 1637 state = STATE_DATA_ERROR; 1638 break; 1639 } 1640 prev_state = state = STATE_DATA_BUSY; 1641 1642 /* fall through */ 1643 1644 case STATE_DATA_BUSY: 1645 if (!test_and_clear_bit(EVENT_DATA_COMPLETE, 1646 &host->pending_events)) 1647 break; 1648 1649 host->data = NULL; 1650 set_bit(EVENT_DATA_COMPLETE, &host->completed_events); 1651 err = dw_mci_data_complete(host, data); 1652 1653 if (!err) { 1654 if (!data->stop || mrq->sbc) { 1655 if (mrq->sbc && data->stop) 1656 data->stop->error = 0; 1657 dw_mci_request_end(host, mrq); 1658 goto unlock; 1659 } 1660 1661 /* stop command for open-ended transfer*/ 1662 if (data->stop) 1663 send_stop_abort(host, data); 1664 } else { 1665 /* 1666 * If we don't have a command complete now we'll 1667 * never get one since we just reset everything; 1668 * better end the request. 1669 * 1670 * If we do have a command complete we'll fall 1671 * through to the SENDING_STOP command and 1672 * everything will be peachy keen. 1673 */ 1674 if (!test_bit(EVENT_CMD_COMPLETE, 1675 &host->pending_events)) { 1676 host->cmd = NULL; 1677 dw_mci_request_end(host, mrq); 1678 goto unlock; 1679 } 1680 } 1681 1682 /* 1683 * If err has non-zero, 1684 * stop-abort command has been already issued. 1685 */ 1686 prev_state = state = STATE_SENDING_STOP; 1687 1688 /* fall through */ 1689 1690 case STATE_SENDING_STOP: 1691 if (!test_and_clear_bit(EVENT_CMD_COMPLETE, 1692 &host->pending_events)) 1693 break; 1694 1695 /* CMD error in data command */ 1696 if (mrq->cmd->error && mrq->data) 1697 dw_mci_reset(host); 1698 1699 host->cmd = NULL; 1700 host->data = NULL; 1701 1702 if (mrq->stop) 1703 dw_mci_command_complete(host, mrq->stop); 1704 else 1705 host->cmd_status = 0; 1706 1707 dw_mci_request_end(host, mrq); 1708 goto unlock; 1709 1710 case STATE_DATA_ERROR: 1711 if (!test_and_clear_bit(EVENT_XFER_COMPLETE, 1712 &host->pending_events)) 1713 break; 1714 1715 state = STATE_DATA_BUSY; 1716 break; 1717 } 1718 } while (state != prev_state); 1719 1720 host->state = state; 1721 unlock: 1722 spin_unlock(&host->lock); 1723 1724 } 1725 1726 /* push final bytes to part_buf, only use during push */ 1727 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt) 1728 { 1729 memcpy((void *)&host->part_buf, buf, cnt); 1730 host->part_buf_count = cnt; 1731 } 1732 1733 /* append bytes to part_buf, only use during push */ 1734 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt) 1735 { 1736 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count); 1737 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt); 1738 host->part_buf_count += cnt; 1739 return cnt; 1740 } 1741 1742 /* pull first bytes from part_buf, only use during pull */ 1743 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt) 1744 { 1745 cnt = min(cnt, (int)host->part_buf_count); 1746 if (cnt) { 1747 memcpy(buf, (void *)&host->part_buf + host->part_buf_start, 1748 cnt); 1749 host->part_buf_count -= cnt; 1750 host->part_buf_start += cnt; 1751 } 1752 return cnt; 1753 } 1754 1755 /* pull final bytes from the part_buf, assuming it's just been filled */ 1756 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt) 1757 { 1758 memcpy(buf, &host->part_buf, cnt); 1759 host->part_buf_start = cnt; 1760 host->part_buf_count = (1 << host->data_shift) - cnt; 1761 } 1762 1763 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt) 1764 { 1765 struct mmc_data *data = host->data; 1766 int init_cnt = cnt; 1767 1768 /* try and push anything in the part_buf */ 1769 if (unlikely(host->part_buf_count)) { 1770 int len = dw_mci_push_part_bytes(host, buf, cnt); 1771 buf += len; 1772 cnt -= len; 1773 if (host->part_buf_count == 2) { 1774 mci_fifo_writew(host->fifo_reg, host->part_buf16); 1775 host->part_buf_count = 0; 1776 } 1777 } 1778 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1779 if (unlikely((unsigned long)buf & 0x1)) { 1780 while (cnt >= 2) { 1781 u16 aligned_buf[64]; 1782 int len = min(cnt & -2, (int)sizeof(aligned_buf)); 1783 int items = len >> 1; 1784 int i; 1785 /* memcpy from input buffer into aligned buffer */ 1786 memcpy(aligned_buf, buf, len); 1787 buf += len; 1788 cnt -= len; 1789 /* push data from aligned buffer into fifo */ 1790 for (i = 0; i < items; ++i) 1791 mci_fifo_writew(host->fifo_reg, aligned_buf[i]); 1792 } 1793 } else 1794 #endif 1795 { 1796 u16 *pdata = buf; 1797 for (; cnt >= 2; cnt -= 2) 1798 mci_fifo_writew(host->fifo_reg, *pdata++); 1799 buf = pdata; 1800 } 1801 /* put anything remaining in the part_buf */ 1802 if (cnt) { 1803 dw_mci_set_part_bytes(host, buf, cnt); 1804 /* Push data if we have reached the expected data length */ 1805 if ((data->bytes_xfered + init_cnt) == 1806 (data->blksz * data->blocks)) 1807 mci_fifo_writew(host->fifo_reg, host->part_buf16); 1808 } 1809 } 1810 1811 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt) 1812 { 1813 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1814 if (unlikely((unsigned long)buf & 0x1)) { 1815 while (cnt >= 2) { 1816 /* pull data from