xref: /openbmc/linux/drivers/mmc/host/dw_mmc.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Synopsys DesignWare Multimedia Card Interface driver
4  *  (Based on NXP driver for lpc 31xx)
5  *
6  * Copyright (C) 2009 NXP Semiconductors
7  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8  */
9 
10 #include <linux/blkdev.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/iopoll.h>
19 #include <linux/ioport.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/seq_file.h>
24 #include <linux/slab.h>
25 #include <linux/stat.h>
26 #include <linux/delay.h>
27 #include <linux/irq.h>
28 #include <linux/mmc/card.h>
29 #include <linux/mmc/host.h>
30 #include <linux/mmc/mmc.h>
31 #include <linux/mmc/sd.h>
32 #include <linux/mmc/sdio.h>
33 #include <linux/bitops.h>
34 #include <linux/regulator/consumer.h>
35 #include <linux/of.h>
36 #include <linux/of_gpio.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #include "dw_mmc.h"
40 
41 /* Common flag combinations */
42 #define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
43 				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
44 				 SDMMC_INT_EBE | SDMMC_INT_HLE)
45 #define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
46 				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
47 #define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
48 				 DW_MCI_CMD_ERROR_FLAGS)
49 #define DW_MCI_SEND_STATUS	1
50 #define DW_MCI_RECV_STATUS	2
51 #define DW_MCI_DMA_THRESHOLD	16
52 
53 #define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
54 #define DW_MCI_FREQ_MIN	100000		/* unit: HZ */
55 
56 #define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
57 				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
58 				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
59 				 SDMMC_IDMAC_INT_TI)
60 
61 #define DESC_RING_BUF_SZ	PAGE_SIZE
62 
63 struct idmac_desc_64addr {
64 	u32		des0;	/* Control Descriptor */
65 #define IDMAC_OWN_CLR64(x) \
66 	!((x) & cpu_to_le32(IDMAC_DES0_OWN))
67 
68 	u32		des1;	/* Reserved */
69 
70 	u32		des2;	/*Buffer sizes */
71 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
72 	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
73 	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
74 
75 	u32		des3;	/* Reserved */
76 
77 	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
78 	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
79 
80 	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
81 	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
82 };
83 
84 struct idmac_desc {
85 	__le32		des0;	/* Control Descriptor */
86 #define IDMAC_DES0_DIC	BIT(1)
87 #define IDMAC_DES0_LD	BIT(2)
88 #define IDMAC_DES0_FD	BIT(3)
89 #define IDMAC_DES0_CH	BIT(4)
90 #define IDMAC_DES0_ER	BIT(5)
91 #define IDMAC_DES0_CES	BIT(30)
92 #define IDMAC_DES0_OWN	BIT(31)
93 
94 	__le32		des1;	/* Buffer sizes */
95 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
96 	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
97 
98 	__le32		des2;	/* buffer 1 physical address */
99 
100 	__le32		des3;	/* buffer 2 physical address */
101 };
102 
103 /* Each descriptor can transfer up to 4KB of data in chained mode */
104 #define DW_MCI_DESC_DATA_LENGTH	0x1000
105 
106 #if defined(CONFIG_DEBUG_FS)
107 static int dw_mci_req_show(struct seq_file *s, void *v)
108 {
109 	struct dw_mci_slot *slot = s->private;
110 	struct mmc_request *mrq;
111 	struct mmc_command *cmd;
112 	struct mmc_command *stop;
113 	struct mmc_data	*data;
114 
115 	/* Make sure we get a consistent snapshot */
116 	spin_lock_bh(&slot->host->lock);
117 	mrq = slot->mrq;
118 
119 	if (mrq) {
120 		cmd = mrq->cmd;
121 		data = mrq->data;
122 		stop = mrq->stop;
123 
124 		if (cmd)
125 			seq_printf(s,
126 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
127 				   cmd->opcode, cmd->arg, cmd->flags,
128 				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
129 				   cmd->resp[2], cmd->error);
130 		if (data)
131 			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
132 				   data->bytes_xfered, data->blocks,
133 				   data->blksz, data->flags, data->error);
134 		if (stop)
135 			seq_printf(s,
136 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
137 				   stop->opcode, stop->arg, stop->flags,
138 				   stop->resp[0], stop->resp[1], stop->resp[2],
139 				   stop->resp[2], stop->error);
140 	}
141 
142 	spin_unlock_bh(&slot->host->lock);
143 
144 	return 0;
145 }
146 DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
147 
148 static int dw_mci_regs_show(struct seq_file *s, void *v)
149 {
150 	struct dw_mci *host = s->private;
151 
152 	pm_runtime_get_sync(host->dev);
153 
154 	seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
155 	seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
156 	seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
157 	seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
158 	seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
159 	seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
160 
161 	pm_runtime_put_autosuspend(host->dev);
162 
163 	return 0;
164 }
165 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
166 
167 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
168 {
169 	struct mmc_host	*mmc = slot->mmc;
170 	struct dw_mci *host = slot->host;
171 	struct dentry *root;
172 	struct dentry *node;
173 
174 	root = mmc->debugfs_root;
175 	if (!root)
176 		return;
177 
178 	node = debugfs_create_file("regs", S_IRUSR, root, host,
179 				   &dw_mci_regs_fops);
180 	if (!node)
181 		goto err;
182 
183 	node = debugfs_create_file("req", S_IRUSR, root, slot,
184 				   &dw_mci_req_fops);
185 	if (!node)
186 		goto err;
187 
188 	node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
189 	if (!node)
190 		goto err;
191 
192 	node = debugfs_create_x32("pending_events", S_IRUSR, root,
193 				  (u32 *)&host->pending_events);
194 	if (!node)
195 		goto err;
196 
197 	node = debugfs_create_x32("completed_events", S_IRUSR, root,
198 				  (u32 *)&host->completed_events);
199 	if (!node)
200 		goto err;
201 
202 	return;
203 
204 err:
205 	dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
206 }
207 #endif /* defined(CONFIG_DEBUG_FS) */
208 
209 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
210 {
211 	u32 ctrl;
212 
213 	ctrl = mci_readl(host, CTRL);
214 	ctrl |= reset;
215 	mci_writel(host, CTRL, ctrl);
216 
217 	/* wait till resets clear */
218 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
219 				      !(ctrl & reset),
220 				      1, 500 * USEC_PER_MSEC)) {
221 		dev_err(host->dev,
222 			"Timeout resetting block (ctrl reset %#x)\n",
223 			ctrl & reset);
224 		return false;
225 	}
226 
227 	return true;
228 }
229 
230 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
231 {
232 	u32 status;
233 
234 	/*
235 	 * Databook says that before issuing a new data transfer command
236 	 * we need to check to see if the card is busy.  Data transfer commands
237 	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
238 	 *
239 	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
240 	 * expected.
241 	 */
242 	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
243 	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
244 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
245 					      status,
246 					      !(status & SDMMC_STATUS_BUSY),
247 					      10, 500 * USEC_PER_MSEC))
248 			dev_err(host->dev, "Busy; trying anyway\n");
249 	}
250 }
251 
252 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
253 {
254 	struct dw_mci *host = slot->host;
255 	unsigned int cmd_status = 0;
256 
257 	mci_writel(host, CMDARG, arg);
258 	wmb(); /* drain writebuffer */
259 	dw_mci_wait_while_busy(host, cmd);
260 	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
261 
262 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
263 				      !(cmd_status & SDMMC_CMD_START),
264 				      1, 500 * USEC_PER_MSEC))
265 		dev_err(&slot->mmc->class_dev,
266 			"Timeout sending command (cmd %#x arg %#x status %#x)\n",
267 			cmd, arg, cmd_status);
268 }
269 
270 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
271 {
272 	struct dw_mci_slot *slot = mmc_priv(mmc);
273 	struct dw_mci *host = slot->host;
274 	u32 cmdr;
275 
276 	cmd->error = -EINPROGRESS;
277 	cmdr = cmd->opcode;
278 
279 	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
280 	    cmd->opcode == MMC_GO_IDLE_STATE ||
281 	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
282 	    (cmd->opcode == SD_IO_RW_DIRECT &&
283 	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
284 		cmdr |= SDMMC_CMD_STOP;
285 	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
286 		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
287 
288 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
289 		u32 clk_en_a;
290 
291 		/* Special bit makes CMD11 not die */
292 		cmdr |= SDMMC_CMD_VOLT_SWITCH;
293 
294 		/* Change state to continue to handle CMD11 weirdness */
295 		WARN_ON(slot->host->state != STATE_SENDING_CMD);
296 		slot->host->state = STATE_SENDING_CMD11;
297 
298 		/*
299 		 * We need to disable low power mode (automatic clock stop)
300 		 * while doing voltage switch so we don't confuse the card,
301 		 * since stopping the clock is a specific part of the UHS
302 		 * voltage change dance.
303 		 *
304 		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
305 		 * unconditionally turned back on in dw_mci_setup_bus() if it's
306 		 * ever called with a non-zero clock.  That shouldn't happen
307 		 * until the voltage change is all done.
308 		 */
309 		clk_en_a = mci_readl(host, CLKENA);
310 		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
311 		mci_writel(host, CLKENA, clk_en_a);
312 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
313 			     SDMMC_CMD_PRV_DAT_WAIT, 0);
314 	}
315 
316 	if (cmd->flags & MMC_RSP_PRESENT) {
317 		/* We expect a response, so set this bit */
318 		cmdr |= SDMMC_CMD_RESP_EXP;
319 		if (cmd->flags & MMC_RSP_136)
320 			cmdr |= SDMMC_CMD_RESP_LONG;
321 	}
322 
323 	if (cmd->flags & MMC_RSP_CRC)
324 		cmdr |= SDMMC_CMD_RESP_CRC;
325 
326 	if (cmd->data) {
327 		cmdr |= SDMMC_CMD_DAT_EXP;
328 		if (cmd->data->flags & MMC_DATA_WRITE)
329 			cmdr |= SDMMC_CMD_DAT_WR;
330 	}
331 
332 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
333 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
334 
335 	return cmdr;
336 }
337 
338 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
339 {
340 	struct mmc_command *stop;
341 	u32 cmdr;
342 
343 	if (!cmd->data)
344 		return 0;
345 
346 	stop = &host->stop_abort;
347 	cmdr = cmd->opcode;
348 	memset(stop, 0, sizeof(struct mmc_command));
349 
350 	if (cmdr == MMC_READ_SINGLE_BLOCK ||
351 	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
352 	    cmdr == MMC_WRITE_BLOCK ||
353 	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
354 	    cmdr == MMC_SEND_TUNING_BLOCK ||
355 	    cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
356 		stop->opcode = MMC_STOP_TRANSMISSION;
357 		stop->arg = 0;
358 		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
359 	} else if (cmdr == SD_IO_RW_EXTENDED) {
360 		stop->opcode = SD_IO_RW_DIRECT;
361 		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
362 			     ((cmd->arg >> 28) & 0x7);
363 		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
364 	} else {
365 		return 0;
366 	}
367 
368 	cmdr = stop->opcode | SDMMC_CMD_STOP |
369 		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
370 
371 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
372 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
373 
374 	return cmdr;
375 }
376 
377 static inline void dw_mci_set_cto(struct dw_mci *host)
378 {
379 	unsigned int cto_clks;
380 	unsigned int cto_div;
381 	unsigned int cto_ms;
382 	unsigned long irqflags;
383 
384 	cto_clks = mci_readl(host, TMOUT) & 0xff;
385 	cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
386 	if (cto_div == 0)
387 		cto_div = 1;
388 
389 	cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
390 				  host->bus_hz);
391 
392 	/* add a bit spare time */
393 	cto_ms += 10;
394 
395 	/*
396 	 * The durations we're working with are fairly short so we have to be
397 	 * extra careful about synchronization here.  Specifically in hardware a
398 	 * command timeout is _at most_ 5.1 ms, so that means we expect an
399 	 * interrupt (either command done or timeout) to come rather quickly
400 	 * after the mci_writel.  ...but just in case we have a long interrupt
401 	 * latency let's add a bit of paranoia.
402 	 *
403 	 * In general we'll assume that at least an interrupt will be asserted
404 	 * in hardware by the time the cto_timer runs.  ...and if it hasn't
405 	 * been asserted in hardware by that time then we'll assume it'll never
406 	 * come.
407 	 */
408 	spin_lock_irqsave(&host->irq_lock, irqflags);
409 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
410 		mod_timer(&host->cto_timer,
411 			jiffies + msecs_to_jiffies(cto_ms) + 1);
412 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
413 }
414 
415 static void dw_mci_start_command(struct dw_mci *host,
416 				 struct mmc_command *cmd, u32 cmd_flags)
417 {
418 	host->cmd = cmd;
419 	dev_vdbg(host->dev,
420 		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
421 		 cmd->arg, cmd_flags);
422 
423 	mci_writel(host, CMDARG, cmd->arg);
424 	wmb(); /* drain writebuffer */
425 	dw_mci_wait_while_busy(host, cmd_flags);
426 
427 	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
428 
429 	/* response expected command only */
430 	if (cmd_flags & SDMMC_CMD_RESP_EXP)
431 		dw_mci_set_cto(host);
432 }
433 
434 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
435 {
436 	struct mmc_command *stop = &host->stop_abort;
437 
438 	dw_mci_start_command(host, stop, host->stop_cmdr);
439 }
440 
441 /* DMA interface functions */
442 static void dw_mci_stop_dma(struct dw_mci *host)
443 {
444 	if (host->using_dma) {
445 		host->dma_ops->stop(host);
446 		host->dma_ops->cleanup(host);
447 	}
448 
449 	/* Data transfer was stopped by the interrupt handler */
450 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
451 }
452 
453 static void dw_mci_dma_cleanup(struct dw_mci *host)
454 {
455 	struct mmc_data *data = host->data;
456 
457 	if (data && data->host_cookie == COOKIE_MAPPED) {
458 		dma_unmap_sg(host->dev,
459 			     data->sg,
460 			     data->sg_len,
461 			     mmc_get_dma_dir(data));
462 		data->host_cookie = COOKIE_UNMAPPED;
463 	}
464 }
465 
466 static void dw_mci_idmac_reset(struct dw_mci *host)
467 {
468 	u32 bmod = mci_readl(host, BMOD);
469 	/* Software reset of DMA */
470 	bmod |= SDMMC_IDMAC_SWRESET;
471 	mci_writel(host, BMOD, bmod);
472 }
473 
474 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
475 {
476 	u32 temp;
477 
478 	/* Disable and reset the IDMAC interface */
479 	temp = mci_readl(host, CTRL);
480 	temp &= ~SDMMC_CTRL_USE_IDMAC;
481 	temp |= SDMMC_CTRL_DMA_RESET;
482 	mci_writel(host, CTRL, temp);
483 
484 	/* Stop the IDMAC running */
485 	temp = mci_readl(host, BMOD);
486 	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
487 	temp |= SDMMC_IDMAC_SWRESET;
488 	mci_writel(host, BMOD, temp);
489 }
490 
491 static void dw_mci_dmac_complete_dma(void *arg)
492 {
493 	struct dw_mci *host = arg;
494 	struct mmc_data *data = host->data;
495 
496 	dev_vdbg(host->dev, "DMA complete\n");
497 
498 	if ((host->use_dma == TRANS_MODE_EDMAC) &&
499 	    data && (data->flags & MMC_DATA_READ))
500 		/* Invalidate cache after read */
501 		dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
502 				    data->sg,
503 				    data->sg_len,
504 				    DMA_FROM_DEVICE);
505 
506 	host->dma_ops->cleanup(host);
507 
508 	/*
509 	 * If the card was removed, data will be NULL. No point in trying to
510 	 * send the stop command or waiting for NBUSY in this case.
