xref: /openbmc/linux/drivers/mmc/host/dw_mmc.c (revision 1f5c51d7)
1 /*
2  * Synopsys DesignWare Multimedia Card Interface driver
3  *  (Based on NXP driver for lpc 31xx)
4  *
5  * Copyright (C) 2009 NXP Semiconductors
6  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/mmc/dw_mmc.h>
36 #include <linux/bitops.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/of.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mmc/slot-gpio.h>
41 
42 #include "dw_mmc.h"
43 
44 /* Common flag combinations */
45 #define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
46 				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
47 				 SDMMC_INT_EBE | SDMMC_INT_HLE)
48 #define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
49 				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
50 #define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
51 				 DW_MCI_CMD_ERROR_FLAGS)
52 #define DW_MCI_SEND_STATUS	1
53 #define DW_MCI_RECV_STATUS	2
54 #define DW_MCI_DMA_THRESHOLD	16
55 
56 #define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
57 #define DW_MCI_FREQ_MIN	400000		/* unit: HZ */
58 
59 #define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
60 				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
61 				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
62 				 SDMMC_IDMAC_INT_TI)
63 
64 #define DESC_RING_BUF_SZ	PAGE_SIZE
65 
66 struct idmac_desc_64addr {
67 	u32		des0;	/* Control Descriptor */
68 
69 	u32		des1;	/* Reserved */
70 
71 	u32		des2;	/*Buffer sizes */
72 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
73 	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
74 	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
75 
76 	u32		des3;	/* Reserved */
77 
78 	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
79 	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
80 
81 	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
82 	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
83 };
84 
85 struct idmac_desc {
86 	__le32		des0;	/* Control Descriptor */
87 #define IDMAC_DES0_DIC	BIT(1)
88 #define IDMAC_DES0_LD	BIT(2)
89 #define IDMAC_DES0_FD	BIT(3)
90 #define IDMAC_DES0_CH	BIT(4)
91 #define IDMAC_DES0_ER	BIT(5)
92 #define IDMAC_DES0_CES	BIT(30)
93 #define IDMAC_DES0_OWN	BIT(31)
94 
95 	__le32		des1;	/* Buffer sizes */
96 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
97 	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
98 
99 	__le32		des2;	/* buffer 1 physical address */
100 
101 	__le32		des3;	/* buffer 2 physical address */
102 };
103 
104 /* Each descriptor can transfer up to 4KB of data in chained mode */
105 #define DW_MCI_DESC_DATA_LENGTH	0x1000
106 
107 static bool dw_mci_reset(struct dw_mci *host);
108 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset);
109 static int dw_mci_card_busy(struct mmc_host *mmc);
110 static int dw_mci_get_cd(struct mmc_host *mmc);
111 
112 #if defined(CONFIG_DEBUG_FS)
113 static int dw_mci_req_show(struct seq_file *s, void *v)
114 {
115 	struct dw_mci_slot *slot = s->private;
116 	struct mmc_request *mrq;
117 	struct mmc_command *cmd;
118 	struct mmc_command *stop;
119 	struct mmc_data	*data;
120 
121 	/* Make sure we get a consistent snapshot */
122 	spin_lock_bh(&slot->host->lock);
123 	mrq = slot->mrq;
124 
125 	if (mrq) {
126 		cmd = mrq->cmd;
127 		data = mrq->data;
128 		stop = mrq->stop;
129 
130 		if (cmd)
131 			seq_printf(s,
132 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
133 				   cmd->opcode, cmd->arg, cmd->flags,
134 				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
135 				   cmd->resp[2], cmd->error);
136 		if (data)
137 			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
138 				   data->bytes_xfered, data->blocks,
139 				   data->blksz, data->flags, data->error);
140 		if (stop)
141 			seq_printf(s,
142 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
143 				   stop->opcode, stop->arg, stop->flags,
144 				   stop->resp[0], stop->resp[1], stop->resp[2],
145 				   stop->resp[2], stop->error);
146 	}
147 
148 	spin_unlock_bh(&slot->host->lock);
149 
150 	return 0;
151 }
152 
153 static int dw_mci_req_open(struct inode *inode, struct file *file)
154 {
155 	return single_open(file, dw_mci_req_show, inode->i_private);
156 }
157 
158 static const struct file_operations dw_mci_req_fops = {
159 	.owner		= THIS_MODULE,
160 	.open		= dw_mci_req_open,
161 	.read		= seq_read,
162 	.llseek		= seq_lseek,
163 	.release	= single_release,
164 };
165 
166 static int dw_mci_regs_show(struct seq_file *s, void *v)
167 {
168 	seq_printf(s, "STATUS:\t0x%08x\n", SDMMC_STATUS);
169 	seq_printf(s, "RINTSTS:\t0x%08x\n", SDMMC_RINTSTS);
170 	seq_printf(s, "CMD:\t0x%08x\n", SDMMC_CMD);
171 	seq_printf(s, "CTRL:\t0x%08x\n", SDMMC_CTRL);
172 	seq_printf(s, "INTMASK:\t0x%08x\n", SDMMC_INTMASK);
173 	seq_printf(s, "CLKENA:\t0x%08x\n", SDMMC_CLKENA);
174 
175 	return 0;
176 }
177 
178 static int dw_mci_regs_open(struct inode *inode, struct file *file)
179 {
180 	return single_open(file, dw_mci_regs_show, inode->i_private);
181 }
182 
183 static const struct file_operations dw_mci_regs_fops = {
184 	.owner		= THIS_MODULE,
185 	.open		= dw_mci_regs_open,
186 	.read		= seq_read,
187 	.llseek		= seq_lseek,
188 	.release	= single_release,
189 };
190 
191 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
192 {
193 	struct mmc_host	*mmc = slot->mmc;
194 	struct dw_mci *host = slot->host;
195 	struct dentry *root;
196 	struct dentry *node;
197 
198 	root = mmc->debugfs_root;
199 	if (!root)
200 		return;
201 
202 	node = debugfs_create_file("regs", S_IRUSR, root, host,
203 				   &dw_mci_regs_fops);
204 	if (!node)
205 		goto err;
206 
207 	node = debugfs_create_file("req", S_IRUSR, root, slot,
208 				   &dw_mci_req_fops);
209 	if (!node)
210 		goto err;
211 
212 	node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
213 	if (!node)
214 		goto err;
215 
216 	node = debugfs_create_x32("pending_events", S_IRUSR, root,
217 				  (u32 *)&host->pending_events);
218 	if (!node)
219 		goto err;
220 
221 	node = debugfs_create_x32("completed_events", S_IRUSR, root,
222 				  (u32 *)&host->completed_events);
223 	if (!node)
224 		goto err;
225 
226 	return;
227 
228 err:
229 	dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
230 }
231 #endif /* defined(CONFIG_DEBUG_FS) */
232 
233 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg);
234 
235 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
236 {
237 	struct mmc_data	*data;
238 	struct dw_mci_slot *slot = mmc_priv(mmc);
239 	struct dw_mci *host = slot->host;
240 	u32 cmdr;
241 
242 	cmd->error = -EINPROGRESS;
243 	cmdr = cmd->opcode;
244 
245 	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
246 	    cmd->opcode == MMC_GO_IDLE_STATE ||
247 	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
248 	    (cmd->opcode == SD_IO_RW_DIRECT &&
249 	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
250 		cmdr |= SDMMC_CMD_STOP;
251 	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
252 		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
253 
254 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
255 		u32 clk_en_a;
256 
257 		/* Special bit makes CMD11 not die */
258 		cmdr |= SDMMC_CMD_VOLT_SWITCH;
259 
260 		/* Change state to continue to handle CMD11 weirdness */
261 		WARN_ON(slot->host->state != STATE_SENDING_CMD);
262 		slot->host->state = STATE_SENDING_CMD11;
263 
264 		/*
265 		 * We need to disable low power mode (automatic clock stop)
266 		 * while doing voltage switch so we don't confuse the card,
267 		 * since stopping the clock is a specific part of the UHS
268 		 * voltage change dance.
269 		 *
270 		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
271 		 * unconditionally turned back on in dw_mci_setup_bus() if it's
272 		 * ever called with a non-zero clock.  That shouldn't happen
273 		 * until the voltage change is all done.
274 		 */
275 		clk_en_a = mci_readl(host, CLKENA);
276 		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
277 		mci_writel(host, CLKENA, clk_en_a);
278 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
279 			     SDMMC_CMD_PRV_DAT_WAIT, 0);
280 	}
281 
282 	if (cmd->flags & MMC_RSP_PRESENT) {
283 		/* We expect a response, so set this bit */
284 		cmdr |= SDMMC_CMD_RESP_EXP;
285 		if (cmd->flags & MMC_RSP_136)
286 			cmdr |= SDMMC_CMD_RESP_LONG;
287 	}
288 
289 	if (cmd->flags & MMC_RSP_CRC)
290 		cmdr |= SDMMC_CMD_RESP_CRC;
291 
292 	data = cmd->data;
293 	if (data) {
294 		cmdr |= SDMMC_CMD_DAT_EXP;
295 		if (data->flags & MMC_DATA_WRITE)
296 			cmdr |= SDMMC_CMD_DAT_WR;
297 	}
298 
299 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
300 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
301 
302 	return cmdr;
303 }
304 
305 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
306 {
307 	struct mmc_command *stop;
308 	u32 cmdr;
309 
310 	if (!cmd->data)
311 		return 0;
312 
313 	stop = &host->stop_abort;
314 	cmdr = cmd->opcode;
315 	memset(stop, 0, sizeof(struct mmc_command));
316 
317 	if (cmdr == MMC_READ_SINGLE_BLOCK ||
318 	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
319 	    cmdr == MMC_WRITE_BLOCK ||
320 	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
321 	    cmdr == MMC_SEND_TUNING_BLOCK ||
322 	    cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
323 		stop->opcode = MMC_STOP_TRANSMISSION;
324 		stop->arg = 0;
325 		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
326 	} else if (cmdr == SD_IO_RW_EXTENDED) {
327 		stop->opcode = SD_IO_RW_DIRECT;
328 		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
329 			     ((cmd->arg >> 28) & 0x7);
330 		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
331 	} else {
332 		return 0;
333 	}
334 
335 	cmdr = stop->opcode | SDMMC_CMD_STOP |
336 		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
337 
338 	return cmdr;
339 }
340 
341 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
342 {
343 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
344 
345 	/*
346 	 * Databook says that before issuing a new data transfer command
347 	 * we need to check to see if the card is busy.  Data transfer commands
348 	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
349 	 *
350 	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
351 	 * expected.
352 	 */
353 	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
354 	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
355 		while (mci_readl(host, STATUS) & SDMMC_STATUS_BUSY) {
356 			if (time_after(jiffies, timeout)) {
357 				/* Command will fail; we'll pass error then */
358 				dev_err(host->dev, "Busy; trying anyway\n");
359 				break;
360 			}
361 			udelay(10);
362 		}
363 	}
364 }
365 
366 static void dw_mci_start_command(struct dw_mci *host,
367 				 struct mmc_command *cmd, u32 cmd_flags)
368 {
369 	host->cmd = cmd;
370 	dev_vdbg(host->dev,
371 		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
372 		 cmd->arg, cmd_flags);
373 
374 	mci_writel(host, CMDARG, cmd->arg);
375 	wmb(); /* drain writebuffer */
376 	dw_mci_wait_while_busy(host, cmd_flags);
377 
378 	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
379 }
380 
381 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
382 {
383 	struct mmc_command *stop = data->stop ? data->stop : &host->stop_abort;
384 
385 	dw_mci_start_command(host, stop, host->stop_cmdr);
386 }
387 
388 /* DMA interface functions */
389 static void dw_mci_stop_dma(struct dw_mci *host)
390 {
391 	if (host->using_dma) {
392 		host->dma_ops->stop(host);
393 		host->dma_ops->cleanup(host);
394 	}
395 
396 	/* Data transfer was stopped by the interrupt handler */
397 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
398 }
399 
400 static int dw_mci_get_dma_dir(struct mmc_data *data)
401 {
402 	if (data->flags & MMC_DATA_WRITE)
403 		return DMA_TO_DEVICE;
404 	else
405 		return DMA_FROM_DEVICE;
406 }
407 
408 static void dw_mci_dma_cleanup(struct dw_mci *host)
409 {
410 	struct mmc_data *data = host->data;
411 
412 	if (data)
413 		if (!data->host_cookie)
414 			dma_unmap_sg(host->dev,
415 				     data->sg,
416 				     data->sg_len,
417 				     dw_mci_get_dma_dir(data));
418 }
419 
420 static void dw_mci_idmac_reset(struct dw_mci *host)
421 {
422 	u32 bmod = mci_readl(host, BMOD);
423 	/* Software reset of DMA */
424 	bmod |= SDMMC_IDMAC_SWRESET;
425 	mci_writel(host, BMOD, bmod);
426 }
427 
428 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
429 {
430 	u32 temp;
431 
432 	/* Disable and reset the IDMAC interface */
433 	temp = mci_readl(host, CTRL);
434 	temp &= ~SDMMC_CTRL_USE_IDMAC;
435 	temp |= SDMMC_CTRL_DMA_RESET;
436 	mci_writel(host, CTRL, temp);
437 
438 	/* Stop the IDMAC running */
439 	temp = mci_readl(host, BMOD);
440 	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
441 	temp |= SDMMC_IDMAC_SWRESET;
442 	mci_writel(host, BMOD, temp);
443 }
444 
445 static void dw_mci_dmac_complete_dma(void *arg)
446 {
447 	struct dw_mci *host = arg;
448 	struct mmc_data *data = host->data;
449 
450 	dev_vdbg(host->dev, "DMA complete\n");
451 
452 	if ((host->use_dma == TRANS_MODE_EDMAC) &&
453 	    data && (data->flags & MMC_DATA_READ))
454 		/* Invalidate cache after read */
455 		dma_sync_sg_for_cpu(mmc_dev(host->cur_slot->mmc),
456 				    data->sg,
457 				    data->sg_len,
458 				    DMA_FROM_DEVICE);
459 
460 	host->dma_ops->cleanup(host);
461 
462 	/*
463 	 * If the card was removed, data will be NULL. No point in trying to
464 	 * send the stop command or waiting for NBUSY in this case.