fifo into aligned buffer */ 1817 u16 aligned_buf[64]; 1818 int len = min(cnt & -2, (int)sizeof(aligned_buf)); 1819 int items = len >> 1; 1820 int i; 1821 for (i = 0; i < items; ++i) 1822 aligned_buf[i] = mci_fifo_readw(host->fifo_reg); 1823 /* memcpy from aligned buffer into output buffer */ 1824 memcpy(buf, aligned_buf, len); 1825 buf += len; 1826 cnt -= len; 1827 } 1828 } else 1829 #endif 1830 { 1831 u16 *pdata = buf; 1832 for (; cnt >= 2; cnt -= 2) 1833 *pdata++ = mci_fifo_readw(host->fifo_reg); 1834 buf = pdata; 1835 } 1836 if (cnt) { 1837 host->part_buf16 = mci_fifo_readw(host->fifo_reg); 1838 dw_mci_pull_final_bytes(host, buf, cnt); 1839 } 1840 } 1841 1842 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt) 1843 { 1844 struct mmc_data *data = host->data; 1845 int init_cnt = cnt; 1846 1847 /* try and push anything in the part_buf */ 1848 if (unlikely(host->part_buf_count)) { 1849 int len = dw_mci_push_part_bytes(host, buf, cnt); 1850 buf += len; 1851 cnt -= len; 1852 if (host->part_buf_count == 4) { 1853 mci_fifo_writel(host->fifo_reg, host->part_buf32); 1854 host->part_buf_count = 0; 1855 } 1856 } 1857 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1858 if (unlikely((unsigned long)buf & 0x3)) { 1859 while (cnt >= 4) { 1860 u32 aligned_buf[32]; 1861 int len = min(cnt & -4, (int)sizeof(aligned_buf)); 1862 int items = len >> 2; 1863 int i; 1864 /* memcpy from input buffer into aligned buffer */ 1865 memcpy(aligned_buf, buf, len); 1866 buf += len; 1867 cnt -= len; 1868 /* push data from aligned buffer into fifo */ 1869 for (i = 0; i < items; ++i) 1870 mci_fifo_writel(host->fifo_reg, aligned_buf[i]); 1871 } 1872 } else 1873 #endif 1874 { 1875 u32 *pdata = buf; 1876 for (; cnt >= 4; cnt -= 4) 1877 mci_fifo_writel(host->fifo_reg, *pdata++); 1878 buf = pdata; 1879 } 1880 /* put anything remaining in the part_buf */ 1881 if (cnt) { 1882 dw_mci_set_part_bytes(host, buf, cnt); 1883 /* Push data if we have reached the expected data length */ 1884 if ((data->bytes_xfered + init_cnt) == 1885 (data->blksz * data->blocks)) 1886 mci_fifo_writel(host->fifo_reg, host->part_buf32); 1887 } 1888 } 1889 1890 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt) 1891 { 1892 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1893 if (unlikely((unsigned long)buf & 0x3)) { 1894 while (cnt >= 4) { 1895 /* pull data from fifo into aligned buffer */ 1896 u32 aligned_buf[32]; 1897 int len = min(cnt & -4, (int)sizeof(aligned_buf)); 1898 int items = len >> 2; 1899 int i; 1900 for (i = 0; i < items; ++i) 1901 aligned_buf[i] = mci_fifo_readl(host->fifo_reg); 1902 /* memcpy from aligned buffer into output buffer */ 1903 memcpy(buf, aligned_buf, len); 1904 buf += len; 1905 cnt -= len; 1906 } 1907 } else 1908 #endif 1909 { 1910 u32 *pdata = buf; 1911 for (; cnt >= 4; cnt -= 4) 1912 *pdata++ = mci_fifo_readl(host->fifo_reg); 1913 buf = pdata; 1914 } 1915 if (cnt) { 1916 host->part_buf32 = mci_fifo_readl(host->fifo_reg); 1917 dw_mci_pull_final_bytes(host, buf, cnt); 1918 } 1919 } 1920 1921 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt) 1922 { 1923 struct mmc_data *data = host->data; 1924 int init_cnt = cnt; 1925 1926 /* try and push anything in the part_buf */ 1927 if (unlikely(host->part_buf_count)) { 1928 int len = dw_mci_push_part_bytes(host, buf, cnt); 1929 buf += len; 1930 cnt -= len; 1931 1932 if (host->part_buf_count == 8) { 1933 mci_fifo_writeq(host->fifo_reg, host->part_buf); 1934 host->part_buf_count = 0; 1935 } 1936 } 1937 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1938 if (unlikely((unsigned long)buf & 0x7)) { 1939 while (cnt >= 8) { 1940 u64 aligned_buf[16]; 1941 int len = min(cnt & -8, (int)sizeof(aligned_buf)); 1942 int items = len >> 3; 1943 int i; 1944 /* memcpy from input buffer into aligned buffer */ 1945 memcpy(aligned_buf, buf, len); 1946 buf += len; 1947 cnt -= len; 1948 /* push data from aligned buffer into fifo */ 1949 for (i = 0; i < items; ++i) 1950 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]); 1951 } 1952 } else 1953 #endif 1954 { 1955 u64 *pdata = buf; 1956 for (; cnt >= 8; cnt -= 8) 1957 mci_fifo_writeq(host->fifo_reg, *pdata++); 1958 buf = pdata; 1959 } 1960 /* put anything remaining in the part_buf */ 1961 if (cnt) { 1962 dw_mci_set_part_bytes(host, buf, cnt); 1963 /* Push data if we have reached the expected data length */ 1964 if ((data->bytes_xfered + init_cnt) == 1965 (data->blksz * data->blocks)) 1966 mci_fifo_writeq(host->fifo_reg, host->part_buf); 1967 } 1968 } 1969 1970 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt) 1971 { 1972 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1973 if (unlikely((unsigned long)buf & 0x7)) { 1974 while (cnt >= 8) { 1975 /* pull data from fifo into aligned buffer */ 1976 u64 aligned_buf[16]; 1977 int len = min(cnt & -8, (int)sizeof(aligned_buf)); 1978 int items = len >> 3; 1979 int i; 1980 for (i = 0; i < items; ++i) 1981 aligned_buf[i] = mci_fifo_readq(host->fifo_reg); 1982 1983 /* memcpy from aligned buffer into output buffer */ 1984 memcpy(buf, aligned_buf, len); 1985 buf += len; 1986 cnt -= len; 1987 } 1988 } else 1989 #endif 1990 { 1991 u64 *pdata = buf; 1992 for (; cnt >= 8; cnt -= 8) 1993 *pdata++ = mci_fifo_readq(host->fifo_reg); 1994 buf = pdata; 1995 } 1996 if (cnt) { 1997 host->part_buf = mci_fifo_readq(host->fifo_reg); 1998 dw_mci_pull_final_bytes(host, buf, cnt); 1999 } 2000 } 2001 2002 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt) 2003 { 2004 int len; 2005 2006 /* get remaining partial bytes */ 2007 len = dw_mci_pull_part_bytes(host, buf, cnt); 2008 if (unlikely(len == cnt)) 2009 return; 2010 buf += len; 2011 cnt -= len; 2012 2013 /* get the rest of the data */ 2014 host->pull_data(host, buf, cnt); 2015 } 2016 2017 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto) 2018 { 2019 struct sg_mapping_iter *sg_miter = &host->sg_miter; 2020 void *buf; 2021 unsigned int offset; 2022 struct mmc_data *data = host->data; 2023 int shift = host->data_shift; 2024 u32 status; 2025 unsigned int len; 2026 unsigned int remain, fcnt; 2027 2028 do { 2029 if (!sg_miter_next(sg_miter)) 2030 goto done; 2031 2032 host->sg = sg_miter->piter.sg; 2033 buf = sg_miter->addr; 2034 remain = sg_miter->length; 2035 offset = 0; 2036 2037 do { 2038 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS)) 2039 << shift) + host->part_buf_count; 2040 len = min(remain, fcnt); 2041 if (!len) 2042 break; 2043 dw_mci_pull_data(host, (void *)(buf + offset), len); 2044 data->bytes_xfered += len; 2045 offset += len; 2046 remain -= len; 2047 } while (remain); 2048 2049 sg_miter->consumed = offset; 2050 status = mci_readl(host, MINTSTS); 2051 mci_writel(host, RINTSTS, SDMMC_INT_RXDR); 2052 /* if the RXDR is ready read again */ 2053 } while ((status & SDMMC_INT_RXDR) || 2054 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS)))); 2055 2056 if (!remain) { 2057 if (!sg_miter_next(sg_miter)) 2058 goto done; 2059 sg_miter->consumed = 0; 2060 } 2061 sg_miter_stop(sg_miter); 2062 return; 2063 2064 done: 2065 sg_miter_stop(sg_miter); 2066 host->sg = NULL; 2067 smp_wmb(); 2068 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 2069 } 2070 2071 static void dw_mci_write_data_pio(struct dw_mci *host) 2072 { 2073 struct sg_mapping_iter *sg_miter = &host->sg_miter; 2074 void *buf; 2075 unsigned int offset; 2076 struct mmc_data *data = host->data; 2077 int shift = host->data_shift; 2078 u32 status; 2079 unsigned int len; 2080 unsigned int fifo_depth = host->fifo_depth; 2081 unsigned int remain, fcnt; 2082 2083 do { 2084 if (!sg_miter_next(sg_miter)) 2085 goto done; 2086 2087 host->sg = sg_miter->piter.sg; 2088 buf = sg_miter->addr; 2089 remain = sg_miter->length; 2090 offset = 0; 2091 2092 do { 2093 fcnt = ((fifo_depth - 2094 SDMMC_GET_FCNT(mci_readl(host, STATUS))) 2095 << shift) - host->part_buf_count; 2096 len = min(remain, fcnt); 2097 if (!len) 2098 break; 2099 host->push_data(host, (void *)(buf + offset), len); 2100 data->bytes_xfered += len; 2101 offset += len; 2102 remain -= len; 2103 } while (remain); 2104 2105 sg_miter->consumed = offset; 2106 status = mci_readl(host, MINTSTS); 2107 mci_writel(host, RINTSTS, SDMMC_INT_TXDR); 2108 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */ 2109 2110 if (!remain) { 2111 if (!sg_miter_next(sg_miter)) 2112 goto done; 2113 sg_miter->consumed = 0; 2114 } 2115 sg_miter_stop(sg_miter); 2116 return; 2117 2118 done: 2119 sg_miter_stop(sg_miter); 2120 host->sg = NULL; 2121 smp_wmb(); 2122 set_bit(EVENT_XFER_COMPLETE, &host->pending_events); 2123 } 2124 2125 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status) 2126 { 2127 if (!host->cmd_status) 2128 host->cmd_status = status; 2129 2130 smp_wmb(); 2131 2132 set_bit(EVENT_CMD_COMPLETE, &host->pending_events); 2133 tasklet_schedule(&host->tasklet); 2134 } 2135 2136 static void dw_mci_handle_cd(struct dw_mci *host) 2137 { 2138 int i; 2139 2140 for (i = 0; i < host->num_slots; i++) { 2141 struct dw_mci_slot *slot = host->slot[i]; 2142 2143 if (!slot) 2144 continue; 2145 2146 if (slot->mmc->ops->card_event) 2147 slot->mmc->ops->card_event(slot->mmc); 2148 mmc_detect_change(slot->mmc, 2149 msecs_to_jiffies(host->pdata->detect_delay_ms)); 2150 } 2151 } 2152 2153 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id) 2154 { 2155 struct dw_mci *host = dev_id; 2156 u32 pending; 2157 int i; 2158 2159 pending = mci_readl(host, MINTSTS); /* read-only mask reg */ 2160 2161 /* 2162 * DTO fix - version 2.10a and below, and only if internal DMA 2163 * is configured. 2164 */ 2165 if (host->quirks & DW_MCI_QUIRK_IDMAC_DTO) { 2166 if (!pending && 2167 ((mci_readl(host, STATUS) >> 17) & 0x1fff)) 2168 pending |= SDMMC_INT_DATA_OVER; 2169 } 2170 2171 if (pending) { 2172 /* Check volt switch first, since it can look like an error */ 2173 if ((host->state == STATE_SENDING_CMD11) && 2174 (pending & SDMMC_INT_VOLT_SWITCH)) { 2175 unsigned long irqflags; 2176 2177 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH); 2178 pending &= ~SDMMC_INT_VOLT_SWITCH; 2179 2180 /* 2181 * Hold the lock; we know cmd11_timer can't be kicked 2182 * off after the lock is released, so safe to delete. 