xref: /openbmc/linux/drivers/mmc/host/dw_mmc.c (revision 132db935)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Synopsys DesignWare Multimedia Card Interface driver
4  *  (Based on NXP driver for lpc 31xx)
5  *
6  * Copyright (C) 2009 NXP Semiconductors
7  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8  */
9 
10 #include <linux/blkdev.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/iopoll.h>
19 #include <linux/ioport.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/seq_file.h>
24 #include <linux/slab.h>
25 #include <linux/stat.h>
26 #include <linux/delay.h>
27 #include <linux/irq.h>
28 #include <linux/mmc/card.h>
29 #include <linux/mmc/host.h>
30 #include <linux/mmc/mmc.h>
31 #include <linux/mmc/sd.h>
32 #include <linux/mmc/sdio.h>
33 #include <linux/bitops.h>
34 #include <linux/regulator/consumer.h>
35 #include <linux/of.h>
36 #include <linux/of_gpio.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #include "dw_mmc.h"
40 
41 /* Common flag combinations */
42 #define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
43 				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
44 				 SDMMC_INT_EBE | SDMMC_INT_HLE)
45 #define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
46 				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
47 #define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
48 				 DW_MCI_CMD_ERROR_FLAGS)
49 #define DW_MCI_SEND_STATUS	1
50 #define DW_MCI_RECV_STATUS	2
51 #define DW_MCI_DMA_THRESHOLD	16
52 
53 #define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
54 #define DW_MCI_FREQ_MIN	100000		/* unit: HZ */
55 
56 #define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
57 				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
58 				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
59 				 SDMMC_IDMAC_INT_TI)
60 
61 #define DESC_RING_BUF_SZ	PAGE_SIZE
62 
63 struct idmac_desc_64addr {
64 	u32		des0;	/* Control Descriptor */
65 #define IDMAC_OWN_CLR64(x) \
66 	!((x) & cpu_to_le32(IDMAC_DES0_OWN))
67 
68 	u32		des1;	/* Reserved */
69 
70 	u32		des2;	/*Buffer sizes */
71 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
72 	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
73 	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
74 
75 	u32		des3;	/* Reserved */
76 
77 	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
78 	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
79 
80 	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
81 	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
82 };
83 
84 struct idmac_desc {
85 	__le32		des0;	/* Control Descriptor */
86 #define IDMAC_DES0_DIC	BIT(1)
87 #define IDMAC_DES0_LD	BIT(2)
88 #define IDMAC_DES0_FD	BIT(3)
89 #define IDMAC_DES0_CH	BIT(4)
90 #define IDMAC_DES0_ER	BIT(5)
91 #define IDMAC_DES0_CES	BIT(30)
92 #define IDMAC_DES0_OWN	BIT(31)
93 
94 	__le32		des1;	/* Buffer sizes */
95 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
96 	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
97 
98 	__le32		des2;	/* buffer 1 physical address */
99 
100 	__le32		des3;	/* buffer 2 physical address */
101 };
102 
103 /* Each descriptor can transfer up to 4KB of data in chained mode */
104 #define DW_MCI_DESC_DATA_LENGTH	0x1000
105 
106 #if defined(CONFIG_DEBUG_FS)
107 static int dw_mci_req_show(struct seq_file *s, void *v)
108 {
109 	struct dw_mci_slot *slot = s->private;
110 	struct mmc_request *mrq;
111 	struct mmc_command *cmd;
112 	struct mmc_command *stop;
113 	struct mmc_data	*data;
114 
115 	/* Make sure we get a consistent snapshot */
116 	spin_lock_bh(&slot->host->lock);
117 	mrq = slot->mrq;
118 
119 	if (mrq) {
120 		cmd = mrq->cmd;
121 		data = mrq->data;
122 		stop = mrq->stop;
123 
124 		if (cmd)
125 			seq_printf(s,
126 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
127 				   cmd->opcode, cmd->arg, cmd->flags,
128 				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
129 				   cmd->resp[2], cmd->error);
130 		if (data)
131 			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
132 				   data->bytes_xfered, data->blocks,
133 				   data->blksz, data->flags, data->error);
134 		if (stop)
135 			seq_printf(s,
136 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
137 				   stop->opcode, stop->arg, stop->flags,
138 				   stop->resp[0], stop->resp[1], stop->resp[2],
139 				   stop->resp[2], stop->error);
140 	}
141 
142 	spin_unlock_bh(&slot->host->lock);
143 
144 	return 0;
145 }
146 DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
147 
148 static int dw_mci_regs_show(struct seq_file *s, void *v)
149 {