465 	 */
466 	if (data) {
467 		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
468 		tasklet_schedule(&host->tasklet);
469 	}
470 }
471 
472 static int dw_mci_idmac_init(struct dw_mci *host)
473 {
474 	int i;
475 
476 	if (host->dma_64bit_address == 1) {
477 		struct idmac_desc_64addr *p;
478 		/* Number of descriptors in the ring buffer */
479 		host->ring_size =
480 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
481 
482 		/* Forward link the descriptor list */
483 		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
484 								i++, p++) {
485 			p->des6 = (host->sg_dma +
486 					(sizeof(struct idmac_desc_64addr) *
487 							(i + 1))) & 0xffffffff;
488 
489 			p->des7 = (u64)(host->sg_dma +
490 					(sizeof(struct idmac_desc_64addr) *
491 							(i + 1))) >> 32;
492 			/* Initialize reserved and buffer size fields to "0" */
493 			p->des1 = 0;
494 			p->des2 = 0;
495 			p->des3 = 0;
496 		}
497 
498 		/* Set the last descriptor as the end-of-ring descriptor */
499 		p->des6 = host->sg_dma & 0xffffffff;
500 		p->des7 = (u64)host->sg_dma >> 32;
501 		p->des0 = IDMAC_DES0_ER;
502 
503 	} else {
504 		struct idmac_desc *p;
505 		/* Number of descriptors in the ring buffer */
506 		host->ring_size =
507 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
508 
509 		/* Forward link the descriptor list */
510 		for (i = 0, p = host->sg_cpu;
511 		     i < host->ring_size - 1;
512 		     i++, p++) {
513 			p->des3 = cpu_to_le32(host->sg_dma +
514 					(sizeof(struct idmac_desc) * (i + 1)));
515 			p->des1 = 0;
516 		}
517 
518 		/* Set the last descriptor as the end-of-ring descriptor */
519 		p->des3 = cpu_to_le32(host->sg_dma);
520 		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
521 	}
522 
523 	dw_mci_idmac_reset(host);
524 
525 	if (host->dma_64bit_address == 1) {
526 		/* Mask out interrupts - get Tx & Rx complete only */
527 		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
528 		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
529 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
530 
531 		/* Set the descriptor base address */
532 		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
533 		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
534 
535 	} else {
536 		/* Mask out interrupts - get Tx & Rx complete only */
537 		mci_writel(host, IDSTS, IDMAC_INT_CLR);
538 		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
539 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
540 
541 		/* Set the descriptor base address */
542 		mci_writel(host, DBADDR, host->sg_dma);
543 	}
544 
545 	return 0;
546 }
547 
548 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
549 					 struct mmc_data *data,
550 					 unsigned int sg_len)
551 {
552 	unsigned int desc_len;
553 	struct idmac_desc_64addr *desc_first, *desc_last, *desc;
554 	unsigned long timeout;
555 	int i;
556 
557 	desc_first = desc_last = desc = host->sg_cpu;
558 
559 	for (i = 0; i < sg_len; i++) {
560 		unsigned int length = sg_dma_len(&data->sg[i]);
561 
562 		u64 mem_addr = sg_dma_address(&data->sg[i]);
563 
564 		for ( ; length ; desc++) {
565 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
566 				   length : DW_MCI_DESC_DATA_LENGTH;
567 
568 			length -= desc_len;
569 
570 			/*
571 			 * Wait for the former clear OWN bit operation
572 			 * of IDMAC to make sure that this descriptor
573 			 * isn't still owned by IDMAC as IDMAC's write
574 			 * ops and CPU's read ops are asynchronous.
575 			 */
576 			timeout = jiffies + msecs_to_jiffies(100);
577 			while (readl(&desc->des0) & IDMAC_DES0_OWN) {
578 				if (time_after(jiffies, timeout))
579 					goto err_own_bit;
580 				udelay(10);
581 			}
582 
583 			/*
584 			 * Set the OWN bit and disable interrupts
585 			 * for this descriptor
586 			 */
587 			desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
588 						IDMAC_DES0_CH;
589 
590 			/* Buffer length */
591 			IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
592 
593 			/* Physical address to DMA to/from */
594 			desc->des4 = mem_addr & 0xffffffff;
595 			desc->des5 = mem_addr >> 32;
596 
597 			/* Update physical address for the next desc */
598 			mem_addr += desc_len;
599 
600 			/* Save pointer to the last descriptor */
601 			desc_last = desc;
602 		}
603 	}
604 
605 	/* Set first descriptor */
606 	desc_first->des0 |= IDMAC_DES0_FD;
607 
608 	/* Set last descriptor */
609 	desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
610 	desc_last->des0 |= IDMAC_DES0_LD;
611 
612 	return 0;
613 err_own_bit:
614 	/* restore the descriptor chain as it's polluted */
615 	dev_dbg(host->dev, "desciptor is still owned by IDMAC.\n");
616 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
617 	dw_mci_idmac_init(host);
618 	return -EINVAL;
619 }
620 
621 
622 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
623 					 struct mmc_data *data,
624 					 unsigned int sg_len)
625 {
626 	unsigned int desc_len;
627 	struct idmac_desc *desc_first, *desc_last, *desc;
628 	unsigned long timeout;
629 	int i;
630 
631 	desc_first = desc_last = desc = host->sg_cpu;
632 
633 	for (i = 0; i < sg_len; i++) {
634 		unsigned int length = sg_dma_len(&data->sg[i]);
635 
636 		u32 mem_addr = sg_dma_address(&data->sg[i]);
637 
638 		for ( ; length ; desc++) {
639 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
640 				   length : DW_MCI_DESC_DATA_LENGTH;
641 
642 			length -= desc_len;
643 
644 			/*
645 			 * Wait for the former clear OWN bit operation
646 			 * of IDMAC to make sure that this descriptor
647 			 * isn't still owned by IDMAC as IDMAC's write
648 			 * ops and CPU's read ops are asynchronous.
649 			 */
650 			timeout = jiffies + msecs_to_jiffies(100);
651 			while (readl(&desc->des0) &
652 			       cpu_to_le32(IDMAC_DES0_OWN)) {
653 				if (time_after(jiffies, timeout))
654 					goto err_own_bit;
655 				udelay(10);
656 			}
657 
658 			/*
659 			 * Set the OWN bit and disable interrupts
660 			 * for this descriptor
661 			 */
662 			desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
663 						 IDMAC_DES0_DIC |
664 						 IDMAC_DES0_CH);
665 
666 			/* Buffer length */
667 			IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
668 
669 			/* Physical address to DMA to/from */
670 			desc->des2 = cpu_to_le32(mem_addr);
671 
672 			/* Update physical address for the next desc */
673 			mem_addr += desc_len;
674 
675 			/* Save pointer to the last descriptor */
676 			desc_last = desc;
677 		}
678 	}
679 
680 	/* Set first descriptor */
681 	desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
682 
683 	/* Set last descriptor */
684 	desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
685 				       IDMAC_DES0_DIC));
686 	desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
687 
688 	return 0;
689 err_own_bit:
690 	/* restore the descriptor chain as it's polluted */
691 	dev_dbg(host->dev, "desciptor is still owned by IDMAC.\n");
692 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
693 	dw_mci_idmac_init(host);
694 	return -EINVAL;
695 }
696 
697 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
698 {
699 	u32 temp;
700 	int ret;
701 
702 	if (host->dma_64bit_address == 1)
703 		ret = dw_mci_prepare_desc64(host, host->data, sg_len);
704 	else
705 		ret = dw_mci_prepare_desc32(host, host->data, sg_len);
706 
707 	if (ret)
708 		goto out;
709 
710 	/* drain writebuffer */
711 	wmb();
712 
713 	/* Make sure to reset DMA in case we did PIO before this */
714 	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
715 	dw_mci_idmac_reset(host);
716 
717 	/* Select IDMAC interface */
718 	temp = mci_readl(host, CTRL);
719 	temp |= SDMMC_CTRL_USE_IDMAC;
720 	mci_writel(host, CTRL, temp);
721 
722 	/* drain writebuffer */
723 	wmb();
724 
725 	/* Enable the IDMAC */
726 	temp = mci_readl(host, BMOD);
727 	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
728 	mci_writel(host, BMOD, temp);
729 
730 	/* Start it running */
731 	mci_writel(host, PLDMND, 1);
732 
733 out:
734 	return ret;
735 }
736 
737 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
738 	.init = dw_mci_idmac_init,
739 	.start = dw_mci_idmac_start_dma,
740 	.stop = dw_mci_idmac_stop_dma,
741 	.complete = dw_mci_dmac_complete_dma,
742 	.cleanup = dw_mci_dma_cleanup,
743 };
744 
745 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
746 {
747 	dmaengine_terminate_async(host->dms->ch);
748 }
749 
750 static int dw_mci_edmac_start_dma(struct dw_mci *host,
751 					    unsigned int sg_len)
752 {
753 	struct dma_slave_config cfg;
754 	struct dma_async_tx_descriptor *desc = NULL;
755 	struct scatterlist *sgl = host->data->sg;
756 	const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
757 	u32 sg_elems = host->data->sg_len;
758 	u32 fifoth_val;
759 	u32 fifo_offset = host->fifo_reg - host->regs;
760 	int ret = 0;
761 
762 	/* Set external dma config: burst size, burst width */
763 	cfg.dst_addr = host->phy_regs + fifo_offset;
764 	cfg.src_addr = cfg.dst_addr;
765 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
766 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
767 
768 	/* Match burst msize with external dma config */
769 	fifoth_val = mci_readl(host, FIFOTH);
770 	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
771 	cfg.src_maxburst = cfg.dst_maxburst;
772 
773 	if (host->data->flags & MMC_DATA_WRITE)
774 		cfg.direction = DMA_MEM_TO_DEV;
775 	else
776 		cfg.direction = DMA_DEV_TO_MEM;
777 
778 	ret = dmaengine_slave_config(host->dms->ch, &cfg);
779 	if (ret) {
780 		dev_err(host->dev, "Failed to config edmac.\n");
781 		return -EBUSY;
782 	}
783 
784 	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
785 				       sg_len, cfg.direction,
786 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
787 	if (!desc) {
788 		dev_err(host->dev, "Can't prepare slave sg.\n");
789 		return -EBUSY;
790 	}
791 
792 	/* Set dw_mci_dmac_complete_dma as callback */
793 	desc->callback = dw_mci_dmac_complete_dma;
794 	desc->callback_param = (void *)host;
795 	dmaengine_submit(desc);
796 
797 	/* Flush cache before write */
798 	if (host->data->flags & MMC_DATA_WRITE)
799 		dma_sync_sg_for_device(mmc_dev(host->cur_slot->mmc), sgl,
800 				       sg_elems, DMA_TO_DEVICE);
801 
802 	dma_async_issue_pending(host->dms->ch);
803 
804 	return 0;
805 }
806 
807 static int dw_mci_edmac_init(struct dw_mci *host)
808 {
809 	/* Request external dma channel */
810 	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
811 	if (!host->dms)
812 		return -ENOMEM;
813 
814 	host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
815 	if (!host->dms->ch) {
816 		dev_err(host->dev, "Failed to get external DMA channel.\n");
817 		kfree(host->dms);
818 		host->dms = NULL;
819 		return -ENXIO;
820 	}
821 
822 	return 0;
823 }
824 
825 static void dw_mci_edmac_exit(struct dw_mci *host)
826 {
827 	if (host->dms) {
828 		if (host->dms->ch) {
829 			dma_release_channel(host->dms->ch);
830 			host->dms->ch = NULL;
831 		}
832 		kfree(host->dms);
833 		host->dms = NULL;
834 	}
835 }
836 
837 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
838 	.init = dw_mci_edmac_init,
839 	.exit = dw_mci_edmac_exit,
840 	.start = dw_mci_edmac_start_dma,
841 	.stop = dw_mci_edmac_stop_dma,
842 	.complete = dw_mci_dmac_complete_dma,
843 	.cleanup = dw_mci_dma_cleanup,
844 };
845 
846 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
847 				   struct mmc_data *data,
848 				   bool next)
849 {
850 	struct scatterlist *sg;
851 	unsigned int i, sg_len;
852 
853 	if (!next && data->host_cookie)
854 		return data->host_cookie;
855 
856 	/*
857 	 * We don't do DMA on "complex" transfers, i.e. with
858 	 * non-word-aligned buffers or lengths. Also, we don't bother
859 	 * with all the DMA setup overhead for short transfers.