2183 */ 2184 spin_lock_irqsave(&host->irq_lock, irqflags); 2185 dw_mci_cmd_interrupt(host, pending); 2186 spin_unlock_irqrestore(&host->irq_lock, irqflags); 2187 2188 del_timer(&host->cmd11_timer); 2189 } 2190 2191 if (pending & DW_MCI_CMD_ERROR_FLAGS) { 2192 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS); 2193 host->cmd_status = pending; 2194 smp_wmb(); 2195 set_bit(EVENT_CMD_COMPLETE, &host->pending_events); 2196 } 2197 2198 if (pending & DW_MCI_DATA_ERROR_FLAGS) { 2199 /* if there is an error report DATA_ERROR */ 2200 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS); 2201 host->data_status = pending; 2202 smp_wmb(); 2203 set_bit(EVENT_DATA_ERROR, &host->pending_events); 2204 tasklet_schedule(&host->tasklet); 2205 } 2206 2207 if (pending & SDMMC_INT_DATA_OVER) { 2208 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER); 2209 if (!host->data_status) 2210 host->data_status = pending; 2211 smp_wmb(); 2212 if (host->dir_status == DW_MCI_RECV_STATUS) { 2213 if (host->sg != NULL) 2214 dw_mci_read_data_pio(host, true); 2215 } 2216 set_bit(EVENT_DATA_COMPLETE, &host->pending_events); 2217 tasklet_schedule(&host->tasklet); 2218 } 2219 2220 if (pending & SDMMC_INT_RXDR) { 2221 mci_writel(host, RINTSTS, SDMMC_INT_RXDR); 2222 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg) 2223 dw_mci_read_data_pio(host, false); 2224 } 2225 2226 if (pending & SDMMC_INT_TXDR) { 2227 mci_writel(host, RINTSTS, SDMMC_INT_TXDR); 2228 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg) 2229 dw_mci_write_data_pio(host); 2230 } 2231 2232 if (pending & SDMMC_INT_CMD_DONE) { 2233 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE); 2234 dw_mci_cmd_interrupt(host, pending); 2235 } 2236 2237 if (pending & SDMMC_INT_CD) { 2238 mci_writel(host, RINTSTS, SDMMC_INT_CD); 2239 dw_mci_handle_cd(host); 2240 } 2241 2242 /* Handle SDIO Interrupts */ 2243 for (i = 0; i < host->num_slots; i++) { 2244 struct dw_mci_slot *slot = host->slot[i]; 2245 2246 if (!slot) 2247 continue; 2248 2249 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) { 2250 mci_writel(host, RINTSTS, 2251 SDMMC_INT_SDIO(slot->sdio_id)); 2252 mmc_signal_sdio_irq(slot->mmc); 2253 } 2254 } 2255 2256 } 2257 2258 #ifdef CONFIG_MMC_DW_IDMAC 2259 /* Handle DMA interrupts */ 2260 if (host->dma_64bit_address == 1) { 2261 pending = mci_readl(host, IDSTS64); 2262 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) { 2263 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI | 2264 SDMMC_IDMAC_INT_RI); 2265 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI); 2266 host->dma_ops->complete(host); 2267 } 2268 } else { 2269 pending = mci_readl(host, IDSTS); 2270 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) { 2271 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI | 2272 SDMMC_IDMAC_INT_RI); 2273 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI); 2274 host->dma_ops->complete(host); 2275 } 2276 } 2277 #endif 2278 2279 return IRQ_HANDLED; 2280 } 2281 2282 #ifdef CONFIG_OF 2283 /* given a slot id, find out the device node representing that slot */ 2284 static struct device_node *dw_mci_of_find_slot_node(struct device *dev, u8 slot) 2285 { 2286 struct device_node *np; 2287 const __be32 *addr; 2288 int len; 2289 2290 if (!dev || !dev->of_node) 2291 return NULL; 2292 2293 for_each_child_of_node(dev->of_node, np) { 2294 addr = of_get_property(np, "reg", &len); 2295 if (!addr || (len < sizeof(int))) 2296 continue; 2297 if (be32_to_cpup(addr) == slot) 2298 return np; 2299 } 2300 return NULL; 2301 } 2302 2303 static struct dw_mci_of_slot_quirks { 2304 char *quirk; 2305 int id; 2306 } of_slot_quirks[] = { 2307 { 2308 .quirk = "disable-wp", 2309 .id = DW_MCI_SLOT_QUIRK_NO_WRITE_PROTECT, 2310 }, 2311 }; 2312 2313 static int dw_mci_of_get_slot_quirks(struct device *dev, u8 slot) 2314 { 2315 struct device_node *np = dw_mci_of_find_slot_node(dev, slot); 2316 int quirks = 0; 2317 int idx; 2318 2319 /* get quirks */ 2320 for (idx = 0; idx < ARRAY_SIZE(of_slot_quirks); idx++) 2321 if (of_get_property(np, of_slot_quirks[idx].quirk, NULL)) { 2322 dev_warn(dev, "Slot quirk %s is deprecated\n", 2323 of_slot_quirks[idx].quirk); 2324 quirks |= of_slot_quirks[idx].id; 2325 } 2326 2327 return quirks; 2328 } 2329 #else /* CONFIG_OF */ 2330 static int dw_mci_of_get_slot_quirks(struct device *dev, u8 slot) 2331 { 2332 return 0; 2333 } 2334 #endif /* CONFIG_OF */ 2335 2336 static int dw_mci_init_slot(struct dw_mci *host, unsigned int id) 2337 { 2338 struct mmc_host *mmc; 2339 struct dw_mci_slot *slot; 2340 const struct dw_mci_drv_data *drv_data = host->drv_data; 2341 int ctrl_id, ret; 2342 u32 freq[2]; 2343 2344 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev); 2345 if (!mmc) 2346 return -ENOMEM; 2347 2348 slot = mmc_priv(mmc); 2349 slot->id = id; 2350 slot->sdio_id = host->sdio_id0 + id; 2351 slot->mmc = mmc; 2352 slot->host = host; 2353 host->slot[id] = slot; 2354 2355 slot->quirks = dw_mci_of_get_slot_quirks(host->dev, slot->id); 2356 2357 mmc->ops = &dw_mci_ops; 2358 if (of_property_read_u32_array(host->dev->of_node, 2359 "clock-freq-min-max", freq, 2)) { 2360 mmc->f_min = DW_MCI_FREQ_MIN; 2361 mmc->f_max = DW_MCI_FREQ_MAX; 2362 } else { 2363 mmc->f_min = freq[0]; 2364 mmc->f_max = freq[1]; 2365 } 2366 2367 /*if there are external regulators, get them*/ 2368 ret = mmc_regulator_get_supply(mmc); 2369 if (ret == -EPROBE_DEFER) 2370 goto err_host_allocated; 2371 2372 if (!mmc->ocr_avail) 2373 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34; 2374 2375 if (host->pdata->caps) 2376 mmc->caps = host->pdata->caps; 2377 2378 if (host->pdata->pm_caps) 2379 mmc->pm_caps = host->pdata->pm_caps; 2380 2381 if (host->dev->of_node) { 2382 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc"); 2383 if (ctrl_id < 0) 2384 ctrl_id = 0; 2385 } else { 2386 ctrl_id = to_platform_device(host->dev)->id; 2387 } 2388 if (drv_data && drv_data->caps) 2389 mmc->caps |= drv_data->caps[ctrl_id]; 2390 2391 if (host->pdata->caps2) 2392 mmc->caps2 = host->pdata->caps2; 2393 2394 ret = mmc_of_parse(mmc); 2395 if (ret) 2396 goto err_host_allocated; 2397 2398 if (host->pdata->blk_settings) { 2399 mmc->max_segs = host->pdata->blk_settings->max_segs; 2400 mmc->max_blk_size = host->pdata->blk_settings->max_blk_size; 2401 mmc->max_blk_count = host->pdata->blk_settings->max_blk_count; 2402 mmc->max_req_size = host->pdata->blk_settings->max_req_size; 2403 mmc->max_seg_size = host->pdata->blk_settings->max_seg_size; 2404 } else { 2405 /* Useful defaults if platform data is unset. */ 2406 #ifdef CONFIG_MMC_DW_IDMAC 2407 mmc->max_segs = host->ring_size; 2408 mmc->max_blk_size = 65536; 2409 mmc->max_seg_size = 0x1000; 2410 mmc->max_req_size = mmc->max_seg_size * host->ring_size; 2411 mmc->max_blk_count = mmc->max_req_size / 512; 2412 #else 2413 mmc->max_segs = 64; 2414 mmc->max_blk_size = 65536; /* BLKSIZ is 16 bits */ 2415 mmc->max_blk_count = 512; 2416 mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count; 2417 mmc->max_seg_size = mmc->max_req_size; 2418 #endif /* CONFIG_MMC_DW_IDMAC */ 2419 } 2420 2421 if (dw_mci_get_cd(mmc)) 2422 set_bit(DW_MMC_CARD_PRESENT, &slot->flags); 2423 else 2424 clear_bit(DW_MMC_CARD_PRESENT, &slot->flags); 2425 2426 ret = mmc_add_host(mmc); 2427 if (ret) 2428 goto err_host_allocated; 2429 2430 #if defined(CONFIG_DEBUG_FS) 2431 dw_mci_init_debugfs(slot); 2432 #endif 2433 2434 return 0; 2435 2436 err_host_allocated: 2437 mmc_free_host(mmc); 2438 return ret; 2439 } 2440 2441 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot, unsigned int id) 2442 { 2443 /* Debugfs stuff is cleaned up by mmc core */ 2444 mmc_remove_host(slot->mmc); 2445 slot->host->slot[id] = NULL; 2446 mmc_free_host(slot->mmc); 2447 } 2448 2449 static void dw_mci_init_dma(struct dw_mci *host) 2450 { 2451 int addr_config; 2452 /* Check ADDR_CONFIG bit in HCON to find IDMAC address bus width */ 2453 addr_config = (mci_readl(host, HCON) >> 27) & 0x01; 2454 2455 if (addr_config == 1) { 2456 /* host supports IDMAC in 64-bit address mode */ 2457 host->dma_64bit_address = 1; 2458 dev_info(host->dev, "IDMAC supports 64-bit address mode.\n"); 2459 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64))) 2460 dma_set_coherent_mask(host->dev, DMA_BIT_MASK(64)); 2461 } else { 2462 /* host supports IDMAC in 32-bit address mode */ 2463 host->dma_64bit_address = 0; 2464 dev_info(host->dev, "IDMAC supports 32-bit address mode.\n"); 2465 } 2466 2467 /* Alloc memory for sg translation */ 2468 host->sg_cpu = dmam_alloc_coherent(host->dev, PAGE_SIZE, 2469 &host->sg_dma, GFP_KERNEL); 2470 if (!host->sg_cpu) { 2471 dev_err(host->dev, "%s: could not alloc DMA memory\n", 2472 __func__); 2473 goto no_dma; 2474 } 2475 2476 /* Determine which DMA interface to use */ 2477 #ifdef CONFIG_MMC_DW_IDMAC 2478 host->dma_ops = &dw_mci_idmac_ops; 2479 dev_info(host->dev, "Using internal DMA controller.\n"); 2480 #endif 2481 2482 if (!host->dma_ops) 2483 goto no_dma; 2484 2485 if (host->dma_ops->init && host->dma_ops->start && 2486 host->dma_ops->stop && host->dma_ops->cleanup) { 2487 if (host->dma_ops->init(host)) { 2488 dev_err(host->dev, "%s: Unable to initialize " 2489 "DMA Controller.\n", __func__); 2490 goto no_dma; 2491 } 2492 } else { 2493 dev_err(host->dev, "DMA initialization not found.\n"); 2494 goto no_dma; 2495 } 2496 2497 host->use_dma = 1; 2498 return; 2499 2500 no_dma: 2501 dev_info(host->dev, "Using PIO mode.\n"); 2502 host->use_dma = 0; 2503 return; 2504 } 2505 2506 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset) 2507 { 2508 unsigned long timeout = jiffies + msecs_to_jiffies(500); 2509 u32 ctrl; 2510 2511 ctrl = mci_readl(host, CTRL); 2512 ctrl |= reset; 2513 mci_writel(host, CTRL, ctrl); 2514 2515 /* wait till resets clear */ 2516 do { 2517 ctrl = mci_readl(host, CTRL); 2518 if (!