150 	struct dw_mci *host = s->private;
151 
152 	pm_runtime_get_sync(host->dev);
153 
154 	seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
155 	seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
156 	seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
157 	seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
158 	seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
159 	seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
160 
161 	pm_runtime_put_autosuspend(host->dev);
162 
163 	return 0;
164 }
165 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
166 
167 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
168 {
169 	struct mmc_host	*mmc = slot->mmc;
170 	struct dw_mci *host = slot->host;
171 	struct dentry *root;
172 
173 	root = mmc->debugfs_root;
174 	if (!root)
175 		return;
176 
177 	debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops);
178 	debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops);
179 	debugfs_create_u32("state", S_IRUSR, root, &host->state);
180 	debugfs_create_xul("pending_events", S_IRUSR, root,
181 			   &host->pending_events);
182 	debugfs_create_xul("completed_events", S_IRUSR, root,
183 			   &host->completed_events);
184 }
185 #endif /* defined(CONFIG_DEBUG_FS) */
186 
187 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
188 {
189 	u32 ctrl;
190 
191 	ctrl = mci_readl(host, CTRL);
192 	ctrl |= reset;
193 	mci_writel(host, CTRL, ctrl);
194 
195 	/* wait till resets clear */
196 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
197 				      !(ctrl & reset),
198 				      1, 500 * USEC_PER_MSEC)) {
199 		dev_err(host->dev,
200 			"Timeout resetting block (ctrl reset %#x)\n",
201 			ctrl & reset);
202 		return false;
203 	}
204 
205 	return true;
206 }
207 
208 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
209 {
210 	u32 status;
211 
212 	/*
213 	 * Databook says that before issuing a new data transfer command
214 	 * we need to check to see if the card is busy.  Data transfer commands
215 	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
216 	 *
217 	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
218 	 * expected.
219 	 */
220 	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
221 	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
222 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
223 					      status,
224 					      !(status & SDMMC_STATUS_BUSY),
225 					      10, 500 * USEC_PER_MSEC))
226 			dev_err(host->dev, "Busy; trying anyway\n");
227 	}
228 }
229 
230 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
231 {
232 	struct dw_mci *host = slot->host;
233 	unsigned int cmd_status = 0;
234 
235 	mci_writel(host, CMDARG, arg);
236 	wmb(); /* drain writebuffer */
237 	dw_mci_wait_while_busy(host, cmd);
238 	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
239 
240 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
241 				      !(cmd_status & SDMMC_CMD_START),
242 				      1, 500 * USEC_PER_MSEC))
243 		dev_err(&slot->mmc->class_dev,
244 			"Timeout sending command (cmd %#x arg %#x status %#x)\n",
245 			cmd, arg, cmd_status);
246 }
247 
248 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
249 {
250 	struct dw_mci_slot *slot = mmc_priv(mmc);
251 	struct dw_mci *host = slot->host;
252 	u32 cmdr;
253 
254 	cmd->error = -EINPROGRESS;
255 	cmdr = cmd->opcode;
256 
257 	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
258 	    cmd->opcode == MMC_GO_IDLE_STATE ||
259 	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
260 	    (cmd->opcode == SD_IO_RW_DIRECT &&
261 	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
262 		cmdr |= SDMMC_CMD_STOP;
263 	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
264 		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
265 
266 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
267 		u32 clk_en_a;
268 
269 		/* Special bit makes CMD11 not die */
270 		cmdr |= SDMMC_CMD_VOLT_SWITCH;
271 
272 		/* Change state to continue to handle CMD11 weirdness */
273 		WARN_ON(slot->host->state != STATE_SENDING_CMD);
274 		slot->host->state = STATE_SENDING_CMD11;
275 
276 		/*
277 		 * We need to disable low power mode (automatic clock stop)
278 		 * while doing voltage switch so we don't confuse the card,
279 		 * since stopping the clock is a specific part of the UHS
280 		 * voltage change dance.
281 		 *
282 		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
283 		 * unconditionally turned back on in dw_mci_setup_bus() if it's
284 		 * ever called with a non-zero clock.  That shouldn't happen
285 		 * until the voltage change is all done.
