xref: /openbmc/linux/drivers/mmc/host/dw_mmc.c (revision 20a2742e)
1 /*
2  * Synopsys DesignWare Multimedia Card Interface driver
3  *  (Based on NXP driver for lpc 31xx)
4  *
5  * Copyright (C) 2009 NXP Semiconductors
6  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/iopoll.h>
23 #include <linux/ioport.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/seq_file.h>
28 #include <linux/slab.h>
29 #include <linux/stat.h>
30 #include <linux/delay.h>
31 #include <linux/irq.h>
32 #include <linux/mmc/card.h>
33 #include <linux/mmc/host.h>
34 #include <linux/mmc/mmc.h>
35 #include <linux/mmc/sd.h>
36 #include <linux/mmc/sdio.h>
37 #include <linux/bitops.h>
38 #include <linux/regulator/consumer.h>
39 #include <linux/of.h>
40 #include <linux/of_gpio.h>
41 #include <linux/mmc/slot-gpio.h>
42 
43 #include "dw_mmc.h"
44 
45 /* Common flag combinations */
46 #define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
47 				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
48 				 SDMMC_INT_EBE | SDMMC_INT_HLE)
49 #define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
50 				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
51 #define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
52 				 DW_MCI_CMD_ERROR_FLAGS)
53 #define DW_MCI_SEND_STATUS	1
54 #define DW_MCI_RECV_STATUS	2
55 #define DW_MCI_DMA_THRESHOLD	16
56 
57 #define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
58 #define DW_MCI_FREQ_MIN	100000		/* unit: HZ */
59 
60 #define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
61 				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
62 				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
63 				 SDMMC_IDMAC_INT_TI)
64 
65 #define DESC_RING_BUF_SZ	PAGE_SIZE
66 
67 struct idmac_desc_64addr {
68 	u32		des0;	/* Control Descriptor */
69 #define IDMAC_OWN_CLR64(x) \
70 	!((x) & cpu_to_le32(IDMAC_DES0_OWN))
71 
72 	u32		des1;	/* Reserved */
73 
74 	u32		des2;	/*Buffer sizes */
75 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
76 	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
77 	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
78 
79 	u32		des3;	/* Reserved */
80 
81 	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
82 	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
83 
84 	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
85 	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
86 };
87 
88 struct idmac_desc {
89 	__le32		des0;	/* Control Descriptor */
90 #define IDMAC_DES0_DIC	BIT(1)
91 #define IDMAC_DES0_LD	BIT(2)
92 #define IDMAC_DES0_FD	BIT(3)
93 #define IDMAC_DES0_CH	BIT(4)
94 #define IDMAC_DES0_ER	BIT(5)
95 #define IDMAC_DES0_CES	BIT(30)
96 #define IDMAC_DES0_OWN	BIT(31)
97 
98 	__le32		des1;	/* Buffer sizes */
99 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
100 	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
101 
102 	__le32		des2;	/* buffer 1 physical address */
103 
104 	__le32		des3;	/* buffer 2 physical address */
105 };
106 
107 /* Each descriptor can transfer up to 4KB of data in chained mode */
108 #define DW_MCI_DESC_DATA_LENGTH	0x1000
109 
110 #if defined(CONFIG_DEBUG_FS)
111 static int dw_mci_req_show(struct seq_file *s, void *v)
112 {
113 	struct dw_mci_slot *slot = s->private;
114 	struct mmc_request *mrq;
115 	struct mmc_command *cmd;
116 	struct mmc_command *stop;
117 	struct mmc_data	*data;
118 
119 	/* Make sure we get a consistent snapshot */
120 	spin_lock_bh(&slot->host->lock);
121 	mrq = slot->mrq;
122 
123 	if (mrq) {
124 		cmd = mrq->cmd;
125 		data = mrq->data;
126 		stop = mrq->stop;
127 
128 		if (cmd)
129 			seq_printf(s,
130 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
131 				   cmd->opcode, cmd->arg, cmd->flags,
132 				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
133 				   cmd->resp[2], cmd->error);
134 		if (data)
135 			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
136 				   data->bytes_xfered, data->blocks,
137 				   data->blksz, data->flags, data->error);
138 		if (stop)
139 			seq_printf(s,
140 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
141 				   stop->opcode, stop->arg, stop->flags,
142 				   stop->resp[0], stop->resp[1], stop->resp[2],
143 				   stop->resp[2], stop->error);
144 	}
145 
146 	spin_unlock_bh(&slot->host->lock);
147 
148 	return 0;
149 }
150 
151 static int dw_mci_req_open(struct inode *inode, struct file *file)
152 {
153 	return single_open(file, dw_mci_req_show, inode->i_private);
154 }
155 
156 static const struct file_operations dw_mci_req_fops = {
157 	.owner		= THIS_MODULE,
158 	.open		= dw_mci_req_open,
159 	.read		= seq_read,
160 	.llseek		= seq_lseek,
161 	.release	= single_release,
162 };
163 
164 static int dw_mci_regs_show(struct seq_file *s, void *v)
165 {
166 	struct dw_mci *host = s->private;
167 
168 	seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
169 	seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
170 	seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
171 	seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
172 	seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
173 	seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
174 
175 	return 0;
176 }
177 
178 static int dw_mci_regs_open(struct inode *inode, struct file *file)
179 {
180 	return single_open(file, dw_mci_regs_show, inode->i_private);
181 }
182 
183 static const struct file_operations dw_mci_regs_fops = {
184 	.owner		= THIS_MODULE,
185 	.open		= dw_mci_regs_open,
186 	.read		= seq_read,
187 	.llseek		= seq_lseek,
188 	.release	= single_release,
189 };
190 
191 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
192 {
193 	struct mmc_host	*mmc = slot->mmc;
194 	struct dw_mci *host = slot->host;
195 	struct dentry *root;
196 	struct dentry *node;
197 
198 	root = mmc->debugfs_root;
199 	if (!root)
200 		return;
201 
202 	node = debugfs_create_file("regs", S_IRUSR, root, host,
203 				   &dw_mci_regs_fops);
204 	if (!node)
205 		goto err;
206 
207 	node = debugfs_create_file("req", S_IRUSR, root, slot,
208 				   &dw_mci_req_fops);
209 	if (!node)
210 		goto err;
211 
212 	node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
213 	if (!node)
214 		goto err;
215 
216 	node = debugfs_create_x32("pending_events", S_IRUSR, root,
217 				  (u32 *)&host->pending_events);
218 	if (!node)
219 		goto err;
220 
221 	node = debugfs_create_x32("completed_events", S_IRUSR, root,
222 				  (u32 *)&host->completed_events);
223 	if (!node)
224 		goto err;
225 
226 	return;
227 
228 err:
229 	dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
230 }
231 #endif /* defined(CONFIG_DEBUG_FS) */
232 
233 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
234 {
235 	u32 ctrl;
236 
237 	ctrl = mci_readl(host, CTRL);
238 	ctrl |= reset;
239 	mci_writel(host, CTRL, ctrl);
240 
241 	/* wait till resets clear */
242 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
243 				      !(ctrl & reset),
244 				      1, 500 * USEC_PER_MSEC)) {
245 		dev_err(host->dev,
246 			"Timeout resetting block (ctrl reset %#x)\n",
247 			ctrl & reset);
248 		return false;
249 	}
250 
251 	return true;
252 }
253 
254 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
255 {
256 	u32 status;
257 
258 	/*
259 	 * Databook says that before issuing a new data transfer command
260 	 * we need to check to see if the card is busy.  Data transfer commands
261 	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
262 	 *
263 	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
264 	 * expected.
265 	 */
266 	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
267 	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
268 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
269 					      status,
270 					      !(status & SDMMC_STATUS_BUSY),
271 					      10, 500 * USEC_PER_MSEC))
272 			dev_err(host->dev, "Busy; trying anyway\n");
273 	}
274 }
275 
276 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
277 {
278 	struct dw_mci *host = slot->host;
279 	unsigned int cmd_status = 0;
280 
281 	mci_writel(host, CMDARG, arg);
282 	wmb(); /* drain writebuffer */
283 	dw_mci_wait_while_busy(host, cmd);
284 	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
285 
286 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
287 				      !(cmd_status & SDMMC_CMD_START),
288 				      1, 500 * USEC_PER_MSEC))
289 		dev_err(&slot->mmc->class_dev,
290 			"Timeout sending command (cmd %#x arg %#x status %#x)\n",
291 			cmd, arg, cmd_status);
292 }
293 
294 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
295 {
296 	struct dw_mci_slot *slot = mmc_priv(mmc);
297 	struct dw_mci *host = slot->host;
298 	u32 cmdr;
299 
300 	cmd->error = -EINPROGRESS;
301 	cmdr = cmd->opcode;
302 
303 	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
304 	    cmd->opcode == MMC_GO_IDLE_STATE ||
305 	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
306 	    (cmd->opcode == SD_IO_RW_DIRECT &&
307 	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
308 		cmdr |= SDMMC_CMD_STOP;
309 	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
310 		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
311 
312 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
313 		u32 clk_en_a;
314 
315 		/* Special bit makes CMD11 not die */
316 		cmdr |= SDMMC_CMD_VOLT_SWITCH;
317 
318 		/* Change state to continue to handle CMD11 weirdness */
319 		WARN_ON(slot->host->state != STATE_SENDING_CMD);
320 		slot->host->state = STATE_SENDING_CMD11;
321 
322 		/*
323 		 * We need to disable low power mode (automatic clock stop)
324 		 * while doing voltage switch so we don't confuse the card,
325 		 * since stopping the clock is a specific part of the UHS
326 		 * voltage change dance.
327 		 *
328 		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
329 		 * unconditionally turned back on in dw_mci_setup_bus() if it's
330 		 * ever called with a non-zero clock.  That shouldn't happen
331 		 * until the voltage change is all done.
332 		 */
333 		clk_en_a = mci_readl(host, CLKENA);
334 		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
335 		mci_writel(host, CLKENA, clk_en_a);
336 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
337 			     SDMMC_CMD_PRV_DAT_WAIT, 0);
338 	}
339 
340 	if (cmd->flags & MMC_RSP_PRESENT) {
341 		/* We expect a response, so set this bit */
342 		cmdr |= SDMMC_CMD_RESP_EXP;
343 		if (cmd->flags & MMC_RSP_136)
344 			cmdr |= SDMMC_CMD_RESP_LONG;
345 	}
346 
347 	if (cmd->flags & MMC_RSP_CRC)
348 		cmdr |= SDMMC_CMD_RESP_CRC;
349 
350 	if (cmd->data) {
351 		cmdr |= SDMMC_CMD_DAT_EXP;
352 		if (cmd->data->flags & MMC_DATA_WRITE)
353 			cmdr |= SDMMC_CMD_DAT_WR;
354 	}
355 
356 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
357 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
358 
359 	return cmdr;
360 }
361 
362 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
363 {
364 	struct mmc_command *stop;
365 	u32 cmdr;
366 
367 	if (!cmd->data)
368 		return 0;
369 
370 	stop = &host->stop_abort;
371 	cmdr = cmd->opcode;
372 	memset(stop, 0, sizeof(struct mmc_command));
373 
374 	if (cmdr == MMC_READ_SINGLE_BLOCK ||
375 	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
376 	    cmdr == MMC_WRITE_BLOCK ||
377 	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
378 	    cmdr == MMC_SEND_TUNING_BLOCK ||
379 	    cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
380 		stop->opcode = MMC_STOP_TRANSMISSION;
381 		stop->arg = 0;
382 		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
383 	} else if (cmdr == SD_IO_RW_EXTENDED) {
384 		stop->opcode = SD_IO_RW_DIRECT;
385 		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
386 			     ((cmd->arg >> 28) & 0x7);
387 		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
388 	} else {
389 		return 0;
390 	}
391 
392 	cmdr = stop->opcode | SDMMC_CMD_STOP |
393 		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
394 
395 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
396 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
397 
398 	return cmdr;
399 }
400 
401 static inline void dw_mci_set_cto(struct dw_mci *host)
402 {
403 	unsigned int cto_clks;
404 	unsigned int cto_div;
405 	unsigned int cto_ms;
406 	unsigned long irqflags;
407 
408 	cto_clks = mci_readl(host, TMOUT) & 0xff;
409 	cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
410 	if (cto_div == 0)
411 		cto_div = 1;
412 	cto_ms = DIV_ROUND_UP(MSEC_PER_SEC * cto_clks * cto_div, host->bus_hz);
413 
414 	/* add a bit spare time */
415 	cto_ms += 10;
416 
417 	/*
418 	 * The durations we're working with are fairly short so we have to be
419 	 * extra careful about synchronization here.  Specifically in hardware a
420 	 * command timeout is _at most_ 5.1 ms, so that means we expect an
421 	 * interrupt (either command done or timeout) to come rather quickly
422 	 * after the mci_writel.  ...but just in case we have a long interrupt
423 	 * latency let's add a bit of paranoia.
424 	 *
425 	 * In general we'll assume that at least an interrupt will be asserted
426 	 * in hardware by the time the cto_timer runs.  ...and if it hasn't
427 	 * been asserted in hardware by that time then we'll assume it'll never
428 	 * come.