(ctrl & reset)) 2519 return true; 2520 } while (time_before(jiffies, timeout)); 2521 2522 dev_err(host->dev, 2523 "Timeout resetting block (ctrl reset %#x)\n", 2524 ctrl & reset); 2525 2526 return false; 2527 } 2528 2529 static bool dw_mci_reset(struct dw_mci *host) 2530 { 2531 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET; 2532 bool ret = false; 2533 2534 /* 2535 * Reseting generates a block interrupt, hence setting 2536 * the scatter-gather pointer to NULL. 2537 */ 2538 if (host->sg) { 2539 sg_miter_stop(&host->sg_miter); 2540 host->sg = NULL; 2541 } 2542 2543 if (host->use_dma) 2544 flags |= SDMMC_CTRL_DMA_RESET; 2545 2546 if (dw_mci_ctrl_reset(host, flags)) { 2547 /* 2548 * In all cases we clear the RAWINTS register to clear any 2549 * interrupts. 2550 */ 2551 mci_writel(host, RINTSTS, 0xFFFFFFFF); 2552 2553 /* if using dma we wait for dma_req to clear */ 2554 if (host->use_dma) { 2555 unsigned long timeout = jiffies + msecs_to_jiffies(500); 2556 u32 status; 2557 do { 2558 status = mci_readl(host, STATUS); 2559 if (!(status & SDMMC_STATUS_DMA_REQ)) 2560 break; 2561 cpu_relax(); 2562 } while (time_before(jiffies, timeout)); 2563 2564 if (status & SDMMC_STATUS_DMA_REQ) { 2565 dev_err(host->dev, 2566 "%s: Timeout waiting for dma_req to " 2567 "clear during reset\n", __func__); 2568 goto ciu_out; 2569 } 2570 2571 /* when using DMA next we reset the fifo again */ 2572 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET)) 2573 goto ciu_out; 2574 } 2575 } else { 2576 /* if the controller reset bit did clear, then set clock regs */ 2577 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) { 2578 dev_err(host->dev, "%s: fifo/dma reset bits didn't " 2579 "clear but ciu was reset, doing clock update\n", 2580 __func__); 2581 goto ciu_out; 2582 } 2583 } 2584 2585 #if IS_ENABLED(CONFIG_MMC_DW_IDMAC) 2586 /* It is also recommended that we reset and reprogram idmac */ 2587 dw_mci_idmac_reset(host); 2588 #endif 2589 2590 ret = true; 2591 2592 ciu_out: 2593 /* After a CTRL reset we need to have CIU set clock registers */ 2594 mci_send_cmd(host->cur_slot, SDMMC_CMD_UPD_CLK, 0); 2595 2596 return ret; 2597 } 2598 2599 static void dw_mci_cmd11_timer(unsigned long arg) 2600 { 2601 struct dw_mci *host = (struct dw_mci *)arg; 2602 2603 if (host->state != STATE_SENDING_CMD11) { 2604 dev_warn(host->dev, "Unexpected CMD11 timeout\n"); 2605 return; 2606 } 2607 2608 host->cmd_status = SDMMC_INT_RTO; 2609 set_bit(EVENT_CMD_COMPLETE, &host->pending_events); 2610 tasklet_schedule(&host->tasklet); 2611 } 2612 2613 #ifdef CONFIG_OF 2614 static struct dw_mci_of_quirks { 2615 char *quirk; 2616 int id; 2617 } of_quirks[] = { 2618 { 2619 .quirk = "broken-cd", 2620 .id = DW_MCI_QUIRK_BROKEN_CARD_DETECTION, 2621 }, { 2622 .quirk = "disable-wp", 2623 .id = DW_MCI_QUIRK_NO_WRITE_PROTECT, 2624 }, 2625 }; 2626 2627 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host) 2628 { 2629 struct dw_mci_board *pdata; 2630 struct device *dev = host->dev; 2631 struct device_node *np = dev->of_node; 2632 const struct dw_mci_drv_data *drv_data = host->drv_data; 2633 int idx, ret; 2634 u32 clock_frequency; 2635 2636 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 2637 if (!pdata) 2638 return ERR_PTR(-ENOMEM); 2639 2640 /* find out number of slots supported */ 2641 if (of_property_read_u32(dev->of_node, "num-slots", 2642 &pdata->num_slots)) { 2643 dev_info(dev, "num-slots property not found, " 2644 "assuming 1 slot is available\n"); 2645 pdata->num_slots = 1; 2646 } 2647 2648 /* get quirks */ 2649 for (idx = 0; idx < ARRAY_SIZE(of_quirks); idx++) 2650 if (of_get_property(np, of_quirks[idx].quirk, NULL)) 2651 pdata->quirks |= of_quirks[idx].id; 2652 2653 if (of_property_read_u32(np, "fifo-depth", &pdata->fifo_depth)) 2654 dev_info(dev, "fifo-depth property not found, using " 2655 "value of FIFOTH register as default\n"); 2656 2657 of_property_read_u32(np, "card-detect-delay", &pdata->detect_delay_ms); 2658 2659 if (!of_property_read_u32(np, "clock-frequency", &clock_frequency)) 2660 pdata->bus_hz = clock_frequency; 2661 2662 if (drv_data && drv_data->parse_dt) { 2663 ret = drv_data->parse_dt(host); 2664 if (ret) 2665 return ERR_PTR(ret); 2666 } 2667 2668 if (of_find_property(np, "supports-highspeed", NULL)) 2669 pdata->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED; 2670 2671 return pdata; 2672 } 2673 2674 #else /* CONFIG_OF */ 2675 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host) 2676 { 2677 return ERR_PTR(-EINVAL); 2678 } 2679 #endif /* CONFIG_OF */ 2680 2681 static void dw_mci_enable_cd(struct dw_mci *host) 2682 { 2683 struct dw_mci_board *brd = host->pdata; 2684 unsigned long irqflags; 2685 u32 temp; 2686 int i; 2687 2688 /* No need for CD if broken card detection */ 2689 if (brd->quirks & DW_MCI_QUIRK_BROKEN_CARD_DETECTION) 2690 return; 2691 2692 /* No need for CD if all slots have a non-error GPIO */ 2693 for (i = 0; i < host->num_slots; i++) { 