860 	 */
861 	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
862 		return -EINVAL;
863 
864 	if (data->blksz & 3)
865 		return -EINVAL;
866 
867 	for_each_sg(data->sg, sg, data->sg_len, i) {
868 		if (sg->offset & 3 || sg->length & 3)
869 			return -EINVAL;
870 	}
871 
872 	sg_len = dma_map_sg(host->dev,
873 			    data->sg,
874 			    data->sg_len,
875 			    dw_mci_get_dma_dir(data));
876 	if (sg_len == 0)
877 		return -EINVAL;
878 
879 	if (next)
880 		data->host_cookie = sg_len;
881 
882 	return sg_len;
883 }
884 
885 static void dw_mci_pre_req(struct mmc_host *mmc,
886 			   struct mmc_request *mrq,
887 			   bool is_first_req)
888 {
889 	struct dw_mci_slot *slot = mmc_priv(mmc);
890 	struct mmc_data *data = mrq->data;
891 
892 	if (!slot->host->use_dma || !data)
893 		return;
894 
895 	if (data->host_cookie) {
896 		data->host_cookie = 0;
897 		return;
898 	}
899 
900 	if (dw_mci_pre_dma_transfer(slot->host, mrq->data, 1) < 0)
901 		data->host_cookie = 0;
902 }
903 
904 static void dw_mci_post_req(struct mmc_host *mmc,
905 			    struct mmc_request *mrq,
906 			    int err)
907 {
908 	struct dw_mci_slot *slot = mmc_priv(mmc);
909 	struct mmc_data *data = mrq->data;
910 
911 	if (!slot->host->use_dma || !data)
912 		return;
913 
914 	if (data->host_cookie)
915 		dma_unmap_sg(slot->host->dev,
916 			     data->sg,
917 			     data->sg_len,
918 			     dw_mci_get_dma_dir(data));
919 	data->host_cookie = 0;
920 }
921 
922 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
923 {
924 	unsigned int blksz = data->blksz;
925 	const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
926 	u32 fifo_width = 1 << host->data_shift;
927 	u32 blksz_depth = blksz / fifo_width, fifoth_val;
928 	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
929 	int idx = ARRAY_SIZE(mszs) - 1;
930 
931 	/* pio should ship this scenario */
932 	if (!host->use_dma)
933 		return;
934 
935 	tx_wmark = (host->fifo_depth) / 2;
936 	tx_wmark_invers = host->fifo_depth - tx_wmark;
937 
938 	/*
939 	 * MSIZE is '1',
940 	 * if blksz is not a multiple of the FIFO width
941 	 */
942 	if (blksz % fifo_width)
943 		goto done;
944 
945 	do {
946 		if (!((blksz_depth % mszs[idx]) ||
947 		     (tx_wmark_invers % mszs[idx]))) {
948 			msize = idx;
949 			rx_wmark = mszs[idx] - 1;
950 			break;
951 		}
952 	} while (--idx > 0);
953 	/*
954 	 * If idx is '0', it won't be tried
955 	 * Thus, initial values are uesed
956 	 */
957 done:
958 	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
959 	mci_writel(host, FIFOTH, fifoth_val);
960 }
961 
962 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
963 {
964 	unsigned int blksz = data->blksz;
965 	u32 blksz_depth, fifo_depth;
966 	u16 thld_size;
967 	u8 enable;
968 
969 	/*
970 	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
971 	 * in the FIFO region, so we really shouldn't access it).
972 	 */
973 	if (host->verid < DW_MMC_240A ||
974 		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
975 		return;
976 
977 	/*
978 	 * Card write Threshold is introduced since 2.80a
979 	 * It's used when HS400 mode is enabled.
980 	 */
981 	if (data->flags & MMC_DATA_WRITE &&
982 		!(host->timing != MMC_TIMING_MMC_HS400))
983 		return;
984 
985 	if (data->flags & MMC_DATA_WRITE)
986 		enable = SDMMC_CARD_WR_THR_EN;
987 	else
988 		enable = SDMMC_CARD_RD_THR_EN;
989 
990 	if (host->timing != MMC_TIMING_MMC_HS200 &&
991 	    host->timing != MMC_TIMING_UHS_SDR104)
992 		goto disable;
993 
994 	blksz_depth = blksz / (1 << host->data_shift);
995 	fifo_depth = host->fifo_depth;
996 
997 	if (blksz_depth > fifo_depth)
998 		goto disable;
999 
1000 	/*
1001 	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1002 	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1003 	 * Currently just choose blksz.
1004 	 */
1005 	thld_size = blksz;
1006 	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1007 	return;
1008 
1009 disable:
1010 	mci_writel(host, CDTHRCTL, 0);
1011 }
1012 
1013 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1014 {
1015 	unsigned long irqflags;
1016 	int sg_len;
1017 	u32 temp;
1018 
1019 	host->using_dma = 0;
1020 
1021 	/* If we don't have a channel, we can't do DMA */
1022 	if (!host->use_dma)
1023 		return -ENODEV;
1024 
1025 	sg_len = dw_mci_pre_dma_transfer(host, data, 0);
1026 	if (sg_len < 0) {
1027 		host->dma_ops->stop(host);
1028 		return sg_len;
1029 	}
1030 
1031 	host->using_dma = 1;
1032 
1033 	if (host->use_dma == TRANS_MODE_IDMAC)
1034 		dev_vdbg(host->dev,
1035 			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1036 			 (unsigned long)host->sg_cpu,
1037 			 (unsigned long)host->sg_dma,
1038 			 sg_len);
1039 
1040 	/*
1041 	 * Decide the MSIZE and RX/TX Watermark.
1042 	 * If current block size is same with previous size,
1043 	 * no need to update fifoth.
1044 	 */
1045 	if (host->prev_blksz != data->blksz)
1046 		dw_mci_adjust_fifoth(host, data);
1047 
1048 	/* Enable the DMA interface */
1049 	temp = mci_readl(host, CTRL);
1050 	temp |= SDMMC_CTRL_DMA_ENABLE;
1051 	mci_writel(host, CTRL, temp);
1052 
1053 	/* Disable RX/TX IRQs, let DMA handle it */
1054 	spin_lock_irqsave(&host->irq_lock, irqflags);
1055 	temp = mci_readl(host, INTMASK);
1056 	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1057 	mci_writel(host, INTMASK, temp);
1058 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1059 
1060 	if (host->dma_ops->start(host, sg_len)) {
1061 		host->dma_ops->stop(host);
1062 		/* We can't do DMA, try PIO for this one */
1063 		dev_dbg(host->dev,
1064 			"%s: fall back to PIO mode for current transfer\n",
1065 			__func__);
1066 		return -ENODEV;
1067 	}
1068 
1069 	return 0;
1070 }
1071 
1072 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1073 {
1074 	unsigned long irqflags;
1075 	int flags = SG_MITER_ATOMIC;
1076 	u32 temp;
1077 
1078 	data->error = -EINPROGRESS;
1079 
1080 	WARN_ON(host->data);
1081 	host->sg = NULL;
1082 	host->data = data;
1083 
1084 	if (data->flags & MMC_DATA_READ)
1085 		host->dir_status = DW_MCI_RECV_STATUS;
1086 	else
1087 		host->dir_status = DW_MCI_SEND_STATUS;
1088 
1089 	dw_mci_ctrl_thld(host, data);
1090 
1091 	if (dw_mci_submit_data_dma(host, data)) {
1092 		if (host->data->flags & MMC_DATA_READ)
1093 			flags |= SG_MITER_TO_SG;
1094 		else
1095 			flags |= SG_MITER_FROM_SG;
1096 
1097 		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1098 		host->sg = data->sg;
1099 		host->part_buf_start = 0;
1100 		host->part_buf_count = 0;
1101 
1102 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1103 
1104 		spin_lock_irqsave(&host->irq_lock, irqflags);
1105 		temp = mci_readl(host, INTMASK);
1106 		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1107 		mci_writel(host, INTMASK, temp);
1108 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1109 
1110 		temp = mci_readl(host, CTRL);
1111 		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1112 		mci_writel(host, CTRL, temp);
1113 
1114 		/*
1115 		 * Use the initial fifoth_val for PIO mode.
1116 		 * If next issued data may be transfered by DMA mode,
1117 		 * prev_blksz should be invalidated.
1118 		 */
1119 		mci_writel(host, FIFOTH, host->fifoth_val);
1120 		host->prev_blksz = 0;
1121 	} else {
1122 		/*
1123 		 * Keep the current block size.
1124 		 * It will be used to decide whether to update
1125 		 * fifoth register next time.
1126 		 */
1127 		host->prev_blksz = data->blksz;
1128 	}
1129 }
1130 
1131 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
1132 {
1133 	struct dw_mci *host = slot->host;
1134 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
1135 	unsigned int cmd_status = 0;
1136 
1137 	mci_writel(host, CMDARG, arg);
1138 	wmb(); /* drain writebuffer */
1139 	dw_mci_wait_while_busy(host, cmd);
1140 	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
1141 
1142 	while (time_before(jiffies, timeout)) {
1143 		cmd_status = mci_readl(host, CMD);
1144 		if (!(cmd_status & SDMMC_CMD_START))
1145 			return;
1146 	}
1147 	dev_err(&slot->mmc->class_dev,
1148 		"Timeout sending command (cmd %#x arg %#x status %#x)\n",
1149 		cmd, arg, cmd_status);
1150 }
1151 
1152 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1153 {
1154 	struct dw_mci *host = slot->host;
1155 	unsigned int clock = slot->clock;
1156 	u32 div;
1157 	u32 clk_en_a;
1158 	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1159 
1160 	/* We must continue to set bit 28 in CMD until the change is complete */
1161 	if (host->state == STATE_WAITING_CMD11_DONE)
1162 		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1163 
1164 	if (!clock) {
1165 		mci_writel(host, CLKENA, 0);
1166 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1167 	} else if (clock != host->current_speed || force_clkinit) {
1168 		div = host->bus_hz / clock;
1169 		if (host->bus_hz % clock && host->bus_hz > clock)
1170 			/*
1171 			 * move the + 1 after the divide to prevent
1172 			 * over-clocking the card.
1173 			 */
1174 			div += 1;
1175 
1176 		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1177 
1178 		if (clock != slot->__clk_old || force_clkinit)
1179 			dev_info(&slot->mmc->class_dev,
1180 				 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1181 				 slot->id, host->bus_hz, clock,
1182 				 div ? ((host->bus_hz / div) >> 1) :
1183 				 host->bus_hz, div);
1184 
1185 		/* disable clock */
1186 		mci_writel(host, CLKENA, 0);
1187 		mci_writel(host, CLKSRC, 0);
1188 
1189 		/* inform CIU */
1190 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1191 
1192 		/* set clock to desired speed */
1193 		mci_writel(host, CLKDIV, div);
1194 
1195 		/* inform CIU */
1196 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1197 
1198 		/* enable clock; only low power if no SDIO */
1199 		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1200 		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1201 			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1202 		mci_writel(host, CLKENA, clk_en_a);
1203 
1204 		/* inform CIU */
1205 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1206 
1207 		/* keep the last clock value that was requested from core */
1208 		slot->__clk_old = clock;
1209 	}
1210 
1211 	host->current_speed = clock;
1212 
1213 	/* Set the current slot bus width */
1214 	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1215 }
1216 
1217 static void __dw_mci_start_request(struct dw_mci *host,
1218 				   struct dw_mci_slot *slot,
1219 				   struct mmc_command *cmd)
1220 {
1221 	struct mmc_request *mrq;
1222 	struct mmc_data	*data;
1223 	u32 cmdflags;
1224 
1225 	mrq = slot->mrq;
1226 
1227 	host->cur_slot = slot;
1228 	host->mrq = mrq;
1229 
1230 	host->pending_events = 0;
1231 	host->completed_events = 0;
1232 	host->cmd_status = 0;
1233 	host->data_status = 0;
1234 	host->dir_status = 0;
1235 
1236 	data = cmd->data;
1237 	if (data) {
1238 		mci_writel(host, TMOUT, 0xFFFFFFFF);
1239 		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1240 		mci_writel(host, BLKSIZ, data->blksz);
1241 	}
1242 
1243 	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1244 
1245 	/* this is the first command, send the initialization clock */
1246 	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1247 		cmdflags |= SDMMC_CMD_INIT;
1248 
1249 	if (data) {
1250 		dw_mci_submit_data(host, data);
1251 		wmb(); /* drain writebuffer */
1252 	}
1253 
1254 	dw_mci_start_command(host, cmd, cmdflags);
1255 
1256 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1257 		unsigned long irqflags;
1258 
1259 		/*
1260 		 * Databook says to fail after 2ms w/ no response, but evidence
1261 		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1262 		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1263 		 * is just about to roll over.
1264 		 *
1265 		 * We do this whole thing under spinlock and only if the
1266 		 * command hasn't already completed (indicating the the irq
1267 		 * already ran so we don't want the timeout).
1268 		 */
1269 		spin_lock_irqsave(&host->irq_lock, irqflags);
1270 		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1271 			mod_timer(&host->cmd11_timer,
1272 				jiffies + msecs_to_jiffies(500) + 1);
1273 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1274 	}
1275 
1276 	if (mrq->stop)
1277 		host->stop_cmdr = dw_mci_prepare_command(slot->mmc, mrq->stop);
1278 	else
1279 		host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1280 }
1281 
1282 static void dw_mci_start_request(struct dw_mci *host,
1283 				 struct dw_mci_slot *slot)
1284 {
1285 	struct mmc_request *mrq = slot->mrq;
1286 	struct mmc_command *cmd;
1287 
1288 	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1289 	__dw_mci_start_request(host, slot, cmd);
1290 }
1291 
1292 /* must be called with host->lock held */
1293 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1294 				 struct mmc_request *mrq)
1295 {
1296 	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1297 		 host->state);
1298 
1299 	slot->mrq = mrq;
1300 
1301 	if (host->state == STATE_WAITING_CMD11_DONE) {
1302 		dev_warn(&slot->mmc->class_dev,
1303 			 "Voltage change didn't complete\n");
1304 		/*
1305 		 * this case isn't expected to happen, so we can
1306 		 * either crash here or just try to continue on
1307 		 * in the closest possible state
1308 		 */
1309 		host->state = STATE_IDLE;
1310 	}
1311 
1312 	if (host->state == STATE_IDLE) {
1313 		host->state = STATE_SENDING_CMD;
1314 		dw_mci_start_request(host, slot);
1315 	} else {
1316 		list_add_tail(&slot->queue_node, &host->queue);
1317 	}
1318 }
1319 
1320 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1321 {
1322 	struct dw_mci_slot *slot = mmc_priv(mmc);
1323 	struct dw_mci *host = slot->host;
1324 
1325 	WARN_ON(slot->mrq);
1326 
1327 	/*
1328 	 * The check for card presence and queueing of the request must be
1329 	 * atomic, otherwise the card could be removed in between and the
1330 	 * request wouldn't fail until another card was inserted.