429 	 */
430 	spin_lock_irqsave(&host->irq_lock, irqflags);
431 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
432 		mod_timer(&host->cto_timer,
433 			jiffies + msecs_to_jiffies(cto_ms) + 1);
434 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
435 }
436 
437 static void dw_mci_start_command(struct dw_mci *host,
438 				 struct mmc_command *cmd, u32 cmd_flags)
439 {
440 	host->cmd = cmd;
441 	dev_vdbg(host->dev,
442 		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
443 		 cmd->arg, cmd_flags);
444 
445 	mci_writel(host, CMDARG, cmd->arg);
446 	wmb(); /* drain writebuffer */
447 	dw_mci_wait_while_busy(host, cmd_flags);
448 
449 	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
450 
451 	/* response expected command only */
452 	if (cmd_flags & SDMMC_CMD_RESP_EXP)
453 		dw_mci_set_cto(host);
454 }
455 
456 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
457 {
458 	struct mmc_command *stop = &host->stop_abort;
459 
460 	dw_mci_start_command(host, stop, host->stop_cmdr);
461 }
462 
463 /* DMA interface functions */
464 static void dw_mci_stop_dma(struct dw_mci *host)
465 {
466 	if (host->using_dma) {
467 		host->dma_ops->stop(host);
468 		host->dma_ops->cleanup(host);
469 	}
470 
471 	/* Data transfer was stopped by the interrupt handler */
472 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
473 }
474 
475 static void dw_mci_dma_cleanup(struct dw_mci *host)
476 {
477 	struct mmc_data *data = host->data;
478 
479 	if (data && data->host_cookie == COOKIE_MAPPED) {
480 		dma_unmap_sg(host->dev,
481 			     data->sg,
482 			     data->sg_len,
483 			     mmc_get_dma_dir(data));
484 		data->host_cookie = COOKIE_UNMAPPED;
485 	}
486 }
487 
488 static void dw_mci_idmac_reset(struct dw_mci *host)
489 {
490 	u32 bmod = mci_readl(host, BMOD);
491 	/* Software reset of DMA */
492 	bmod |= SDMMC_IDMAC_SWRESET;
493 	mci_writel(host, BMOD, bmod);
494 }
495 
496 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
497 {
498 	u32 temp;
499 
500 	/* Disable and reset the IDMAC interface */
501 	temp = mci_readl(host, CTRL);
502 	temp &= ~SDMMC_CTRL_USE_IDMAC;
503 	temp |= SDMMC_CTRL_DMA_RESET;
504 	mci_writel(host, CTRL, temp);
505 
506 	/* Stop the IDMAC running */
507 	temp = mci_readl(host, BMOD);
508 	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
509 	temp |= SDMMC_IDMAC_SWRESET;
510 	mci_writel(host, BMOD, temp);
511 }
512 
513 static void dw_mci_dmac_complete_dma(void *arg)
514 {
515 	struct dw_mci *host = arg;
516 	struct mmc_data *data = host->data;
517 
518 	dev_vdbg(host->dev, "DMA complete\n");
519 
520 	if ((host->use_dma == TRANS_MODE_EDMAC) &&
521 	    data && (data->flags & MMC_DATA_READ))
522 		/* Invalidate cache after read */
523 		dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
524 				    data->sg,
525 				    data->sg_len,
526 				    DMA_FROM_DEVICE);
527 
528 	host->dma_ops->cleanup(host);
529 
530 	/*
531 	 * If the card was removed, data will be NULL. No point in trying to
532 	 * send the stop command or waiting for NBUSY in this case.
533 	 */
534 	if (data) {
535 		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
536 		tasklet_schedule(&host->tasklet);
537 	}
538 }
539 
540 static int dw_mci_idmac_init(struct dw_mci *host)
541 {
542 	int i;
543 
544 	if (host->dma_64bit_address == 1) {
545 		struct idmac_desc_64addr *p;
546 		/* Number of descriptors in the ring buffer */
547 		host->ring_size =
548 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
549 
550 		/* Forward link the descriptor list */
551 		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
552 								i++, p++) {
553 			p->des6 = (host->sg_dma +
554 					(sizeof(struct idmac_desc_64addr) *
555 							(i + 1))) & 0xffffffff;
556 
557 			p->des7 = (u64)(host->sg_dma +
558 					(sizeof(struct idmac_desc_64addr) *
559 							(i + 1))) >> 32;
560 			/* Initialize reserved and buffer size fields to "0" */
561 			p->des1 = 0;
562 			p->des2 = 0;
563 			p->des3 = 0;
564 		}
565 
566 		/* Set the last descriptor as the end-of-ring descriptor */
567 		p->des6 = host->sg_dma & 0xffffffff;
568 		p->des7 = (u64)host->sg_dma >> 32;
569 		p->des0 = IDMAC_DES0_ER;
570 
571 	} else {
572 		struct idmac_desc *p;
573 		/* Number of descriptors in the ring buffer */
574 		host->ring_size =
575 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
576 
577 		/* Forward link the descriptor list */
578 		for (i = 0, p = host->sg_cpu;
579 		     i < host->ring_size - 1;
580 		     i++, p++) {
581 			p->des3 = cpu_to_le32(host->sg_dma +
582 					(sizeof(struct idmac_desc) * (i + 1)));
583 			p->des1 = 0;
584 		}
585 
586 		/* Set the last descriptor as the end-of-ring descriptor */
587 		p->des3 = cpu_to_le32(host->sg_dma);
588 		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
589 	}
590 
591 	dw_mci_idmac_reset(host);
592 
593 	if (host->dma_64bit_address == 1) {
594 		/* Mask out interrupts - get Tx & Rx complete only */
595 		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
596 		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
597 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
598 
599 		/* Set the descriptor base address */
600 		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
601 		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
602 
603 	} else {
604 		/* Mask out interrupts - get Tx & Rx complete only */
605 		mci_writel(host, IDSTS, IDMAC_INT_CLR);
606 		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
607 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
608 
609 		/* Set the descriptor base address */
610 		mci_writel(host, DBADDR, host->sg_dma);
611 	}
612 
613 	return 0;
614 }
615 
616 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
617 					 struct mmc_data *data,
618 					 unsigned int sg_len)
619 {
620 	unsigned int desc_len;
621 	struct idmac_desc_64addr *desc_first, *desc_last, *desc;
622 	u32 val;
623 	int i;
624 
625 	desc_first = desc_last = desc = host->sg_cpu;
626 
627 	for (i = 0; i < sg_len; i++) {
628 		unsigned int length = sg_dma_len(&data->sg[i]);
629 
630 		u64 mem_addr = sg_dma_address(&data->sg[i]);
631 
632 		for ( ; length ; desc++) {
633 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
634 				   length : DW_MCI_DESC_DATA_LENGTH;
635 
636 			length -= desc_len;
637 
638 			/*
639 			 * Wait for the former clear OWN bit operation
640 			 * of IDMAC to make sure that this descriptor
641 			 * isn't still owned by IDMAC as IDMAC's write
642 			 * ops and CPU's read ops are asynchronous.
643 			 */
644 			if (readl_poll_timeout_atomic(&desc->des0, val,
645 						!(val & IDMAC_DES0_OWN),
646 						10, 100 * USEC_PER_MSEC))
647 				goto err_own_bit;
648 
649 			/*
650 			 * Set the OWN bit and disable interrupts
651 			 * for this descriptor
652 			 */
653 			desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
654 						IDMAC_DES0_CH;
655 
656 			/* Buffer length */
657 			IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
658 
659 			/* Physical address to DMA to/from */
660 			desc->des4 = mem_addr & 0xffffffff;
661 			desc->des5 = mem_addr >> 32;
662 
663 			/* Update physical address for the next desc */
664 			mem_addr += desc_len;
665 
666 			/* Save pointer to the last descriptor */
667 			desc_last = desc;
668 		}
669 	}
670 
671 	/* Set first descriptor */
672 	desc_first->des0 |= IDMAC_DES0_FD;
673 
674 	/* Set last descriptor */
675 	desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
676 	desc_last->des0 |= IDMAC_DES0_LD;
677 
678 	return 0;
679 err_own_bit:
680 	/* restore the descriptor chain as it's polluted */
681 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
682 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
683 	dw_mci_idmac_init(host);
684 	return -EINVAL;
685 }
686 
687 
688 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
689 					 struct mmc_data *data,
690 					 unsigned int sg_len)
691 {
692 	unsigned int desc_len;
693 	struct idmac_desc *desc_first, *desc_last, *desc;
694 	u32 val;
695 	int i;
696 
697 	desc_first = desc_last = desc = host->sg_cpu;
698 
699 	for (i = 0; i < sg_len; i++) {
700 		unsigned int length = sg_dma_len(&data->sg[i]);
701 
702 		u32 mem_addr = sg_dma_address(&data->sg[i]);
703 
704 		for ( ; length ; desc++) {
705 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
706 				   length : DW_MCI_DESC_DATA_LENGTH;
707 
708 			length -= desc_len;
709 
710 			/*
711 			 * Wait for the former clear OWN bit operation
712 			 * of IDMAC to make sure that this descriptor
713 			 * isn't still owned by IDMAC as IDMAC's write
714 			 * ops and CPU's read ops are asynchronous.
715 			 */
716 			if (readl_poll_timeout_atomic(&desc->des0, val,
717 						      IDMAC_OWN_CLR64(val),
718 						      10,
719 						      100 * USEC_PER_MSEC))
720 				goto err_own_bit;
721 
722 			/*
723 			 * Set the OWN bit and disable interrupts
724 			 * for this descriptor
725 			 */
726 			desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
727 						 IDMAC_DES0_DIC |
728 						 IDMAC_DES0_CH);
729 
730 			/* Buffer length */
731 			IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
732 
733 			/* Physical address to DMA to/from */
734 			desc->des2 = cpu_to_le32(mem_addr);
735 
736 			/* Update physical address for the next desc */
737 			mem_addr += desc_len;
738 
739 			/* Save pointer to the last descriptor */
740 			desc_last = desc;
741 		}
742 	}
743 
744 	/* Set first descriptor */
745 	desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
746 
747 	/* Set last descriptor */
748 	desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
749 				       IDMAC_DES0_DIC));
750 	desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
751 
752 	return 0;
753 err_own_bit:
754 	/* restore the descriptor chain as it's polluted */
755 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
756 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
757 	dw_mci_idmac_init(host);
758 	return -EINVAL;
759 }
760 
761 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
762 {
763 	u32 temp;
764 	int ret;
765 
766 	if (host->dma_64bit_address == 1)
767 		ret = dw_mci_prepare_desc64(host, host->data, sg_len);
768 	else
769 		ret = dw_mci_prepare_desc32(host, host->data, sg_len);
770 
771 	if (ret)
772 		goto out;
773 
774 	/* drain writebuffer */
775 	wmb();
776 
777 	/* Make sure to reset DMA in case we did PIO before this */
778 	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
779 	dw_mci_idmac_reset(host);
780 
781 	/* Select IDMAC interface */
782 	temp = mci_readl(host, CTRL);
783 	temp |= SDMMC_CTRL_USE_IDMAC;
784 	mci_writel(host, CTRL, temp);
785 
786 	/* drain writebuffer */
787 	wmb();
788 
789 	/* Enable the IDMAC */
790 	temp = mci_readl(host, BMOD);
791 	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
792 	mci_writel(host, BMOD, temp);
793 
794 	/* Start it running */
795 	mci_writel(host, PLDMND, 1);
796 
797 out:
798 	return ret;
799 }
800 
801 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
802 	.init = dw_mci_idmac_init,
803 	.start = dw_mci_idmac_start_dma,
804 	.stop = dw_mci_idmac_stop_dma,
805 	.complete = dw_mci_dmac_complete_dma,
806 	.cleanup = dw_mci_dma_cleanup,
807 };
808 
809 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
810 {
811 	dmaengine_terminate_async(host->dms->ch);
812 }
813 
814 static int dw_mci_edmac_start_dma(struct dw_mci *host,
815 					    unsigned int sg_len)
816 {
817 	struct dma_slave_config cfg;
818 	struct dma_async_tx_descriptor *desc = NULL;
819 	struct scatterlist *sgl = host->data->sg;
820 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
821 	u32 sg_elems = host->data->sg_len;
822 	u32 fifoth_val;
823 	u32 fifo_offset = host->fifo_reg - host->regs;
824 	int ret = 0;
825 
826 	/* Set external dma config: burst size, burst width */
827 	cfg.dst_addr = host->phy_regs + fifo_offset;
828 	cfg.src_addr = cfg.dst_addr;
829 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
830 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
831 
832 	/* Match burst msize with external dma config */
833 	fifoth_val = mci_readl(host, FIFOTH);
834 	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
835 	cfg.src_maxburst = cfg.dst_maxburst;
836 
837 	if (host->data->flags & MMC_DATA_WRITE)
838 		cfg.direction = DMA_MEM_TO_DEV;
839 	else
840 		cfg.direction = DMA_DEV_TO_MEM;
841 
842 	ret = dmaengine_slave_config(host->dms->ch, &cfg);
843 	if (ret) {
844 		dev_err(host->dev, "Failed to config edmac.\n");
845 		return -EBUSY;
846 	}
847 
848 	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
849 				       sg_len, cfg.direction,
850 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
851 	if (!desc) {
852 		dev_err(host->dev, "Can't prepare slave sg.\n");
853 		return -EBUSY;
854 	}
855 
856 	/* Set dw_mci_dmac_complete_dma as callback */
857 	desc->callback = dw_mci_dmac_complete_dma;
858 	desc->callback_param = (void *)host;
859 	dmaengine_submit(desc);
860 
861 	/* Flush cache before write */
862 	if (host->data->flags & MMC_DATA_WRITE)
863 		dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
864 				       sg_elems, DMA_TO_DEVICE);
865 
866 	dma_async_issue_pending(host->dms->ch);
867 
868 	return 0;
869 }
870 
871 static int dw_mci_edmac_init(struct dw_mci *host)
872 {
873 	/* Request external dma channel */
874 	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
875 	if (!host->dms)
876 		return -ENOMEM;
877 
878 	host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
879 	if (!host->dms->ch) {
880 		dev_err(host->dev, "Failed to get external DMA channel.\n");
881 		kfree(host->dms);
882 		host->dms = NULL;
883 		return -ENXIO;
884 	}
885 
886 	return 0;
887 }
888 
889 static void dw_mci_edmac_exit(struct dw_mci *host)
890 {
891 	if (host->dms) {
892 		if (host->dms->ch) {
893 			dma_release_channel(host->dms->ch);
894 			host->dms->ch = NULL;
895 		}
896 		kfree(host->dms);
897 		host->dms = NULL;
898 	}
899 }
900 
901 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
902 	.init = dw_mci_edmac_init,
903 	.exit = dw_mci_edmac_exit,
904 	.start = dw_mci_edmac_start_dma,
905 	.stop = dw_mci_edmac_stop_dma,
906 	.complete = dw_mci_dmac_complete_dma,
907 	.cleanup = dw_mci_dma_cleanup,
908 };
909 
910 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
911 				   struct mmc_data *data,
912 				   int cookie)
913 {
914 	struct scatterlist *sg;
915 	unsigned int i, sg_len;
916 
917 	if (data->host_cookie == COOKIE_PRE_MAPPED)
918 		return data->sg_len;
919 
920 	/*
921 	 * We don't do DMA on "complex" transfers, i.e. with
922 	 * non-word-aligned buffers or lengths. Also, we don't bother
923 	 * with all the DMA setup overhead for short transfers.