511 	 */
512 	if (data) {
513 		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
514 		tasklet_schedule(&host->tasklet);
515 	}
516 }
517 
518 static int dw_mci_idmac_init(struct dw_mci *host)
519 {
520 	int i;
521 
522 	if (host->dma_64bit_address == 1) {
523 		struct idmac_desc_64addr *p;
524 		/* Number of descriptors in the ring buffer */
525 		host->ring_size =
526 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
527 
528 		/* Forward link the descriptor list */
529 		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
530 								i++, p++) {
531 			p->des6 = (host->sg_dma +
532 					(sizeof(struct idmac_desc_64addr) *
533 							(i + 1))) & 0xffffffff;
534 
535 			p->des7 = (u64)(host->sg_dma +
536 					(sizeof(struct idmac_desc_64addr) *
537 							(i + 1))) >> 32;
538 			/* Initialize reserved and buffer size fields to "0" */
539 			p->des0 = 0;
540 			p->des1 = 0;
541 			p->des2 = 0;
542 			p->des3 = 0;
543 		}
544 
545 		/* Set the last descriptor as the end-of-ring descriptor */
546 		p->des6 = host->sg_dma & 0xffffffff;
547 		p->des7 = (u64)host->sg_dma >> 32;
548 		p->des0 = IDMAC_DES0_ER;
549 
550 	} else {
551 		struct idmac_desc *p;
552 		/* Number of descriptors in the ring buffer */
553 		host->ring_size =
554 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
555 
556 		/* Forward link the descriptor list */
557 		for (i = 0, p = host->sg_cpu;
558 		     i < host->ring_size - 1;
559 		     i++, p++) {
560 			p->des3 = cpu_to_le32(host->sg_dma +
561 					(sizeof(struct idmac_desc) * (i + 1)));
562 			p->des0 = 0;
563 			p->des1 = 0;
564 		}
565 
566 		/* Set the last descriptor as the end-of-ring descriptor */
567 		p->des3 = cpu_to_le32(host->sg_dma);
568 		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
569 	}
570 
571 	dw_mci_idmac_reset(host);
572 
573 	if (host->dma_64bit_address == 1) {
574 		/* Mask out interrupts - get Tx & Rx complete only */
575 		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
576 		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
577 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
578 
579 		/* Set the descriptor base address */
580 		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
581 		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
582 
583 	} else {
584 		/* Mask out interrupts - get Tx & Rx complete only */
585 		mci_writel(host, IDSTS, IDMAC_INT_CLR);
586 		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
587 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
588 
589 		/* Set the descriptor base address */
590 		mci_writel(host, DBADDR, host->sg_dma);
591 	}
592 
593 	return 0;
594 }
595 
596 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
597 					 struct mmc_data *data,
598 					 unsigned int sg_len)
599 {
600 	unsigned int desc_len;
601 	struct idmac_desc_64addr *desc_first, *desc_last, *desc;
602 	u32 val;
603 	int i;
604 
605 	desc_first = desc_last = desc = host->sg_cpu;
606 
607 	for (i = 0; i < sg_len; i++) {
608 		unsigned int length = sg_dma_len(&data->sg[i]);
609 
610 		u64 mem_addr = sg_dma_address(&data->sg[i]);
611 
612 		for ( ; length ; desc++) {
613 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
614 				   length : DW_MCI_DESC_DATA_LENGTH;
615 
616 			length -= desc_len;
617 
618 			/*
619 			 * Wait for the former clear OWN bit operation
620 			 * of IDMAC to make sure that this descriptor
621 			 * isn't still owned by IDMAC as IDMAC's write
622 			 * ops and CPU's read ops are asynchronous.
623 			 */
624 			if (readl_poll_timeout_atomic(&desc->des0, val,
625 						!(val & IDMAC_DES0_OWN),
626 						10, 100 * USEC_PER_MSEC))
627 				goto err_own_bit;
628 
629 			/*
630 			 * Set the OWN bit and disable interrupts
631 			 * for this descriptor
632 			 */
633 			desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
634 						IDMAC_DES0_CH;
635 
636 			/* Buffer length */
637 			IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
638 
639 			/* Physical address to DMA to/from */
640 			desc->des4 = mem_addr & 0xffffffff;
641 			desc->des5 = mem_addr >> 32;
642 
643 			/* Update physical address for the next desc */
644 			mem_addr += desc_len;
645 
646 			/* Save pointer to the last descriptor */
647 			desc_last = desc;
648 		}
649 	}
650 
651 	/* Set first descriptor */
652 	desc_first->des0 |= IDMAC_DES0_FD;
653 
654 	/* Set last descriptor */
655 	desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
656 	desc_last->des0 |= IDMAC_DES0_LD;
657 
658 	return 0;
659 err_own_bit:
660 	/* restore the descriptor chain as it's polluted */
661 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
662 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
663 	dw_mci_idmac_init(host);
664 	return -EINVAL;
665 }
666 
667 
668 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
669 					 struct mmc_data *data,
670 					 unsigned int sg_len)
671 {
672 	unsigned int desc_len;
673 	struct idmac_desc *desc_first, *desc_last, *desc;
674 	u32 val;
675 	int i;
676 
677 	desc_first = desc_last = desc = host->sg_cpu;
678 
679 	for (i = 0; i < sg_len; i++) {
680 		unsigned int length = sg_dma_len(&data->sg[i]);
681 
682 		u32 mem_addr = sg_dma_address(&data->sg[i]);
683 
684 		for ( ; length ; desc++) {
685 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
686 				   length : DW_MCI_DESC_DATA_LENGTH;
687 
688 			length -= desc_len;
689 
690 			/*
691 			 * Wait for the former clear OWN bit operation
692 			 * of IDMAC to make sure that this descriptor
693 			 * isn't still owned by IDMAC as IDMAC's write
694 			 * ops and CPU's read ops are asynchronous.
695 			 */
696 			if (readl_poll_timeout_atomic(&desc->des0, val,
697 						      IDMAC_OWN_CLR64(val),
698 						      10,
699 						      100 * USEC_PER_MSEC))
700 				goto err_own_bit;
701 
702 			/*
703 			 * Set the OWN bit and disable interrupts
704 			 * for this descriptor
705 			 */
706 			desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
707 						 IDMAC_DES0_DIC |
708 						 IDMAC_DES0_CH);
709 
710 			/* Buffer length */
711 			IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
712 
713 			/* Physical address to DMA to/from */
714 			desc->des2 = cpu_to_le32(mem_addr);
715 
716 			/* Update physical address for the next desc */
717 			mem_addr += desc_len;
718 
719 			/* Save pointer to the last descriptor */
720 			desc_last = desc;
721 		}
722 	}
723 
724 	/* Set first descriptor */
725 	desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
726 
727 	/* Set last descriptor */
728 	desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
729 				       IDMAC_DES0_DIC));
730 	desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
731 
732 	return 0;
733 err_own_bit:
734 	/* restore the descriptor chain as it's polluted */
735 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
736 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
737 	dw_mci_idmac_init(host);
738 	return -EINVAL;
739 }
740 
741 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
742 {
743 	u32 temp;
744 	int ret;
745 
746 	if (host->dma_64bit_address == 1)
747 		ret = dw_mci_prepare_desc64(host, host->data, sg_len);
748 	else
749 		ret = dw_mci_prepare_desc32(host, host->data, sg_len);
750 
751 	if (ret)
752 		goto out;
753 
754 	/* drain writebuffer */
755 	wmb();
756 
757 	/* Make sure to reset DMA in case we did PIO before this */
758 	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
759 	dw_mci_idmac_reset(host);
760 
761 	/* Select IDMAC interface */
762 	temp = mci_readl(host, CTRL);
763 	temp |= SDMMC_CTRL_USE_IDMAC;
764 	mci_writel(host, CTRL, temp);
765 
766 	/* drain writebuffer */
767 	wmb();
768 
769 	/* Enable the IDMAC */
770 	temp = mci_readl(host, BMOD);
771 	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
772 	mci_writel(host, BMOD, temp);
773 
774 	/* Start it running */
775 	mci_writel(host, PLDMND, 1);
776 
777 out:
778 	return ret;
779 }
780 
781 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
782 	.init = dw_mci_idmac_init,
783 	.start = dw_mci_idmac_start_dma,
784 	.stop = dw_mci_idmac_stop_dma,
785 	.complete = dw_mci_dmac_complete_dma,
786 	.cleanup = dw_mci_dma_cleanup,
787 };
788 
789 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
790 {
791 	dmaengine_terminate_async(host->dms->ch);
792 }
793 
794 static int dw_mci_edmac_start_dma(struct dw_mci *host,
795 					    unsigned int sg_len)
796 {
797 	struct dma_slave_config cfg;
798 	struct dma_async_tx_descriptor *desc = NULL;
799 	struct scatterlist *sgl = host->data->sg;
800 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
801 	u32 sg_elems = host->data->sg_len;
802 	u32 fifoth_val;
803 	u32 fifo_offset = host->fifo_reg - host->regs;
804 	int ret = 0;
805 
806 	/* Set external dma config: burst size, burst width */
807 	cfg.dst_addr = host->phy_regs + fifo_offset;
808 	cfg.src_addr = cfg.dst_addr;
809 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
810 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
811 
812 	/* Match burst msize with external dma config */
813 	fifoth_val = mci_readl(host, FIFOTH);
814 	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
815 	cfg.src_maxburst = cfg.dst_maxburst;
816 
817 	if (host->data->flags & MMC_DATA_WRITE)
818 		cfg.direction = DMA_MEM_TO_DEV;
819 	else
820 		cfg.direction = DMA_DEV_TO_MEM;
821 
822 	ret = dmaengine_slave_config(host->dms->ch, &cfg);
823 	if (ret) {
824 		dev_err(host->dev, "Failed to config edmac.\n");
825 		return -EBUSY;
826 	}
827 
828 	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
829 				       sg_len, cfg.direction,
830 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
831 	if (!desc) {
832 		dev_err(host->dev, "Can't prepare slave sg.\n");
833 		return -EBUSY;
834 	}
835 
836 	/* Set dw_mci_dmac_complete_dma as callback */
837 	desc->callback = dw_mci_dmac_complete_dma;
838 	desc->callback_param = (void *)host;
839 	dmaengine_submit(desc);
840 
841 	/* Flush cache before write */
842 	if (host->data->flags & MMC_DATA_WRITE)
843 		dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
844 				       sg_elems, DMA_TO_DEVICE);
845 
846 	dma_async_issue_pending(host->dms->ch);
847 
848 	return 0;
849 }
850 
851 static int dw_mci_edmac_init(struct dw_mci *host)
852 {
853 	/* Request external dma channel */
854 	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
855 	if (!host->dms)
856 		return -ENOMEM;
857 
858 	host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
859 	if (!host->dms->ch) {
860 		dev_err(host->dev, "Failed to get external DMA channel.\n");
861 		kfree(host->dms);
862 		host->dms = NULL;
863 		return -ENXIO;
864 	}
865 
866 	return 0;
867 }
868 
869 static void dw_mci_edmac_exit(struct dw_mci *host)
870 {
871 	if (host->dms) {
872 		if (host->dms->ch) {
873 			dma_release_channel(host->dms->ch);
874 			host->dms->ch = NULL;
875 		}
876 		kfree(host->dms);
877 		host->dms = NULL;
878 	}
879 }
880 
881 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
882 	.init = dw_mci_edmac_init,
883 	.exit = dw_mci_edmac_exit,
884 	.start = dw_mci_edmac_start_dma,
885 	.stop = dw_mci_edmac_stop_dma,
886 	.complete = dw_mci_dmac_complete_dma,
887 	.cleanup = dw_mci_dma_cleanup,
888 };
889 
890 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
891 				   struct mmc_data *data,
892 				   int cookie)
893 {
894 	struct scatterlist *sg;
895 	unsigned int i, sg_len;
896 
897 	if (data->host_cookie == COOKIE_PRE_MAPPED)
898 		return data->sg_len;
899 
900 	/*
901 	 * We don't do DMA on "complex" transfers, i.e. with
902 	 * non-word-aligned buffers or lengths. Also, we don't bother
903 	 * with all the DMA setup overhead for short transfers.