2694 struct dw_mci_slot *slot = host->slot[i]; 2695 2696 if (IS_ERR_VALUE(mmc_gpio_get_cd(slot->mmc))) 2697 break; 2698 } 2699 if (i == host->num_slots) 2700 return; 2701 2702 spin_lock_irqsave(&host->irq_lock, irqflags); 2703 temp = mci_readl(host, INTMASK); 2704 temp |= SDMMC_INT_CD; 2705 mci_writel(host, INTMASK, temp); 2706 spin_unlock_irqrestore(&host->irq_lock, irqflags); 2707 } 2708 2709 int dw_mci_probe(struct dw_mci *host) 2710 { 2711 const struct dw_mci_drv_data *drv_data = host->drv_data; 2712 int width, i, ret = 0; 2713 u32 fifo_size; 2714 int init_slots = 0; 2715 2716 if (!host->pdata) { 2717 host->pdata = dw_mci_parse_dt(host); 2718 if (IS_ERR(host->pdata)) { 2719 dev_err(host->dev, "platform data not available\n"); 2720 return -EINVAL; 2721 } 2722 } 2723 2724 if (host->pdata->num_slots > 1) { 2725 dev_err(host->dev, 2726 "Platform data must supply num_slots.\n"); 2727 return -ENODEV; 2728 } 2729 2730 host->biu_clk = devm_clk_get(host->dev, "biu"); 2731 if (IS_ERR(host->biu_clk)) { 2732 dev_dbg(host->dev, "biu clock not available\n"); 2733 } else { 2734 ret = clk_prepare_enable(host->biu_clk); 2735 if (ret) { 2736 dev_err(host->dev, "failed to enable biu clock\n"); 2737 return ret; 2738 } 2739 } 2740 2741 host->ciu_clk = devm_clk_get(host->dev, "ciu"); 2742 if (IS_ERR(host->ciu_clk)) { 2743 dev_dbg(host->dev, "ciu clock not available\n"); 2744 host->bus_hz = host->pdata->bus_hz; 2745 } else { 2746 ret = clk_prepare_enable(host->ciu_clk); 2747 if (ret) { 2748 dev_err(host->dev, "failed to enable ciu clock\n"); 2749 goto err_clk_biu; 2750 } 2751 2752 if (host->pdata->bus_hz) { 2753 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz); 2754 if (ret) 2755 dev_warn(host->dev, 2756 "Unable to set bus rate to %uHz\n", 2757 host->pdata->bus_hz); 2758 } 2759 host->bus_hz = clk_get_rate(host->ciu_clk); 2760 } 2761 2762 if (!host->bus_hz) { 2763 dev_err(host->dev, 2764 "Platform data must supply bus speed\n"); 2765 ret = -ENODEV; 2766 goto err_clk_ciu; 2767 } 2768 2769 if (drv_data && drv_data->init) { 2770 ret = drv_data->init(host); 2771 if (ret) { 2772 dev_err(host->dev, 2773 "implementation specific init failed\n"); 2774 goto err_clk_ciu; 2775 } 2776 } 2777 2778 if (drv_data && drv_data->setup_clock) { 2779 ret = drv_data->setup_clock(host); 2780 if (ret) { 2781 dev_err(host->dev, 2782 "implementation specific clock setup failed\n"); 2783 goto err_clk_ciu; 2784 } 2785 } 2786 2787 setup_timer(&host->cmd11_timer, 2788 dw_mci_cmd11_timer, (unsigned long)host); 2789 2790 host->quirks = host->pdata->quirks; 2791 2792 spin_lock_init(&host->lock); 2793 spin_lock_init(&host->irq_lock); 2794 INIT_LIST_HEAD(&host->queue); 2795 2796 /* 2797 * Get the host data width - this assumes that HCON has been set with 2798 * the correct values. 2799 */ 2800 i = (mci_readl(host, HCON) >> 7) & 0x7; 2801 if (!i) { 2802 host->push_data = dw_mci_push_data16; 2803 host->pull_data = dw_mci_pull_data16; 2804 width = 16; 2805 host->data_shift = 1; 2806 } else if (i == 2) { 2807 host->push_data = dw_mci_push_data64; 2808 host->pull_data = dw_mci_pull_data64; 2809 width = 64; 2810 host->data_shift = 3; 2811 } else { 2812 /* Check for a reserved value, and warn if it is */ 2813 WARN((i != 1), 2814 "HCON reports a reserved host data width!\n" 2815 "Defaulting to 32-bit access.\n"); 2816 host->push_data = dw_mci_push_data32; 2817 host->pull_data = dw_mci_pull_data32; 2818 width = 32; 2819 host->data_shift = 2; 2820 } 2821 2822 /* Reset all blocks */ 2823 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) 2824 return -ENODEV; 2825 2826 host->dma_ops = host->pdata->dma_ops; 2827 dw_mci_init_dma(host); 2828 2829 /* Clear the interrupts for the host controller */ 2830 mci_writel(host, RINTSTS, 0xFFFFFFFF); 2831 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */ 2832 2833 /* Put in max timeout */ 2834 mci_writel(host, TMOUT, 0xFFFFFFFF); 2835 2836 /* 2837 * FIFO threshold settings RxMark = fifo_size / 2 - 1, 2838 * Tx Mark = fifo_size / 2 DMA Size = 8 2839 */ 2840 if (!host->pdata->fifo_depth) { 2841 /* 2842 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may 2843 * have been overwritten by the bootloader, just like we're 2844 * about to do, so if you know the value for your hardware, you 2845 * should put it in the platform data. 2846 */ 2847 fifo_size = mci_readl(host, FIFOTH); 2848 fifo_size = 1 + ((fifo_size >> 16) & 0xfff); 2849 } else { 2850 fifo_size = host->pdata->fifo_depth; 2851 } 2852 host->fifo_depth = fifo_size; 2853 host->fifoth_val = 2854 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2); 2855 mci_writel(host, FIFOTH, host->fifoth_val); 2856 2857 /* disable clock to CIU */ 2858 mci_writel(host, CLKENA, 0); 2859 mci_writel(host, CLKSRC, 0); 2860 2861 /* 2862 * In 2.40a spec, Data offset is changed. 2863 * Need to check the version-id and set data-offset for DATA register. 