924 	 */
925 	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
926 		return -EINVAL;
927 
928 	if (data->blksz & 3)
929 		return -EINVAL;
930 
931 	for_each_sg(data->sg, sg, data->sg_len, i) {
932 		if (sg->offset & 3 || sg->length & 3)
933 			return -EINVAL;
934 	}
935 
936 	sg_len = dma_map_sg(host->dev,
937 			    data->sg,
938 			    data->sg_len,
939 			    mmc_get_dma_dir(data));
940 	if (sg_len == 0)
941 		return -EINVAL;
942 
943 	data->host_cookie = cookie;
944 
945 	return sg_len;
946 }
947 
948 static void dw_mci_pre_req(struct mmc_host *mmc,
949 			   struct mmc_request *mrq)
950 {
951 	struct dw_mci_slot *slot = mmc_priv(mmc);
952 	struct mmc_data *data = mrq->data;
953 
954 	if (!slot->host->use_dma || !data)
955 		return;
956 
957 	/* This data might be unmapped at this time */
958 	data->host_cookie = COOKIE_UNMAPPED;
959 
960 	if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
961 				COOKIE_PRE_MAPPED) < 0)
962 		data->host_cookie = COOKIE_UNMAPPED;
963 }
964 
965 static void dw_mci_post_req(struct mmc_host *mmc,
966 			    struct mmc_request *mrq,
967 			    int err)
968 {
969 	struct dw_mci_slot *slot = mmc_priv(mmc);
970 	struct mmc_data *data = mrq->data;
971 
972 	if (!slot->host->use_dma || !data)
973 		return;
974 
975 	if (data->host_cookie != COOKIE_UNMAPPED)
976 		dma_unmap_sg(slot->host->dev,
977 			     data->sg,
978 			     data->sg_len,
979 			     mmc_get_dma_dir(data));
980 	data->host_cookie = COOKIE_UNMAPPED;
981 }
982 
983 static int dw_mci_get_cd(struct mmc_host *mmc)
984 {
985 	int present;
986 	struct dw_mci_slot *slot = mmc_priv(mmc);
987 	struct dw_mci *host = slot->host;
988 	int gpio_cd = mmc_gpio_get_cd(mmc);
989 
990 	/* Use platform get_cd function, else try onboard card detect */
991 	if (((mmc->caps & MMC_CAP_NEEDS_POLL)
992 				|| !mmc_card_is_removable(mmc))) {
993 		present = 1;
994 
995 		if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
996 			if (mmc->caps & MMC_CAP_NEEDS_POLL) {
997 				dev_info(&mmc->class_dev,
998 					"card is polling.\n");
999 			} else {
1000 				dev_info(&mmc->class_dev,
1001 					"card is non-removable.\n");
1002 			}
1003 			set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1004 		}
1005 
1006 		return present;
1007 	} else if (gpio_cd >= 0)
1008 		present = gpio_cd;
1009 	else
1010 		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
1011 			== 0 ? 1 : 0;
1012 
1013 	spin_lock_bh(&host->lock);
1014 	if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
1015 		dev_dbg(&mmc->class_dev, "card is present\n");
1016 	else if (!present &&
1017 			!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
1018 		dev_dbg(&mmc->class_dev, "card is not present\n");
1019 	spin_unlock_bh(&host->lock);
1020 
1021 	return present;
1022 }
1023 
1024 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
1025 {
1026 	unsigned int blksz = data->blksz;
1027 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
1028 	u32 fifo_width = 1 << host->data_shift;
1029 	u32 blksz_depth = blksz / fifo_width, fifoth_val;
1030 	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
1031 	int idx = ARRAY_SIZE(mszs) - 1;
1032 
1033 	/* pio should ship this scenario */
1034 	if (!host->use_dma)
1035 		return;
1036 
1037 	tx_wmark = (host->fifo_depth) / 2;
1038 	tx_wmark_invers = host->fifo_depth - tx_wmark;
1039 
1040 	/*
1041 	 * MSIZE is '1',
1042 	 * if blksz is not a multiple of the FIFO width
1043 	 */
1044 	if (blksz % fifo_width)
1045 		goto done;
1046 
1047 	do {
1048 		if (!((blksz_depth % mszs[idx]) ||
1049 		     (tx_wmark_invers % mszs[idx]))) {
1050 			msize = idx;
1051 			rx_wmark = mszs[idx] - 1;
1052 			break;
1053 		}
1054 	} while (--idx > 0);
1055 	/*
1056 	 * If idx is '0', it won't be tried
1057 	 * Thus, initial values are uesed
1058 	 */
1059 done:
1060 	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1061 	mci_writel(host, FIFOTH, fifoth_val);
1062 }
1063 
1064 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1065 {
1066 	unsigned int blksz = data->blksz;
1067 	u32 blksz_depth, fifo_depth;
1068 	u16 thld_size;
1069 	u8 enable;
1070 
1071 	/*
1072 	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1073 	 * in the FIFO region, so we really shouldn't access it).
1074 	 */
1075 	if (host->verid < DW_MMC_240A ||
1076 		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1077 		return;
1078 
1079 	/*
1080 	 * Card write Threshold is introduced since 2.80a
1081 	 * It's used when HS400 mode is enabled.
1082 	 */
1083 	if (data->flags & MMC_DATA_WRITE &&
1084 		!(host->timing != MMC_TIMING_MMC_HS400))
1085 		return;
1086 
1087 	if (data->flags & MMC_DATA_WRITE)
1088 		enable = SDMMC_CARD_WR_THR_EN;
1089 	else
1090 		enable = SDMMC_CARD_RD_THR_EN;
1091 
1092 	if (host->timing != MMC_TIMING_MMC_HS200 &&
1093 	    host->timing != MMC_TIMING_UHS_SDR104)
1094 		goto disable;
1095 
1096 	blksz_depth = blksz / (1 << host->data_shift);
1097 	fifo_depth = host->fifo_depth;
1098 
1099 	if (blksz_depth > fifo_depth)
1100 		goto disable;
1101 
1102 	/*
1103 	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1104 	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1105 	 * Currently just choose blksz.
1106 	 */
1107 	thld_size = blksz;
1108 	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1109 	return;
1110 
1111 disable:
1112 	mci_writel(host, CDTHRCTL, 0);
1113 }
1114 
1115 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1116 {
1117 	unsigned long irqflags;
1118 	int sg_len;
1119 	u32 temp;
1120 
1121 	host->using_dma = 0;
1122 
1123 	/* If we don't have a channel, we can't do DMA */
1124 	if (!host->use_dma)
1125 		return -ENODEV;
1126 
1127 	sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1128 	if (sg_len < 0) {
1129 		host->dma_ops->stop(host);
1130 		return sg_len;
1131 	}
1132 
1133 	host->using_dma = 1;
1134 
1135 	if (host->use_dma == TRANS_MODE_IDMAC)
1136 		dev_vdbg(host->dev,
1137 			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1138 			 (unsigned long)host->sg_cpu,
1139 			 (unsigned long)host->sg_dma,
1140 			 sg_len);
1141 
1142 	/*
1143 	 * Decide the MSIZE and RX/TX Watermark.
1144 	 * If current block size is same with previous size,
1145 	 * no need to update fifoth.
1146 	 */
1147 	if (host->prev_blksz != data->blksz)
1148 		dw_mci_adjust_fifoth(host, data);
1149 
1150 	/* Enable the DMA interface */
1151 	temp = mci_readl(host, CTRL);
1152 	temp |= SDMMC_CTRL_DMA_ENABLE;
1153 	mci_writel(host, CTRL, temp);
1154 
1155 	/* Disable RX/TX IRQs, let DMA handle it */
1156 	spin_lock_irqsave(&host->irq_lock, irqflags);
1157 	temp = mci_readl(host, INTMASK);
1158 	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1159 	mci_writel(host, INTMASK, temp);
1160 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1161 
1162 	if (host->dma_ops->start(host, sg_len)) {
1163 		host->dma_ops->stop(host);
1164 		/* We can't do DMA, try PIO for this one */
1165 		dev_dbg(host->dev,
1166 			"%s: fall back to PIO mode for current transfer\n",
1167 			__func__);
1168 		return -ENODEV;
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1175 {
1176 	unsigned long irqflags;
1177 	int flags = SG_MITER_ATOMIC;
1178 	u32 temp;
1179 
1180 	data->error = -EINPROGRESS;
1181 
1182 	WARN_ON(host->data);
1183 	host->sg = NULL;
1184 	host->data = data;
1185 
1186 	if (data->flags & MMC_DATA_READ)
1187 		host->dir_status = DW_MCI_RECV_STATUS;
1188 	else
1189 		host->dir_status = DW_MCI_SEND_STATUS;
1190 
1191 	dw_mci_ctrl_thld(host, data);
1192 
1193 	if (dw_mci_submit_data_dma(host, data)) {
1194 		if (host->data->flags & MMC_DATA_READ)
1195 			flags |= SG_MITER_TO_SG;
1196 		else
1197 			flags |= SG_MITER_FROM_SG;
1198 
1199 		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1200 		host->sg = data->sg;
1201 		host->part_buf_start = 0;
1202 		host->part_buf_count = 0;
1203 
1204 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1205 
1206 		spin_lock_irqsave(&host->irq_lock, irqflags);
1207 		temp = mci_readl(host, INTMASK);
1208 		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1209 		mci_writel(host, INTMASK, temp);
1210 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1211 
1212 		temp = mci_readl(host, CTRL);
1213 		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1214 		mci_writel(host, CTRL, temp);
1215 
1216 		/*
1217 		 * Use the initial fifoth_val for PIO mode. If wm_algined
1218 		 * is set, we set watermark same as data size.
1219 		 * If next issued data may be transfered by DMA mode,
1220 		 * prev_blksz should be invalidated.
1221 		 */
1222 		if (host->wm_aligned)
1223 			dw_mci_adjust_fifoth(host, data);
1224 		else
1225 			mci_writel(host, FIFOTH, host->fifoth_val);
1226 		host->prev_blksz = 0;
1227 	} else {
1228 		/*
1229 		 * Keep the current block size.
1230 		 * It will be used to decide whether to update
1231 		 * fifoth register next time.
1232 		 */
1233 		host->prev_blksz = data->blksz;
1234 	}
1235 }
1236 
1237 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1238 {
1239 	struct dw_mci *host = slot->host;
1240 	unsigned int clock = slot->clock;
1241 	u32 div;
1242 	u32 clk_en_a;
1243 	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1244 
1245 	/* We must continue to set bit 28 in CMD until the change is complete */
1246 	if (host->state == STATE_WAITING_CMD11_DONE)
1247 		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1248 
1249 	if (!clock) {
1250 		mci_writel(host, CLKENA, 0);
1251 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1252 	} else if (clock != host->current_speed || force_clkinit) {
1253 		div = host->bus_hz / clock;
1254 		if (host->bus_hz % clock && host->bus_hz > clock)
1255 			/*
1256 			 * move the + 1 after the divide to prevent
1257 			 * over-clocking the card.
1258 			 */
1259 			div += 1;
1260 
1261 		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1262 
1263 		if ((clock != slot->__clk_old &&
1264 			!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1265 			force_clkinit) {
1266 			/* Silent the verbose log if calling from PM context */
1267 			if (!force_clkinit)
1268 				dev_info(&slot->mmc->class_dev,
1269 					 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1270 					 slot->id, host->bus_hz, clock,
1271 					 div ? ((host->bus_hz / div) >> 1) :
1272 					 host->bus_hz, div);
1273 
1274 			/*
1275 			 * If card is polling, display the message only
1276 			 * one time at boot time.
1277 			 */
1278 			if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1279 					slot->mmc->f_min == clock)
1280 				set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1281 		}
1282 
1283 		/* disable clock */
1284 		mci_writel(host, CLKENA, 0);
1285 		mci_writel(host, CLKSRC, 0);
1286 
1287 		/* inform CIU */
1288 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1289 
1290 		/* set clock to desired speed */
1291 		mci_writel(host, CLKDIV, div);
1292 
1293 		/* inform CIU */
1294 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1295 
1296 		/* enable clock; only low power if no SDIO */
1297 		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1298 		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1299 			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1300 		mci_writel(host, CLKENA, clk_en_a);
1301 
1302 		/* inform CIU */
1303 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1304 
1305 		/* keep the last clock value that was requested from core */
1306 		slot->__clk_old = clock;
1307 	}
1308 
1309 	host->current_speed = clock;
1310 
1311 	/* Set the current slot bus width */
1312 	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1313 }
1314 
1315 static void __dw_mci_start_request(struct dw_mci *host,
1316 				   struct dw_mci_slot *slot,
1317 				   struct mmc_command *cmd)
1318 {
1319 	struct mmc_request *mrq;
1320 	struct mmc_data	*data;
1321 	u32 cmdflags;
1322 
1323 	mrq = slot->mrq;
1324 
1325 	host->mrq = mrq;
1326 
1327 	host->pending_events = 0;
1328 	host->completed_events = 0;
1329 	host->cmd_status = 0;
1330 	host->data_status = 0;
1331 	host->dir_status = 0;
1332 
1333 	data = cmd->data;
1334 	if (data) {
1335 		mci_writel(host, TMOUT, 0xFFFFFFFF);
1336 		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1337 		mci_writel(host, BLKSIZ, data->blksz);
1338 	}
1339 
1340 	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1341 
1342 	/* this is the first command, send the initialization clock */
1343 	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1344 		cmdflags |= SDMMC_CMD_INIT;
1345 
1346 	if (data) {
1347 		dw_mci_submit_data(host, data);
1348 		wmb(); /* drain writebuffer */
1349 	}
1350 
1351 	dw_mci_start_command(host, cmd, cmdflags);
1352 
1353 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1354 		unsigned long irqflags;
1355 
1356 		/*
1357 		 * Databook says to fail after 2ms w/ no response, but evidence
1358 		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1359 		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1360 		 * is just about to roll over.
1361 		 *
1362 		 * We do this whole thing under spinlock and only if the
1363 		 * command hasn't already completed (indicating the the irq
1364 		 * already ran so we don't want the timeout).