904 	 */
905 	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
906 		return -EINVAL;
907 
908 	if (data->blksz & 3)
909 		return -EINVAL;
910 
911 	for_each_sg(data->sg, sg, data->sg_len, i) {
912 		if (sg->offset & 3 || sg->length & 3)
913 			return -EINVAL;
914 	}
915 
916 	sg_len = dma_map_sg(host->dev,
917 			    data->sg,
918 			    data->sg_len,
919 			    mmc_get_dma_dir(data));
920 	if (sg_len == 0)
921 		return -EINVAL;
922 
923 	data->host_cookie = cookie;
924 
925 	return sg_len;
926 }
927 
928 static void dw_mci_pre_req(struct mmc_host *mmc,
929 			   struct mmc_request *mrq)
930 {
931 	struct dw_mci_slot *slot = mmc_priv(mmc);
932 	struct mmc_data *data = mrq->data;
933 
934 	if (!slot->host->use_dma || !data)
935 		return;
936 
937 	/* This data might be unmapped at this time */
938 	data->host_cookie = COOKIE_UNMAPPED;
939 
940 	if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
941 				COOKIE_PRE_MAPPED) < 0)
942 		data->host_cookie = COOKIE_UNMAPPED;
943 }
944 
945 static void dw_mci_post_req(struct mmc_host *mmc,
946 			    struct mmc_request *mrq,
947 			    int err)
948 {
949 	struct dw_mci_slot *slot = mmc_priv(mmc);
950 	struct mmc_data *data = mrq->data;
951 
952 	if (!slot->host->use_dma || !data)
953 		return;
954 
955 	if (data->host_cookie != COOKIE_UNMAPPED)
956 		dma_unmap_sg(slot->host->dev,
957 			     data->sg,
958 			     data->sg_len,
959 			     mmc_get_dma_dir(data));
960 	data->host_cookie = COOKIE_UNMAPPED;
961 }
962 
963 static int dw_mci_get_cd(struct mmc_host *mmc)
964 {
965 	int present;
966 	struct dw_mci_slot *slot = mmc_priv(mmc);
967 	struct dw_mci *host = slot->host;
968 	int gpio_cd = mmc_gpio_get_cd(mmc);
969 
970 	/* Use platform get_cd function, else try onboard card detect */
971 	if (((mmc->caps & MMC_CAP_NEEDS_POLL)
972 				|| !mmc_card_is_removable(mmc))) {
973 		present = 1;
974 
975 		if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
976 			if (mmc->caps & MMC_CAP_NEEDS_POLL) {
977 				dev_info(&mmc->class_dev,
978 					"card is polling.\n");
979 			} else {
980 				dev_info(&mmc->class_dev,
981 					"card is non-removable.\n");
982 			}
983 			set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
984 		}
985 
986 		return present;
987 	} else if (gpio_cd >= 0)
988 		present = gpio_cd;
989 	else
990 		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
991 			== 0 ? 1 : 0;
992 
993 	spin_lock_bh(&host->lock);
994 	if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
995 		dev_dbg(&mmc->class_dev, "card is present\n");
996 	else if (!present &&
997 			!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
998 		dev_dbg(&mmc->class_dev, "card is not present\n");
999 	spin_unlock_bh(&host->lock);
1000 
1001 	return present;
1002 }
1003 
1004 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
1005 {
1006 	unsigned int blksz = data->blksz;
1007 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
1008 	u32 fifo_width = 1 << host->data_shift;
1009 	u32 blksz_depth = blksz / fifo_width, fifoth_val;
1010 	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
1011 	int idx = ARRAY_SIZE(mszs) - 1;
1012 
1013 	/* pio should ship this scenario */
1014 	if (!host->use_dma)
1015 		return;
1016 
1017 	tx_wmark = (host->fifo_depth) / 2;
1018 	tx_wmark_invers = host->fifo_depth - tx_wmark;
1019 
1020 	/*
1021 	 * MSIZE is '1',
1022 	 * if blksz is not a multiple of the FIFO width
1023 	 */
1024 	if (blksz % fifo_width)
1025 		goto done;
1026 
1027 	do {
1028 		if (!((blksz_depth % mszs[idx]) ||
1029 		     (tx_wmark_invers % mszs[idx]))) {
1030 			msize = idx;
1031 			rx_wmark = mszs[idx] - 1;
1032 			break;
1033 		}
1034 	} while (--idx > 0);
1035 	/*
1036 	 * If idx is '0', it won't be tried
1037 	 * Thus, initial values are uesed
1038 	 */
1039 done:
1040 	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1041 	mci_writel(host, FIFOTH, fifoth_val);
1042 }
1043 
1044 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1045 {
1046 	unsigned int blksz = data->blksz;
1047 	u32 blksz_depth, fifo_depth;
1048 	u16 thld_size;
1049 	u8 enable;
1050 
1051 	/*
1052 	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1053 	 * in the FIFO region, so we really shouldn't access it).
1054 	 */
1055 	if (host->verid < DW_MMC_240A ||
1056 		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1057 		return;
1058 
1059 	/*
1060 	 * Card write Threshold is introduced since 2.80a
1061 	 * It's used when HS400 mode is enabled.
1062 	 */
1063 	if (data->flags & MMC_DATA_WRITE &&
1064 		host->timing != MMC_TIMING_MMC_HS400)
1065 		goto disable;
1066 
1067 	if (data->flags & MMC_DATA_WRITE)
1068 		enable = SDMMC_CARD_WR_THR_EN;
1069 	else
1070 		enable = SDMMC_CARD_RD_THR_EN;
1071 
1072 	if (host->timing != MMC_TIMING_MMC_HS200 &&
1073 	    host->timing != MMC_TIMING_UHS_SDR104 &&
1074 	    host->timing != MMC_TIMING_MMC_HS400)
1075 		goto disable;
1076 
1077 	blksz_depth = blksz / (1 << host->data_shift);
1078 	fifo_depth = host->fifo_depth;
1079 
1080 	if (blksz_depth > fifo_depth)
1081 		goto disable;
1082 
1083 	/*
1084 	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1085 	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1086 	 * Currently just choose blksz.
1087 	 */
1088 	thld_size = blksz;
1089 	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1090 	return;
1091 
1092 disable:
1093 	mci_writel(host, CDTHRCTL, 0);
1094 }
1095 
1096 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1097 {
1098 	unsigned long irqflags;
1099 	int sg_len;
1100 	u32 temp;
1101 
1102 	host->using_dma = 0;
1103 
1104 	/* If we don't have a channel, we can't do DMA */
1105 	if (!host->use_dma)
1106 		return -ENODEV;
1107 
1108 	sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1109 	if (sg_len < 0) {
1110 		host->dma_ops->stop(host);
1111 		return sg_len;
1112 	}
1113 
1114 	host->using_dma = 1;
1115 
1116 	if (host->use_dma == TRANS_MODE_IDMAC)
1117 		dev_vdbg(host->dev,
1118 			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1119 			 (unsigned long)host->sg_cpu,
1120 			 (unsigned long)host->sg_dma,
1121 			 sg_len);
1122 
1123 	/*
1124 	 * Decide the MSIZE and RX/TX Watermark.
1125 	 * If current block size is same with previous size,
1126 	 * no need to update fifoth.
1127 	 */
1128 	if (host->prev_blksz != data->blksz)
1129 		dw_mci_adjust_fifoth(host, data);
1130 
1131 	/* Enable the DMA interface */
1132 	temp = mci_readl(host, CTRL);
1133 	temp |= SDMMC_CTRL_DMA_ENABLE;
1134 	mci_writel(host, CTRL, temp);
1135 
1136 	/* Disable RX/TX IRQs, let DMA handle it */
1137 	spin_lock_irqsave(&host->irq_lock, irqflags);
1138 	temp = mci_readl(host, INTMASK);
1139 	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1140 	mci_writel(host, INTMASK, temp);
1141 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1142 
1143 	if (host->dma_ops->start(host, sg_len)) {
1144 		host->dma_ops->stop(host);
1145 		/* We can't do DMA, try PIO for this one */
1146 		dev_dbg(host->dev,
1147 			"%s: fall back to PIO mode for current transfer\n",
1148 			__func__);
1149 		return -ENODEV;
1150 	}
1151 
1152 	return 0;
1153 }
1154 
1155 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1156 {
1157 	unsigned long irqflags;
1158 	int flags = SG_MITER_ATOMIC;
1159 	u32 temp;
1160 
1161 	data->error = -EINPROGRESS;
1162 
1163 	WARN_ON(host->data);
1164 	host->sg = NULL;
1165 	host->data = data;
1166 
1167 	if (data->flags & MMC_DATA_READ)
1168 		host->dir_status = DW_MCI_RECV_STATUS;
1169 	else
1170 		host->dir_status = DW_MCI_SEND_STATUS;
1171 
1172 	dw_mci_ctrl_thld(host, data);
1173 
1174 	if (dw_mci_submit_data_dma(host, data)) {
1175 		if (host->data->flags & MMC_DATA_READ)
1176 			flags |= SG_MITER_TO_SG;
1177 		else
1178 			flags |= SG_MITER_FROM_SG;
1179 
1180 		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1181 		host->sg = data->sg;
1182 		host->part_buf_start = 0;
1183 		host->part_buf_count = 0;
1184 
1185 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1186 
1187 		spin_lock_irqsave(&host->irq_lock, irqflags);
1188 		temp = mci_readl(host, INTMASK);
1189 		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1190 		mci_writel(host, INTMASK, temp);
1191 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1192 
1193 		temp = mci_readl(host, CTRL);
1194 		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1195 		mci_writel(host, CTRL, temp);
1196 
1197 		/*
1198 		 * Use the initial fifoth_val for PIO mode. If wm_algined
1199 		 * is set, we set watermark same as data size.
1200 		 * If next issued data may be transfered by DMA mode,
1201 		 * prev_blksz should be invalidated.
1202 		 */
1203 		if (host->wm_aligned)
1204 			dw_mci_adjust_fifoth(host, data);
1205 		else
1206 			mci_writel(host, FIFOTH, host->fifoth_val);
1207 		host->prev_blksz = 0;
1208 	} else {
1209 		/*
1210 		 * Keep the current block size.
1211 		 * It will be used to decide whether to update
1212 		 * fifoth register next time.
1213 		 */
1214 		host->prev_blksz = data->blksz;
1215 	}
1216 }
1217 
1218 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1219 {
1220 	struct dw_mci *host = slot->host;
1221 	unsigned int clock = slot->clock;
1222 	u32 div;
1223 	u32 clk_en_a;
1224 	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1225 
1226 	/* We must continue to set bit 28 in CMD until the change is complete */
1227 	if (host->state == STATE_WAITING_CMD11_DONE)
1228 		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1229 
1230 	slot->mmc->actual_clock = 0;
1231 
1232 	if (!clock) {
1233 		mci_writel(host, CLKENA, 0);
1234 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1235 	} else if (clock != host->current_speed || force_clkinit) {
1236 		div = host->bus_hz / clock;
1237 		if (host->bus_hz % clock && host->bus_hz > clock)
1238 			/*
1239 			 * move the + 1 after the divide to prevent
1240 			 * over-clocking the card.
1241 			 */
1242 			div += 1;
1243 
1244 		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1245 
1246 		if ((clock != slot->__clk_old &&
1247 			!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1248 			force_clkinit) {
1249 			/* Silent the verbose log if calling from PM context */
1250 			if (!force_clkinit)
1251 				dev_info(&slot->mmc->class_dev,
1252 					 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1253 					 slot->id, host->bus_hz, clock,
1254 					 div ? ((host->bus_hz / div) >> 1) :
1255 					 host->bus_hz, div);
1256 
1257 			/*
1258 			 * If card is polling, display the message only
1259 			 * one time at boot time.
1260 			 */
1261 			if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1262 					slot->mmc->f_min == clock)
1263 				set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1264 		}
1265 
1266 		/* disable clock */
1267 		mci_writel(host, CLKENA, 0);
1268 		mci_writel(host, CLKSRC, 0);
1269 
1270 		/* inform CIU */
1271 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1272 
1273 		/* set clock to desired speed */
1274 		mci_writel(host, CLKDIV, div);
1275 
1276 		/* inform CIU */
1277 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1278 
1279 		/* enable clock; only low power if no SDIO */
1280 		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1281 		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1282 			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1283 		mci_writel(host, CLKENA, clk_en_a);
1284 
1285 		/* inform CIU */
1286 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1287 
1288 		/* keep the last clock value that was requested from core */
1289 		slot->__clk_old = clock;
1290 		slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
1291 					  host->bus_hz;
1292 	}
1293 
1294 	host->current_speed = clock;
1295 
1296 	/* Set the current slot bus width */
1297 	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1298 }
1299 
1300 static void __dw_mci_start_request(struct dw_mci *host,
1301 				   struct dw_mci_slot *slot,
1302 				   struct mmc_command *cmd)
1303 {
1304 	struct mmc_request *mrq;
1305 	struct mmc_data	*data;
1306 	u32 cmdflags;
1307 
1308 	mrq = slot->mrq;
1309 
1310 	host->mrq = mrq;
1311 
1312 	host->pending_events = 0;
1313 	host->completed_events = 0;
1314 	host->cmd_status = 0;
1315 	host->data_status = 0;
1316 	host->dir_status = 0;
1317 
1318 	data = cmd->data;
1319 	if (data) {
1320 		mci_writel(host, TMOUT, 0xFFFFFFFF);
1321 		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1322 		mci_writel(host, BLKSIZ, data->blksz);
1323 	}
1324 
1325 	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1326 
1327 	/* this is the first command, send the initialization clock */
1328 	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1329 		cmdflags |= SDMMC_CMD_INIT;
1330 
1331 	if (data) {
1332 		dw_mci_submit_data(host, data);
1333 		wmb(); /* drain writebuffer */
1334 	}
1335 
1336 	dw_mci_start_command(host, cmd, cmdflags);
1337 
1338 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1339 		unsigned long irqflags;
1340 
1341 		/*
1342 		 * Databook says to fail after 2ms w/ no response, but evidence
1343 		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1344 		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1345 		 * is just about to roll over.
1346 		 *
1347 		 * We do this whole thing under spinlock and only if the
1348 		 * command hasn't already completed (indicating the the irq
1349 		 * already ran so we don't want the timeout).