1331 	 */
1332 
1333 	if (!dw_mci_get_cd(mmc)) {
1334 		mrq->cmd->error = -ENOMEDIUM;
1335 		mmc_request_done(mmc, mrq);
1336 		return;
1337 	}
1338 
1339 	spin_lock_bh(&host->lock);
1340 
1341 	dw_mci_queue_request(host, slot, mrq);
1342 
1343 	spin_unlock_bh(&host->lock);
1344 }
1345 
1346 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1347 {
1348 	struct dw_mci_slot *slot = mmc_priv(mmc);
1349 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1350 	u32 regs;
1351 	int ret;
1352 
1353 	switch (ios->bus_width) {
1354 	case MMC_BUS_WIDTH_4:
1355 		slot->ctype = SDMMC_CTYPE_4BIT;
1356 		break;
1357 	case MMC_BUS_WIDTH_8:
1358 		slot->ctype = SDMMC_CTYPE_8BIT;
1359 		break;
1360 	default:
1361 		/* set default 1 bit mode */
1362 		slot->ctype = SDMMC_CTYPE_1BIT;
1363 	}
1364 
1365 	regs = mci_readl(slot->host, UHS_REG);
1366 
1367 	/* DDR mode set */
1368 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1369 	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1370 	    ios->timing == MMC_TIMING_MMC_HS400)
1371 		regs |= ((0x1 << slot->id) << 16);
1372 	else
1373 		regs &= ~((0x1 << slot->id) << 16);
1374 
1375 	mci_writel(slot->host, UHS_REG, regs);
1376 	slot->host->timing = ios->timing;
1377 
1378 	/*
1379 	 * Use mirror of ios->clock to prevent race with mmc
1380 	 * core ios update when finding the minimum.
1381 	 */
1382 	slot->clock = ios->clock;
1383 
1384 	if (drv_data && drv_data->set_ios)
1385 		drv_data->set_ios(slot->host, ios);
1386 
1387 	switch (ios->power_mode) {
1388 	case MMC_POWER_UP:
1389 		if (!IS_ERR(mmc->supply.vmmc)) {
1390 			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1391 					ios->vdd);
1392 			if (ret) {
1393 				dev_err(slot->host->dev,
1394 					"failed to enable vmmc regulator\n");
1395 				/*return, if failed turn on vmmc*/
1396 				return;
1397 			}
1398 		}
1399 		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1400 		regs = mci_readl(slot->host, PWREN);
1401 		regs |= (1 << slot->id);
1402 		mci_writel(slot->host, PWREN, regs);
1403 		break;
1404 	case MMC_POWER_ON:
1405 		if (!slot->host->vqmmc_enabled) {
1406 			if (!IS_ERR(mmc->supply.vqmmc)) {
1407 				ret = regulator_enable(mmc->supply.vqmmc);
1408 				if (ret < 0)
1409 					dev_err(slot->host->dev,
1410 						"failed to enable vqmmc\n");
1411 				else
1412 					slot->host->vqmmc_enabled = true;
1413 
1414 			} else {
1415 				/* Keep track so we don't reset again */
1416 				slot->host->vqmmc_enabled = true;
1417 			}
1418 
1419 			/* Reset our state machine after powering on */
1420 			dw_mci_ctrl_reset(slot->host,
1421 					  SDMMC_CTRL_ALL_RESET_FLAGS);
1422 		}
1423 
1424 		/* Adjust clock / bus width after power is up */
1425 		dw_mci_setup_bus(slot, false);
1426 
1427 		break;
1428 	case MMC_POWER_OFF:
1429 		/* Turn clock off before power goes down */
1430 		dw_mci_setup_bus(slot, false);
1431 
1432 		if (!IS_ERR(mmc->supply.vmmc))
1433 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1434 
1435 		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1436 			regulator_disable(mmc->supply.vqmmc);
1437 		slot->host->vqmmc_enabled = false;
1438 
1439 		regs = mci_readl(slot->host, PWREN);
1440 		regs &= ~(1 << slot->id);
1441 		mci_writel(slot->host, PWREN, regs);
1442 		break;
1443 	default:
1444 		break;
1445 	}
1446 
1447 	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1448 		slot->host->state = STATE_IDLE;
1449 }
1450 
1451 static int dw_mci_card_busy(struct mmc_host *mmc)
1452 {
1453 	struct dw_mci_slot *slot = mmc_priv(mmc);
1454 	u32 status;
1455 
1456 	/*
1457 	 * Check the busy bit which is low when DAT[3:0]
1458 	 * (the data lines) are 0000
1459 	 */
1460 	status = mci_readl(slot->host, STATUS);
1461 
1462 	return !!(status & SDMMC_STATUS_BUSY);
1463 }
1464 
1465 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1466 {
1467 	struct dw_mci_slot *slot = mmc_priv(mmc);
1468 	struct dw_mci *host = slot->host;
1469 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1470 	u32 uhs;
1471 	u32 v18 = SDMMC_UHS_18V << slot->id;
1472 	int ret;
1473 
1474 	if (drv_data && drv_data->switch_voltage)
1475 		return drv_data->switch_voltage(mmc, ios);
1476 
1477 	/*
1478 	 * Program the voltage.  Note that some instances of dw_mmc may use
1479 	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1480 	 * does no harm but you need to set the regulator directly.  Try both.
1481 	 */
1482 	uhs = mci_readl(host, UHS_REG);
1483 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1484 		uhs &= ~v18;
1485 	else
1486 		uhs |= v18;
1487 
1488 	if (!IS_ERR(mmc->supply.vqmmc)) {
1489 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1490 
1491 		if (ret) {
1492 			dev_dbg(&mmc->class_dev,
1493 					 "Regulator set error %d - %s V\n",
1494 					 ret, uhs & v18 ? "1.8" : "3.3");
1495 			return ret;
1496 		}
1497 	}
1498 	mci_writel(host, UHS_REG, uhs);
1499 
1500 	return 0;
1501 }
1502 
1503 static int dw_mci_get_ro(struct mmc_host *mmc)
1504 {
1505 	int read_only;
1506 	struct dw_mci_slot *slot = mmc_priv(mmc);
1507 	int gpio_ro = mmc_gpio_get_ro(mmc);
1508 
1509 	/* Use platform get_ro function, else try on board write protect */
1510 	if (gpio_ro >= 0)
1511 		read_only = gpio_ro;
1512 	else
1513 		read_only =
1514 			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1515 
1516 	dev_dbg(&mmc->class_dev, "card is %s\n",
1517 		read_only ? "read-only" : "read-write");
1518 
1519 	return read_only;
1520 }
1521 
1522 static int dw_mci_get_cd(struct mmc_host *mmc)
1523 {
1524 	int present;
1525 	struct dw_mci_slot *slot = mmc_priv(mmc);
1526 	struct dw_mci *host = slot->host;
1527 	int gpio_cd = mmc_gpio_get_cd(mmc);
1528 
1529 	/* Use platform get_cd function, else try onboard card detect */
1530 	if ((mmc->caps & MMC_CAP_NEEDS_POLL) || !mmc_card_is_removable(mmc))
1531 		present = 1;
1532 	else if (gpio_cd >= 0)
1533 		present = gpio_cd;
1534 	else
1535 		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
1536 			== 0 ? 1 : 0;
1537 
1538 	spin_lock_bh(&host->lock);
1539 	if (present) {
1540 		set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1541 		dev_dbg(&mmc->class_dev, "card is present\n");
1542 	} else {
1543 		clear_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1544 		dev_dbg(&mmc->class_dev, "card is not present\n");
1545 	}
1546 	spin_unlock_bh(&host->lock);
1547 
1548 	return present;
1549 }
1550 
1551 static void dw_mci_hw_reset(struct mmc_host *mmc)
1552 {
1553 	struct dw_mci_slot *slot = mmc_priv(mmc);
1554 	struct dw_mci *host = slot->host;
1555 	int reset;
1556 
1557 	if (host->use_dma == TRANS_MODE_IDMAC)
1558 		dw_mci_idmac_reset(host);
1559 
1560 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1561 				     SDMMC_CTRL_FIFO_RESET))
1562 		return;
1563 
1564 	/*
1565 	 * According to eMMC spec, card reset procedure:
1566 	 * tRstW >= 1us:   RST_n pulse width
1567 	 * tRSCA >= 200us: RST_n to Command time
1568 	 * tRSTH >= 1us:   RST_n high period
1569 	 */
1570 	reset = mci_readl(host, RST_N);
1571 	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1572 	mci_writel(host, RST_N, reset);
1573 	usleep_range(1, 2);
1574 	reset |= SDMMC_RST_HWACTIVE << slot->id;
1575 	mci_writel(host, RST_N, reset);
1576 	usleep_range(200, 300);
1577 }
1578 
1579 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1580 {
1581 	struct dw_mci_slot *slot = mmc_priv(mmc);
1582 	struct dw_mci *host = slot->host;
1583 
1584 	/*
1585 	 * Low power mode will stop the card clock when idle.  According to the
1586 	 * description of the CLKENA register we should disable low power mode
1587 	 * for SDIO cards if we need SDIO interrupts to work.
1588 	 */
1589 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1590 		const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1591 		u32 clk_en_a_old;
1592 		u32 clk_en_a;
1593 
1594 		clk_en_a_old = mci_readl(host, CLKENA);
1595 
1596 		if (card->type == MMC_TYPE_SDIO ||
1597 		    card->type == MMC_TYPE_SD_COMBO) {
1598 			set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1599 			clk_en_a = clk_en_a_old & ~clken_low_pwr;
1600 		} else {
1601 			clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1602 			clk_en_a = clk_en_a_old | clken_low_pwr;
1603 		}
1604 
1605 		if (clk_en_a != clk_en_a_old) {
1606 			mci_writel(host, CLKENA, clk_en_a);
1607 			mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1608 				     SDMMC_CMD_PRV_DAT_WAIT, 0);
1609 		}
1610 	}
1611 }
1612 
1613 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1614 {
1615 	struct dw_mci_slot *slot = mmc_priv(mmc);
1616 	struct dw_mci *host = slot->host;
1617 	unsigned long irqflags;
1618 	u32 int_mask;
1619 
1620 	spin_lock_irqsave(&host->irq_lock, irqflags);
1621 
1622 	/* Enable/disable Slot Specific SDIO interrupt */
1623 	int_mask = mci_readl(host, INTMASK);
1624 	if (enb)
1625 		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1626 	else
1627 		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1628 	mci_writel(host, INTMASK, int_mask);
1629 
1630 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1631 }
1632 
1633 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1634 {
1635 	struct dw_mci_slot *slot = mmc_priv(mmc);
1636 	struct dw_mci *host = slot->host;
1637 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1638 	int err = -EINVAL;
1639 
1640 	if (drv_data && drv_data->execute_tuning)
1641 		err = drv_data->execute_tuning(slot, opcode);
1642 	return err;
1643 }
1644 
1645 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1646 				       struct mmc_ios *ios)
1647 {
1648 	struct dw_mci_slot *slot = mmc_priv(mmc);
1649 	struct dw_mci *host = slot->host;
1650 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1651 
1652 	if (drv_data && drv_data->prepare_hs400_tuning)
1653 		return drv_data->prepare_hs400_tuning(host, ios);
1654 
1655 	return 0;
1656 }
1657 
1658 static const struct mmc_host_ops dw_mci_ops = {
1659 	.request		= dw_mci_request,
1660 	.pre_req		= dw_mci_pre_req,
1661 	.post_req		= dw_mci_post_req,
1662 	.set_ios		= dw_mci_set_ios,
1663 	.get_ro			= dw_mci_get_ro,
1664 	.get_cd			= dw_mci_get_cd,
1665 	.hw_reset               = dw_mci_hw_reset,
1666 	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1667 	.execute_tuning		= dw_mci_execute_tuning,
1668 	.card_busy		= dw_mci_card_busy,
1669 	.start_signal_voltage_switch = dw_mci_switch_voltage,
1670 	.init_card		= dw_mci_init_card,
1671 	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1672 };
1673 
1674 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1675 	__releases(&host->lock)
1676 	__acquires(&host->lock)
1677 {
1678 	struct dw_mci_slot *slot;
1679 	struct mmc_host	*prev_mmc = host->cur_slot->mmc;
1680 
1681 	WARN_ON(host->cmd || host->data);
1682 
1683 	host->cur_slot->mrq = NULL;
1684 	host->mrq = NULL;
1685 	if (!list_empty(&host->queue)) {
1686 		slot = list_entry(host->queue.next,
1687 				  struct dw_mci_slot, queue_node);
1688 		list_del(&slot->queue_node);
1689 		dev_vdbg(host->dev, "list not empty: %s is next\n",
1690 			 mmc_hostname(slot->mmc));
1691 		host->state = STATE_SENDING_CMD;
1692 		dw_mci_start_request(host, slot);
1693 	} else {
1694 		dev_vdbg(host->dev, "list empty\n");
1695 
1696 		if (host->state == STATE_SENDING_CMD11)
1697 			host->state = STATE_WAITING_CMD11_DONE;
1698 		else
1699 			host->state = STATE_IDLE;
1700 	}
1701 
1702 	spin_unlock(&host->lock);
1703 	mmc_request_done(prev_mmc, mrq);
1704 	spin_lock(&host->lock);
1705 }
1706 
1707 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1708 {
1709 	u32 status = host->cmd_status;
1710 
1711 	host->cmd_status = 0;
1712 
1713 	/* Read the response from the card (up to 16 bytes) */
1714 	if (cmd->flags & MMC_RSP_PRESENT) {
1715 		if (cmd->flags & MMC_RSP_136) {
1716 			cmd->resp[3] = mci_readl(host, RESP0);
1717 			cmd->resp[2] = mci_readl(host, RESP1);
1718 			cmd->resp[1] = mci_readl(host, RESP2);
1719 			cmd->resp[0] = mci_readl(host, RESP3);
1720 		} else {
1721 			cmd->resp[0] = mci_readl(host, RESP0);
1722 			cmd->resp[1] = 0;
1723 			cmd->resp[2] = 0;
1724 			cmd->resp[3] = 0;
1725 		}
1726 	}
1727 
1728 	if (status & SDMMC_INT_RTO)
1729 		cmd->error = -ETIMEDOUT;
1730 	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1731 		cmd->error = -EILSEQ;
1732 	else if (status & SDMMC_INT_RESP_ERR)
1733 		cmd->error = -EIO;
1734 	else
1735 		cmd->error = 0;
1736 
1737 	return cmd->error;
1738 }
1739 
1740 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1741 {
1742 	u32 status = host->data_status;
1743 
1744 	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1745 		if (status & SDMMC_INT_DRTO) {
1746 			data->error = -ETIMEDOUT;
1747 		} else if (status & SDMMC_INT_DCRC) {
1748 			data->error = -EILSEQ;
1749 		} else if (status & SDMMC_INT_EBE) {
1750 			if (host->dir_status ==
1751 				DW_MCI_SEND_STATUS) {
1752 				/*
1753 				 * No data CRC status was returned.