1365 		 */
1366 		spin_lock_irqsave(&host->irq_lock, irqflags);
1367 		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1368 			mod_timer(&host->cmd11_timer,
1369 				jiffies + msecs_to_jiffies(500) + 1);
1370 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1371 	}
1372 
1373 	host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1374 }
1375 
1376 static void dw_mci_start_request(struct dw_mci *host,
1377 				 struct dw_mci_slot *slot)
1378 {
1379 	struct mmc_request *mrq = slot->mrq;
1380 	struct mmc_command *cmd;
1381 
1382 	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1383 	__dw_mci_start_request(host, slot, cmd);
1384 }
1385 
1386 /* must be called with host->lock held */
1387 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1388 				 struct mmc_request *mrq)
1389 {
1390 	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1391 		 host->state);
1392 
1393 	slot->mrq = mrq;
1394 
1395 	if (host->state == STATE_WAITING_CMD11_DONE) {
1396 		dev_warn(&slot->mmc->class_dev,
1397 			 "Voltage change didn't complete\n");
1398 		/*
1399 		 * this case isn't expected to happen, so we can
1400 		 * either crash here or just try to continue on
1401 		 * in the closest possible state
1402 		 */
1403 		host->state = STATE_IDLE;
1404 	}
1405 
1406 	if (host->state == STATE_IDLE) {
1407 		host->state = STATE_SENDING_CMD;
1408 		dw_mci_start_request(host, slot);
1409 	} else {
1410 		list_add_tail(&slot->queue_node, &host->queue);
1411 	}
1412 }
1413 
1414 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1415 {
1416 	struct dw_mci_slot *slot = mmc_priv(mmc);
1417 	struct dw_mci *host = slot->host;
1418 
1419 	WARN_ON(slot->mrq);
1420 
1421 	/*
1422 	 * The check for card presence and queueing of the request must be
1423 	 * atomic, otherwise the card could be removed in between and the
1424 	 * request wouldn't fail until another card was inserted.
1425 	 */
1426 
1427 	if (!dw_mci_get_cd(mmc)) {
1428 		mrq->cmd->error = -ENOMEDIUM;
1429 		mmc_request_done(mmc, mrq);
1430 		return;
1431 	}
1432 
1433 	spin_lock_bh(&host->lock);
1434 
1435 	dw_mci_queue_request(host, slot, mrq);
1436 
1437 	spin_unlock_bh(&host->lock);
1438 }
1439 
1440 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1441 {
1442 	struct dw_mci_slot *slot = mmc_priv(mmc);
1443 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1444 	u32 regs;
1445 	int ret;
1446 
1447 	switch (ios->bus_width) {
1448 	case MMC_BUS_WIDTH_4:
1449 		slot->ctype = SDMMC_CTYPE_4BIT;
1450 		break;
1451 	case MMC_BUS_WIDTH_8:
1452 		slot->ctype = SDMMC_CTYPE_8BIT;
1453 		break;
1454 	default:
1455 		/* set default 1 bit mode */
1456 		slot->ctype = SDMMC_CTYPE_1BIT;
1457 	}
1458 
1459 	regs = mci_readl(slot->host, UHS_REG);
1460 
1461 	/* DDR mode set */
1462 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1463 	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1464 	    ios->timing == MMC_TIMING_MMC_HS400)
1465 		regs |= ((0x1 << slot->id) << 16);
1466 	else
1467 		regs &= ~((0x1 << slot->id) << 16);
1468 
1469 	mci_writel(slot->host, UHS_REG, regs);
1470 	slot->host->timing = ios->timing;
1471 
1472 	/*
1473 	 * Use mirror of ios->clock to prevent race with mmc
1474 	 * core ios update when finding the minimum.
1475 	 */
1476 	slot->clock = ios->clock;
1477 
1478 	if (drv_data && drv_data->set_ios)
1479 		drv_data->set_ios(slot->host, ios);
1480 
1481 	switch (ios->power_mode) {
1482 	case MMC_POWER_UP:
1483 		if (!IS_ERR(mmc->supply.vmmc)) {
1484 			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1485 					ios->vdd);
1486 			if (ret) {
1487 				dev_err(slot->host->dev,
1488 					"failed to enable vmmc regulator\n");
1489 				/*return, if failed turn on vmmc*/
1490 				return;
1491 			}
1492 		}
1493 		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1494 		regs = mci_readl(slot->host, PWREN);
1495 		regs |= (1 << slot->id);
1496 		mci_writel(slot->host, PWREN, regs);
1497 		break;
1498 	case MMC_POWER_ON:
1499 		if (!slot->host->vqmmc_enabled) {
1500 			if (!IS_ERR(mmc->supply.vqmmc)) {
1501 				ret = regulator_enable(mmc->supply.vqmmc);
1502 				if (ret < 0)
1503 					dev_err(slot->host->dev,
1504 						"failed to enable vqmmc\n");
1505 				else
1506 					slot->host->vqmmc_enabled = true;
1507 
1508 			} else {
1509 				/* Keep track so we don't reset again */
1510 				slot->host->vqmmc_enabled = true;
1511 			}
1512 
1513 			/* Reset our state machine after powering on */
1514 			dw_mci_ctrl_reset(slot->host,
1515 					  SDMMC_CTRL_ALL_RESET_FLAGS);
1516 		}
1517 
1518 		/* Adjust clock / bus width after power is up */
1519 		dw_mci_setup_bus(slot, false);
1520 
1521 		break;
1522 	case MMC_POWER_OFF:
1523 		/* Turn clock off before power goes down */
1524 		dw_mci_setup_bus(slot, false);
1525 
1526 		if (!IS_ERR(mmc->supply.vmmc))
1527 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1528 
1529 		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1530 			regulator_disable(mmc->supply.vqmmc);
1531 		slot->host->vqmmc_enabled = false;
1532 
1533 		regs = mci_readl(slot->host, PWREN);
1534 		regs &= ~(1 << slot->id);
1535 		mci_writel(slot->host, PWREN, regs);
1536 		break;
1537 	default:
1538 		break;
1539 	}
1540 
1541 	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1542 		slot->host->state = STATE_IDLE;
1543 }
1544 
1545 static int dw_mci_card_busy(struct mmc_host *mmc)
1546 {
1547 	struct dw_mci_slot *slot = mmc_priv(mmc);
1548 	u32 status;
1549 
1550 	/*
1551 	 * Check the busy bit which is low when DAT[3:0]
1552 	 * (the data lines) are 0000
1553 	 */
1554 	status = mci_readl(slot->host, STATUS);
1555 
1556 	return !!(status & SDMMC_STATUS_BUSY);
1557 }
1558 
1559 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1560 {
1561 	struct dw_mci_slot *slot = mmc_priv(mmc);
1562 	struct dw_mci *host = slot->host;
1563 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1564 	u32 uhs;
1565 	u32 v18 = SDMMC_UHS_18V << slot->id;
1566 	int ret;
1567 
1568 	if (drv_data && drv_data->switch_voltage)
1569 		return drv_data->switch_voltage(mmc, ios);
1570 
1571 	/*
1572 	 * Program the voltage.  Note that some instances of dw_mmc may use
1573 	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1574 	 * does no harm but you need to set the regulator directly.  Try both.
1575 	 */
1576 	uhs = mci_readl(host, UHS_REG);
1577 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1578 		uhs &= ~v18;
1579 	else
1580 		uhs |= v18;
1581 
1582 	if (!IS_ERR(mmc->supply.vqmmc)) {
1583 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1584 
1585 		if (ret) {
1586 			dev_dbg(&mmc->class_dev,
1587 					 "Regulator set error %d - %s V\n",
1588 					 ret, uhs & v18 ? "1.8" : "3.3");
1589 			return ret;
1590 		}
1591 	}
1592 	mci_writel(host, UHS_REG, uhs);
1593 
1594 	return 0;
1595 }
1596 
1597 static int dw_mci_get_ro(struct mmc_host *mmc)
1598 {
1599 	int read_only;
1600 	struct dw_mci_slot *slot = mmc_priv(mmc);
1601 	int gpio_ro = mmc_gpio_get_ro(mmc);
1602 
1603 	/* Use platform get_ro function, else try on board write protect */
1604 	if (gpio_ro >= 0)
1605 		read_only = gpio_ro;
1606 	else
1607 		read_only =
1608 			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1609 
1610 	dev_dbg(&mmc->class_dev, "card is %s\n",
1611 		read_only ? "read-only" : "read-write");
1612 
1613 	return read_only;
1614 }
1615 
1616 static void dw_mci_hw_reset(struct mmc_host *mmc)
1617 {
1618 	struct dw_mci_slot *slot = mmc_priv(mmc);
1619 	struct dw_mci *host = slot->host;
1620 	int reset;
1621 
1622 	if (host->use_dma == TRANS_MODE_IDMAC)
1623 		dw_mci_idmac_reset(host);
1624 
1625 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1626 				     SDMMC_CTRL_FIFO_RESET))
1627 		return;
1628 
1629 	/*
1630 	 * According to eMMC spec, card reset procedure:
1631 	 * tRstW >= 1us:   RST_n pulse width
1632 	 * tRSCA >= 200us: RST_n to Command time
1633 	 * tRSTH >= 1us:   RST_n high period
1634 	 */
1635 	reset = mci_readl(host, RST_N);
1636 	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1637 	mci_writel(host, RST_N, reset);
1638 	usleep_range(1, 2);
1639 	reset |= SDMMC_RST_HWACTIVE << slot->id;
1640 	mci_writel(host, RST_N, reset);
1641 	usleep_range(200, 300);
1642 }
1643 
1644 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1645 {
1646 	struct dw_mci_slot *slot = mmc_priv(mmc);
1647 	struct dw_mci *host = slot->host;
1648 
1649 	/*
1650 	 * Low power mode will stop the card clock when idle.  According to the
1651 	 * description of the CLKENA register we should disable low power mode
1652 	 * for SDIO cards if we need SDIO interrupts to work.
1653 	 */
1654 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1655 		const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1656 		u32 clk_en_a_old;
1657 		u32 clk_en_a;
1658 
1659 		clk_en_a_old = mci_readl(host, CLKENA);
1660 
1661 		if (card->type == MMC_TYPE_SDIO ||
1662 		    card->type == MMC_TYPE_SD_COMBO) {
1663 			set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1664 			clk_en_a = clk_en_a_old & ~clken_low_pwr;
1665 		} else {
1666 			clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1667 			clk_en_a = clk_en_a_old | clken_low_pwr;
1668 		}
1669 
1670 		if (clk_en_a != clk_en_a_old) {
1671 			mci_writel(host, CLKENA, clk_en_a);
1672 			mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1673 				     SDMMC_CMD_PRV_DAT_WAIT, 0);
1674 		}
1675 	}
1676 }
1677 
1678 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1679 {
1680 	struct dw_mci *host = slot->host;
1681 	unsigned long irqflags;
1682 	u32 int_mask;
1683 
1684 	spin_lock_irqsave(&host->irq_lock, irqflags);
1685 
1686 	/* Enable/disable Slot Specific SDIO interrupt */
1687 	int_mask = mci_readl(host, INTMASK);
1688 	if (enb)
1689 		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1690 	else
1691 		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1692 	mci_writel(host, INTMASK, int_mask);
1693 
1694 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1695 }
1696 
1697 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1698 {
1699 	struct dw_mci_slot *slot = mmc_priv(mmc);
1700 	struct dw_mci *host = slot->host;
1701 
1702 	__dw_mci_enable_sdio_irq(slot, enb);
1703 
1704 	/* Avoid runtime suspending the device when SDIO IRQ is enabled */
1705 	if (enb)
1706 		pm_runtime_get_noresume(host->dev);
1707 	else
1708 		pm_runtime_put_noidle(host->dev);
1709 }
1710 
1711 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1712 {
1713 	struct dw_mci_slot *slot = mmc_priv(mmc);
1714 
1715 	__dw_mci_enable_sdio_irq(slot, 1);
1716 }
1717 
1718 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1719 {
1720 	struct dw_mci_slot *slot = mmc_priv(mmc);
1721 	struct dw_mci *host = slot->host;
1722 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1723 	int err = -EINVAL;
1724 
1725 	if (drv_data && drv_data->execute_tuning)
1726 		err = drv_data->execute_tuning(slot, opcode);
1727 	return err;
1728 }
1729 
1730 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1731 				       struct mmc_ios *ios)
1732 {
1733 	struct dw_mci_slot *slot = mmc_priv(mmc);
1734 	struct dw_mci *host = slot->host;
1735 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1736 
1737 	if (drv_data && drv_data->prepare_hs400_tuning)
1738 		return drv_data->prepare_hs400_tuning(host, ios);
1739 
1740 	return 0;
1741 }
1742 
1743 static bool dw_mci_reset(struct dw_mci *host)
1744 {
1745 	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1746 	bool ret = false;
1747 	u32 status = 0;
1748 
1749 	/*
1750 	 * Resetting generates a block interrupt, hence setting
1751 	 * the scatter-gather pointer to NULL.
1752 	 */
1753 	if (host->sg) {
1754 		sg_miter_stop(&host->sg_miter);
1755 		host->sg = NULL;
1756 	}
1757 
1758 	if (host->use_dma)
1759 		flags |= SDMMC_CTRL_DMA_RESET;
1760 
1761 	if (dw_mci_ctrl_reset(host, flags)) {
1762 		/*
1763 		 * In all cases we clear the RAWINTS
1764 		 * register to clear any interrupts.