1350 		 */
1351 		spin_lock_irqsave(&host->irq_lock, irqflags);
1352 		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1353 			mod_timer(&host->cmd11_timer,
1354 				jiffies + msecs_to_jiffies(500) + 1);
1355 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1356 	}
1357 
1358 	host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1359 }
1360 
1361 static void dw_mci_start_request(struct dw_mci *host,
1362 				 struct dw_mci_slot *slot)
1363 {
1364 	struct mmc_request *mrq = slot->mrq;
1365 	struct mmc_command *cmd;
1366 
1367 	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1368 	__dw_mci_start_request(host, slot, cmd);
1369 }
1370 
1371 /* must be called with host->lock held */
1372 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1373 				 struct mmc_request *mrq)
1374 {
1375 	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1376 		 host->state);
1377 
1378 	slot->mrq = mrq;
1379 
1380 	if (host->state == STATE_WAITING_CMD11_DONE) {
1381 		dev_warn(&slot->mmc->class_dev,
1382 			 "Voltage change didn't complete\n");
1383 		/*
1384 		 * this case isn't expected to happen, so we can
1385 		 * either crash here or just try to continue on
1386 		 * in the closest possible state
1387 		 */
1388 		host->state = STATE_IDLE;
1389 	}
1390 
1391 	if (host->state == STATE_IDLE) {
1392 		host->state = STATE_SENDING_CMD;
1393 		dw_mci_start_request(host, slot);
1394 	} else {
1395 		list_add_tail(&slot->queue_node, &host->queue);
1396 	}
1397 }
1398 
1399 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1400 {
1401 	struct dw_mci_slot *slot = mmc_priv(mmc);
1402 	struct dw_mci *host = slot->host;
1403 
1404 	WARN_ON(slot->mrq);
1405 
1406 	/*
1407 	 * The check for card presence and queueing of the request must be
1408 	 * atomic, otherwise the card could be removed in between and the
1409 	 * request wouldn't fail until another card was inserted.
1410 	 */
1411 
1412 	if (!dw_mci_get_cd(mmc)) {
1413 		mrq->cmd->error = -ENOMEDIUM;
1414 		mmc_request_done(mmc, mrq);
1415 		return;
1416 	}
1417 
1418 	spin_lock_bh(&host->lock);
1419 
1420 	dw_mci_queue_request(host, slot, mrq);
1421 
1422 	spin_unlock_bh(&host->lock);
1423 }
1424 
1425 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1426 {
1427 	struct dw_mci_slot *slot = mmc_priv(mmc);
1428 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1429 	u32 regs;
1430 	int ret;
1431 
1432 	switch (ios->bus_width) {
1433 	case MMC_BUS_WIDTH_4:
1434 		slot->ctype = SDMMC_CTYPE_4BIT;
1435 		break;
1436 	case MMC_BUS_WIDTH_8:
1437 		slot->ctype = SDMMC_CTYPE_8BIT;
1438 		break;
1439 	default:
1440 		/* set default 1 bit mode */
1441 		slot->ctype = SDMMC_CTYPE_1BIT;
1442 	}
1443 
1444 	regs = mci_readl(slot->host, UHS_REG);
1445 
1446 	/* DDR mode set */
1447 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1448 	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1449 	    ios->timing == MMC_TIMING_MMC_HS400)
1450 		regs |= ((0x1 << slot->id) << 16);
1451 	else
1452 		regs &= ~((0x1 << slot->id) << 16);
1453 
1454 	mci_writel(slot->host, UHS_REG, regs);
1455 	slot->host->timing = ios->timing;
1456 
1457 	/*
1458 	 * Use mirror of ios->clock to prevent race with mmc
1459 	 * core ios update when finding the minimum.
1460 	 */
1461 	slot->clock = ios->clock;
1462 
1463 	if (drv_data && drv_data->set_ios)
1464 		drv_data->set_ios(slot->host, ios);
1465 
1466 	switch (ios->power_mode) {
1467 	case MMC_POWER_UP:
1468 		if (!IS_ERR(mmc->supply.vmmc)) {
1469 			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1470 					ios->vdd);
1471 			if (ret) {
1472 				dev_err(slot->host->dev,
1473 					"failed to enable vmmc regulator\n");
1474 				/*return, if failed turn on vmmc*/
1475 				return;
1476 			}
1477 		}
1478 		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1479 		regs = mci_readl(slot->host, PWREN);
1480 		regs |= (1 << slot->id);
1481 		mci_writel(slot->host, PWREN, regs);
1482 		break;
1483 	case MMC_POWER_ON:
1484 		if (!slot->host->vqmmc_enabled) {
1485 			if (!IS_ERR(mmc->supply.vqmmc)) {
1486 				ret = regulator_enable(mmc->supply.vqmmc);
1487 				if (ret < 0)
1488 					dev_err(slot->host->dev,
1489 						"failed to enable vqmmc\n");
1490 				else
1491 					slot->host->vqmmc_enabled = true;
1492 
1493 			} else {
1494 				/* Keep track so we don't reset again */
1495 				slot->host->vqmmc_enabled = true;
1496 			}
1497 
1498 			/* Reset our state machine after powering on */
1499 			dw_mci_ctrl_reset(slot->host,
1500 					  SDMMC_CTRL_ALL_RESET_FLAGS);
1501 		}
1502 
1503 		/* Adjust clock / bus width after power is up */
1504 		dw_mci_setup_bus(slot, false);
1505 
1506 		break;
1507 	case MMC_POWER_OFF:
1508 		/* Turn clock off before power goes down */
1509 		dw_mci_setup_bus(slot, false);
1510 
1511 		if (!IS_ERR(mmc->supply.vmmc))
1512 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1513 
1514 		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1515 			regulator_disable(mmc->supply.vqmmc);
1516 		slot->host->vqmmc_enabled = false;
1517 
1518 		regs = mci_readl(slot->host, PWREN);
1519 		regs &= ~(1 << slot->id);
1520 		mci_writel(slot->host, PWREN, regs);
1521 		break;
1522 	default:
1523 		break;
1524 	}
1525 
1526 	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1527 		slot->host->state = STATE_IDLE;
1528 }
1529 
1530 static int dw_mci_card_busy(struct mmc_host *mmc)
1531 {
1532 	struct dw_mci_slot *slot = mmc_priv(mmc);
1533 	u32 status;
1534 
1535 	/*
1536 	 * Check the busy bit which is low when DAT[3:0]
1537 	 * (the data lines) are 0000
1538 	 */
1539 	status = mci_readl(slot->host, STATUS);
1540 
1541 	return !!(status & SDMMC_STATUS_BUSY);
1542 }
1543 
1544 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1545 {
1546 	struct dw_mci_slot *slot = mmc_priv(mmc);
1547 	struct dw_mci *host = slot->host;
1548 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1549 	u32 uhs;
1550 	u32 v18 = SDMMC_UHS_18V << slot->id;
1551 	int ret;
1552 
1553 	if (drv_data && drv_data->switch_voltage)
1554 		return drv_data->switch_voltage(mmc, ios);
1555 
1556 	/*
1557 	 * Program the voltage.  Note that some instances of dw_mmc may use
1558 	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1559 	 * does no harm but you need to set the regulator directly.  Try both.
1560 	 */
1561 	uhs = mci_readl(host, UHS_REG);
1562 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1563 		uhs &= ~v18;
1564 	else
1565 		uhs |= v18;
1566 
1567 	if (!IS_ERR(mmc->supply.vqmmc)) {
1568 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1569 
1570 		if (ret) {
1571 			dev_dbg(&mmc->class_dev,
1572 					 "Regulator set error %d - %s V\n",
1573 					 ret, uhs & v18 ? "1.8" : "3.3");
1574 			return ret;
1575 		}
1576 	}
1577 	mci_writel(host, UHS_REG, uhs);
1578 
1579 	return 0;
1580 }
1581 
1582 static int dw_mci_get_ro(struct mmc_host *mmc)
1583 {
1584 	int read_only;
1585 	struct dw_mci_slot *slot = mmc_priv(mmc);
1586 	int gpio_ro = mmc_gpio_get_ro(mmc);
1587 
1588 	/* Use platform get_ro function, else try on board write protect */
1589 	if (gpio_ro >= 0)
1590 		read_only = gpio_ro;
1591 	else
1592 		read_only =
1593 			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1594 
1595 	dev_dbg(&mmc->class_dev, "card is %s\n",
1596 		read_only ? "read-only" : "read-write");
1597 
1598 	return read_only;
1599 }
1600 
1601 static void dw_mci_hw_reset(struct mmc_host *mmc)
1602 {
1603 	struct dw_mci_slot *slot = mmc_priv(mmc);
1604 	struct dw_mci *host = slot->host;
1605 	int reset;
1606 
1607 	if (host->use_dma == TRANS_MODE_IDMAC)
1608 		dw_mci_idmac_reset(host);
1609 
1610 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1611 				     SDMMC_CTRL_FIFO_RESET))
1612 		return;
1613 
1614 	/*
1615 	 * According to eMMC spec, card reset procedure:
1616 	 * tRstW >= 1us:   RST_n pulse width
1617 	 * tRSCA >= 200us: RST_n to Command time
1618 	 * tRSTH >= 1us:   RST_n high period
1619 	 */
1620 	reset = mci_readl(host, RST_N);
1621 	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1622 	mci_writel(host, RST_N, reset);
1623 	usleep_range(1, 2);
1624 	reset |= SDMMC_RST_HWACTIVE << slot->id;
1625 	mci_writel(host, RST_N, reset);
1626 	usleep_range(200, 300);
1627 }
1628 
1629 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1630 {
1631 	struct dw_mci_slot *slot = mmc_priv(mmc);
1632 	struct dw_mci *host = slot->host;
1633 
1634 	/*
1635 	 * Low power mode will stop the card clock when idle.  According to the
1636 	 * description of the CLKENA register we should disable low power mode
1637 	 * for SDIO cards if we need SDIO interrupts to work.
1638 	 */
1639 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1640 		const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1641 		u32 clk_en_a_old;
1642 		u32 clk_en_a;
1643 
1644 		clk_en_a_old = mci_readl(host, CLKENA);
1645 
1646 		if (card->type == MMC_TYPE_SDIO ||
1647 		    card->type == MMC_TYPE_SD_COMBO) {
1648 			set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1649 			clk_en_a = clk_en_a_old & ~clken_low_pwr;
1650 		} else {
1651 			clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1652 			clk_en_a = clk_en_a_old | clken_low_pwr;
1653 		}
1654 
1655 		if (clk_en_a != clk_en_a_old) {
1656 			mci_writel(host, CLKENA, clk_en_a);
1657 			mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1658 				     SDMMC_CMD_PRV_DAT_WAIT, 0);
1659 		}
1660 	}
1661 }
1662 
1663 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1664 {
1665 	struct dw_mci *host = slot->host;
1666 	unsigned long irqflags;
1667 	u32 int_mask;
1668 
1669 	spin_lock_irqsave(&host->irq_lock, irqflags);
1670 
1671 	/* Enable/disable Slot Specific SDIO interrupt */
1672 	int_mask = mci_readl(host, INTMASK);
1673 	if (enb)
1674 		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1675 	else
1676 		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1677 	mci_writel(host, INTMASK, int_mask);
1678 
1679 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1680 }
1681 
1682 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1683 {
1684 	struct dw_mci_slot *slot = mmc_priv(mmc);
1685 	struct dw_mci *host = slot->host;
1686 
1687 	__dw_mci_enable_sdio_irq(slot, enb);
1688 
1689 	/* Avoid runtime suspending the device when SDIO IRQ is enabled */
1690 	if (enb)
1691 		pm_runtime_get_noresume(host->dev);
1692 	else
1693 		pm_runtime_put_noidle(host->dev);
1694 }
1695 
1696 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1697 {
1698 	struct dw_mci_slot *slot = mmc_priv(mmc);
1699 
1700 	__dw_mci_enable_sdio_irq(slot, 1);
1701 }
1702 
1703 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1704 {
1705 	struct dw_mci_slot *slot = mmc_priv(mmc);
1706 	struct dw_mci *host = slot->host;
1707 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1708 	int err = -EINVAL;
1709 
1710 	if (drv_data && drv_data->execute_tuning)
1711 		err = drv_data->execute_tuning(slot, opcode);
1712 	return err;
1713 }
1714 
1715 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1716 				       struct mmc_ios *ios)
1717 {
1718 	struct dw_mci_slot *slot = mmc_priv(mmc);
1719 	struct dw_mci *host = slot->host;
1720 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1721 
1722 	if (drv_data && drv_data->prepare_hs400_tuning)
1723 		return drv_data->prepare_hs400_tuning(host, ios);
1724 
1725 	return 0;
1726 }
1727 
1728 static bool dw_mci_reset(struct dw_mci *host)
1729 {
1730 	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1731 	bool ret = false;
1732 	u32 status = 0;
1733 
1734 	/*
1735 	 * Resetting generates a block interrupt, hence setting
1736 	 * the scatter-gather pointer to NULL.
1737 	 */
1738 	if (host->sg) {
1739 		sg_miter_stop(&host->sg_miter);
1740 		host->sg = NULL;
1741 	}
1742 
1743 	if (host->use_dma)
1744 		flags |= SDMMC_CTRL_DMA_RESET;
1745 
1746 	if (dw_mci_ctrl_reset(host, flags)) {
1747 		/*
1748 		 * In all cases we clear the RAWINTS
1749 		 * register to clear any interrupts.