1754 				 * The number of bytes transferred
1755 				 * will be exaggerated in PIO mode.
1756 				 */
1757 				data->bytes_xfered = 0;
1758 				data->error = -ETIMEDOUT;
1759 			} else if (host->dir_status ==
1760 					DW_MCI_RECV_STATUS) {
1761 				data->error = -EILSEQ;
1762 			}
1763 		} else {
1764 			/* SDMMC_INT_SBE is included */
1765 			data->error = -EILSEQ;
1766 		}
1767 
1768 		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1769 
1770 		/*
1771 		 * After an error, there may be data lingering
1772 		 * in the FIFO
1773 		 */
1774 		dw_mci_reset(host);
1775 	} else {
1776 		data->bytes_xfered = data->blocks * data->blksz;
1777 		data->error = 0;
1778 	}
1779 
1780 	return data->error;
1781 }
1782 
1783 static void dw_mci_set_drto(struct dw_mci *host)
1784 {
1785 	unsigned int drto_clks;
1786 	unsigned int drto_ms;
1787 
1788 	drto_clks = mci_readl(host, TMOUT) >> 8;
1789 	drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
1790 
1791 	/* add a bit spare time */
1792 	drto_ms += 10;
1793 
1794 	mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1795 }
1796 
1797 static void dw_mci_tasklet_func(unsigned long priv)
1798 {
1799 	struct dw_mci *host = (struct dw_mci *)priv;
1800 	struct mmc_data	*data;
1801 	struct mmc_command *cmd;
1802 	struct mmc_request *mrq;
1803 	enum dw_mci_state state;
1804 	enum dw_mci_state prev_state;
1805 	unsigned int err;
1806 
1807 	spin_lock(&host->lock);
1808 
1809 	state = host->state;
1810 	data = host->data;
1811 	mrq = host->mrq;
1812 
1813 	do {
1814 		prev_state = state;
1815 
1816 		switch (state) {
1817 		case STATE_IDLE:
1818 		case STATE_WAITING_CMD11_DONE:
1819 			break;
1820 
1821 		case STATE_SENDING_CMD11:
1822 		case STATE_SENDING_CMD:
1823 			if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1824 						&host->pending_events))
1825 				break;
1826 
1827 			cmd = host->cmd;
1828 			host->cmd = NULL;
1829 			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1830 			err = dw_mci_command_complete(host, cmd);
1831 			if (cmd == mrq->sbc && !err) {
1832 				prev_state = state = STATE_SENDING_CMD;
1833 				__dw_mci_start_request(host, host->cur_slot,
1834 						       mrq->cmd);
1835 				goto unlock;
1836 			}
1837 
1838 			if (cmd->data && err) {
1839 				/*
1840 				 * During UHS tuning sequence, sending the stop
1841 				 * command after the response CRC error would
1842 				 * throw the system into a confused state
1843 				 * causing all future tuning phases to report
1844 				 * failure.
1845 				 *
1846 				 * In such case controller will move into a data
1847 				 * transfer state after a response error or
1848 				 * response CRC error. Let's let that finish
1849 				 * before trying to send a stop, so we'll go to
1850 				 * STATE_SENDING_DATA.
1851 				 *
1852 				 * Although letting the data transfer take place
1853 				 * will waste a bit of time (we already know
1854 				 * the command was bad), it can't cause any
1855 				 * errors since it's possible it would have
1856 				 * taken place anyway if this tasklet got
1857 				 * delayed. Allowing the transfer to take place
1858 				 * avoids races and keeps things simple.
1859 				 */
1860 				if ((err != -ETIMEDOUT) &&
1861 				    (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
1862 					state = STATE_SENDING_DATA;
1863 					continue;
1864 				}
1865 
1866 				dw_mci_stop_dma(host);
1867 				send_stop_abort(host, data);
1868 				state = STATE_SENDING_STOP;
1869 				break;
1870 			}
1871 
1872 			if (!cmd->data || err) {
1873 				dw_mci_request_end(host, mrq);
1874 				goto unlock;
1875 			}
1876 
1877 			prev_state = state = STATE_SENDING_DATA;
1878 			/* fall through */
1879 
1880 		case STATE_SENDING_DATA:
1881 			/*
1882 			 * We could get a data error and never a transfer
1883 			 * complete so we'd better check for it here.
1884 			 *
1885 			 * Note that we don't really care if we also got a
1886 			 * transfer complete; stopping the DMA and sending an
1887 			 * abort won't hurt.
1888 			 */
1889 			if (test_and_clear_bit(EVENT_DATA_ERROR,
1890 					       &host->pending_events)) {
1891 				dw_mci_stop_dma(host);
1892 				if (data->stop ||
1893 				    !(host->data_status & (SDMMC_INT_DRTO |
1894 							   SDMMC_INT_EBE)))
1895 					send_stop_abort(host, data);
1896 				state = STATE_DATA_ERROR;
1897 				break;
1898 			}
1899 
1900 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1901 						&host->pending_events)) {
1902 				/*
1903 				 * If all data-related interrupts don't come
1904 				 * within the given time in reading data state.
1905 				 */
1906 				if (host->dir_status == DW_MCI_RECV_STATUS)
1907 					dw_mci_set_drto(host);
1908 				break;
1909 			}
1910 
1911 			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
1912 
1913 			/*
1914 			 * Handle an EVENT_DATA_ERROR that might have shown up
1915 			 * before the transfer completed.  This might not have
1916 			 * been caught by the check above because the interrupt
1917 			 * could have gone off between the previous check and
1918 			 * the check for transfer complete.
1919 			 *
1920 			 * Technically this ought not be needed assuming we
1921 			 * get a DATA_COMPLETE eventually (we'll notice the
1922 			 * error and end the request), but it shouldn't hurt.
1923 			 *
1924 			 * This has the advantage of sending the stop command.
1925 			 */
1926 			if (test_and_clear_bit(EVENT_DATA_ERROR,
1927 					       &host->pending_events)) {
1928 				dw_mci_stop_dma(host);
1929 				if (data->stop ||
1930 				    !(host->data_status & (SDMMC_INT_DRTO |
1931 							   SDMMC_INT_EBE)))
1932 					send_stop_abort(host, data);
1933 				state = STATE_DATA_ERROR;
1934 				break;
1935 			}
1936 			prev_state = state = STATE_DATA_BUSY;
1937 
1938 			/* fall through */
1939 
1940 		case STATE_DATA_BUSY:
1941 			if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
1942 						&host->pending_events)) {
1943 				/*
1944 				 * If data error interrupt comes but data over
1945 				 * interrupt doesn't come within the given time.
1946 				 * in reading data state.
1947 				 */
1948 				if (host->dir_status == DW_MCI_RECV_STATUS)
1949 					dw_mci_set_drto(host);
1950 				break;
1951 			}
1952 
1953 			host->data = NULL;
1954 			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
1955 			err = dw_mci_data_complete(host, data);
1956 
1957 			if (!err) {
1958 				if (!data->stop || mrq->sbc) {
1959 					if (mrq->sbc && data->stop)
1960 						data->stop->error = 0;
1961 					dw_mci_request_end(host, mrq);
1962 					goto unlock;
1963 				}
1964 
1965 				/* stop command for open-ended transfer*/
1966 				if (data->stop)
1967 					send_stop_abort(host, data);
1968 			} else {
1969 				/*
1970 				 * If we don't have a command complete now we'll
1971 				 * never get one since we just reset everything;
1972 				 * better end the request.
1973 				 *
1974 				 * If we do have a command complete we'll fall
1975 				 * through to the SENDING_STOP command and
1976 				 * everything will be peachy keen.
1977 				 */
1978 				if (!test_bit(EVENT_CMD_COMPLETE,
1979 					      &host->pending_events)) {
1980 					host->cmd = NULL;
1981 					dw_mci_request_end(host, mrq);
1982 					goto unlock;
1983 				}
1984 			}
1985 
1986 			/*
1987 			 * If err has non-zero,
1988 			 * stop-abort command has been already issued.
1989 			 */
1990 			prev_state = state = STATE_SENDING_STOP;
1991 
1992 			/* fall through */
1993 
1994 		case STATE_SENDING_STOP:
1995 			if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1996 						&host->pending_events))
1997 				break;
1998 
1999 			/* CMD error in data command */
2000 			if (mrq->cmd->error && mrq->data)
2001 				dw_mci_reset(host);
2002 
2003 			host->cmd = NULL;
2004 			host->data = NULL;
2005 
2006 			if (mrq->stop)
2007 				dw_mci_command_complete(host, mrq->stop);
2008 			else
2009 				host->cmd_status = 0;
2010 
2011 			dw_mci_request_end(host, mrq);
2012 			goto unlock;
2013 
2014 		case STATE_DATA_ERROR:
2015 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2016 						&host->pending_events))
2017 				break;
2018 
2019 			state = STATE_DATA_BUSY;
2020 			break;
2021 		}
2022 	} while (state != prev_state);
2023 
2024 	host->state = state;
2025 unlock:
2026 	spin_unlock(&host->lock);
2027 
2028 }
2029 
2030 /* push final bytes to part_buf, only use during push */
2031 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2032 {
2033 	memcpy((void *)&host->part_buf, buf, cnt);
2034 	host->part_buf_count = cnt;
2035 }
2036 
2037 /* append bytes to part_buf, only use during push */
2038 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2039 {
2040 	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2041 	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2042 	host->part_buf_count += cnt;
2043 	return cnt;
2044 }
2045 
2046 /* pull first bytes from part_buf, only use during pull */
2047 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2048 {
2049 	cnt = min_t(int, cnt, host->part_buf_count);
2050 	if (cnt) {
2051 		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2052 		       cnt);
2053 		host->part_buf_count -= cnt;
2054 		host->part_buf_start += cnt;
2055 	}
2056 	return cnt;
2057 }
2058 
2059 /* pull final bytes from the part_buf, assuming it's just been filled */
2060 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2061 {
2062 	memcpy(buf, &host->part_buf, cnt);
2063 	host->part_buf_start = cnt;
2064 	host->part_buf_count = (1 << host->data_shift) - cnt;
2065 }
2066 
2067 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2068 {
2069 	struct mmc_data *data = host->data;
2070 	int init_cnt = cnt;
2071 
2072 	/* try and push anything in the part_buf */
2073 	if (unlikely(host->part_buf_count)) {
2074 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2075 
2076 		buf += len;
2077 		cnt -= len;
2078 		if (host->part_buf_count == 2) {
2079 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2080 			host->part_buf_count = 0;
2081 		}
2082 	}
2083 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2084 	if (unlikely((unsigned long)buf & 0x1)) {
2085 		while (cnt >= 2) {
2086 			u16 aligned_buf[64];
2087 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2088 			int items = len >> 1;
2089 			int i;
2090 			/* memcpy from input buffer into aligned buffer */
2091 			memcpy(aligned_buf, buf, len);
2092 			buf += len;
2093 			cnt -= len;
2094 			/* push data from aligned buffer into fifo */
2095 			for (i = 0; i < items; ++i)
2096 				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2097 		}
2098 	} else
2099 #endif
2100 	{
2101 		u16 *pdata = buf;
2102 
2103 		for (; cnt >= 2; cnt -= 2)
2104 			mci_fifo_writew(host->fifo_reg, *pdata++);
2105 		buf = pdata;
2106 	}
2107 	/* put anything remaining in the part_buf */
2108 	if (cnt) {
2109 		dw_mci_set_part_bytes(host, buf, cnt);
2110 		 /* Push data if we have reached the expected data length */
2111 		if ((data->bytes_xfered + init_cnt) ==
2112 		    (data->blksz * data->blocks))
2113 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2114 	}
2115 }
2116 
2117 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2118 {
2119 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2120 	if (unlikely((unsigned long)buf & 0x1)) {
2121 		while (cnt >= 2) {
2122 			/* pull data from fifo into aligned buffer */
2123 			u16 aligned_buf[64];
2124 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2125 			int items = len >> 1;
2126 			int i;
2127 
2128 			for (i = 0; i < items; ++i)
2129 				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2130 			/* memcpy from aligned buffer into output buffer */
2131 			memcpy(buf, aligned_buf, len);
2132 			buf += len;
2133 			cnt -= len;
2134 		}
2135 	} else
2136 #endif
2137 	{
2138 		u16 *pdata = buf;
2139 
2140 		for (; cnt >= 2; cnt -= 2)
2141 			*pdata++ = mci_fifo_readw(host->fifo_reg);
2142 		buf = pdata;
2143 	}
2144 	if (cnt) {
2145 		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2146 		dw_mci_pull_final_bytes(host, buf, cnt);
2147 	}
2148 }
2149 
2150 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2151 {
2152 	struct mmc_data *data = host->data;
2153 	int init_cnt = cnt;
2154 
2155 	/* try and push anything in the part_buf */
2156 	if (unlikely(host->part_buf_count)) {
2157 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2158 
2159 		buf += len;
2160 		cnt -= len;
2161 		if (host->part_buf_count == 4) {
2162 			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2163 			host->part_buf_count = 0;
2164 		}
2165 	}
2166 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2167 	if (unlikely((unsigned long)buf & 0x3)) {
2168 		while (cnt >= 4) {
2169 			u32 aligned_buf[32];
2170 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2171 			int items = len >> 2;
2172 			int i;
2173 			/* memcpy from input buffer into aligned buffer */
2174 			memcpy(aligned_buf, buf, len);
2175 			buf += len;
2176 			cnt -= len;
2177 			/* push data from aligned buffer into fifo */
2178 			for (i = 0; i < items; ++i)
2179 				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2180 		}
2181 	} else
2182 #endif
2183 	{
2184 		u32 *pdata = buf;
2185 
2186 		for (; cnt >= 4; cnt -= 4)
2187 			mci_fifo_writel(host->fifo_reg, *pdata++);
2188 		buf = pdata;
2189 	}
2190 	/* put anything remaining in the part_buf */