1765 		 */
1766 		mci_writel(host, RINTSTS, 0xFFFFFFFF);
1767 
1768 		if (!host->use_dma) {
1769 			ret = true;
1770 			goto ciu_out;
1771 		}
1772 
1773 		/* Wait for dma_req to be cleared */
1774 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1775 					      status,
1776 					      !(status & SDMMC_STATUS_DMA_REQ),
1777 					      1, 500 * USEC_PER_MSEC)) {
1778 			dev_err(host->dev,
1779 				"%s: Timeout waiting for dma_req to be cleared\n",
1780 				__func__);
1781 			goto ciu_out;
1782 		}
1783 
1784 		/* when using DMA next we reset the fifo again */
1785 		if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1786 			goto ciu_out;
1787 	} else {
1788 		/* if the controller reset bit did clear, then set clock regs */
1789 		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1790 			dev_err(host->dev,
1791 				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1792 				__func__);
1793 			goto ciu_out;
1794 		}
1795 	}
1796 
1797 	if (host->use_dma == TRANS_MODE_IDMAC)
1798 		/* It is also recommended that we reset and reprogram idmac */
1799 		dw_mci_idmac_reset(host);
1800 
1801 	ret = true;
1802 
1803 ciu_out:
1804 	/* After a CTRL reset we need to have CIU set clock registers  */
1805 	mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1806 
1807 	return ret;
1808 }
1809 
1810 static const struct mmc_host_ops dw_mci_ops = {
1811 	.request		= dw_mci_request,
1812 	.pre_req		= dw_mci_pre_req,
1813 	.post_req		= dw_mci_post_req,
1814 	.set_ios		= dw_mci_set_ios,
1815 	.get_ro			= dw_mci_get_ro,
1816 	.get_cd			= dw_mci_get_cd,
1817 	.hw_reset               = dw_mci_hw_reset,
1818 	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1819 	.ack_sdio_irq		= dw_mci_ack_sdio_irq,
1820 	.execute_tuning		= dw_mci_execute_tuning,
1821 	.card_busy		= dw_mci_card_busy,
1822 	.start_signal_voltage_switch = dw_mci_switch_voltage,
1823 	.init_card		= dw_mci_init_card,
1824 	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1825 };
1826 
1827 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1828 	__releases(&host->lock)
1829 	__acquires(&host->lock)
1830 {
1831 	struct dw_mci_slot *slot;
1832 	struct mmc_host	*prev_mmc = host->slot->mmc;
1833 
1834 	WARN_ON(host->cmd || host->data);
1835 
1836 	host->slot->mrq = NULL;
1837 	host->mrq = NULL;
1838 	if (!list_empty(&host->queue)) {
1839 		slot = list_entry(host->queue.next,
1840 				  struct dw_mci_slot, queue_node);
1841 		list_del(&slot->queue_node);
1842 		dev_vdbg(host->dev, "list not empty: %s is next\n",
1843 			 mmc_hostname(slot->mmc));
1844 		host->state = STATE_SENDING_CMD;
1845 		dw_mci_start_request(host, slot);
1846 	} else {
1847 		dev_vdbg(host->dev, "list empty\n");
1848 
1849 		if (host->state == STATE_SENDING_CMD11)
1850 			host->state = STATE_WAITING_CMD11_DONE;
1851 		else
1852 			host->state = STATE_IDLE;
1853 	}
1854 
1855 	spin_unlock(&host->lock);
1856 	mmc_request_done(prev_mmc, mrq);
1857 	spin_lock(&host->lock);
1858 }
1859 
1860 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1861 {
1862 	u32 status = host->cmd_status;
1863 
1864 	host->cmd_status = 0;
1865 
1866 	/* Read the response from the card (up to 16 bytes) */
1867 	if (cmd->flags & MMC_RSP_PRESENT) {
1868 		if (cmd->flags & MMC_RSP_136) {
1869 			cmd->resp[3] = mci_readl(host, RESP0);
1870 			cmd->resp[2] = mci_readl(host, RESP1);
1871 			cmd->resp[1] = mci_readl(host, RESP2);
1872 			cmd->resp[0] = mci_readl(host, RESP3);
1873 		} else {
1874 			cmd->resp[0] = mci_readl(host, RESP0);
1875 			cmd->resp[1] = 0;
1876 			cmd->resp[2] = 0;
1877 			cmd->resp[3] = 0;
1878 		}
1879 	}
1880 
1881 	if (status & SDMMC_INT_RTO)
1882 		cmd->error = -ETIMEDOUT;
1883 	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1884 		cmd->error = -EILSEQ;
1885 	else if (status & SDMMC_INT_RESP_ERR)
1886 		cmd->error = -EIO;
1887 	else
1888 		cmd->error = 0;
1889 
1890 	return cmd->error;
1891 }
1892 
1893 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1894 {
1895 	u32 status = host->data_status;
1896 
1897 	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1898 		if (status & SDMMC_INT_DRTO) {
1899 			data->error = -ETIMEDOUT;
1900 		} else if (status & SDMMC_INT_DCRC) {
1901 			data->error = -EILSEQ;
1902 		} else if (status & SDMMC_INT_EBE) {
1903 			if (host->dir_status ==
1904 				DW_MCI_SEND_STATUS) {
1905 				/*
1906 				 * No data CRC status was returned.
1907 				 * The number of bytes transferred
1908 				 * will be exaggerated in PIO mode.
1909 				 */
1910 				data->bytes_xfered = 0;
1911 				data->error = -ETIMEDOUT;
1912 			} else if (host->dir_status ==
1913 					DW_MCI_RECV_STATUS) {
1914 				data->error = -EILSEQ;
1915 			}
1916 		} else {
1917 			/* SDMMC_INT_SBE is included */
1918 			data->error = -EILSEQ;
1919 		}
1920 
1921 		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1922 
1923 		/*
1924 		 * After an error, there may be data lingering
1925 		 * in the FIFO
1926 		 */
1927 		dw_mci_reset(host);
1928 	} else {
1929 		data->bytes_xfered = data->blocks * data->blksz;
1930 		data->error = 0;
1931 	}
1932 
1933 	return data->error;
1934 }
1935 
1936 static void dw_mci_set_drto(struct dw_mci *host)
1937 {
1938 	unsigned int drto_clks;
1939 	unsigned int drto_div;
1940 	unsigned int drto_ms;
1941 	unsigned long irqflags;
1942 
1943 	drto_clks = mci_readl(host, TMOUT) >> 8;
1944 	drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
1945 	if (drto_div == 0)
1946 		drto_div = 1;
1947 	drto_ms = DIV_ROUND_UP(MSEC_PER_SEC * drto_clks * drto_div,
1948 			       host->bus_hz);
1949 
1950 	/* add a bit spare time */
1951 	drto_ms += 10;
1952 
1953 	spin_lock_irqsave(&host->irq_lock, irqflags);
1954 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1955 		mod_timer(&host->dto_timer,
1956 			  jiffies + msecs_to_jiffies(drto_ms));
1957 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1958 }
1959 
1960 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
1961 {
1962 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1963 		return false;
1964 
1965 	/*
1966 	 * Really be certain that the timer has stopped.  This is a bit of
1967 	 * paranoia and could only really happen if we had really bad
1968 	 * interrupt latency and the interrupt routine and timeout were
1969 	 * running concurrently so that the del_timer() in the interrupt
1970 	 * handler couldn't run.
1971 	 */
1972 	WARN_ON(del_timer_sync(&host->cto_timer));
1973 	clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
1974 
1975 	return true;
1976 }
1977 
1978 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
1979 {
1980 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1981 		return false;
1982 
1983 	/* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
1984 	WARN_ON(del_timer_sync(&host->dto_timer));
1985 	clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
1986 
1987 	return true;
1988 }
1989 
1990 static void dw_mci_tasklet_func(unsigned long priv)
1991 {
1992 	struct dw_mci *host = (struct dw_mci *)priv;
1993 	struct mmc_data	*data;
1994 	struct mmc_command *cmd;
1995 	struct mmc_request *mrq;
1996 	enum dw_mci_state state;
1997 	enum dw_mci_state prev_state;
1998 	unsigned int err;
1999 
2000 	spin_lock(&host->lock);
2001 
2002 	state = host->state;
2003 	data = host->data;
2004 	mrq = host->mrq;
2005 
2006 	do {
2007 		prev_state = state;
2008 
2009 		switch (state) {
2010 		case STATE_IDLE:
2011 		case STATE_WAITING_CMD11_DONE:
2012 			break;
2013 
2014 		case STATE_SENDING_CMD11:
2015 		case STATE_SENDING_CMD:
2016 			if (!dw_mci_clear_pending_cmd_complete(host))
2017 				break;
2018 
2019 			cmd = host->cmd;
2020 			host->cmd = NULL;
2021 			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
2022 			err = dw_mci_command_complete(host, cmd);
2023 			if (cmd == mrq->sbc && !err) {
2024 				prev_state = state = STATE_SENDING_CMD;
2025 				__dw_mci_start_request(host, host->slot,
2026 						       mrq->cmd);
2027 				goto unlock;
2028 			}
2029 
2030 			if (cmd->data && err) {
2031 				/*
2032 				 * During UHS tuning sequence, sending the stop
2033 				 * command after the response CRC error would
2034 				 * throw the system into a confused state
2035 				 * causing all future tuning phases to report
2036 				 * failure.
2037 				 *
2038 				 * In such case controller will move into a data
2039 				 * transfer state after a response error or
2040 				 * response CRC error. Let's let that finish
2041 				 * before trying to send a stop, so we'll go to
2042 				 * STATE_SENDING_DATA.
2043 				 *
2044 				 * Although letting the data transfer take place
2045 				 * will waste a bit of time (we already know
2046 				 * the command was bad), it can't cause any
2047 				 * errors since it's possible it would have
2048 				 * taken place anyway if this tasklet got
2049 				 * delayed. Allowing the transfer to take place
2050 				 * avoids races and keeps things simple.
2051 				 */
2052 				if ((err != -ETIMEDOUT) &&
2053 				    (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
2054 					state = STATE_SENDING_DATA;
2055 					continue;
2056 				}
2057 
2058 				dw_mci_stop_dma(host);
2059 				send_stop_abort(host, data);
2060 				state = STATE_SENDING_STOP;
2061 				break;
2062 			}
2063 
2064 			if (!cmd->data || err) {
2065 				dw_mci_request_end(host, mrq);
2066 				goto unlock;
2067 			}
2068 
2069 			prev_state = state = STATE_SENDING_DATA;
2070 			/* fall through */
2071 
2072 		case STATE_SENDING_DATA:
2073 			/*
2074 			 * We could get a data error and never a transfer
2075 			 * complete so we'd better check for it here.
2076 			 *
2077 			 * Note that we don't really care if we also got a
2078 			 * transfer complete; stopping the DMA and sending an
2079 			 * abort won't hurt.
2080 			 */
2081 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2082 					       &host->pending_events)) {
2083 				dw_mci_stop_dma(host);
2084 				if (!(host->data_status & (SDMMC_INT_DRTO |
2085 							   SDMMC_INT_EBE)))
2086 					send_stop_abort(host, data);
2087 				state = STATE_DATA_ERROR;
2088 				break;
2089 			}
2090 
2091 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2092 						&host->pending_events)) {
2093 				/*
2094 				 * If all data-related interrupts don't come
2095 				 * within the given time in reading data state.
2096 				 */
2097 				if (host->dir_status == DW_MCI_RECV_STATUS)
2098 					dw_mci_set_drto(host);
2099 				break;
2100 			}
2101 
2102 			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2103 
2104 			/*
2105 			 * Handle an EVENT_DATA_ERROR that might have shown up
2106 			 * before the transfer completed.  This might not have
2107 			 * been caught by the check above because the interrupt
2108 			 * could have gone off between the previous check and
2109 			 * the check for transfer complete.
2110 			 *
2111 			 * Technically this ought not be needed assuming we
2112 			 * get a DATA_COMPLETE eventually (we'll notice the
2113 			 * error and end the request), but it shouldn't hurt.
2114 			 *
2115 			 * This has the advantage of sending the stop command.
2116 			 */
2117 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2118 					       &host->pending_events)) {
2119 				dw_mci_stop_dma(host);
2120 				if (!(host->data_status & (SDMMC_INT_DRTO |
2121 							   SDMMC_INT_EBE)))
2122 					send_stop_abort(host, data);
2123 				state = STATE_DATA_ERROR;
2124 				break;
2125 			}
2126 			prev_state = state = STATE_DATA_BUSY;
2127 
2128 			/* fall through */
2129 
2130 		case STATE_DATA_BUSY:
2131 			if (!dw_mci_clear_pending_data_complete(host)) {
2132 				/*
2133 				 * If data error interrupt comes but data over
2134 				 * interrupt doesn't come within the given time.
2135 				 * in reading data state.
2136 				 */
2137 				if (host->dir_status == DW_MCI_RECV_STATUS)
2138 					dw_mci_set_drto(host);
2139 				break;
2140 			}
2141 
2142 			host->data = NULL;
2143 			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2144 			err = dw_mci_data_complete(host, data);
2145 
2146 			if (!err) {
2147 				if (!data->stop || mrq->sbc) {
2148 					if (mrq->sbc && data->stop)
2149 						data->stop->error = 0;
2150 					dw_mci_request_end(host, mrq);
2151 					goto unlock;
2152 				}
2153 
2154 				/* stop command for open-ended transfer*/
2155 				if (data->stop)
2156 					send_stop_abort(host, data);
2157 			} else {
2158 				/*
2159 				 * If we don't have a command complete now we'll
2160 				 * never get one since we just reset everything;
2161 				 * better end the request.
2162 				 *
2163 				 * If we do have a command complete we'll fall
2164 				 * through to the SENDING_STOP command and
2165 				 * everything will be peachy keen.
2166 				 */
2167 				if (!test_bit(EVENT_CMD_COMPLETE,
2168 					      &host->pending_events)) {
2169 					host->cmd = NULL;
2170 					dw_mci_request_end(host, mrq);
2171 					goto unlock;
2172 				}
2173 			}
2174 
2175 			/*
2176 			 * If err has non-zero,
2177 			 * stop-abort command has been already issued.