1750 		 */
1751 		mci_writel(host, RINTSTS, 0xFFFFFFFF);
1752 
1753 		if (!host->use_dma) {
1754 			ret = true;
1755 			goto ciu_out;
1756 		}
1757 
1758 		/* Wait for dma_req to be cleared */
1759 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1760 					      status,
1761 					      !(status & SDMMC_STATUS_DMA_REQ),
1762 					      1, 500 * USEC_PER_MSEC)) {
1763 			dev_err(host->dev,
1764 				"%s: Timeout waiting for dma_req to be cleared\n",
1765 				__func__);
1766 			goto ciu_out;
1767 		}
1768 
1769 		/* when using DMA next we reset the fifo again */
1770 		if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1771 			goto ciu_out;
1772 	} else {
1773 		/* if the controller reset bit did clear, then set clock regs */
1774 		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1775 			dev_err(host->dev,
1776 				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1777 				__func__);
1778 			goto ciu_out;
1779 		}
1780 	}
1781 
1782 	if (host->use_dma == TRANS_MODE_IDMAC)
1783 		/* It is also required that we reinit idmac */
1784 		dw_mci_idmac_init(host);
1785 
1786 	ret = true;
1787 
1788 ciu_out:
1789 	/* After a CTRL reset we need to have CIU set clock registers  */
1790 	mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1791 
1792 	return ret;
1793 }
1794 
1795 static const struct mmc_host_ops dw_mci_ops = {
1796 	.request		= dw_mci_request,
1797 	.pre_req		= dw_mci_pre_req,
1798 	.post_req		= dw_mci_post_req,
1799 	.set_ios		= dw_mci_set_ios,
1800 	.get_ro			= dw_mci_get_ro,
1801 	.get_cd			= dw_mci_get_cd,
1802 	.hw_reset               = dw_mci_hw_reset,
1803 	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1804 	.ack_sdio_irq		= dw_mci_ack_sdio_irq,
1805 	.execute_tuning		= dw_mci_execute_tuning,
1806 	.card_busy		= dw_mci_card_busy,
1807 	.start_signal_voltage_switch = dw_mci_switch_voltage,
1808 	.init_card		= dw_mci_init_card,
1809 	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1810 };
1811 
1812 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1813 	__releases(&host->lock)
1814 	__acquires(&host->lock)
1815 {
1816 	struct dw_mci_slot *slot;
1817 	struct mmc_host	*prev_mmc = host->slot->mmc;
1818 
1819 	WARN_ON(host->cmd || host->data);
1820 
1821 	host->slot->mrq = NULL;
1822 	host->mrq = NULL;
1823 	if (!list_empty(&host->queue)) {
1824 		slot = list_entry(host->queue.next,
1825 				  struct dw_mci_slot, queue_node);
1826 		list_del(&slot->queue_node);
1827 		dev_vdbg(host->dev, "list not empty: %s is next\n",
1828 			 mmc_hostname(slot->mmc));
1829 		host->state = STATE_SENDING_CMD;
1830 		dw_mci_start_request(host, slot);
1831 	} else {
1832 		dev_vdbg(host->dev, "list empty\n");
1833 
1834 		if (host->state == STATE_SENDING_CMD11)
1835 			host->state = STATE_WAITING_CMD11_DONE;
1836 		else
1837 			host->state = STATE_IDLE;
1838 	}
1839 
1840 	spin_unlock(&host->lock);
1841 	mmc_request_done(prev_mmc, mrq);
1842 	spin_lock(&host->lock);
1843 }
1844 
1845 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1846 {
1847 	u32 status = host->cmd_status;
1848 
1849 	host->cmd_status = 0;
1850 
1851 	/* Read the response from the card (up to 16 bytes) */
1852 	if (cmd->flags & MMC_RSP_PRESENT) {
1853 		if (cmd->flags & MMC_RSP_136) {
1854 			cmd->resp[3] = mci_readl(host, RESP0);
1855 			cmd->resp[2] = mci_readl(host, RESP1);
1856 			cmd->resp[1] = mci_readl(host, RESP2);
1857 			cmd->resp[0] = mci_readl(host, RESP3);
1858 		} else {
1859 			cmd->resp[0] = mci_readl(host, RESP0);
1860 			cmd->resp[1] = 0;
1861 			cmd->resp[2] = 0;
1862 			cmd->resp[3] = 0;
1863 		}
1864 	}
1865 
1866 	if (status & SDMMC_INT_RTO)
1867 		cmd->error = -ETIMEDOUT;
1868 	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1869 		cmd->error = -EILSEQ;
1870 	else if (status & SDMMC_INT_RESP_ERR)
1871 		cmd->error = -EIO;
1872 	else
1873 		cmd->error = 0;
1874 
1875 	return cmd->error;
1876 }
1877 
1878 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1879 {
1880 	u32 status = host->data_status;
1881 
1882 	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1883 		if (status & SDMMC_INT_DRTO) {
1884 			data->error = -ETIMEDOUT;
1885 		} else if (status & SDMMC_INT_DCRC) {
1886 			data->error = -EILSEQ;
1887 		} else if (status & SDMMC_INT_EBE) {
1888 			if (host->dir_status ==
1889 				DW_MCI_SEND_STATUS) {
1890 				/*
1891 				 * No data CRC status was returned.
1892 				 * The number of bytes transferred
1893 				 * will be exaggerated in PIO mode.
1894 				 */
1895 				data->bytes_xfered = 0;
1896 				data->error = -ETIMEDOUT;
1897 			} else if (host->dir_status ==
1898 					DW_MCI_RECV_STATUS) {
1899 				data->error = -EILSEQ;
1900 			}
1901 		} else {
1902 			/* SDMMC_INT_SBE is included */
1903 			data->error = -EILSEQ;
1904 		}
1905 
1906 		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1907 
1908 		/*
1909 		 * After an error, there may be data lingering
1910 		 * in the FIFO
1911 		 */
1912 		dw_mci_reset(host);
1913 	} else {
1914 		data->bytes_xfered = data->blocks * data->blksz;
1915 		data->error = 0;
1916 	}
1917 
1918 	return data->error;
1919 }
1920 
1921 static void dw_mci_set_drto(struct dw_mci *host)
1922 {
1923 	unsigned int drto_clks;
1924 	unsigned int drto_div;
1925 	unsigned int drto_ms;
1926 	unsigned long irqflags;
1927 
1928 	drto_clks = mci_readl(host, TMOUT) >> 8;
1929 	drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
1930 	if (drto_div == 0)
1931 		drto_div = 1;
1932 
1933 	drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
1934 				   host->bus_hz);
1935 
1936 	/* add a bit spare time */
1937 	drto_ms += 10;
1938 
1939 	spin_lock_irqsave(&host->irq_lock, irqflags);
1940 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1941 		mod_timer(&host->dto_timer,
1942 			  jiffies + msecs_to_jiffies(drto_ms));
1943 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1944 }
1945 
1946 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
1947 {
1948 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1949 		return false;
1950 
1951 	/*
1952 	 * Really be certain that the timer has stopped.  This is a bit of
1953 	 * paranoia and could only really happen if we had really bad
1954 	 * interrupt latency and the interrupt routine and timeout were
1955 	 * running concurrently so that the del_timer() in the interrupt
1956 	 * handler couldn't run.
1957 	 */
1958 	WARN_ON(del_timer_sync(&host->cto_timer));
1959 	clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
1960 
1961 	return true;
1962 }
1963 
1964 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
1965 {
1966 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1967 		return false;
1968 
1969 	/* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
1970 	WARN_ON(del_timer_sync(&host->dto_timer));
1971 	clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
1972 
1973 	return true;
1974 }
1975 
1976 static void dw_mci_tasklet_func(unsigned long priv)
1977 {
1978 	struct dw_mci *host = (struct dw_mci *)priv;
1979 	struct mmc_data	*data;
1980 	struct mmc_command *cmd;
1981 	struct mmc_request *mrq;
1982 	enum dw_mci_state state;
1983 	enum dw_mci_state prev_state;
1984 	unsigned int err;
1985 
1986 	spin_lock(&host->lock);
1987 
1988 	state = host->state;
1989 	data = host->data;
1990 	mrq = host->mrq;
1991 
1992 	do {
1993 		prev_state = state;
1994 
1995 		switch (state) {
1996 		case STATE_IDLE:
1997 		case STATE_WAITING_CMD11_DONE:
1998 			break;
1999 
2000 		case STATE_SENDING_CMD11:
2001 		case STATE_SENDING_CMD:
2002 			if (!dw_mci_clear_pending_cmd_complete(host))
2003 				break;
2004 
2005 			cmd = host->cmd;
2006 			host->cmd = NULL;
2007 			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
2008 			err = dw_mci_command_complete(host, cmd);
2009 			if (cmd == mrq->sbc && !err) {
2010 				__dw_mci_start_request(host, host->slot,
2011 						       mrq->cmd);
2012 				goto unlock;
2013 			}
2014 
2015 			if (cmd->data && err) {
2016 				/*
2017 				 * During UHS tuning sequence, sending the stop
2018 				 * command after the response CRC error would
2019 				 * throw the system into a confused state
2020 				 * causing all future tuning phases to report
2021 				 * failure.
2022 				 *
2023 				 * In such case controller will move into a data
2024 				 * transfer state after a response error or
2025 				 * response CRC error. Let's let that finish
2026 				 * before trying to send a stop, so we'll go to
2027 				 * STATE_SENDING_DATA.
2028 				 *
2029 				 * Although letting the data transfer take place
2030 				 * will waste a bit of time (we already know
2031 				 * the command was bad), it can't cause any
2032 				 * errors since it's possible it would have
2033 				 * taken place anyway if this tasklet got
2034 				 * delayed. Allowing the transfer to take place
2035 				 * avoids races and keeps things simple.
2036 				 */
2037 				if ((err != -ETIMEDOUT) &&
2038 				    (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
2039 					state = STATE_SENDING_DATA;
2040 					continue;
2041 				}
2042 
2043 				dw_mci_stop_dma(host);
2044 				send_stop_abort(host, data);
2045 				state = STATE_SENDING_STOP;
2046 				break;
2047 			}
2048 
2049 			if (!cmd->data || err) {
2050 				dw_mci_request_end(host, mrq);
2051 				goto unlock;
2052 			}
2053 
2054 			prev_state = state = STATE_SENDING_DATA;
2055 			/* fall through */
2056 
2057 		case STATE_SENDING_DATA:
2058 			/*
2059 			 * We could get a data error and never a transfer
2060 			 * complete so we'd better check for it here.
2061 			 *
2062 			 * Note that we don't really care if we also got a
2063 			 * transfer complete; stopping the DMA and sending an
2064 			 * abort won't hurt.
2065 			 */
2066 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2067 					       &host->pending_events)) {
2068 				dw_mci_stop_dma(host);
2069 				if (!(host->data_status & (SDMMC_INT_DRTO |
2070 							   SDMMC_INT_EBE)))
2071 					send_stop_abort(host, data);
2072 				state = STATE_DATA_ERROR;
2073 				break;
2074 			}
2075 
2076 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2077 						&host->pending_events)) {
2078 				/*
2079 				 * If all data-related interrupts don't come
2080 				 * within the given time in reading data state.
2081 				 */
2082 				if (host->dir_status == DW_MCI_RECV_STATUS)
2083 					dw_mci_set_drto(host);
2084 				break;
2085 			}
2086 
2087 			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2088 
2089 			/*
2090 			 * Handle an EVENT_DATA_ERROR that might have shown up
2091 			 * before the transfer completed.  This might not have
2092 			 * been caught by the check above because the interrupt
2093 			 * could have gone off between the previous check and
2094 			 * the check for transfer complete.
2095 			 *
2096 			 * Technically this ought not be needed assuming we
2097 			 * get a DATA_COMPLETE eventually (we'll notice the
2098 			 * error and end the request), but it shouldn't hurt.
2099 			 *
2100 			 * This has the advantage of sending the stop command.
2101 			 */
2102 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2103 					       &host->pending_events)) {
2104 				dw_mci_stop_dma(host);
2105 				if (!(host->data_status & (SDMMC_INT_DRTO |
2106 							   SDMMC_INT_EBE)))
2107 					send_stop_abort(host, data);
2108 				state = STATE_DATA_ERROR;
2109 				break;
2110 			}
2111 			prev_state = state = STATE_DATA_BUSY;
2112 
2113 			/* fall through */
2114 
2115 		case STATE_DATA_BUSY:
2116 			if (!dw_mci_clear_pending_data_complete(host)) {
2117 				/*
2118 				 * If data error interrupt comes but data over
2119 				 * interrupt doesn't come within the given time.
2120 				 * in reading data state.
2121 				 */
2122 				if (host->dir_status == DW_MCI_RECV_STATUS)
2123 					dw_mci_set_drto(host);
2124 				break;
2125 			}
2126 
2127 			host->data = NULL;
2128 			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2129 			err = dw_mci_data_complete(host, data);
2130 
2131 			if (!err) {
2132 				if (!data->stop || mrq->sbc) {
2133 					if (mrq->sbc && data->stop)
2134 						data->stop->error = 0;
2135 					dw_mci_request_end(host, mrq);
2136 					goto unlock;
2137 				}
2138 
2139 				/* stop command for open-ended transfer*/
2140 				if (data->stop)
2141 					send_stop_abort(host, data);
2142 			} else {
2143 				/*
2144 				 * If we don't have a command complete now we'll
2145 				 * never get one since we just reset everything;
2146 				 * better end the request.
2147 				 *
2148 				 * If we do have a command complete we'll fall
2149 				 * through to the SENDING_STOP command and
2150 				 * everything will be peachy keen.
2151 				 */
2152 				if (!test_bit(EVENT_CMD_COMPLETE,
2153 					      &host->pending_events)) {
2154 					host->cmd = NULL;
2155 					dw_mci_request_end(host, mrq);
2156 					goto unlock;
2157 				}
2158 			}
2159 
2160 			/*
2161 			 * If err has non-zero,
2162 			 * stop-abort command has been already issued.