2191 	if (cnt) {
2192 		dw_mci_set_part_bytes(host, buf, cnt);
2193 		 /* Push data if we have reached the expected data length */
2194 		if ((data->bytes_xfered + init_cnt) ==
2195 		    (data->blksz * data->blocks))
2196 			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2197 	}
2198 }
2199 
2200 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2201 {
2202 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2203 	if (unlikely((unsigned long)buf & 0x3)) {
2204 		while (cnt >= 4) {
2205 			/* pull data from fifo into aligned buffer */
2206 			u32 aligned_buf[32];
2207 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2208 			int items = len >> 2;
2209 			int i;
2210 
2211 			for (i = 0; i < items; ++i)
2212 				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2213 			/* memcpy from aligned buffer into output buffer */
2214 			memcpy(buf, aligned_buf, len);
2215 			buf += len;
2216 			cnt -= len;
2217 		}
2218 	} else
2219 #endif
2220 	{
2221 		u32 *pdata = buf;
2222 
2223 		for (; cnt >= 4; cnt -= 4)
2224 			*pdata++ = mci_fifo_readl(host->fifo_reg);
2225 		buf = pdata;
2226 	}
2227 	if (cnt) {
2228 		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2229 		dw_mci_pull_final_bytes(host, buf, cnt);
2230 	}
2231 }
2232 
2233 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2234 {
2235 	struct mmc_data *data = host->data;
2236 	int init_cnt = cnt;
2237 
2238 	/* try and push anything in the part_buf */
2239 	if (unlikely(host->part_buf_count)) {
2240 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2241 
2242 		buf += len;
2243 		cnt -= len;
2244 
2245 		if (host->part_buf_count == 8) {
2246 			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2247 			host->part_buf_count = 0;
2248 		}
2249 	}
2250 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2251 	if (unlikely((unsigned long)buf & 0x7)) {
2252 		while (cnt >= 8) {
2253 			u64 aligned_buf[16];
2254 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2255 			int items = len >> 3;
2256 			int i;
2257 			/* memcpy from input buffer into aligned buffer */
2258 			memcpy(aligned_buf, buf, len);
2259 			buf += len;
2260 			cnt -= len;
2261 			/* push data from aligned buffer into fifo */
2262 			for (i = 0; i < items; ++i)
2263 				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2264 		}
2265 	} else
2266 #endif
2267 	{
2268 		u64 *pdata = buf;
2269 
2270 		for (; cnt >= 8; cnt -= 8)
2271 			mci_fifo_writeq(host->fifo_reg, *pdata++);
2272 		buf = pdata;
2273 	}
2274 	/* put anything remaining in the part_buf */
2275 	if (cnt) {
2276 		dw_mci_set_part_bytes(host, buf, cnt);
2277 		/* Push data if we have reached the expected data length */
2278 		if ((data->bytes_xfered + init_cnt) ==
2279 		    (data->blksz * data->blocks))
2280 			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2281 	}
2282 }
2283 
2284 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2285 {
2286 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2287 	if (unlikely((unsigned long)buf & 0x7)) {
2288 		while (cnt >= 8) {
2289 			/* pull data from fifo into aligned buffer */
2290 			u64 aligned_buf[16];
2291 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2292 			int items = len >> 3;
2293 			int i;
2294 
2295 			for (i = 0; i < items; ++i)
2296 				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2297 
2298 			/* memcpy from aligned buffer into output buffer */
2299 			memcpy(buf, aligned_buf, len);
2300 			buf += len;
2301 			cnt -= len;
2302 		}
2303 	} else
2304 #endif
2305 	{
2306 		u64 *pdata = buf;
2307 
2308 		for (; cnt >= 8; cnt -= 8)
2309 			*pdata++ = mci_fifo_readq(host->fifo_reg);
2310 		buf = pdata;
2311 	}
2312 	if (cnt) {
2313 		host->part_buf = mci_fifo_readq(host->fifo_reg);
2314 		dw_mci_pull_final_bytes(host, buf, cnt);
2315 	}
2316 }
2317 
2318 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2319 {
2320 	int len;
2321 
2322 	/* get remaining partial bytes */
2323 	len = dw_mci_pull_part_bytes(host, buf, cnt);
2324 	if (unlikely(len == cnt))
2325 		return;
2326 	buf += len;
2327 	cnt -= len;
2328 
2329 	/* get the rest of the data */
2330 	host->pull_data(host, buf, cnt);
2331 }
2332 
2333 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2334 {
2335 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2336 	void *buf;
2337 	unsigned int offset;
2338 	struct mmc_data	*data = host->data;
2339 	int shift = host->data_shift;
2340 	u32 status;
2341 	unsigned int len;
2342 	unsigned int remain, fcnt;
2343 
2344 	do {
2345 		if (!sg_miter_next(sg_miter))
2346 			goto done;
2347 
2348 		host->sg = sg_miter->piter.sg;
2349 		buf = sg_miter->addr;
2350 		remain = sg_miter->length;
2351 		offset = 0;
2352 
2353 		do {
2354 			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2355 					<< shift) + host->part_buf_count;
2356 			len = min(remain, fcnt);
2357 			if (!len)
2358 				break;
2359 			dw_mci_pull_data(host, (void *)(buf + offset), len);
2360 			data->bytes_xfered += len;
2361 			offset += len;
2362 			remain -= len;
2363 		} while (remain);
2364 
2365 		sg_miter->consumed = offset;
2366 		status = mci_readl(host, MINTSTS);
2367 		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2368 	/* if the RXDR is ready read again */
2369 	} while ((status & SDMMC_INT_RXDR) ||
2370 		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2371 
2372 	if (!remain) {
2373 		if (!sg_miter_next(sg_miter))
2374 			goto done;
2375 		sg_miter->consumed = 0;
2376 	}
2377 	sg_miter_stop(sg_miter);
2378 	return;
2379 
2380 done:
2381 	sg_miter_stop(sg_miter);
2382 	host->sg = NULL;
2383 	smp_wmb(); /* drain writebuffer */
2384 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2385 }
2386 
2387 static void dw_mci_write_data_pio(struct dw_mci *host)
2388 {
2389 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2390 	void *buf;
2391 	unsigned int offset;
2392 	struct mmc_data	*data = host->data;
2393 	int shift = host->data_shift;
2394 	u32 status;
2395 	unsigned int len;
2396 	unsigned int fifo_depth = host->fifo_depth;
2397 	unsigned int remain, fcnt;
2398 
2399 	do {
2400 		if (!sg_miter_next(sg_miter))
2401 			goto done;
2402 
2403 		host->sg = sg_miter->piter.sg;
2404 		buf = sg_miter->addr;
2405 		remain = sg_miter->length;
2406 		offset = 0;
2407 
2408 		do {
2409 			fcnt = ((fifo_depth -
2410 				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2411 					<< shift) - host->part_buf_count;
2412 			len = min(remain, fcnt);
2413 			if (!len)
2414 				break;
2415 			host->push_data(host, (void *)(buf + offset), len);
2416 			data->bytes_xfered += len;
2417 			offset += len;
2418 			remain -= len;
2419 		} while (remain);
2420 
2421 		sg_miter->consumed = offset;
2422 		status = mci_readl(host, MINTSTS);
2423 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2424 	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2425 
2426 	if (!remain) {
2427 		if (!sg_miter_next(sg_miter))
2428 			goto done;
2429 		sg_miter->consumed = 0;
2430 	}
2431 	sg_miter_stop(sg_miter);
2432 	return;
2433 
2434 done:
2435 	sg_miter_stop(sg_miter);
2436 	host->sg = NULL;
2437 	smp_wmb(); /* drain writebuffer */
2438 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2439 }
2440 
2441 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2442 {
2443 	if (!host->cmd_status)
2444 		host->cmd_status = status;
2445 
2446 	smp_wmb(); /* drain writebuffer */
2447 
2448 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2449 	tasklet_schedule(&host->tasklet);
2450 }
2451 
2452 static void dw_mci_handle_cd(struct dw_mci *host)
2453 {
2454 	int i;
2455 
2456 	for (i = 0; i < host->num_slots; i++) {
2457 		struct dw_mci_slot *slot = host->slot[i];
2458 
2459 		if (!slot)
2460 			continue;
2461 
2462 		if (slot->mmc->ops->card_event)
2463 			slot->mmc->ops->card_event(slot->mmc);
2464 		mmc_detect_change(slot->mmc,
2465 			msecs_to_jiffies(host->pdata->detect_delay_ms));
2466 	}
2467 }
2468 
2469 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2470 {
2471 	struct dw_mci *host = dev_id;
2472 	u32 pending;
2473 	int i;
2474 
2475 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2476 
2477 	if (pending) {
2478 		/* Check volt switch first, since it can look like an error */
2479 		if ((host->state == STATE_SENDING_CMD11) &&
2480 		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2481 			unsigned long irqflags;
2482 
2483 			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2484 			pending &= ~SDMMC_INT_VOLT_SWITCH;
2485 
2486 			/*
2487 			 * Hold the lock; we know cmd11_timer can't be kicked
2488 			 * off after the lock is released, so safe to delete.
2489 			 */
2490 			spin_lock_irqsave(&host->irq_lock, irqflags);
2491 			dw_mci_cmd_interrupt(host, pending);
2492 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2493 
2494 			del_timer(&host->cmd11_timer);
2495 		}
2496 
2497 		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2498 			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2499 			host->cmd_status = pending;
2500 			smp_wmb(); /* drain writebuffer */
2501 			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2502 		}
2503 
2504 		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2505 			/* if there is an error report DATA_ERROR */
2506 			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2507 			host->data_status = pending;
2508 			smp_wmb(); /* drain writebuffer */
2509 			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2510 			tasklet_schedule(&host->tasklet);
2511 		}
2512 
2513 		if (pending & SDMMC_INT_DATA_OVER) {
2514 			del_timer(&host->dto_timer);
2515 
2516 			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2517 			if (!host->data_status)
2518 				host->data_status = pending;
2519 			smp_wmb(); /* drain writebuffer */
2520 			if (host->dir_status == DW_MCI_RECV_STATUS) {
2521 				if (host->sg != NULL)
2522 					dw_mci_read_data_pio(host, true);
2523 			}
2524 			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2525 			tasklet_schedule(&host->tasklet);
2526 		}
2527 
2528 		if (pending & SDMMC_INT_RXDR) {
2529 			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2530 			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2531 				dw_mci_read_data_pio(host, false);
2532 		}
2533 
2534 		if (pending & SDMMC_INT_TXDR) {
2535 			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2536 			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2537 				dw_mci_write_data_pio(host);
2538 		}
2539 
2540 		if (pending & SDMMC_INT_CMD_DONE) {
2541 			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2542 			dw_mci_cmd_interrupt(host, pending);
2543 		}
2544 
2545 		if (pending & SDMMC_INT_CD) {
2546 			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2547 			dw_mci_handle_cd(host);
2548 		}
2549 
2550 		/* Handle SDIO Interrupts */
2551 		for (i = 0; i < host->num_slots; i++) {
2552 			struct dw_mci_slot *slot = host->slot[i];
2553 
2554 			if (!slot)
2555 				continue;
2556 
2557 			if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2558 				mci_writel(host, RINTSTS,
2559 					   SDMMC_INT_SDIO(slot->sdio_id));
2560 				mmc_signal_sdio_irq(slot->mmc);
2561 			}
2562 		}
2563 
2564 	}
2565 
2566 	if (host->use_dma != TRANS_MODE_IDMAC)
2567 		return IRQ_HANDLED;
2568 
2569 	/* Handle IDMA interrupts */
2570 	if (host->dma_64bit_address == 1) {
2571 		pending = mci_readl(host, IDSTS64);
2572 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2573 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2574 							SDMMC_IDMAC_INT_RI);
2575 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2576 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2577 				host->dma_ops->complete((void *)host);
2578 		}
2579 	} else {
2580 		pending = mci_readl(host, IDSTS);
2581 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2582 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2583 							SDMMC_IDMAC_INT_RI);
2584 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2585 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2586 				host->dma_ops->complete((void *)host);
2587 		}
2588 	}
2589 
2590 	return IRQ_HANDLED;
2591 }
2592 
2593 static int dw_mci_init_slot(struct dw_mci *host, unsigned int id)
2594 {
2595 	struct mmc_host *mmc;
2596 	struct dw_mci_slot *slot;
2597 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2598 	int ctrl_id, ret;
2599 	u32 freq[2];
2600 
2601 	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2602 	if (!mmc)
2603 		return -ENOMEM;
2604 
2605 	slot = mmc_priv(mmc);
2606 	slot->id = id;
2607 	slot->sdio_id = host->sdio_id0 + id;
2608 	slot->mmc = mmc;
2609 	slot->host = host;
2610 	host->slot[id] = slot;
2611 
2612 	mmc->ops = &dw_mci_ops;
2613 	if (of_property_read_u32_array(host->dev->of_node,
2614 				       "clock-freq-min-max", freq, 2)) {
2615 		mmc->f_min = DW_MCI_FREQ_MIN;
2616 		mmc->f_max = DW_MCI_FREQ_MAX;
2617 	} else {
2618 		mmc->f_min = freq[0];
2619 		mmc->f_max = freq[1];
2620 	}
2621 
2622 	/*if there are external regulators, get them*/
2623 	ret = mmc_regulator_get_supply(mmc);
2624 	if (ret == -EPROBE_DEFER)
2625 		goto err_host_allocated;
2626 
2627 	if (!mmc->ocr_avail)
2628 		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2629 
2630 	if (host->pdata->caps)
2631 		mmc->caps = host->pdata->caps;
2632 
2633 	/*
2634 	 * Support MMC_CAP_ERASE by default.