2178 			 */
2179 			prev_state = state = STATE_SENDING_STOP;
2180 
2181 			/* fall through */
2182 
2183 		case STATE_SENDING_STOP:
2184 			if (!dw_mci_clear_pending_cmd_complete(host))
2185 				break;
2186 
2187 			/* CMD error in data command */
2188 			if (mrq->cmd->error && mrq->data)
2189 				dw_mci_reset(host);
2190 
2191 			host->cmd = NULL;
2192 			host->data = NULL;
2193 
2194 			if (!mrq->sbc && mrq->stop)
2195 				dw_mci_command_complete(host, mrq->stop);
2196 			else
2197 				host->cmd_status = 0;
2198 
2199 			dw_mci_request_end(host, mrq);
2200 			goto unlock;
2201 
2202 		case STATE_DATA_ERROR:
2203 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2204 						&host->pending_events))
2205 				break;
2206 
2207 			state = STATE_DATA_BUSY;
2208 			break;
2209 		}
2210 	} while (state != prev_state);
2211 
2212 	host->state = state;
2213 unlock:
2214 	spin_unlock(&host->lock);
2215 
2216 }
2217 
2218 /* push final bytes to part_buf, only use during push */
2219 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2220 {
2221 	memcpy((void *)&host->part_buf, buf, cnt);
2222 	host->part_buf_count = cnt;
2223 }
2224 
2225 /* append bytes to part_buf, only use during push */
2226 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2227 {
2228 	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2229 	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2230 	host->part_buf_count += cnt;
2231 	return cnt;
2232 }
2233 
2234 /* pull first bytes from part_buf, only use during pull */
2235 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2236 {
2237 	cnt = min_t(int, cnt, host->part_buf_count);
2238 	if (cnt) {
2239 		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2240 		       cnt);
2241 		host->part_buf_count -= cnt;
2242 		host->part_buf_start += cnt;
2243 	}
2244 	return cnt;
2245 }
2246 
2247 /* pull final bytes from the part_buf, assuming it's just been filled */
2248 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2249 {
2250 	memcpy(buf, &host->part_buf, cnt);
2251 	host->part_buf_start = cnt;
2252 	host->part_buf_count = (1 << host->data_shift) - cnt;
2253 }
2254 
2255 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2256 {
2257 	struct mmc_data *data = host->data;
2258 	int init_cnt = cnt;
2259 
2260 	/* try and push anything in the part_buf */
2261 	if (unlikely(host->part_buf_count)) {
2262 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2263 
2264 		buf += len;
2265 		cnt -= len;
2266 		if (host->part_buf_count == 2) {
2267 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2268 			host->part_buf_count = 0;
2269 		}
2270 	}
2271 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2272 	if (unlikely((unsigned long)buf & 0x1)) {
2273 		while (cnt >= 2) {
2274 			u16 aligned_buf[64];
2275 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2276 			int items = len >> 1;
2277 			int i;
2278 			/* memcpy from input buffer into aligned buffer */
2279 			memcpy(aligned_buf, buf, len);
2280 			buf += len;
2281 			cnt -= len;
2282 			/* push data from aligned buffer into fifo */
2283 			for (i = 0; i < items; ++i)
2284 				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2285 		}
2286 	} else
2287 #endif
2288 	{
2289 		u16 *pdata = buf;
2290 
2291 		for (; cnt >= 2; cnt -= 2)
2292 			mci_fifo_writew(host->fifo_reg, *pdata++);
2293 		buf = pdata;
2294 	}
2295 	/* put anything remaining in the part_buf */
2296 	if (cnt) {
2297 		dw_mci_set_part_bytes(host, buf, cnt);
2298 		 /* Push data if we have reached the expected data length */
2299 		if ((data->bytes_xfered + init_cnt) ==
2300 		    (data->blksz * data->blocks))
2301 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2302 	}
2303 }
2304 
2305 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2306 {
2307 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2308 	if (unlikely((unsigned long)buf & 0x1)) {
2309 		while (cnt >= 2) {
2310 			/* pull data from fifo into aligned buffer */
2311 			u16 aligned_buf[64];
2312 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2313 			int items = len >> 1;
2314 			int i;
2315 
2316 			for (i = 0; i < items; ++i)
2317 				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2318 			/* memcpy from aligned buffer into output buffer */
2319 			memcpy(buf, aligned_buf, len);
2320 			buf += len;
2321 			cnt -= len;
2322 		}
2323 	} else
2324 #endif
2325 	{
2326 		u16 *pdata = buf;
2327 
2328 		for (; cnt >= 2; cnt -= 2)
2329 			*pdata++ = mci_fifo_readw(host->fifo_reg);
2330 		buf = pdata;
2331 	}
2332 	if (cnt) {
2333 		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2334 		dw_mci_pull_final_bytes(host, buf, cnt);
2335 	}
2336 }
2337 
2338 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2339 {
2340 	struct mmc_data *data = host->data;
2341 	int init_cnt = cnt;
2342 
2343 	/* try and push anything in the part_buf */
2344 	if (unlikely(host->part_buf_count)) {
2345 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2346 
2347 		buf += len;
2348 		cnt -= len;
2349 		if (host->part_buf_count == 4) {
2350 			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2351 			host->part_buf_count = 0;
2352 		}
2353 	}
2354 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2355 	if (unlikely((unsigned long)buf & 0x3)) {
2356 		while (cnt >= 4) {
2357 			u32 aligned_buf[32];
2358 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2359 			int items = len >> 2;
2360 			int i;
2361 			/* memcpy from input buffer into aligned buffer */
2362 			memcpy(aligned_buf, buf, len);
2363 			buf += len;
2364 			cnt -= len;
2365 			/* push data from aligned buffer into fifo */
2366 			for (i = 0; i < items; ++i)
2367 				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2368 		}
2369 	} else
2370 #endif
2371 	{
2372 		u32 *pdata = buf;
2373 
2374 		for (; cnt >= 4; cnt -= 4)
2375 			mci_fifo_writel(host->fifo_reg, *pdata++);
2376 		buf = pdata;
2377 	}
2378 	/* put anything remaining in the part_buf */
2379 	if (cnt) {
2380 		dw_mci_set_part_bytes(host, buf, cnt);
2381 		 /* Push data if we have reached the expected data length */
2382 		if ((data->bytes_xfered + init_cnt) ==
2383 		    (data->blksz * data->blocks))
2384 			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2385 	}
2386 }
2387 
2388 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2389 {
2390 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2391 	if (unlikely((unsigned long)buf & 0x3)) {
2392 		while (cnt >= 4) {
2393 			/* pull data from fifo into aligned buffer */
2394 			u32 aligned_buf[32];
2395 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2396 			int items = len >> 2;
2397 			int i;
2398 
2399 			for (i = 0; i < items; ++i)
2400 				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2401 			/* memcpy from aligned buffer into output buffer */
2402 			memcpy(buf, aligned_buf, len);
2403 			buf += len;
2404 			cnt -= len;
2405 		}
2406 	} else
2407 #endif
2408 	{
2409 		u32 *pdata = buf;
2410 
2411 		for (; cnt >= 4; cnt -= 4)
2412 			*pdata++ = mci_fifo_readl(host->fifo_reg);
2413 		buf = pdata;
2414 	}
2415 	if (cnt) {
2416 		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2417 		dw_mci_pull_final_bytes(host, buf, cnt);
2418 	}
2419 }
2420 
2421 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2422 {
2423 	struct mmc_data *data = host->data;
2424 	int init_cnt = cnt;
2425 
2426 	/* try and push anything in the part_buf */
2427 	if (unlikely(host->part_buf_count)) {
2428 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2429 
2430 		buf += len;
2431 		cnt -= len;
2432 
2433 		if (host->part_buf_count == 8) {
2434 			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2435 			host->part_buf_count = 0;
2436 		}
2437 	}
2438 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2439 	if (unlikely((unsigned long)buf & 0x7)) {
2440 		while (cnt >= 8) {
2441 			u64 aligned_buf[16];
2442 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2443 			int items = len >> 3;
2444 			int i;
2445 			/* memcpy from input buffer into aligned buffer */
2446 			memcpy(aligned_buf, buf, len);
2447 			buf += len;
2448 			cnt -= len;
2449 			/* push data from aligned buffer into fifo */
2450 			for (i = 0; i < items; ++i)
2451 				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2452 		}
2453 	} else
2454 #endif
2455 	{
2456 		u64 *pdata = buf;
2457 
2458 		for (; cnt >= 8; cnt -= 8)
2459 			mci_fifo_writeq(host->fifo_reg, *pdata++);
2460 		buf = pdata;
2461 	}
2462 	/* put anything remaining in the part_buf */
2463 	if (cnt) {
2464 		dw_mci_set_part_bytes(host, buf, cnt);
2465 		/* Push data if we have reached the expected data length */
2466 		if ((data->bytes_xfered + init_cnt) ==
2467 		    (data->blksz * data->blocks))
2468 			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2469 	}
2470 }
2471 
2472 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2473 {
2474 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2475 	if (unlikely((unsigned long)buf & 0x7)) {
2476 		while (cnt >= 8) {
2477 			/* pull data from fifo into aligned buffer */
2478 			u64 aligned_buf[16];
2479 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2480 			int items = len >> 3;
2481 			int i;
2482 
2483 			for (i = 0; i < items; ++i)
2484 				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2485 
2486 			/* memcpy from aligned buffer into output buffer */
2487 			memcpy(buf, aligned_buf, len);
2488 			buf += len;
2489 			cnt -= len;
2490 		}
2491 	} else
2492 #endif
2493 	{
2494 		u64 *pdata = buf;
2495 
2496 		for (; cnt >= 8; cnt -= 8)
2497 			*pdata++ = mci_fifo_readq(host->fifo_reg);
2498 		buf = pdata;
2499 	}
2500 	if (cnt) {
2501 		host->part_buf = mci_fifo_readq(host->fifo_reg);
2502 		dw_mci_pull_final_bytes(host, buf, cnt);
2503 	}
2504 }
2505 
2506 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2507 {
2508 	int len;
2509 
2510 	/* get remaining partial bytes */
2511 	len = dw_mci_pull_part_bytes(host, buf, cnt);
2512 	if (unlikely(len == cnt))
2513 		return;
2514 	buf += len;
2515 	cnt -= len;
2516 
2517 	/* get the rest of the data */
2518 	host->pull_data(host, buf, cnt);
2519 }
2520 
2521 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2522 {
2523 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2524 	void *buf;
2525 	unsigned int offset;
2526 	struct mmc_data	*data = host->data;
2527 	int shift = host->data_shift;
2528 	u32 status;
2529 	unsigned int len;
2530 	unsigned int remain, fcnt;
2531 
2532 	do {
2533 		if (!sg_miter_next(sg_miter))
2534 			goto done;
2535 
2536 		host->sg = sg_miter->piter.sg;
2537 		buf = sg_miter->addr;
2538 		remain = sg_miter->length;
2539 		offset = 0;
2540 
2541 		do {
2542 			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2543 					<< shift) + host->part_buf_count;
2544 			len = min(remain, fcnt);
2545 			if (!len)
2546 				break;
2547 			dw_mci_pull_data(host, (void *)(buf + offset), len);
2548 			data->bytes_xfered += len;
2549 			offset += len;
2550 			remain -= len;
2551 		} while (remain);
2552 
2553 		sg_miter->consumed = offset;
2554 		status = mci_readl(host, MINTSTS);
2555 		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2556 	/* if the RXDR is ready read again */
2557 	} while ((status & SDMMC_INT_RXDR) ||
2558 		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2559 
2560 	if (!remain) {
2561 		if (!sg_miter_next(sg_miter))
2562 			goto done;
2563 		sg_miter->consumed = 0;
2564 	}
2565 	sg_miter_stop(sg_miter);
2566 	return;
2567 
2568 done:
2569 	sg_miter_stop(sg_miter);
2570 	host->sg = NULL;
2571 	smp_wmb(); /* drain writebuffer */
2572 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2573 }
2574 
2575 static void dw_mci_write_data_pio(struct dw_mci *host)
2576 {
2577 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2578 	void *buf;
2579 	unsigned int offset;
2580 	struct mmc_data	*data = host->data;
2581 	int shift = host->data_shift;
2582 	u32 status;
2583 	unsigned int len;
2584 	unsigned int fifo_depth = host->fifo_depth;
2585 	unsigned int remain, fcnt;
2586 
2587 	do {
2588 		if (!sg_miter_next(sg_miter))
2589 			goto done;
2590 
2591 		host->sg = sg_miter->piter.sg;
2592 		buf = sg_miter->addr;
2593 		remain = sg_miter->length;
2594 		offset = 0;
2595 
2596 		do {
2597 			fcnt = ((fifo_depth -
2598 				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2599 					<< shift) - host->part_buf_count;
2600 			len = min(remain, fcnt);
2601 			if (!len)
2602 				break;
2603 			host->push_data(host, (void *)(buf + offset), len);
2604 			data->bytes_xfered += len;
2605 			offset += len;
2606 			remain -= len;
2607 		} while (remain);
2608 
2609 		sg_miter->consumed = offset;
2610 		status = mci_readl(host, MINTSTS);
2611 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2612 	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2613 
2614 	if (!remain) {
2615 		if (!sg_miter_next(sg_miter))
2616 			goto done;
2617 		sg_miter->consumed = 0;
2618 	}
2619 	sg_miter_stop(sg_miter);
2620 	return;
2621 
2622 done:
2623 	sg_miter_stop(sg_miter);
2624 	host->sg = NULL;
2625 	smp_wmb(); /* drain writebuffer */
2626 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2627 }
2628 
2629 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2630 {
2631 	del_timer(&host->cto_timer);
2632 
2633 	if (!host->cmd_status)
2634 		host->cmd_status = status;
2635 
2636 	smp_wmb(); /* drain writebuffer */
2637 
2638 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2639 	tasklet_schedule(&host->tasklet);
2640 }
2641 
2642 static void dw_mci_handle_cd(struct dw_mci *host)
2643 {
2644 	struct dw_mci_slot *slot = host->slot;
2645 
2646 	if (slot->mmc->ops->card_event)
2647 		slot->mmc->ops->card_event(slot->mmc);
2648 	mmc_detect_change(slot->mmc,
2649 		msecs_to_jiffies(host->pdata->detect_delay_ms));
2650 }
2651 
2652 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2653 {
2654 	struct dw_mci *host = dev_id;
2655 	u32 pending;
2656 	struct dw_mci_slot *slot = host->slot;
2657 	unsigned long irqflags;
2658 
2659 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2660 
2661 	if (pending) {
2662 		/* Check volt switch first, since it can look like an error */
2663 		if ((host->state == STATE_SENDING_CMD11) &&
2664 		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2665 			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2666 			pending &= ~SDMMC_INT_VOLT_SWITCH;
2667 
2668 			/*
2669 			 * Hold the lock; we know cmd11_timer can't be kicked
2670 			 * off after the lock is released, so safe to delete.