2163 			 */
2164 			prev_state = state = STATE_SENDING_STOP;
2165 
2166 			/* fall through */
2167 
2168 		case STATE_SENDING_STOP:
2169 			if (!dw_mci_clear_pending_cmd_complete(host))
2170 				break;
2171 
2172 			/* CMD error in data command */
2173 			if (mrq->cmd->error && mrq->data)
2174 				dw_mci_reset(host);
2175 
2176 			host->cmd = NULL;
2177 			host->data = NULL;
2178 
2179 			if (!mrq->sbc && mrq->stop)
2180 				dw_mci_command_complete(host, mrq->stop);
2181 			else
2182 				host->cmd_status = 0;
2183 
2184 			dw_mci_request_end(host, mrq);
2185 			goto unlock;
2186 
2187 		case STATE_DATA_ERROR:
2188 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2189 						&host->pending_events))
2190 				break;
2191 
2192 			state = STATE_DATA_BUSY;
2193 			break;
2194 		}
2195 	} while (state != prev_state);
2196 
2197 	host->state = state;
2198 unlock:
2199 	spin_unlock(&host->lock);
2200 
2201 }
2202 
2203 /* push final bytes to part_buf, only use during push */
2204 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2205 {
2206 	memcpy((void *)&host->part_buf, buf, cnt);
2207 	host->part_buf_count = cnt;
2208 }
2209 
2210 /* append bytes to part_buf, only use during push */
2211 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2212 {
2213 	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2214 	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2215 	host->part_buf_count += cnt;
2216 	return cnt;
2217 }
2218 
2219 /* pull first bytes from part_buf, only use during pull */
2220 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2221 {
2222 	cnt = min_t(int, cnt, host->part_buf_count);
2223 	if (cnt) {
2224 		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2225 		       cnt);
2226 		host->part_buf_count -= cnt;
2227 		host->part_buf_start += cnt;
2228 	}
2229 	return cnt;
2230 }
2231 
2232 /* pull final bytes from the part_buf, assuming it's just been filled */
2233 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2234 {
2235 	memcpy(buf, &host->part_buf, cnt);
2236 	host->part_buf_start = cnt;
2237 	host->part_buf_count = (1 << host->data_shift) - cnt;
2238 }
2239 
2240 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2241 {
2242 	struct mmc_data *data = host->data;
2243 	int init_cnt = cnt;
2244 
2245 	/* try and push anything in the part_buf */
2246 	if (unlikely(host->part_buf_count)) {
2247 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2248 
2249 		buf += len;
2250 		cnt -= len;
2251 		if (host->part_buf_count == 2) {
2252 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2253 			host->part_buf_count = 0;
2254 		}
2255 	}
2256 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2257 	if (unlikely((unsigned long)buf & 0x1)) {
2258 		while (cnt >= 2) {
2259 			u16 aligned_buf[64];
2260 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2261 			int items = len >> 1;
2262 			int i;
2263 			/* memcpy from input buffer into aligned buffer */
2264 			memcpy(aligned_buf, buf, len);
2265 			buf += len;
2266 			cnt -= len;
2267 			/* push data from aligned buffer into fifo */
2268 			for (i = 0; i < items; ++i)
2269 				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2270 		}
2271 	} else
2272 #endif
2273 	{
2274 		u16 *pdata = buf;
2275 
2276 		for (; cnt >= 2; cnt -= 2)
2277 			mci_fifo_writew(host->fifo_reg, *pdata++);
2278 		buf = pdata;
2279 	}
2280 	/* put anything remaining in the part_buf */
2281 	if (cnt) {
2282 		dw_mci_set_part_bytes(host, buf, cnt);
2283 		 /* Push data if we have reached the expected data length */
2284 		if ((data->bytes_xfered + init_cnt) ==
2285 		    (data->blksz * data->blocks))
2286 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2287 	}
2288 }
2289 
2290 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2291 {
2292 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2293 	if (unlikely((unsigned long)buf & 0x1)) {
2294 		while (cnt >= 2) {
2295 			/* pull data from fifo into aligned buffer */
2296 			u16 aligned_buf[64];
2297 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2298 			int items = len >> 1;
2299 			int i;
2300 
2301 			for (i = 0; i < items; ++i)
2302 				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2303 			/* memcpy from aligned buffer into output buffer */
2304 			memcpy(buf, aligned_buf, len);
2305 			buf += len;
2306 			cnt -= len;
2307 		}
2308 	} else
2309 #endif
2310 	{
2311 		u16 *pdata = buf;
2312 
2313 		for (; cnt >= 2; cnt -= 2)
2314 			*pdata++ = mci_fifo_readw(host->fifo_reg);
2315 		buf = pdata;
2316 	}
2317 	if (cnt) {
2318 		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2319 		dw_mci_pull_final_bytes(host, buf, cnt);
2320 	}
2321 }
2322 
2323 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2324 {
2325 	struct mmc_data *data = host->data;
2326 	int init_cnt = cnt;
2327 
2328 	/* try and push anything in the part_buf */
2329 	if (unlikely(host->part_buf_count)) {
2330 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2331 
2332 		buf += len;
2333 		cnt -= len;
2334 		if (host->part_buf_count == 4) {
2335 			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2336 			host->part_buf_count = 0;
2337 		}
2338 	}
2339 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2340 	if (unlikely((unsigned long)buf & 0x3)) {
2341 		while (cnt >= 4) {
2342 			u32 aligned_buf[32];
2343 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2344 			int items = len >> 2;
2345 			int i;
2346 			/* memcpy from input buffer into aligned buffer */
2347 			memcpy(aligned_buf, buf, len);
2348 			buf += len;
2349 			cnt -= len;
2350 			/* push data from aligned buffer into fifo */
2351 			for (i = 0; i < items; ++i)
2352 				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2353 		}
2354 	} else
2355 #endif
2356 	{
2357 		u32 *pdata = buf;
2358 
2359 		for (; cnt >= 4; cnt -= 4)
2360 			mci_fifo_writel(host->fifo_reg, *pdata++);
2361 		buf = pdata;
2362 	}
2363 	/* put anything remaining in the part_buf */
2364 	if (cnt) {
2365 		dw_mci_set_part_bytes(host, buf, cnt);
2366 		 /* Push data if we have reached the expected data length */
2367 		if ((data->bytes_xfered + init_cnt) ==
2368 		    (data->blksz * data->blocks))
2369 			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2370 	}
2371 }
2372 
2373 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2374 {
2375 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2376 	if (unlikely((unsigned long)buf & 0x3)) {
2377 		while (cnt >= 4) {
2378 			/* pull data from fifo into aligned buffer */
2379 			u32 aligned_buf[32];
2380 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2381 			int items = len >> 2;
2382 			int i;
2383 
2384 			for (i = 0; i < items; ++i)
2385 				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2386 			/* memcpy from aligned buffer into output buffer */
2387 			memcpy(buf, aligned_buf, len);
2388 			buf += len;
2389 			cnt -= len;
2390 		}
2391 	} else
2392 #endif
2393 	{
2394 		u32 *pdata = buf;
2395 
2396 		for (; cnt >= 4; cnt -= 4)
2397 			*pdata++ = mci_fifo_readl(host->fifo_reg);
2398 		buf = pdata;
2399 	}
2400 	if (cnt) {
2401 		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2402 		dw_mci_pull_final_bytes(host, buf, cnt);
2403 	}
2404 }
2405 
2406 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2407 {
2408 	struct mmc_data *data = host->data;
2409 	int init_cnt = cnt;
2410 
2411 	/* try and push anything in the part_buf */
2412 	if (unlikely(host->part_buf_count)) {
2413 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2414 
2415 		buf += len;
2416 		cnt -= len;
2417 
2418 		if (host->part_buf_count == 8) {
2419 			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2420 			host->part_buf_count = 0;
2421 		}
2422 	}
2423 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2424 	if (unlikely((unsigned long)buf & 0x7)) {
2425 		while (cnt >= 8) {
2426 			u64 aligned_buf[16];
2427 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2428 			int items = len >> 3;
2429 			int i;
2430 			/* memcpy from input buffer into aligned buffer */
2431 			memcpy(aligned_buf, buf, len);
2432 			buf += len;
2433 			cnt -= len;
2434 			/* push data from aligned buffer into fifo */
2435 			for (i = 0; i < items; ++i)
2436 				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2437 		}
2438 	} else
2439 #endif
2440 	{
2441 		u64 *pdata = buf;
2442 
2443 		for (; cnt >= 8; cnt -= 8)
2444 			mci_fifo_writeq(host->fifo_reg, *pdata++);
2445 		buf = pdata;
2446 	}
2447 	/* put anything remaining in the part_buf */
2448 	if (cnt) {
2449 		dw_mci_set_part_bytes(host, buf, cnt);
2450 		/* Push data if we have reached the expected data length */
2451 		if ((data->bytes_xfered + init_cnt) ==
2452 		    (data->blksz * data->blocks))
2453 			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2454 	}
2455 }
2456 
2457 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2458 {
2459 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2460 	if (unlikely((unsigned long)buf & 0x7)) {
2461 		while (cnt >= 8) {
2462 			/* pull data from fifo into aligned buffer */
2463 			u64 aligned_buf[16];
2464 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2465 			int items = len >> 3;
2466 			int i;
2467 
2468 			for (i = 0; i < items; ++i)
2469 				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2470 
2471 			/* memcpy from aligned buffer into output buffer */
2472 			memcpy(buf, aligned_buf, len);
2473 			buf += len;
2474 			cnt -= len;
2475 		}
2476 	} else
2477 #endif
2478 	{
2479 		u64 *pdata = buf;
2480 
2481 		for (; cnt >= 8; cnt -= 8)
2482 			*pdata++ = mci_fifo_readq(host->fifo_reg);
2483 		buf = pdata;
2484 	}
2485 	if (cnt) {
2486 		host->part_buf = mci_fifo_readq(host->fifo_reg);
2487 		dw_mci_pull_final_bytes(host, buf, cnt);
2488 	}
2489 }
2490 
2491 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2492 {
2493 	int len;
2494 
2495 	/* get remaining partial bytes */
2496 	len = dw_mci_pull_part_bytes(host, buf, cnt);
2497 	if (unlikely(len == cnt))
2498 		return;
2499 	buf += len;
2500 	cnt -= len;
2501 
2502 	/* get the rest of the data */
2503 	host->pull_data(host, buf, cnt);
2504 }
2505 
2506 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2507 {
2508 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2509 	void *buf;
2510 	unsigned int offset;
2511 	struct mmc_data	*data = host->data;
2512 	int shift = host->data_shift;
2513 	u32 status;
2514 	unsigned int len;
2515 	unsigned int remain, fcnt;
2516 
2517 	do {
2518 		if (!sg_miter_next(sg_miter))
2519 			goto done;
2520 
2521 		host->sg = sg_miter->piter.sg;
2522 		buf = sg_miter->addr;
2523 		remain = sg_miter->length;
2524 		offset = 0;
2525 
2526 		do {
2527 			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2528 					<< shift) + host->part_buf_count;
2529 			len = min(remain, fcnt);
2530 			if (!len)
2531 				break;
2532 			dw_mci_pull_data(host, (void *)(buf + offset), len);
2533 			data->bytes_xfered += len;
2534 			offset += len;
2535 			remain -= len;
2536 		} while (remain);
2537 
2538 		sg_miter->consumed = offset;
2539 		status = mci_readl(host, MINTSTS);
2540 		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2541 	/* if the RXDR is ready read again */
2542 	} while ((status & SDMMC_INT_RXDR) ||
2543 		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2544 
2545 	if (!remain) {
2546 		if (!sg_miter_next(sg_miter))
2547 			goto done;
2548 		sg_miter->consumed = 0;
2549 	}
2550 	sg_miter_stop(sg_miter);
2551 	return;
2552 
2553 done:
2554 	sg_miter_stop(sg_miter);
2555 	host->sg = NULL;
2556 	smp_wmb(); /* drain writebuffer */
2557 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2558 }
2559 
2560 static void dw_mci_write_data_pio(struct dw_mci *host)
2561 {
2562 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2563 	void *buf;
2564 	unsigned int offset;
2565 	struct mmc_data	*data = host->data;
2566 	int shift = host->data_shift;
2567 	u32 status;
2568 	unsigned int len;
2569 	unsigned int fifo_depth = host->fifo_depth;
2570 	unsigned int remain, fcnt;
2571 
2572 	do {
2573 		if (!sg_miter_next(sg_miter))
2574 			goto done;
2575 
2576 		host->sg = sg_miter->piter.sg;
2577 		buf = sg_miter->addr;
2578 		remain = sg_miter->length;
2579 		offset = 0;
2580 
2581 		do {
2582 			fcnt = ((fifo_depth -
2583 				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2584 					<< shift) - host->part_buf_count;
2585 			len = min(remain, fcnt);
2586 			if (!len)
2587 				break;
2588 			host->push_data(host, (void *)(buf + offset), len);
2589 			data->bytes_xfered += len;
2590 			offset += len;
2591 			remain -= len;
2592 		} while (remain);
2593 
2594 		sg_miter->consumed = offset;
2595 		status = mci_readl(host, MINTSTS);
2596 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2597 	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2598 
2599 	if (!remain) {
2600 		if (!sg_miter_next(sg_miter))
2601 			goto done;
2602 		sg_miter->consumed = 0;
2603 	}
2604 	sg_miter_stop(sg_miter);
2605 	return;
2606 
2607 done:
2608 	sg_miter_stop(sg_miter);
2609 	host->sg = NULL;
2610 	smp_wmb(); /* drain writebuffer */
2611 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2612 }
2613 
2614 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2615 {
2616 	del_timer(&host->cto_timer);
2617 
2618 	if (!host->cmd_status)
2619 		host->cmd_status = status;
2620 
2621 	smp_wmb(); /* drain writebuffer */
2622 
2623 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2624 	tasklet_schedule(&host->tasklet);
2625 }
2626 
2627 static void dw_mci_handle_cd(struct dw_mci *host)
2628 {
2629 	struct dw_mci_slot *slot = host->slot;
2630 
2631 	if (slot->mmc->ops->card_event)
2632 		slot->mmc->ops->card_event(slot->mmc);
2633 	mmc_detect_change(slot->mmc,
2634 		msecs_to_jiffies(host->pdata->detect_delay_ms));
2635 }
2636 
2637 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2638 {
2639 	struct dw_mci *host = dev_id;
2640 	u32 pending;
2641 	struct dw_mci_slot *slot = host->slot;
2642 	unsigned long irqflags;
2643 
2644 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2645 
2646 	if (pending) {
2647 		/* Check volt switch first, since it can look like an error */
2648 		if ((host->state == STATE_SENDING_CMD11) &&
2649 		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2650 			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2651 			pending &= ~SDMMC_INT_VOLT_SWITCH;
2652 
2653 			/*
2654 			 * Hold the lock; we know cmd11_timer can't be kicked
2655 			 * off after the lock is released, so safe to delete.