2864 */ 2865 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID)); 2866 dev_info(host->dev, "Version ID is %04x\n", host->verid); 2867 2868 if (host->verid < DW_MMC_240A) 2869 host->fifo_reg = host->regs + DATA_OFFSET; 2870 else 2871 host->fifo_reg = host->regs + DATA_240A_OFFSET; 2872 2873 tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host); 2874 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt, 2875 host->irq_flags, "dw-mci", host); 2876 if (ret) 2877 goto err_dmaunmap; 2878 2879 if (host->pdata->num_slots) 2880 host->num_slots = host->pdata->num_slots; 2881 else 2882 host->num_slots = ((mci_readl(host, HCON) >> 1) & 0x1F) + 1; 2883 2884 /* 2885 * Enable interrupts for command done, data over, data empty, 2886 * receive ready and error such as transmit, receive timeout, crc error 2887 */ 2888 mci_writel(host, RINTSTS, 0xFFFFFFFF); 2889 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER | 2890 SDMMC_INT_TXDR | SDMMC_INT_RXDR | 2891 DW_MCI_ERROR_FLAGS); 2892 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE); /* Enable mci interrupt */ 2893 2894 dev_info(host->dev, "DW MMC controller at irq %d, " 2895 "%d bit host data width, " 2896 "%u deep fifo\n", 2897 host->irq, width, fifo_size); 2898 2899 /* We need at least one slot to succeed */ 2900 for (i = 0; i < host->num_slots; i++) { 2901 ret = dw_mci_init_slot(host, i); 2902 if (ret) 2903 dev_dbg(host->dev, "slot %d init failed\n", i); 2904 else 2905 init_slots++; 2906 } 2907 2908 if (init_slots) { 2909 dev_info(host->dev, "%d slots initialized\n", init_slots); 2910 } else { 2911 dev_dbg(host->dev, "attempted to initialize %d slots, " 2912 "but failed on all\n", host->num_slots); 2913 goto err_dmaunmap; 2914 } 2915 2916 /* Now that slots are all setup, we can enable card detect */ 2917 dw_mci_enable_cd(host); 2918 2919 if (host->quirks & DW_MCI_QUIRK_IDMAC_DTO) 2920 dev_info(host->dev, "Internal DMAC interrupt fix enabled.\n"); 2921 2922 return 0; 2923 2924 err_dmaunmap: 2925 if (host->use_dma && host->dma_ops->exit) 2926 host->dma_ops->exit(host); 2927 2928 err_clk_ciu: 2929 if (!IS_ERR(host->ciu_clk)) 2930 clk_disable_unprepare(host->ciu_clk); 2931 2932 err_clk_biu: 2933 if (!IS_ERR(host->biu_clk)) 2934 clk_disable_unprepare(host->biu_clk); 2935 2936 return ret; 2937 } 2938 EXPORT_SYMBOL(dw_mci_probe); 2939 2940 void dw_mci_remove(struct dw_mci *host) 2941 { 2942 int i; 2943 2944 mci_writel(host, RINTSTS, 0xFFFFFFFF); 2945 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */ 2946 2947 for (i = 0; i < host->num_slots; i++) { 2948 dev_dbg(host->dev, "remove slot %d\n", i); 2949 if (host->slot[i]) 2950 dw_mci_cleanup_slot(host->slot[i], i); 2951 } 2952 2953 /* disable clock to CIU */ 2954 mci_writel(host, CLKENA, 0); 2955 mci_writel(host, CLKSRC, 0); 2956 2957 if (host->use_dma && host->dma_ops->exit) 2958 host->dma_ops->exit(host); 2959 2960 if (!IS_ERR(host->ciu_clk)) 2961 clk_disable_unprepare(host->ciu_clk); 2962 2963 if (!IS_ERR(host->biu_clk)) 2964 clk_disable_unprepare(host->biu_clk); 2965 } 2966 EXPORT_SYMBOL(dw_mci_remove); 2967 2968 2969 2970 #ifdef CONFIG_PM_SLEEP 2971 /* 2972 * TODO: we should probably disable the clock to the card in the suspend path. 2973 */ 2974 int dw_mci_suspend(struct dw_mci *host) 2975 { 2976 return 0; 2977 } 2978 EXPORT_SYMBOL(dw_mci_suspend); 2979 2980 int dw_mci_resume(struct dw_mci *host) 2981 { 2982 int i, ret; 2983 2984 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) { 2985 ret = -ENODEV; 2986 return ret; 2987 } 2988 2989 if (host->use_dma && host->dma_ops->init) 2990 host->dma_ops->init(host); 2991 2992 /* 2993 * Restore the initial value at FIFOTH register 2994 * And Invalidate the prev_blksz with zero 2995 */ 2996 mci_writel(host, FIFOTH, host->fifoth_val); 2997 host->prev_blksz = 0; 2998 2999 /* Put in max timeout */ 3000 mci_writel(host, TMOUT, 0xFFFFFFFF); 3001 3002 mci_writel(host, RINTSTS, 0xFFFFFFFF); 3003 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER | 3004 SDMMC_INT_TXDR | SDMMC_INT_RXDR | 3005 DW_MCI_ERROR_FLAGS); 3006 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE); 3007 3008 for (i = 0; i < host->num_slots; i++) { 3009 struct dw_mci_slot *slot = host->slot[i]; 3010 if (!slot) 3011 continue; 3012 if (slot->mmc->pm_flags & MMC_PM_KEEP_POWER) { 3013 dw_mci_set_ios(slot->mmc, &slot->mmc->ios); 3014 dw_mci_setup_bus(slot, true); 3015 } 3016 } 3017 3018 /* Now that slots are all setup, we can enable card detect */ 3019 dw_mci_enable_cd(host); 3020 3021 return 0; 3022 } 3023 EXPORT_SYMBOL(dw_mci_resume); 3024 #endif /* CONFIG_PM_SLEEP */ 3025 3026 static int __init dw_mci_init(void) 3027 { 3028 pr_info("Synopsys Designware Multimedia Card Interface Driver\n"); 3029 return 0; 3030 } 3031 3032 static void __exit dw_mci_exit(void) 3033 { 3034 } 3035 3036 module_init(dw_mci_init); 3037 module_exit(dw_mci_exit); 3038 3039 MODULE_DESCRIPTION("DW Multimedia Card Interface driver"); 3040 MODULE_AUTHOR("NXP Semiconductor VietNam"); 3041 MODULE_AUTHOR("Imagination Technologies Ltd"); 3042 MODULE_LICENSE("GPL v2"); 3043