2671 			 */
2672 			spin_lock_irqsave(&host->irq_lock, irqflags);
2673 			dw_mci_cmd_interrupt(host, pending);
2674 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2675 
2676 			del_timer(&host->cmd11_timer);
2677 		}
2678 
2679 		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2680 			spin_lock_irqsave(&host->irq_lock, irqflags);
2681 
2682 			del_timer(&host->cto_timer);
2683 			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2684 			host->cmd_status = pending;
2685 			smp_wmb(); /* drain writebuffer */
2686 			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2687 
2688 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2689 		}
2690 
2691 		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2692 			/* if there is an error report DATA_ERROR */
2693 			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2694 			host->data_status = pending;
2695 			smp_wmb(); /* drain writebuffer */
2696 			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2697 			tasklet_schedule(&host->tasklet);
2698 		}
2699 
2700 		if (pending & SDMMC_INT_DATA_OVER) {
2701 			spin_lock_irqsave(&host->irq_lock, irqflags);
2702 
2703 			del_timer(&host->dto_timer);
2704 
2705 			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2706 			if (!host->data_status)
2707 				host->data_status = pending;
2708 			smp_wmb(); /* drain writebuffer */
2709 			if (host->dir_status == DW_MCI_RECV_STATUS) {
2710 				if (host->sg != NULL)
2711 					dw_mci_read_data_pio(host, true);
2712 			}
2713 			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2714 			tasklet_schedule(&host->tasklet);
2715 
2716 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2717 		}
2718 
2719 		if (pending & SDMMC_INT_RXDR) {
2720 			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2721 			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2722 				dw_mci_read_data_pio(host, false);
2723 		}
2724 
2725 		if (pending & SDMMC_INT_TXDR) {
2726 			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2727 			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2728 				dw_mci_write_data_pio(host);
2729 		}
2730 
2731 		if (pending & SDMMC_INT_CMD_DONE) {
2732 			spin_lock_irqsave(&host->irq_lock, irqflags);
2733 
2734 			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2735 			dw_mci_cmd_interrupt(host, pending);
2736 
2737 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2738 		}
2739 
2740 		if (pending & SDMMC_INT_CD) {
2741 			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2742 			dw_mci_handle_cd(host);
2743 		}
2744 
2745 		if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2746 			mci_writel(host, RINTSTS,
2747 				   SDMMC_INT_SDIO(slot->sdio_id));
2748 			__dw_mci_enable_sdio_irq(slot, 0);
2749 			sdio_signal_irq(slot->mmc);
2750 		}
2751 
2752 	}
2753 
2754 	if (host->use_dma != TRANS_MODE_IDMAC)
2755 		return IRQ_HANDLED;
2756 
2757 	/* Handle IDMA interrupts */
2758 	if (host->dma_64bit_address == 1) {
2759 		pending = mci_readl(host, IDSTS64);
2760 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2761 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2762 							SDMMC_IDMAC_INT_RI);
2763 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2764 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2765 				host->dma_ops->complete((void *)host);
2766 		}
2767 	} else {
2768 		pending = mci_readl(host, IDSTS);
2769 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2770 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2771 							SDMMC_IDMAC_INT_RI);
2772 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2773 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2774 				host->dma_ops->complete((void *)host);
2775 		}
2776 	}
2777 
2778 	return IRQ_HANDLED;
2779 }
2780 
2781 static int dw_mci_init_slot(struct dw_mci *host)
2782 {
2783 	struct mmc_host *mmc;
2784 	struct dw_mci_slot *slot;
2785 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2786 	int ctrl_id, ret;
2787 	u32 freq[2];
2788 
2789 	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2790 	if (!mmc)
2791 		return -ENOMEM;
2792 
2793 	slot = mmc_priv(mmc);
2794 	slot->id = 0;
2795 	slot->sdio_id = host->sdio_id0 + slot->id;
2796 	slot->mmc = mmc;
2797 	slot->host = host;
2798 	host->slot = slot;
2799 
2800 	mmc->ops = &dw_mci_ops;
2801 	if (device_property_read_u32_array(host->dev, "clock-freq-min-max",
2802 					   freq, 2)) {
2803 		mmc->f_min = DW_MCI_FREQ_MIN;
2804 		mmc->f_max = DW_MCI_FREQ_MAX;
2805 	} else {
2806 		dev_info(host->dev,
2807 			"'clock-freq-min-max' property was deprecated.\n");
2808 		mmc->f_min = freq[0];
2809 		mmc->f_max = freq[1];
2810 	}
2811 
2812 	/*if there are external regulators, get them*/
2813 	ret = mmc_regulator_get_supply(mmc);
2814 	if (ret)
2815 		goto err_host_allocated;
2816 
2817 	if (!mmc->ocr_avail)
2818 		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2819 
2820 	if (host->pdata->caps)
2821 		mmc->caps = host->pdata->caps;
2822 
2823 	/*
2824 	 * Support MMC_CAP_ERASE by default.
2825 	 * It needs to use trim/discard/erase commands.
2826 	 */
2827 	mmc->caps |= MMC_CAP_ERASE;
2828 
2829 	if (host->pdata->pm_caps)
2830 		mmc->pm_caps = host->pdata->pm_caps;
2831 
2832 	if (host->dev->of_node) {
2833 		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2834 		if (ctrl_id < 0)
2835 			ctrl_id = 0;
2836 	} else {
2837 		ctrl_id = to_platform_device(host->dev)->id;
2838 	}
2839 	if (drv_data && drv_data->caps)
2840 		mmc->caps |= drv_data->caps[ctrl_id];
2841 
2842 	if (host->pdata->caps2)
2843 		mmc->caps2 = host->pdata->caps2;
2844 
2845 	ret = mmc_of_parse(mmc);
2846 	if (ret)
2847 		goto err_host_allocated;
2848 
2849 	/* Process SDIO IRQs through the sdio_irq_work. */
2850 	if (mmc->caps & MMC_CAP_SDIO_IRQ)
2851 		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2852 
2853 	/* Useful defaults if platform data is unset. */
2854 	if (host->use_dma == TRANS_MODE_IDMAC) {
2855 		mmc->max_segs = host->ring_size;
2856 		mmc->max_blk_size = 65535;
2857 		mmc->max_seg_size = 0x1000;
2858 		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2859 		mmc->max_blk_count = mmc->max_req_size / 512;
2860 	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2861 		mmc->max_segs = 64;
2862 		mmc->max_blk_size = 65535;
2863 		mmc->max_blk_count = 65535;
2864 		mmc->max_req_size =
2865 				mmc->max_blk_size * mmc->max_blk_count;
2866 		mmc->max_seg_size = mmc->max_req_size;
2867 	} else {
2868 		/* TRANS_MODE_PIO */
2869 		mmc->max_segs = 64;
2870 		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2871 		mmc->max_blk_count = 512;
2872 		mmc->max_req_size = mmc->max_blk_size *
2873 				    mmc->max_blk_count;
2874 		mmc->max_seg_size = mmc->max_req_size;
2875 	}
2876 
2877 	dw_mci_get_cd(mmc);
2878 
2879 	ret = mmc_add_host(mmc);
2880 	if (ret)
2881 		goto err_host_allocated;
2882 
2883 #if defined(CONFIG_DEBUG_FS)
2884 	dw_mci_init_debugfs(slot);
2885 #endif
2886 
2887 	return 0;
2888 
2889 err_host_allocated:
2890 	mmc_free_host(mmc);
2891 	return ret;
2892 }
2893 
2894 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2895 {
2896 	/* Debugfs stuff is cleaned up by mmc core */
2897 	mmc_remove_host(slot->mmc);
2898 	slot->host->slot = NULL;
2899 	mmc_free_host(slot->mmc);
2900 }
2901 
2902 static void dw_mci_init_dma(struct dw_mci *host)
2903 {
2904 	int addr_config;
2905 	struct device *dev = host->dev;
2906 
2907 	/*
2908 	* Check tansfer mode from HCON[17:16]
2909 	* Clear the ambiguous description of dw_mmc databook:
2910 	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
2911 	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2912 	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2913 	* 2b'11: Non DW DMA Interface -> pio only
2914 	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
2915 	* simpler request/acknowledge handshake mechanism and both of them
2916 	* are regarded as external dma master for dw_mmc.
2917 	*/
2918 	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2919 	if (host->use_dma == DMA_INTERFACE_IDMA) {
2920 		host->use_dma = TRANS_MODE_IDMAC;
2921 	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2922 		   host->use_dma == DMA_INTERFACE_GDMA) {
2923 		host->use_dma = TRANS_MODE_EDMAC;
2924 	} else {
2925 		goto no_dma;
2926 	}
2927 
2928 	/* Determine which DMA interface to use */
2929 	if (host->use_dma == TRANS_MODE_IDMAC) {
2930 		/*
2931 		* Check ADDR_CONFIG bit in HCON to find
2932 		* IDMAC address bus width
2933 		*/
2934 		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2935 
2936 		if (addr_config == 1) {
2937 			/* host supports IDMAC in 64-bit address mode */
2938 			host->dma_64bit_address = 1;
2939 			dev_info(host->dev,
2940 				 "IDMAC supports 64-bit address mode.\n");
2941 			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2942 				dma_set_coherent_mask(host->dev,
2943 						      DMA_BIT_MASK(64));
2944 		} else {
2945 			/* host supports IDMAC in 32-bit address mode */
2946 			host->dma_64bit_address = 0;
2947 			dev_info(host->dev,
2948 				 "IDMAC supports 32-bit address mode.\n");
2949 		}
2950 
2951 		/* Alloc memory for sg translation */
2952 		host->sg_cpu = dmam_alloc_coherent(host->dev,
2953 						   DESC_RING_BUF_SZ,
2954 						   &host->sg_dma, GFP_KERNEL);
2955 		if (!host->sg_cpu) {
2956 			dev_err(host->dev,
2957 				"%s: could not alloc DMA memory\n",
2958 				__func__);
2959 			goto no_dma;
2960 		}
2961 
2962 		host->dma_ops = &dw_mci_idmac_ops;
2963 		dev_info(host->dev, "Using internal DMA controller.\n");
2964 	} else {
2965 		/* TRANS_MODE_EDMAC: check dma bindings again */
2966 		if ((device_property_read_string_array(dev, "dma-names",
2967 						       NULL, 0) < 0) ||
2968 		    !device_property_present(dev, "dmas")) {
2969 			goto no_dma;
2970 		}
2971 		host->dma_ops = &dw_mci_edmac_ops;
2972 		dev_info(host->dev, "Using external DMA controller.\n");
2973 	}
2974 
2975 	if (host->dma_ops->init && host->dma_ops->start &&
2976 	    host->dma_ops->stop && host->dma_ops->cleanup) {
2977 		if (host->dma_ops->init(host)) {
2978 			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2979 				__func__);
2980 			goto no_dma;
2981 		}
2982 	} else {
2983 		dev_err(host->dev, "DMA initialization not found.\n");
2984 		goto no_dma;
2985 	}
2986 
2987 	return;
2988 
2989 no_dma:
2990 	dev_info(host->dev, "Using PIO mode.\n");
2991 	host->use_dma = TRANS_MODE_PIO;
2992 }
2993 
2994 static void dw_mci_cmd11_timer(struct timer_list *t)
2995 {
2996 	struct dw_mci *host = from_timer(host, t, cmd11_timer);
2997 
2998 	if (host->state != STATE_SENDING_CMD11) {
2999 		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
3000 		return;
3001 	}
3002 
3003 	host->cmd_status = SDMMC_INT_RTO;
3004 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3005 	tasklet_schedule(&host->tasklet);
3006 }
3007 
3008 static void dw_mci_cto_timer(struct timer_list *t)
3009 {
3010 	struct dw_mci *host = from_timer(host, t, cto_timer);
3011 	unsigned long irqflags;
3012 	u32 pending;
3013 
3014 	spin_lock_irqsave(&host->irq_lock, irqflags);
3015 
3016 	/*
3017 	 * If somehow we have very bad interrupt latency it's remotely possible
3018 	 * that the timer could fire while the interrupt is still pending or
3019 	 * while the interrupt is midway through running.  Let's be paranoid
3020 	 * and detect those two cases.  Note that this is paranoia is somewhat
3021 	 * justified because in this function we don't actually cancel the
3022 	 * pending command in the controller--we just assume it will never come.
3023 	 */
3024 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3025 	if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
3026 		/* The interrupt should fire; no need to act but we can warn */
3027 		dev_warn(host->dev, "Unexpected interrupt latency\n");
3028 		goto exit;
3029 	}
3030 	if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3031 		/* Presumably interrupt handler couldn't delete the timer */
3032 		dev_warn(host->dev, "CTO timeout when already completed\n");
3033 		goto exit;
3034 	}
3035 
3036 	/*
3037 	 * Continued paranoia to make sure we're in the state we expect.
3038 	 * This paranoia isn't really justified but it seems good to be safe.
3039 	 */
3040 	switch (host->state) {
3041 	case STATE_SENDING_CMD11:
3042 	case STATE_SENDING_CMD:
3043 	case STATE_SENDING_STOP:
3044 		/*
3045 		 * If CMD_DONE interrupt does NOT come in sending command
3046 		 * state, we should notify the driver to terminate current
3047 		 * transfer and report a command timeout to the core.
3048 		 */
3049 		host->cmd_status = SDMMC_INT_RTO;
3050 		set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3051 		tasklet_schedule(&host->tasklet);
3052 		break;
3053 	default:
3054 		dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3055 			 host->state);
3056 		break;
3057 	}
3058 
3059 exit:
3060 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3061 }
3062 
3063 static void dw_mci_dto_timer(struct timer_list *t)
3064 {
3065 	struct dw_mci *host = from_timer(host, t, dto_timer);
3066 	unsigned long irqflags;
3067 	u32 pending;
3068 
3069 	spin_lock_irqsave(&host->irq_lock, irqflags);
3070 
3071 	/*
3072 	 * The DTO timer is much longer than the CTO timer, so it's even less
3073 	 * likely that we'll these cases, but it pays to be paranoid.