2635 	 * It needs to use trim/discard/erase commands.
2636 	 */
2637 	mmc->caps |= MMC_CAP_ERASE;
2638 
2639 	if (host->pdata->pm_caps)
2640 		mmc->pm_caps = host->pdata->pm_caps;
2641 
2642 	if (host->dev->of_node) {
2643 		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2644 		if (ctrl_id < 0)
2645 			ctrl_id = 0;
2646 	} else {
2647 		ctrl_id = to_platform_device(host->dev)->id;
2648 	}
2649 	if (drv_data && drv_data->caps)
2650 		mmc->caps |= drv_data->caps[ctrl_id];
2651 
2652 	if (host->pdata->caps2)
2653 		mmc->caps2 = host->pdata->caps2;
2654 
2655 	ret = mmc_of_parse(mmc);
2656 	if (ret)
2657 		goto err_host_allocated;
2658 
2659 	/* Useful defaults if platform data is unset. */
2660 	if (host->use_dma == TRANS_MODE_IDMAC) {
2661 		mmc->max_segs = host->ring_size;
2662 		mmc->max_blk_size = 65535;
2663 		mmc->max_seg_size = 0x1000;
2664 		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2665 		mmc->max_blk_count = mmc->max_req_size / 512;
2666 	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2667 		mmc->max_segs = 64;
2668 		mmc->max_blk_size = 65535;
2669 		mmc->max_blk_count = 65535;
2670 		mmc->max_req_size =
2671 				mmc->max_blk_size * mmc->max_blk_count;
2672 		mmc->max_seg_size = mmc->max_req_size;
2673 	} else {
2674 		/* TRANS_MODE_PIO */
2675 		mmc->max_segs = 64;
2676 		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2677 		mmc->max_blk_count = 512;
2678 		mmc->max_req_size = mmc->max_blk_size *
2679 				    mmc->max_blk_count;
2680 		mmc->max_seg_size = mmc->max_req_size;
2681 	}
2682 
2683 	dw_mci_get_cd(mmc);
2684 
2685 	ret = mmc_add_host(mmc);
2686 	if (ret)
2687 		goto err_host_allocated;
2688 
2689 #if defined(CONFIG_DEBUG_FS)
2690 	dw_mci_init_debugfs(slot);
2691 #endif
2692 
2693 	return 0;
2694 
2695 err_host_allocated:
2696 	mmc_free_host(mmc);
2697 	return ret;
2698 }
2699 
2700 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot, unsigned int id)
2701 {
2702 	/* Debugfs stuff is cleaned up by mmc core */
2703 	mmc_remove_host(slot->mmc);
2704 	slot->host->slot[id] = NULL;
2705 	mmc_free_host(slot->mmc);
2706 }
2707 
2708 static void dw_mci_init_dma(struct dw_mci *host)
2709 {
2710 	int addr_config;
2711 	struct device *dev = host->dev;
2712 	struct device_node *np = dev->of_node;
2713 
2714 	/*
2715 	* Check tansfer mode from HCON[17:16]
2716 	* Clear the ambiguous description of dw_mmc databook:
2717 	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
2718 	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2719 	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2720 	* 2b'11: Non DW DMA Interface -> pio only
2721 	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
2722 	* simpler request/acknowledge handshake mechanism and both of them
2723 	* are regarded as external dma master for dw_mmc.
2724 	*/
2725 	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2726 	if (host->use_dma == DMA_INTERFACE_IDMA) {
2727 		host->use_dma = TRANS_MODE_IDMAC;
2728 	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2729 		   host->use_dma == DMA_INTERFACE_GDMA) {
2730 		host->use_dma = TRANS_MODE_EDMAC;
2731 	} else {
2732 		goto no_dma;
2733 	}
2734 
2735 	/* Determine which DMA interface to use */
2736 	if (host->use_dma == TRANS_MODE_IDMAC) {
2737 		/*
2738 		* Check ADDR_CONFIG bit in HCON to find
2739 		* IDMAC address bus width
2740 		*/
2741 		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2742 
2743 		if (addr_config == 1) {
2744 			/* host supports IDMAC in 64-bit address mode */
2745 			host->dma_64bit_address = 1;
2746 			dev_info(host->dev,
2747 				 "IDMAC supports 64-bit address mode.\n");
2748 			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2749 				dma_set_coherent_mask(host->dev,
2750 						      DMA_BIT_MASK(64));
2751 		} else {
2752 			/* host supports IDMAC in 32-bit address mode */
2753 			host->dma_64bit_address = 0;
2754 			dev_info(host->dev,
2755 				 "IDMAC supports 32-bit address mode.\n");
2756 		}
2757 
2758 		/* Alloc memory for sg translation */
2759 		host->sg_cpu = dmam_alloc_coherent(host->dev,
2760 						   DESC_RING_BUF_SZ,
2761 						   &host->sg_dma, GFP_KERNEL);
2762 		if (!host->sg_cpu) {
2763 			dev_err(host->dev,
2764 				"%s: could not alloc DMA memory\n",
2765 				__func__);
2766 			goto no_dma;
2767 		}
2768 
2769 		host->dma_ops = &dw_mci_idmac_ops;
2770 		dev_info(host->dev, "Using internal DMA controller.\n");
2771 	} else {
2772 		/* TRANS_MODE_EDMAC: check dma bindings again */
2773 		if ((of_property_count_strings(np, "dma-names") < 0) ||
2774 		    (!of_find_property(np, "dmas", NULL))) {
2775 			goto no_dma;
2776 		}
2777 		host->dma_ops = &dw_mci_edmac_ops;
2778 		dev_info(host->dev, "Using external DMA controller.\n");
2779 	}
2780 
2781 	if (host->dma_ops->init && host->dma_ops->start &&
2782 	    host->dma_ops->stop && host->dma_ops->cleanup) {
2783 		if (host->dma_ops->init(host)) {
2784 			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2785 				__func__);
2786 			goto no_dma;
2787 		}
2788 	} else {
2789 		dev_err(host->dev, "DMA initialization not found.\n");
2790 		goto no_dma;
2791 	}
2792 
2793 	return;
2794 
2795 no_dma:
2796 	dev_info(host->dev, "Using PIO mode.\n");
2797 	host->use_dma = TRANS_MODE_PIO;
2798 }
2799 
2800 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
2801 {
2802 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
2803 	u32 ctrl;
2804 
2805 	ctrl = mci_readl(host, CTRL);
2806 	ctrl |= reset;
2807 	mci_writel(host, CTRL, ctrl);
2808 
2809 	/* wait till resets clear */
2810 	do {
2811 		ctrl = mci_readl(host, CTRL);
2812 		if (!(ctrl & reset))
2813 			return true;
2814 	} while (time_before(jiffies, timeout));
2815 
2816 	dev_err(host->dev,
2817 		"Timeout resetting block (ctrl reset %#x)\n",
2818 		ctrl & reset);
2819 
2820 	return false;
2821 }
2822 
2823 static bool dw_mci_reset(struct dw_mci *host)
2824 {
2825 	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
2826 	bool ret = false;
2827 
2828 	/*
2829 	 * Reseting generates a block interrupt, hence setting
2830 	 * the scatter-gather pointer to NULL.
2831 	 */
2832 	if (host->sg) {
2833 		sg_miter_stop(&host->sg_miter);
2834 		host->sg = NULL;
2835 	}
2836 
2837 	if (host->use_dma)
2838 		flags |= SDMMC_CTRL_DMA_RESET;
2839 
2840 	if (dw_mci_ctrl_reset(host, flags)) {
2841 		/*
2842 		 * In all cases we clear the RAWINTS register to clear any
2843 		 * interrupts.
2844 		 */
2845 		mci_writel(host, RINTSTS, 0xFFFFFFFF);
2846 
2847 		/* if using dma we wait for dma_req to clear */
2848 		if (host->use_dma) {
2849 			unsigned long timeout = jiffies + msecs_to_jiffies(500);
2850 			u32 status;
2851 
2852 			do {
2853 				status = mci_readl(host, STATUS);
2854 				if (!(status & SDMMC_STATUS_DMA_REQ))
2855 					break;
2856 				cpu_relax();
2857 			} while (time_before(jiffies, timeout));
2858 
2859 			if (status & SDMMC_STATUS_DMA_REQ) {
2860 				dev_err(host->dev,
2861 					"%s: Timeout waiting for dma_req to clear during reset\n",
2862 					__func__);
2863 				goto ciu_out;
2864 			}
2865 
2866 			/* when using DMA next we reset the fifo again */
2867 			if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
2868 				goto ciu_out;
2869 		}
2870 	} else {
2871 		/* if the controller reset bit did clear, then set clock regs */
2872 		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
2873 			dev_err(host->dev,
2874 				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
2875 				__func__);
2876 			goto ciu_out;
2877 		}
2878 	}
2879 
2880 	if (host->use_dma == TRANS_MODE_IDMAC)
2881 		/* It is also recommended that we reset and reprogram idmac */
2882 		dw_mci_idmac_reset(host);
2883 
2884 	ret = true;
2885 
2886 ciu_out:
2887 	/* After a CTRL reset we need to have CIU set clock registers  */
2888 	mci_send_cmd(host->cur_slot, SDMMC_CMD_UPD_CLK, 0);
2889 
2890 	return ret;
2891 }
2892 
2893 static void dw_mci_cmd11_timer(unsigned long arg)
2894 {
2895 	struct dw_mci *host = (struct dw_mci *)arg;
2896 
2897 	if (host->state != STATE_SENDING_CMD11) {
2898 		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2899 		return;
2900 	}
2901 
2902 	host->cmd_status = SDMMC_INT_RTO;
2903 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2904 	tasklet_schedule(&host->tasklet);
2905 }
2906 
2907 static void dw_mci_dto_timer(unsigned long arg)
2908 {
2909 	struct dw_mci *host = (struct dw_mci *)arg;
2910 
2911 	switch (host->state) {
2912 	case STATE_SENDING_DATA:
2913 	case STATE_DATA_BUSY:
2914 		/*
2915 		 * If DTO interrupt does NOT come in sending data state,
2916 		 * we should notify the driver to terminate current transfer
2917 		 * and report a data timeout to the core.
2918 		 */
2919 		host->data_status = SDMMC_INT_DRTO;
2920 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
2921 		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2922 		tasklet_schedule(&host->tasklet);
2923 		break;
2924 	default:
2925 		break;
2926 	}
2927 }
2928 
2929 #ifdef CONFIG_OF
2930 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2931 {
2932 	struct dw_mci_board *pdata;
2933 	struct device *dev = host->dev;
2934 	struct device_node *np = dev->of_node;
2935 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2936 	int ret;
2937 	u32 clock_frequency;
2938 
2939 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2940 	if (!pdata)
2941 		return ERR_PTR(-ENOMEM);
2942 
2943 	/* find reset controller when exist */
2944 	pdata->rstc = devm_reset_control_get_optional(dev, "reset");
2945 	if (IS_ERR(pdata->rstc)) {
2946 		if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
2947 			return ERR_PTR(-EPROBE_DEFER);
2948 	}
2949 
2950 	/* find out number of slots supported */
2951 	of_property_read_u32(np, "num-slots", &pdata->num_slots);
2952 
2953 	if (of_property_read_u32(np, "fifo-depth", &pdata->fifo_depth))
2954 		dev_info(dev,
2955 			 "fifo-depth property not found, using value of FIFOTH register as default\n");
2956 
2957 	of_property_read_u32(np, "card-detect-delay", &pdata->detect_delay_ms);
2958 
2959 	if (!of_property_read_u32(np, "clock-frequency", &clock_frequency))
2960 		pdata->bus_hz = clock_frequency;
2961 
2962 	if (drv_data && drv_data->parse_dt) {
2963 		ret = drv_data->parse_dt(host);
2964 		if (ret)
2965 			return ERR_PTR(ret);
2966 	}
2967 
2968 	return pdata;
2969 }
2970 
2971 #else /* CONFIG_OF */
2972 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2973 {
2974 	return ERR_PTR(-EINVAL);
2975 }
2976 #endif /* CONFIG_OF */
2977 
2978 static void dw_mci_enable_cd(struct dw_mci *host)
2979 {
2980 	unsigned long irqflags;
2981 	u32 temp;
2982 	int i;
2983 	struct dw_mci_slot *slot;
2984 
2985 	/*
2986 	 * No need for CD if all slots have a non-error GPIO
2987 	 * as well as broken card detection is found.