2656 			 */
2657 			spin_lock_irqsave(&host->irq_lock, irqflags);
2658 			dw_mci_cmd_interrupt(host, pending);
2659 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2660 
2661 			del_timer(&host->cmd11_timer);
2662 		}
2663 
2664 		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2665 			spin_lock_irqsave(&host->irq_lock, irqflags);
2666 
2667 			del_timer(&host->cto_timer);
2668 			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2669 			host->cmd_status = pending;
2670 			smp_wmb(); /* drain writebuffer */
2671 			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2672 
2673 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2674 		}
2675 
2676 		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2677 			/* if there is an error report DATA_ERROR */
2678 			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2679 			host->data_status = pending;
2680 			smp_wmb(); /* drain writebuffer */
2681 			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2682 			tasklet_schedule(&host->tasklet);
2683 		}
2684 
2685 		if (pending & SDMMC_INT_DATA_OVER) {
2686 			spin_lock_irqsave(&host->irq_lock, irqflags);
2687 
2688 			del_timer(&host->dto_timer);
2689 
2690 			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2691 			if (!host->data_status)
2692 				host->data_status = pending;
2693 			smp_wmb(); /* drain writebuffer */
2694 			if (host->dir_status == DW_MCI_RECV_STATUS) {
2695 				if (host->sg != NULL)
2696 					dw_mci_read_data_pio(host, true);
2697 			}
2698 			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2699 			tasklet_schedule(&host->tasklet);
2700 
2701 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2702 		}
2703 
2704 		if (pending & SDMMC_INT_RXDR) {
2705 			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2706 			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2707 				dw_mci_read_data_pio(host, false);
2708 		}
2709 
2710 		if (pending & SDMMC_INT_TXDR) {
2711 			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2712 			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2713 				dw_mci_write_data_pio(host);
2714 		}
2715 
2716 		if (pending & SDMMC_INT_CMD_DONE) {
2717 			spin_lock_irqsave(&host->irq_lock, irqflags);
2718 
2719 			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2720 			dw_mci_cmd_interrupt(host, pending);
2721 
2722 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2723 		}
2724 
2725 		if (pending & SDMMC_INT_CD) {
2726 			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2727 			dw_mci_handle_cd(host);
2728 		}
2729 
2730 		if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2731 			mci_writel(host, RINTSTS,
2732 				   SDMMC_INT_SDIO(slot->sdio_id));
2733 			__dw_mci_enable_sdio_irq(slot, 0);
2734 			sdio_signal_irq(slot->mmc);
2735 		}
2736 
2737 	}
2738 
2739 	if (host->use_dma != TRANS_MODE_IDMAC)
2740 		return IRQ_HANDLED;
2741 
2742 	/* Handle IDMA interrupts */
2743 	if (host->dma_64bit_address == 1) {
2744 		pending = mci_readl(host, IDSTS64);
2745 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2746 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2747 							SDMMC_IDMAC_INT_RI);
2748 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2749 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2750 				host->dma_ops->complete((void *)host);
2751 		}
2752 	} else {
2753 		pending = mci_readl(host, IDSTS);
2754 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2755 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2756 							SDMMC_IDMAC_INT_RI);
2757 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2758 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2759 				host->dma_ops->complete((void *)host);
2760 		}
2761 	}
2762 
2763 	return IRQ_HANDLED;
2764 }
2765 
2766 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2767 {
2768 	struct dw_mci *host = slot->host;
2769 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2770 	struct mmc_host *mmc = slot->mmc;
2771 	int ctrl_id;
2772 
2773 	if (host->pdata->caps)
2774 		mmc->caps = host->pdata->caps;
2775 
2776 	/*
2777 	 * Support MMC_CAP_ERASE by default.
2778 	 * It needs to use trim/discard/erase commands.
2779 	 */
2780 	mmc->caps |= MMC_CAP_ERASE;
2781 
2782 	if (host->pdata->pm_caps)
2783 		mmc->pm_caps = host->pdata->pm_caps;
2784 
2785 	if (host->dev->of_node) {
2786 		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2787 		if (ctrl_id < 0)
2788 			ctrl_id = 0;
2789 	} else {
2790 		ctrl_id = to_platform_device(host->dev)->id;
2791 	}
2792 
2793 	if (drv_data && drv_data->caps) {
2794 		if (ctrl_id >= drv_data->num_caps) {
2795 			dev_err(host->dev, "invalid controller id %d\n",
2796 				ctrl_id);
2797 			return -EINVAL;
2798 		}
2799 		mmc->caps |= drv_data->caps[ctrl_id];
2800 	}
2801 
2802 	if (host->pdata->caps2)
2803 		mmc->caps2 = host->pdata->caps2;
2804 
2805 	mmc->f_min = DW_MCI_FREQ_MIN;
2806 	if (!mmc->f_max)
2807 		mmc->f_max = DW_MCI_FREQ_MAX;
2808 
2809 	/* Process SDIO IRQs through the sdio_irq_work. */
2810 	if (mmc->caps & MMC_CAP_SDIO_IRQ)
2811 		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2812 
2813 	return 0;
2814 }
2815 
2816 static int dw_mci_init_slot(struct dw_mci *host)
2817 {
2818 	struct mmc_host *mmc;
2819 	struct dw_mci_slot *slot;
2820 	int ret;
2821 
2822 	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2823 	if (!mmc)
2824 		return -ENOMEM;
2825 
2826 	slot = mmc_priv(mmc);
2827 	slot->id = 0;
2828 	slot->sdio_id = host->sdio_id0 + slot->id;
2829 	slot->mmc = mmc;
2830 	slot->host = host;
2831 	host->slot = slot;
2832 
2833 	mmc->ops = &dw_mci_ops;
2834 
2835 	/*if there are external regulators, get them*/
2836 	ret = mmc_regulator_get_supply(mmc);
2837 	if (ret)
2838 		goto err_host_allocated;
2839 
2840 	if (!mmc->ocr_avail)
2841 		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2842 
2843 	ret = mmc_of_parse(mmc);
2844 	if (ret)
2845 		goto err_host_allocated;
2846 
2847 	ret = dw_mci_init_slot_caps(slot);
2848 	if (ret)
2849 		goto err_host_allocated;
2850 
2851 	/* Useful defaults if platform data is unset. */
2852 	if (host->use_dma == TRANS_MODE_IDMAC) {
2853 		mmc->max_segs = host->ring_size;
2854 		mmc->max_blk_size = 65535;
2855 		mmc->max_seg_size = 0x1000;
2856 		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2857 		mmc->max_blk_count = mmc->max_req_size / 512;
2858 	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2859 		mmc->max_segs = 64;
2860 		mmc->max_blk_size = 65535;
2861 		mmc->max_blk_count = 65535;
2862 		mmc->max_req_size =
2863 				mmc->max_blk_size * mmc->max_blk_count;
2864 		mmc->max_seg_size = mmc->max_req_size;
2865 	} else {
2866 		/* TRANS_MODE_PIO */
2867 		mmc->max_segs = 64;
2868 		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2869 		mmc->max_blk_count = 512;
2870 		mmc->max_req_size = mmc->max_blk_size *
2871 				    mmc->max_blk_count;
2872 		mmc->max_seg_size = mmc->max_req_size;
2873 	}
2874 
2875 	dw_mci_get_cd(mmc);
2876 
2877 	ret = mmc_add_host(mmc);
2878 	if (ret)
2879 		goto err_host_allocated;
2880 
2881 #if defined(CONFIG_DEBUG_FS)
2882 	dw_mci_init_debugfs(slot);
2883 #endif
2884 
2885 	return 0;
2886 
2887 err_host_allocated:
2888 	mmc_free_host(mmc);
2889 	return ret;
2890 }
2891 
2892 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2893 {
2894 	/* Debugfs stuff is cleaned up by mmc core */
2895 	mmc_remove_host(slot->mmc);
2896 	slot->host->slot = NULL;
2897 	mmc_free_host(slot->mmc);
2898 }
2899 
2900 static void dw_mci_init_dma(struct dw_mci *host)
2901 {
2902 	int addr_config;
2903 	struct device *dev = host->dev;
2904 
2905 	/*
2906 	* Check tansfer mode from HCON[17:16]
2907 	* Clear the ambiguous description of dw_mmc databook:
2908 	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
2909 	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2910 	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2911 	* 2b'11: Non DW DMA Interface -> pio only
2912 	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
2913 	* simpler request/acknowledge handshake mechanism and both of them
2914 	* are regarded as external dma master for dw_mmc.
2915 	*/
2916 	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2917 	if (host->use_dma == DMA_INTERFACE_IDMA) {
2918 		host->use_dma = TRANS_MODE_IDMAC;
2919 	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2920 		   host->use_dma == DMA_INTERFACE_GDMA) {
2921 		host->use_dma = TRANS_MODE_EDMAC;
2922 	} else {
2923 		goto no_dma;
2924 	}
2925 
2926 	/* Determine which DMA interface to use */
2927 	if (host->use_dma == TRANS_MODE_IDMAC) {
2928 		/*
2929 		* Check ADDR_CONFIG bit in HCON to find
2930 		* IDMAC address bus width
2931 		*/
2932 		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2933 
2934 		if (addr_config == 1) {
2935 			/* host supports IDMAC in 64-bit address mode */
2936 			host->dma_64bit_address = 1;
2937 			dev_info(host->dev,
2938 				 "IDMAC supports 64-bit address mode.\n");
2939 			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2940 				dma_set_coherent_mask(host->dev,
2941 						      DMA_BIT_MASK(64));
2942 		} else {
2943 			/* host supports IDMAC in 32-bit address mode */
2944 			host->dma_64bit_address = 0;
2945 			dev_info(host->dev,
2946 				 "IDMAC supports 32-bit address mode.\n");
2947 		}
2948 
2949 		/* Alloc memory for sg translation */
2950 		host->sg_cpu = dmam_alloc_coherent(host->dev,
2951 						   DESC_RING_BUF_SZ,
2952 						   &host->sg_dma, GFP_KERNEL);
2953 		if (!host->sg_cpu) {
2954 			dev_err(host->dev,
2955 				"%s: could not alloc DMA memory\n",
2956 				__func__);
2957 			goto no_dma;
2958 		}
2959 
2960 		host->dma_ops = &dw_mci_idmac_ops;
2961 		dev_info(host->dev, "Using internal DMA controller.\n");
2962 	} else {
2963 		/* TRANS_MODE_EDMAC: check dma bindings again */
2964 		if ((device_property_read_string_array(dev, "dma-names",
2965 						       NULL, 0) < 0) ||
2966 		    !device_property_present(dev, "dmas")) {
2967 			goto no_dma;
2968 		}
2969 		host->dma_ops = &dw_mci_edmac_ops;
2970 		dev_info(host->dev, "Using external DMA controller.\n");
2971 	}
2972 
2973 	if (host->dma_ops->init && host->dma_ops->start &&
2974 	    host->dma_ops->stop && host->dma_ops->cleanup) {
2975 		if (host->dma_ops->init(host)) {
2976 			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2977 				__func__);
2978 			goto no_dma;
2979 		}
2980 	} else {
2981 		dev_err(host->dev, "DMA initialization not found.\n");
2982 		goto no_dma;
2983 	}
2984 
2985 	return;
2986 
2987 no_dma:
2988 	dev_info(host->dev, "Using PIO mode.\n");
2989 	host->use_dma = TRANS_MODE_PIO;
2990 }
2991 
2992 static void dw_mci_cmd11_timer(struct timer_list *t)
2993 {
2994 	struct dw_mci *host = from_timer(host, t, cmd11_timer);
2995 
2996 	if (host->state != STATE_SENDING_CMD11) {
2997 		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2998 		return;
2999 	}
3000 
3001 	host->cmd_status = SDMMC_INT_RTO;
3002 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3003 	tasklet_schedule(&host->tasklet);
3004 }
3005 
3006 static void dw_mci_cto_timer(struct timer_list *t)
3007 {
3008 	struct dw_mci *host = from_timer(host, t, cto_timer);
3009 	unsigned long irqflags;
3010 	u32 pending;
3011 
3012 	spin_lock_irqsave(&host->irq_lock, irqflags);
3013 
3014 	/*
3015 	 * If somehow we have very bad interrupt latency it's remotely possible
3016 	 * that the timer could fire while the interrupt is still pending or
3017 	 * while the interrupt is midway through running.  Let's be paranoid
3018 	 * and detect those two cases.  Note that this is paranoia is somewhat
3019 	 * justified because in this function we don't actually cancel the
3020 	 * pending command in the controller--we just assume it will never come.
3021 	 */
3022 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3023 	if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
3024 		/* The interrupt should fire; no need to act but we can warn */
3025 		dev_warn(host->dev, "Unexpected interrupt latency\n");
3026 		goto exit;
3027 	}
3028 	if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3029 		/* Presumably interrupt handler couldn't delete the timer */
3030 		dev_warn(host->dev, "CTO timeout when already completed\n");
3031 		goto exit;
3032 	}
3033 
3034 	/*
3035 	 * Continued paranoia to make sure we're in the state we expect.
3036 	 * This paranoia isn't really justified but it seems good to be safe.
3037 	 */
3038 	switch (host->state) {
3039 	case STATE_SENDING_CMD11:
3040 	case STATE_SENDING_CMD:
3041 	case STATE_SENDING_STOP:
3042 		/*
3043 		 * If CMD_DONE interrupt does NOT come in sending command
3044 		 * state, we should notify the driver to terminate current
3045 		 * transfer and report a command timeout to the core.
3046 		 */
3047 		host->cmd_status = SDMMC_INT_RTO;
3048 		set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3049 		tasklet_schedule(&host->tasklet);
3050 		break;
3051 	default:
3052 		dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3053 			 host->state);
3054 		break;
3055 	}
3056 
3057 exit:
3058 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3059 }
3060 
3061 static void dw_mci_dto_timer(struct timer_list *t)
3062 {
3063 	struct dw_mci *host = from_timer(host, t, dto_timer);
3064 	unsigned long irqflags;
3065 	u32 pending;
3066 
3067 	spin_lock_irqsave(&host->irq_lock, irqflags);
3068 
3069 	/*
3070 	 * The DTO timer is much longer than the CTO timer, so it's even less
3071 	 * likely that we'll these cases, but it pays to be paranoid.