3074 	 */
3075 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3076 	if (pending & SDMMC_INT_DATA_OVER) {
3077 		/* The interrupt should fire; no need to act but we can warn */
3078 		dev_warn(host->dev, "Unexpected data interrupt latency\n");
3079 		goto exit;
3080 	}
3081 	if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3082 		/* Presumably interrupt handler couldn't delete the timer */
3083 		dev_warn(host->dev, "DTO timeout when already completed\n");
3084 		goto exit;
3085 	}
3086 
3087 	/*
3088 	 * Continued paranoia to make sure we're in the state we expect.
3089 	 * This paranoia isn't really justified but it seems good to be safe.
3090 	 */
3091 	switch (host->state) {
3092 	case STATE_SENDING_DATA:
3093 	case STATE_DATA_BUSY:
3094 		/*
3095 		 * If DTO interrupt does NOT come in sending data state,
3096 		 * we should notify the driver to terminate current transfer
3097 		 * and report a data timeout to the core.
3098 		 */
3099 		host->data_status = SDMMC_INT_DRTO;
3100 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
3101 		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3102 		tasklet_schedule(&host->tasklet);
3103 		break;
3104 	default:
3105 		dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3106 			 host->state);
3107 		break;
3108 	}
3109 
3110 exit:
3111 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3112 }
3113 
3114 #ifdef CONFIG_OF
3115 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3116 {
3117 	struct dw_mci_board *pdata;
3118 	struct device *dev = host->dev;
3119 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3120 	int ret;
3121 	u32 clock_frequency;
3122 
3123 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3124 	if (!pdata)
3125 		return ERR_PTR(-ENOMEM);
3126 
3127 	/* find reset controller when exist */
3128 	pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3129 	if (IS_ERR(pdata->rstc)) {
3130 		if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
3131 			return ERR_PTR(-EPROBE_DEFER);
3132 	}
3133 
3134 	/* find out number of slots supported */
3135 	if (!device_property_read_u32(dev, "num-slots", &pdata->num_slots))
3136 		dev_info(dev, "'num-slots' was deprecated.\n");
3137 
3138 	if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3139 		dev_info(dev,
3140 			 "fifo-depth property not found, using value of FIFOTH register as default\n");
3141 
3142 	device_property_read_u32(dev, "card-detect-delay",
3143 				 &pdata->detect_delay_ms);
3144 
3145 	device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3146 
3147 	if (device_property_present(dev, "fifo-watermark-aligned"))
3148 		host->wm_aligned = true;
3149 
3150 	if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3151 		pdata->bus_hz = clock_frequency;
3152 
3153 	if (drv_data && drv_data->parse_dt) {
3154 		ret = drv_data->parse_dt(host);
3155 		if (ret)
3156 			return ERR_PTR(ret);
3157 	}
3158 
3159 	return pdata;
3160 }
3161 
3162 #else /* CONFIG_OF */
3163 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3164 {
3165 	return ERR_PTR(-EINVAL);
3166 }
3167 #endif /* CONFIG_OF */
3168 
3169 static void dw_mci_enable_cd(struct dw_mci *host)
3170 {
3171 	unsigned long irqflags;
3172 	u32 temp;
3173 
3174 	/*
3175 	 * No need for CD if all slots have a non-error GPIO
3176 	 * as well as broken card detection is found.
3177 	 */
3178 	if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3179 		return;
3180 
3181 	if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3182 		spin_lock_irqsave(&host->irq_lock, irqflags);
3183 		temp = mci_readl(host, INTMASK);
3184 		temp  |= SDMMC_INT_CD;
3185 		mci_writel(host, INTMASK, temp);
3186 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
3187 	}
3188 }
3189 
3190 int dw_mci_probe(struct dw_mci *host)
3191 {
3192 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3193 	int width, i, ret = 0;
3194 	u32 fifo_size;
3195 
3196 	if (!host->pdata) {
3197 		host->pdata = dw_mci_parse_dt(host);
3198 		if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3199 			return -EPROBE_DEFER;
3200 		} else if (IS_ERR(host->pdata)) {
3201 			dev_err(host->dev, "platform data not available\n");
3202 			return -EINVAL;
3203 		}
3204 	}
3205 
3206 	host->biu_clk = devm_clk_get(host->dev, "biu");
3207 	if (IS_ERR(host->biu_clk)) {
3208 		dev_dbg(host->dev, "biu clock not available\n");
3209 	} else {
3210 		ret = clk_prepare_enable(host->biu_clk);
3211 		if (ret) {
3212 			dev_err(host->dev, "failed to enable biu clock\n");
3213 			return ret;
3214 		}
3215 	}
3216 
3217 	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3218 	if (IS_ERR(host->ciu_clk)) {
3219 		dev_dbg(host->dev, "ciu clock not available\n");
3220 		host->bus_hz = host->pdata->bus_hz;
3221 	} else {
3222 		ret = clk_prepare_enable(host->ciu_clk);
3223 		if (ret) {
3224 			dev_err(host->dev, "failed to enable ciu clock\n");
3225 			goto err_clk_biu;
3226 		}
3227 
3228 		if (host->pdata->bus_hz) {
3229 			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3230 			if (ret)
3231 				dev_warn(host->dev,
3232 					 "Unable to set bus rate to %uHz\n",
3233 					 host->pdata->bus_hz);
3234 		}
3235 		host->bus_hz = clk_get_rate(host->ciu_clk);
3236 	}
3237 
3238 	if (!host->bus_hz) {
3239 		dev_err(host->dev,
3240 			"Platform data must supply bus speed\n");
3241 		ret = -ENODEV;
3242 		goto err_clk_ciu;
3243 	}
3244 
3245 	if (!IS_ERR(host->pdata->rstc)) {
3246 		reset_control_assert(host->pdata->rstc);
3247 		usleep_range(10, 50);
3248 		reset_control_deassert(host->pdata->rstc);
3249 	}
3250 
3251 	if (drv_data && drv_data->init) {
3252 		ret = drv_data->init(host);
3253 		if (ret) {
3254 			dev_err(host->dev,
3255 				"implementation specific init failed\n");
3256 			goto err_clk_ciu;
3257 		}
3258 	}
3259 
3260 	timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3261 	timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3262 	timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3263 
3264 	spin_lock_init(&host->lock);
3265 	spin_lock_init(&host->irq_lock);
3266 	INIT_LIST_HEAD(&host->queue);
3267 
3268 	/*
3269 	 * Get the host data width - this assumes that HCON has been set with
3270 	 * the correct values.
3271 	 */
3272 	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3273 	if (!i) {
3274 		host->push_data = dw_mci_push_data16;
3275 		host->pull_data = dw_mci_pull_data16;
3276 		width = 16;
3277 		host->data_shift = 1;
3278 	} else if (i == 2) {
3279 		host->push_data = dw_mci_push_data64;
3280 		host->pull_data = dw_mci_pull_data64;
3281 		width = 64;
3282 		host->data_shift = 3;
3283 	} else {
3284 		/* Check for a reserved value, and warn if it is */
3285 		WARN((i != 1),
3286 		     "HCON reports a reserved host data width!\n"
3287 		     "Defaulting to 32-bit access.\n");
3288 		host->push_data = dw_mci_push_data32;
3289 		host->pull_data = dw_mci_pull_data32;
3290 		width = 32;
3291 		host->data_shift = 2;
3292 	}
3293 
3294 	/* Reset all blocks */
3295 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3296 		ret = -ENODEV;
3297 		goto err_clk_ciu;
3298 	}
3299 
3300 	host->dma_ops = host->pdata->dma_ops;
3301 	dw_mci_init_dma(host);
3302 
3303 	/* Clear the interrupts for the host controller */
3304 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3305 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3306 
3307 	/* Put in max timeout */
3308 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3309 
3310 	/*
3311 	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3312 	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3313 	 */
3314 	if (!host->pdata->fifo_depth) {
3315 		/*
3316 		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3317 		 * have been overwritten by the bootloader, just like we're
3318 		 * about to do, so if you know the value for your hardware, you
3319 		 * should put it in the platform data.
3320 		 */
3321 		fifo_size = mci_readl(host, FIFOTH);
3322 		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3323 	} else {
3324 		fifo_size = host->pdata->fifo_depth;
3325 	}
3326 	host->fifo_depth = fifo_size;
3327 	host->fifoth_val =
3328 		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3329 	mci_writel(host, FIFOTH, host->fifoth_val);
3330 
3331 	/* disable clock to CIU */
3332 	mci_writel(host, CLKENA, 0);
3333 	mci_writel(host, CLKSRC, 0);
3334 
3335 	/*
3336 	 * In 2.40a spec, Data offset is changed.
3337 	 * Need to check the version-id and set data-offset for DATA register.
3338 	 */
3339 	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3340 	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3341 
3342 	if (host->data_addr_override)
3343 		host->fifo_reg = host->regs + host->data_addr_override;
3344 	else if (host->verid < DW_MMC_240A)
3345 		host->fifo_reg = host->regs + DATA_OFFSET;
3346 	else
3347 		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3348 
3349 	tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3350 	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3351 			       host->irq_flags, "dw-mci", host);
3352 	if (ret)
3353 		goto err_dmaunmap;
3354 
3355 	/*
3356 	 * Enable interrupts for command done, data over, data empty,
3357 	 * receive ready and error such as transmit, receive timeout, crc error
3358 	 */
3359 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3360 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3361 		   DW_MCI_ERROR_FLAGS);
3362 	/* Enable mci interrupt */
3363 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3364 
3365 	dev_info(host->dev,
3366 		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3367 		 host->irq, width, fifo_size);
3368 
3369 	/* We need at least one slot to succeed */
3370 	ret = dw_mci_init_slot(host);
3371 	if (ret) {
3372 		dev_dbg(host->dev, "slot %d init failed\n", i);
3373 		goto err_dmaunmap;
3374 	}
3375 
3376 	/* Now that slots are all setup, we can enable card detect */
3377 	dw_mci_enable_cd(host);
3378 
3379 	return 0;
3380 
3381 err_dmaunmap:
3382 	if (host->use_dma && host->dma_ops->exit)
3383 		host->dma_ops->exit(host);
3384 
3385 	if (!IS_ERR(host->pdata->rstc))
3386 		reset_control_assert(host->pdata->rstc);
3387 
3388 err_clk_ciu:
3389 	clk_disable_unprepare(host->ciu_clk);
3390 
3391 err_clk_biu:
3392 	clk_disable_unprepare(host->biu_clk);
3393 
3394 	return ret;
3395 }
3396 EXPORT_SYMBOL(dw_mci_probe);
3397 
3398 void dw_mci_remove(struct dw_mci *host)
3399 {
3400 	dev_dbg(host->dev, "remove slot\n");
3401 	if (host->slot)
3402 		dw_mci_cleanup_slot(host->slot);
3403 
3404 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3405 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3406 
3407 	/* disable clock to CIU */
3408 	mci_writel(host, CLKENA, 0);
3409 	mci_writel(host, CLKSRC, 0);
3410 
3411 	if (host->use_dma && host->dma_ops->exit)
3412 		host->dma_ops->exit(host);
3413 
3414 	if (!IS_ERR(host->pdata->rstc))
3415 		reset_control_assert(host->pdata->rstc);
3416 
3417 	clk_disable_unprepare(host->ciu_clk);
3418 	clk_disable_unprepare(host->biu_clk);
3419 }
3420 EXPORT_SYMBOL(dw_mci_remove);
3421 
3422 
3423 
3424 #ifdef CONFIG_PM
3425 int dw_mci_runtime_suspend(struct device *dev)
3426 {
3427 	struct dw_mci *host = dev_get_drvdata(dev);
3428 
3429 	if (host->use_dma && host->dma_ops->exit)
3430 		host->dma_ops->exit(host);
3431 
3432 	clk_disable_unprepare(host->ciu_clk);
3433 
3434 	if (host->slot &&
3435 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3436 	     !mmc_card_is_removable(host->slot->mmc)))
3437 		clk_disable_unprepare(host->biu_clk);
3438 
3439 	return 0;
3440 }
3441 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3442 
3443 int dw_mci_runtime_resume(struct device *dev)
3444 {
3445 	int ret = 0;
3446 	struct dw_mci *host = dev_get_drvdata(dev);
3447 
3448 	if (host->slot &&
3449 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3450 	     !mmc_card_is_removable(host->slot->mmc))) {
3451 		ret = clk_prepare_enable(host->biu_clk);
3452 		if (ret)
3453 			return ret;
3454 	}
3455 
3456 	ret = clk_prepare_enable(host->ciu_clk);
3457 	if (ret)
3458 		goto err;
3459 
3460 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3461 		clk_disable_unprepare(host->ciu_clk);
3462 		ret = -ENODEV;
3463 		goto err;
3464 	}
3465 
3466 	if (host->use_dma && host->dma_ops->init)
3467 		host->dma_ops->init(host);
3468 
3469 	/*
3470 	 * Restore the initial value at FIFOTH register
3471 	 * And Invalidate the prev_blksz with zero
3472 	 */
3473 	 mci_writel(host, FIFOTH, host->fifoth_val);
3474 	 host->prev_blksz = 0;
3475 
3476 	/* Put in max timeout */
3477 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3478 
3479 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3480 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3481 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3482 		   DW_MCI_ERROR_FLAGS);
3483 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3484 
3485 
3486 	if (host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3487 		dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3488 
3489 	/* Force setup bus to guarantee available clock output */
3490 	dw_mci_setup_bus(host->slot, true);
3491 
3492 	/* Now that slots are all setup, we can enable card detect */
3493 	dw_mci_enable_cd(host);
3494 
3495 	return 0;
3496 
3497 err:
3498 	if (host->slot &&
3499 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3500 	     !mmc_card_is_removable(host->slot->mmc)))
3501 		clk_disable_unprepare(host->biu_clk);
3502 
3503 	return ret;
3504 }
3505 EXPORT_SYMBOL(dw_mci_runtime_resume);
3506 #endif /* CONFIG_PM */
3507 
3508 static int __init dw_mci_init(void)
3509 {
3510 	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3511 	return 0;
3512 }
3513 
3514 static void __exit dw_mci_exit(void)
3515 {
3516 }
3517 
3518 module_init(dw_mci_init);
3519 module_exit(dw_mci_exit);
3520 
3521 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3522 MODULE_AUTHOR("NXP Semiconductor VietNam");
3523 MODULE_AUTHOR("Imagination Technologies Ltd");
3524 MODULE_LICENSE("GPL v2");
3525