2988 	 */
2989 	for (i = 0; i < host->num_slots; i++) {
2990 		slot = host->slot[i];
2991 		if (slot->mmc->caps & MMC_CAP_NEEDS_POLL)
2992 			return;
2993 
2994 		if (mmc_gpio_get_cd(slot->mmc) < 0)
2995 			break;
2996 	}
2997 	if (i == host->num_slots)
2998 		return;
2999 
3000 	spin_lock_irqsave(&host->irq_lock, irqflags);
3001 	temp = mci_readl(host, INTMASK);
3002 	temp  |= SDMMC_INT_CD;
3003 	mci_writel(host, INTMASK, temp);
3004 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3005 }
3006 
3007 int dw_mci_probe(struct dw_mci *host)
3008 {
3009 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3010 	int width, i, ret = 0;
3011 	u32 fifo_size;
3012 	int init_slots = 0;
3013 
3014 	if (!host->pdata) {
3015 		host->pdata = dw_mci_parse_dt(host);
3016 		if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3017 			return -EPROBE_DEFER;
3018 		} else if (IS_ERR(host->pdata)) {
3019 			dev_err(host->dev, "platform data not available\n");
3020 			return -EINVAL;
3021 		}
3022 	}
3023 
3024 	host->biu_clk = devm_clk_get(host->dev, "biu");
3025 	if (IS_ERR(host->biu_clk)) {
3026 		dev_dbg(host->dev, "biu clock not available\n");
3027 	} else {
3028 		ret = clk_prepare_enable(host->biu_clk);
3029 		if (ret) {
3030 			dev_err(host->dev, "failed to enable biu clock\n");
3031 			return ret;
3032 		}
3033 	}
3034 
3035 	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3036 	if (IS_ERR(host->ciu_clk)) {
3037 		dev_dbg(host->dev, "ciu clock not available\n");
3038 		host->bus_hz = host->pdata->bus_hz;
3039 	} else {
3040 		ret = clk_prepare_enable(host->ciu_clk);
3041 		if (ret) {
3042 			dev_err(host->dev, "failed to enable ciu clock\n");
3043 			goto err_clk_biu;
3044 		}
3045 
3046 		if (host->pdata->bus_hz) {
3047 			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3048 			if (ret)
3049 				dev_warn(host->dev,
3050 					 "Unable to set bus rate to %uHz\n",
3051 					 host->pdata->bus_hz);
3052 		}
3053 		host->bus_hz = clk_get_rate(host->ciu_clk);
3054 	}
3055 
3056 	if (!host->bus_hz) {
3057 		dev_err(host->dev,
3058 			"Platform data must supply bus speed\n");
3059 		ret = -ENODEV;
3060 		goto err_clk_ciu;
3061 	}
3062 
3063 	if (drv_data && drv_data->init) {
3064 		ret = drv_data->init(host);
3065 		if (ret) {
3066 			dev_err(host->dev,
3067 				"implementation specific init failed\n");
3068 			goto err_clk_ciu;
3069 		}
3070 	}
3071 
3072 	if (!IS_ERR(host->pdata->rstc)) {
3073 		reset_control_assert(host->pdata->rstc);
3074 		usleep_range(10, 50);
3075 		reset_control_deassert(host->pdata->rstc);
3076 	}
3077 
3078 	setup_timer(&host->cmd11_timer,
3079 		    dw_mci_cmd11_timer, (unsigned long)host);
3080 
3081 	setup_timer(&host->dto_timer,
3082 		    dw_mci_dto_timer, (unsigned long)host);
3083 
3084 	spin_lock_init(&host->lock);
3085 	spin_lock_init(&host->irq_lock);
3086 	INIT_LIST_HEAD(&host->queue);
3087 
3088 	/*
3089 	 * Get the host data width - this assumes that HCON has been set with
3090 	 * the correct values.
3091 	 */
3092 	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3093 	if (!i) {
3094 		host->push_data = dw_mci_push_data16;
3095 		host->pull_data = dw_mci_pull_data16;
3096 		width = 16;
3097 		host->data_shift = 1;
3098 	} else if (i == 2) {
3099 		host->push_data = dw_mci_push_data64;
3100 		host->pull_data = dw_mci_pull_data64;
3101 		width = 64;
3102 		host->data_shift = 3;
3103 	} else {
3104 		/* Check for a reserved value, and warn if it is */
3105 		WARN((i != 1),
3106 		     "HCON reports a reserved host data width!\n"
3107 		     "Defaulting to 32-bit access.\n");
3108 		host->push_data = dw_mci_push_data32;
3109 		host->pull_data = dw_mci_pull_data32;
3110 		width = 32;
3111 		host->data_shift = 2;
3112 	}
3113 
3114 	/* Reset all blocks */
3115 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3116 		ret = -ENODEV;
3117 		goto err_clk_ciu;
3118 	}
3119 
3120 	host->dma_ops = host->pdata->dma_ops;
3121 	dw_mci_init_dma(host);
3122 
3123 	/* Clear the interrupts for the host controller */
3124 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3125 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3126 
3127 	/* Put in max timeout */
3128 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3129 
3130 	/*
3131 	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3132 	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3133 	 */
3134 	if (!host->pdata->fifo_depth) {
3135 		/*
3136 		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3137 		 * have been overwritten by the bootloader, just like we're
3138 		 * about to do, so if you know the value for your hardware, you
3139 		 * should put it in the platform data.
3140 		 */
3141 		fifo_size = mci_readl(host, FIFOTH);
3142 		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3143 	} else {
3144 		fifo_size = host->pdata->fifo_depth;
3145 	}
3146 	host->fifo_depth = fifo_size;
3147 	host->fifoth_val =
3148 		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3149 	mci_writel(host, FIFOTH, host->fifoth_val);
3150 
3151 	/* disable clock to CIU */
3152 	mci_writel(host, CLKENA, 0);
3153 	mci_writel(host, CLKSRC, 0);
3154 
3155 	/*
3156 	 * In 2.40a spec, Data offset is changed.
3157 	 * Need to check the version-id and set data-offset for DATA register.
3158 	 */
3159 	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3160 	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3161 
3162 	if (host->verid < DW_MMC_240A)
3163 		host->fifo_reg = host->regs + DATA_OFFSET;
3164 	else
3165 		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3166 
3167 	tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3168 	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3169 			       host->irq_flags, "dw-mci", host);
3170 	if (ret)
3171 		goto err_dmaunmap;
3172 
3173 	if (host->pdata->num_slots)
3174 		host->num_slots = host->pdata->num_slots;
3175 	else
3176 		host->num_slots = 1;
3177 
3178 	if (host->num_slots < 1 ||
3179 	    host->num_slots > SDMMC_GET_SLOT_NUM(mci_readl(host, HCON))) {
3180 		dev_err(host->dev,
3181 			"Platform data must supply correct num_slots.\n");
3182 		ret = -ENODEV;
3183 		goto err_clk_ciu;
3184 	}
3185 
3186 	/*
3187 	 * Enable interrupts for command done, data over, data empty,
3188 	 * receive ready and error such as transmit, receive timeout, crc error
3189 	 */
3190 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3191 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3192 		   DW_MCI_ERROR_FLAGS);
3193 	/* Enable mci interrupt */
3194 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3195 
3196 	dev_info(host->dev,
3197 		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3198 		 host->irq, width, fifo_size);
3199 
3200 	/* We need at least one slot to succeed */
3201 	for (i = 0; i < host->num_slots; i++) {
3202 		ret = dw_mci_init_slot(host, i);
3203 		if (ret)
3204 			dev_dbg(host->dev, "slot %d init failed\n", i);
3205 		else
3206 			init_slots++;
3207 	}
3208 
3209 	if (init_slots) {
3210 		dev_info(host->dev, "%d slots initialized\n", init_slots);
3211 	} else {
3212 		dev_dbg(host->dev,
3213 			"attempted to initialize %d slots, but failed on all\n",
3214 			host->num_slots);
3215 		goto err_dmaunmap;
3216 	}
3217 
3218 	/* Now that slots are all setup, we can enable card detect */
3219 	dw_mci_enable_cd(host);
3220 
3221 	return 0;
3222 
3223 err_dmaunmap:
3224 	if (host->use_dma && host->dma_ops->exit)
3225 		host->dma_ops->exit(host);
3226 
3227 	if (!IS_ERR(host->pdata->rstc))
3228 		reset_control_assert(host->pdata->rstc);
3229 
3230 err_clk_ciu:
3231 	clk_disable_unprepare(host->ciu_clk);
3232 
3233 err_clk_biu:
3234 	clk_disable_unprepare(host->biu_clk);
3235 
3236 	return ret;
3237 }
3238 EXPORT_SYMBOL(dw_mci_probe);
3239 
3240 void dw_mci_remove(struct dw_mci *host)
3241 {
3242 	int i;
3243 
3244 	for (i = 0; i < host->num_slots; i++) {
3245 		dev_dbg(host->dev, "remove slot %d\n", i);
3246 		if (host->slot[i])
3247 			dw_mci_cleanup_slot(host->slot[i], i);
3248 	}
3249 
3250 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3251 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3252 
3253 	/* disable clock to CIU */
3254 	mci_writel(host, CLKENA, 0);
3255 	mci_writel(host, CLKSRC, 0);
3256 
3257 	if (host->use_dma && host->dma_ops->exit)
3258 		host->dma_ops->exit(host);
3259 
3260 	if (!IS_ERR(host->pdata->rstc))
3261 		reset_control_assert(host->pdata->rstc);
3262 
3263 	clk_disable_unprepare(host->ciu_clk);
3264 	clk_disable_unprepare(host->biu_clk);
3265 }
3266 EXPORT_SYMBOL(dw_mci_remove);
3267 
3268 
3269 
3270 #ifdef CONFIG_PM
3271 /*
3272  * TODO: we should probably disable the clock to the card in the suspend path.
3273  */
3274 int dw_mci_suspend(struct dw_mci *host)
3275 {
3276 	if (host->use_dma && host->dma_ops->exit)
3277 		host->dma_ops->exit(host);
3278 
3279 	return 0;
3280 }
3281 EXPORT_SYMBOL(dw_mci_suspend);
3282 
3283 int dw_mci_resume(struct dw_mci *host)
3284 {
3285 	int i, ret;
3286 
3287 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3288 		ret = -ENODEV;
3289 		return ret;
3290 	}
3291 
3292 	if (host->use_dma && host->dma_ops->init)
3293 		host->dma_ops->init(host);
3294 
3295 	/*
3296 	 * Restore the initial value at FIFOTH register
3297 	 * And Invalidate the prev_blksz with zero
3298 	 */
3299 	mci_writel(host, FIFOTH, host->fifoth_val);
3300 	host->prev_blksz = 0;
3301 
3302 	/* Put in max timeout */
3303 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3304 
3305 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3306 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3307 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3308 		   DW_MCI_ERROR_FLAGS);
3309 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3310 
3311 	for (i = 0; i < host->num_slots; i++) {
3312 		struct dw_mci_slot *slot = host->slot[i];
3313 
3314 		if (!slot)
3315 			continue;
3316 		if (slot->mmc->pm_flags & MMC_PM_KEEP_POWER) {
3317 			dw_mci_set_ios(slot->mmc, &slot->mmc->ios);
3318 			dw_mci_setup_bus(slot, true);
3319 		}
3320 	}
3321 
3322 	/* Now that slots are all setup, we can enable card detect */
3323 	dw_mci_enable_cd(host);
3324 
3325 	return 0;
3326 }
3327 EXPORT_SYMBOL(dw_mci_resume);
3328 
3329 int dw_mci_runtime_suspend(struct device *dev)
3330 {
3331 	int err = 0;
3332 	struct dw_mci *host = dev_get_drvdata(dev);
3333 
3334 	err = dw_mci_suspend(host);
3335 	if (err)
3336 		return err;
3337 
3338 	clk_disable_unprepare(host->ciu_clk);
3339 
3340 	if (host->cur_slot &&
3341 	    (mmc_can_gpio_cd(host->cur_slot->mmc) ||
3342 	     !mmc_card_is_removable(host->cur_slot->mmc)))
3343 		clk_disable_unprepare(host->biu_clk);
3344 
3345 	return err;
3346 }
3347 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3348 
3349 int dw_mci_runtime_resume(struct device *dev)
3350 {
3351 	int ret = 0;
3352 	struct dw_mci *host = dev_get_drvdata(dev);
3353 
3354 	if (host->cur_slot &&
3355 	    (mmc_can_gpio_cd(host->cur_slot->mmc) ||
3356 	     !mmc_card_is_removable(host->cur_slot->mmc))) {
3357 		ret = clk_prepare_enable(host->biu_clk);
3358 		if (ret)
3359 			return ret;
3360 	}
3361 
3362 	ret = clk_prepare_enable(host->ciu_clk);
3363 	if (ret)
3364 		return ret;
3365 
3366 	return dw_mci_resume(host);
3367 }
3368 EXPORT_SYMBOL(dw_mci_runtime_resume);
3369 #endif /* CONFIG_PM */
3370 
3371 static int __init dw_mci_init(void)
3372 {
3373 	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3374 	return 0;
3375 }
3376 
3377 static void __exit dw_mci_exit(void)
3378 {
3379 }
3380 
3381 module_init(dw_mci_init);
3382 module_exit(dw_mci_exit);
3383 
3384 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3385 MODULE_AUTHOR("NXP Semiconductor VietNam");
3386 MODULE_AUTHOR("Imagination Technologies Ltd");
3387 MODULE_LICENSE("GPL v2");
3388