3072 	 */
3073 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3074 	if (pending & SDMMC_INT_DATA_OVER) {
3075 		/* The interrupt should fire; no need to act but we can warn */
3076 		dev_warn(host->dev, "Unexpected data interrupt latency\n");
3077 		goto exit;
3078 	}
3079 	if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3080 		/* Presumably interrupt handler couldn't delete the timer */
3081 		dev_warn(host->dev, "DTO timeout when already completed\n");
3082 		goto exit;
3083 	}
3084 
3085 	/*
3086 	 * Continued paranoia to make sure we're in the state we expect.
3087 	 * This paranoia isn't really justified but it seems good to be safe.
3088 	 */
3089 	switch (host->state) {
3090 	case STATE_SENDING_DATA:
3091 	case STATE_DATA_BUSY:
3092 		/*
3093 		 * If DTO interrupt does NOT come in sending data state,
3094 		 * we should notify the driver to terminate current transfer
3095 		 * and report a data timeout to the core.
3096 		 */
3097 		host->data_status = SDMMC_INT_DRTO;
3098 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
3099 		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3100 		tasklet_schedule(&host->tasklet);
3101 		break;
3102 	default:
3103 		dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3104 			 host->state);
3105 		break;
3106 	}
3107 
3108 exit:
3109 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3110 }
3111 
3112 #ifdef CONFIG_OF
3113 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3114 {
3115 	struct dw_mci_board *pdata;
3116 	struct device *dev = host->dev;
3117 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3118 	int ret;
3119 	u32 clock_frequency;
3120 
3121 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3122 	if (!pdata)
3123 		return ERR_PTR(-ENOMEM);
3124 
3125 	/* find reset controller when exist */
3126 	pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3127 	if (IS_ERR(pdata->rstc)) {
3128 		if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
3129 			return ERR_PTR(-EPROBE_DEFER);
3130 	}
3131 
3132 	if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3133 		dev_info(dev,
3134 			 "fifo-depth property not found, using value of FIFOTH register as default\n");
3135 
3136 	device_property_read_u32(dev, "card-detect-delay",
3137 				 &pdata->detect_delay_ms);
3138 
3139 	device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3140 
3141 	if (device_property_present(dev, "fifo-watermark-aligned"))
3142 		host->wm_aligned = true;
3143 
3144 	if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3145 		pdata->bus_hz = clock_frequency;
3146 
3147 	if (drv_data && drv_data->parse_dt) {
3148 		ret = drv_data->parse_dt(host);
3149 		if (ret)
3150 			return ERR_PTR(ret);
3151 	}
3152 
3153 	return pdata;
3154 }
3155 
3156 #else /* CONFIG_OF */
3157 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3158 {
3159 	return ERR_PTR(-EINVAL);
3160 }
3161 #endif /* CONFIG_OF */
3162 
3163 static void dw_mci_enable_cd(struct dw_mci *host)
3164 {
3165 	unsigned long irqflags;
3166 	u32 temp;
3167 
3168 	/*
3169 	 * No need for CD if all slots have a non-error GPIO
3170 	 * as well as broken card detection is found.
3171 	 */
3172 	if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3173 		return;
3174 
3175 	if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3176 		spin_lock_irqsave(&host->irq_lock, irqflags);
3177 		temp = mci_readl(host, INTMASK);
3178 		temp  |= SDMMC_INT_CD;
3179 		mci_writel(host, INTMASK, temp);
3180 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
3181 	}
3182 }
3183 
3184 int dw_mci_probe(struct dw_mci *host)
3185 {
3186 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3187 	int width, i, ret = 0;
3188 	u32 fifo_size;
3189 
3190 	if (!host->pdata) {
3191 		host->pdata = dw_mci_parse_dt(host);
3192 		if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3193 			return -EPROBE_DEFER;
3194 		} else if (IS_ERR(host->pdata)) {
3195 			dev_err(host->dev, "platform data not available\n");
3196 			return -EINVAL;
3197 		}
3198 	}
3199 
3200 	host->biu_clk = devm_clk_get(host->dev, "biu");
3201 	if (IS_ERR(host->biu_clk)) {
3202 		dev_dbg(host->dev, "biu clock not available\n");
3203 	} else {
3204 		ret = clk_prepare_enable(host->biu_clk);
3205 		if (ret) {
3206 			dev_err(host->dev, "failed to enable biu clock\n");
3207 			return ret;
3208 		}
3209 	}
3210 
3211 	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3212 	if (IS_ERR(host->ciu_clk)) {
3213 		dev_dbg(host->dev, "ciu clock not available\n");
3214 		host->bus_hz = host->pdata->bus_hz;
3215 	} else {
3216 		ret = clk_prepare_enable(host->ciu_clk);
3217 		if (ret) {
3218 			dev_err(host->dev, "failed to enable ciu clock\n");
3219 			goto err_clk_biu;
3220 		}
3221 
3222 		if (host->pdata->bus_hz) {
3223 			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3224 			if (ret)
3225 				dev_warn(host->dev,
3226 					 "Unable to set bus rate to %uHz\n",
3227 					 host->pdata->bus_hz);
3228 		}
3229 		host->bus_hz = clk_get_rate(host->ciu_clk);
3230 	}
3231 
3232 	if (!host->bus_hz) {
3233 		dev_err(host->dev,
3234 			"Platform data must supply bus speed\n");
3235 		ret = -ENODEV;
3236 		goto err_clk_ciu;
3237 	}
3238 
3239 	if (!IS_ERR(host->pdata->rstc)) {
3240 		reset_control_assert(host->pdata->rstc);
3241 		usleep_range(10, 50);
3242 		reset_control_deassert(host->pdata->rstc);
3243 	}
3244 
3245 	if (drv_data && drv_data->init) {
3246 		ret = drv_data->init(host);
3247 		if (ret) {
3248 			dev_err(host->dev,
3249 				"implementation specific init failed\n");
3250 			goto err_clk_ciu;
3251 		}
3252 	}
3253 
3254 	timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3255 	timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3256 	timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3257 
3258 	spin_lock_init(&host->lock);
3259 	spin_lock_init(&host->irq_lock);
3260 	INIT_LIST_HEAD(&host->queue);
3261 
3262 	/*
3263 	 * Get the host data width - this assumes that HCON has been set with
3264 	 * the correct values.
3265 	 */
3266 	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3267 	if (!i) {
3268 		host->push_data = dw_mci_push_data16;
3269 		host->pull_data = dw_mci_pull_data16;
3270 		width = 16;
3271 		host->data_shift = 1;
3272 	} else if (i == 2) {
3273 		host->push_data = dw_mci_push_data64;
3274 		host->pull_data = dw_mci_pull_data64;
3275 		width = 64;
3276 		host->data_shift = 3;
3277 	} else {
3278 		/* Check for a reserved value, and warn if it is */
3279 		WARN((i != 1),
3280 		     "HCON reports a reserved host data width!\n"
3281 		     "Defaulting to 32-bit access.\n");
3282 		host->push_data = dw_mci_push_data32;
3283 		host->pull_data = dw_mci_pull_data32;
3284 		width = 32;
3285 		host->data_shift = 2;
3286 	}
3287 
3288 	/* Reset all blocks */
3289 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3290 		ret = -ENODEV;
3291 		goto err_clk_ciu;
3292 	}
3293 
3294 	host->dma_ops = host->pdata->dma_ops;
3295 	dw_mci_init_dma(host);
3296 
3297 	/* Clear the interrupts for the host controller */
3298 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3299 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3300 
3301 	/* Put in max timeout */
3302 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3303 
3304 	/*
3305 	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3306 	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3307 	 */
3308 	if (!host->pdata->fifo_depth) {
3309 		/*
3310 		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3311 		 * have been overwritten by the bootloader, just like we're
3312 		 * about to do, so if you know the value for your hardware, you
3313 		 * should put it in the platform data.
3314 		 */
3315 		fifo_size = mci_readl(host, FIFOTH);
3316 		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3317 	} else {
3318 		fifo_size = host->pdata->fifo_depth;
3319 	}
3320 	host->fifo_depth = fifo_size;
3321 	host->fifoth_val =
3322 		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3323 	mci_writel(host, FIFOTH, host->fifoth_val);
3324 
3325 	/* disable clock to CIU */
3326 	mci_writel(host, CLKENA, 0);
3327 	mci_writel(host, CLKSRC, 0);
3328 
3329 	/*
3330 	 * In 2.40a spec, Data offset is changed.
3331 	 * Need to check the version-id and set data-offset for DATA register.
3332 	 */
3333 	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3334 	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3335 
3336 	if (host->data_addr_override)
3337 		host->fifo_reg = host->regs + host->data_addr_override;
3338 	else if (host->verid < DW_MMC_240A)
3339 		host->fifo_reg = host->regs + DATA_OFFSET;
3340 	else
3341 		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3342 
3343 	tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3344 	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3345 			       host->irq_flags, "dw-mci", host);
3346 	if (ret)
3347 		goto err_dmaunmap;
3348 
3349 	/*
3350 	 * Enable interrupts for command done, data over, data empty,
3351 	 * receive ready and error such as transmit, receive timeout, crc error
3352 	 */
3353 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3354 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3355 		   DW_MCI_ERROR_FLAGS);
3356 	/* Enable mci interrupt */
3357 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3358 
3359 	dev_info(host->dev,
3360 		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3361 		 host->irq, width, fifo_size);
3362 
3363 	/* We need at least one slot to succeed */
3364 	ret = dw_mci_init_slot(host);
3365 	if (ret) {
3366 		dev_dbg(host->dev, "slot %d init failed\n", i);
3367 		goto err_dmaunmap;
3368 	}
3369 
3370 	/* Now that slots are all setup, we can enable card detect */
3371 	dw_mci_enable_cd(host);
3372 
3373 	return 0;
3374 
3375 err_dmaunmap:
3376 	if (host->use_dma && host->dma_ops->exit)
3377 		host->dma_ops->exit(host);
3378 
3379 	if (!IS_ERR(host->pdata->rstc))
3380 		reset_control_assert(host->pdata->rstc);
3381 
3382 err_clk_ciu:
3383 	clk_disable_unprepare(host->ciu_clk);
3384 
3385 err_clk_biu:
3386 	clk_disable_unprepare(host->biu_clk);
3387 
3388 	return ret;
3389 }
3390 EXPORT_SYMBOL(dw_mci_probe);
3391 
3392 void dw_mci_remove(struct dw_mci *host)
3393 {
3394 	dev_dbg(host->dev, "remove slot\n");
3395 	if (host->slot)
3396 		dw_mci_cleanup_slot(host->slot);
3397 
3398 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3399 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3400 
3401 	/* disable clock to CIU */
3402 	mci_writel(host, CLKENA, 0);
3403 	mci_writel(host, CLKSRC, 0);
3404 
3405 	if (host->use_dma && host->dma_ops->exit)
3406 		host->dma_ops->exit(host);
3407 
3408 	if (!IS_ERR(host->pdata->rstc))
3409 		reset_control_assert(host->pdata->rstc);
3410 
3411 	clk_disable_unprepare(host->ciu_clk);
3412 	clk_disable_unprepare(host->biu_clk);
3413 }
3414 EXPORT_SYMBOL(dw_mci_remove);
3415 
3416 
3417 
3418 #ifdef CONFIG_PM
3419 int dw_mci_runtime_suspend(struct device *dev)
3420 {
3421 	struct dw_mci *host = dev_get_drvdata(dev);
3422 
3423 	if (host->use_dma && host->dma_ops->exit)
3424 		host->dma_ops->exit(host);
3425 
3426 	clk_disable_unprepare(host->ciu_clk);
3427 
3428 	if (host->slot &&
3429 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3430 	     !mmc_card_is_removable(host->slot->mmc)))
3431 		clk_disable_unprepare(host->biu_clk);
3432 
3433 	return 0;
3434 }
3435 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3436 
3437 int dw_mci_runtime_resume(struct device *dev)
3438 {
3439 	int ret = 0;
3440 	struct dw_mci *host = dev_get_drvdata(dev);
3441 
3442 	if (host->slot &&
3443 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3444 	     !mmc_card_is_removable(host->slot->mmc))) {
3445 		ret = clk_prepare_enable(host->biu_clk);
3446 		if (ret)
3447 			return ret;
3448 	}
3449 
3450 	ret = clk_prepare_enable(host->ciu_clk);
3451 	if (ret)
3452 		goto err;
3453 
3454 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3455 		clk_disable_unprepare(host->ciu_clk);
3456 		ret = -ENODEV;
3457 		goto err;
3458 	}
3459 
3460 	if (host->use_dma && host->dma_ops->init)
3461 		host->dma_ops->init(host);
3462 
3463 	/*
3464 	 * Restore the initial value at FIFOTH register
3465 	 * And Invalidate the prev_blksz with zero
3466 	 */
3467 	 mci_writel(host, FIFOTH, host->fifoth_val);
3468 	 host->prev_blksz = 0;
3469 
3470 	/* Put in max timeout */
3471 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3472 
3473 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3474 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3475 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3476 		   DW_MCI_ERROR_FLAGS);
3477 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3478 
3479 
3480 	if (host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3481 		dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3482 
3483 	/* Force setup bus to guarantee available clock output */
3484 	dw_mci_setup_bus(host->slot, true);
3485 
3486 	/* Now that slots are all setup, we can enable card detect */
3487 	dw_mci_enable_cd(host);
3488 
3489 	return 0;
3490 
3491 err:
3492 	if (host->slot &&
3493 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3494 	     !mmc_card_is_removable(host->slot->mmc)))
3495 		clk_disable_unprepare(host->biu_clk);
3496 
3497 	return ret;
3498 }
3499 EXPORT_SYMBOL(dw_mci_runtime_resume);
3500 #endif /* CONFIG_PM */
3501 
3502 static int __init dw_mci_init(void)
3503 {
3504 	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3505 	return 0;
3506 }
3507 
3508 static void __exit dw_mci_exit(void)
3509 {
3510 }
3511 
3512 module_init(dw_mci_init);
3513 module_exit(dw_mci_exit);
3514 
3515 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3516 MODULE_AUTHOR("NXP Semiconductor VietNam");
3517 MODULE_AUTHOR("Imagination Technologies Ltd");
3518 MODULE_LICENSE("GPL v2");
3519