286 		 */
287 		clk_en_a = mci_readl(host, CLKENA);
288 		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
289 		mci_writel(host, CLKENA, clk_en_a);
290 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
291 			     SDMMC_CMD_PRV_DAT_WAIT, 0);
292 	}
293 
294 	if (cmd->flags & MMC_RSP_PRESENT) {
295 		/* We expect a response, so set this bit */
296 		cmdr |= SDMMC_CMD_RESP_EXP;
297 		if (cmd->flags & MMC_RSP_136)
298 			cmdr |= SDMMC_CMD_RESP_LONG;
299 	}
300 
301 	if (cmd->flags & MMC_RSP_CRC)
302 		cmdr |= SDMMC_CMD_RESP_CRC;
303 
304 	if (cmd->data) {
305 		cmdr |= SDMMC_CMD_DAT_EXP;
306 		if (cmd->data->flags & MMC_DATA_WRITE)
307 			cmdr |= SDMMC_CMD_DAT_WR;
308 	}
309 
310 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
311 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
312 
313 	return cmdr;
314 }
315 
316 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
317 {
318 	struct mmc_command *stop;
319 	u32 cmdr;
320 
321 	if (!cmd->data)
322 		return 0;
323 
324 	stop = &host->stop_abort;
325 	cmdr = cmd->opcode;
326 	memset(stop, 0, sizeof(struct mmc_command));
327 
328 	if (cmdr == MMC_READ_SINGLE_BLOCK ||
329 	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
330 	    cmdr == MMC_WRITE_BLOCK ||
331 	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
332 	    cmdr == MMC_SEND_TUNING_BLOCK ||
333 	    cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
334 		stop->opcode = MMC_STOP_TRANSMISSION;
335 		stop->arg = 0;
336 		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
337 	} else if (cmdr == SD_IO_RW_EXTENDED) {
338 		stop->opcode = SD_IO_RW_DIRECT;
339 		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
340 			     ((cmd->arg >> 28) & 0x7);
341 		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
342 	} else {
343 		return 0;
344 	}
345 
346 	cmdr = stop->opcode | SDMMC_CMD_STOP |
347 		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
348 
349 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
350 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
351 
352 	return cmdr;
353 }
354 
355 static inline void dw_mci_set_cto(struct dw_mci *host)
356 {
357 	unsigned int cto_clks;
358 	unsigned int cto_div;
359 	unsigned int cto_ms;
360 	unsigned long irqflags;
361 
362 	cto_clks = mci_readl(host, TMOUT) & 0xff;
363 	cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
364 	if (cto_div == 0)
365 		cto_div = 1;
366 
367 	cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
368 				  host->bus_hz);
369 
370 	/* add a bit spare time */
371 	cto_ms += 10;
372 
373 	/*
374 	 * The durations we're working with are fairly short so we have to be
375 	 * extra careful about synchronization here.  Specifically in hardware a
376 	 * command timeout is _at most_ 5.1 ms, so that means we expect an
377 	 * interrupt (either command done or timeout) to come rather quickly
378 	 * after the mci_writel.  ...but just in case we have a long interrupt
379 	 * latency let's add a bit of paranoia.
380 	 *
381 	 * In general we'll assume that at least an interrupt will be asserted
382 	 * in hardware by the time the cto_timer runs.  ...and if it hasn't
383 	 * been asserted in hardware by that time then we'll assume it'll never
384 	 * come.
385 	 */
386 	spin_lock_irqsave(&host->irq_lock, irqflags);
387 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
388 		mod_timer(&host->cto_timer,
389 			jiffies + msecs_to_jiffies(cto_ms) + 1);
390 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
391 }
392 
393 static void dw_mci_start_command(struct dw_mci *host,
394 				 struct mmc_command *cmd, u32 cmd_flags)
395 {
396 	host->cmd = cmd;
397 	dev_vdbg(host->dev,
398 		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
399 		 cmd->arg, cmd_flags);
400 
401 	mci_writel(host, CMDARG, cmd->arg);
402 	wmb(); /* drain writebuffer */
403 	dw_mci_wait_while_busy(host, cmd_flags);
404 
405 	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
406 
407 	/* response expected command only */
408 	if (cmd_flags & SDMMC_CMD_RESP_EXP)
409 		dw_mci_set_cto(host);
410 }
411 
412 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
413 {
414 	struct mmc_command *stop = &host->stop_abort;
415 
416 	dw_mci_start_command(host, stop, host->stop_cmdr);
417 }
418 
419 /* DMA interface functions */
420 static void dw_mci_stop_dma(struct dw_mci *host)
421 {
422 	if (host->using_dma) {
423 		host->dma_ops->stop(host);
424 		host->dma_ops->cleanup(host);
425 	}
426 
427 	/* Data transfer was stopped by the interrupt handler */
428 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
429 }
430 
431 static void dw_mci_dma_cleanup(struct dw_mci *host)
432 {
433 	struct mmc_data *data = host->data;
434 
435 	if (data && data->host_cookie == COOKIE_MAPPED) {
436 		dma_unmap_sg(host->dev,
437 			     data->sg,
438 			     data->sg_len,
439 			     mmc_get_dma_dir(data));
440 		data->host_cookie = COOKIE_UNMAPPED;
441 	}
442 }
443 
444 static void dw_mci_idmac_reset(struct dw_mci *host)
445 {
446 	u32 bmod = mci_readl(host, BMOD);
447 	/* Software reset of DMA */
448 	bmod |= SDMMC_IDMAC_SWRESET;
449 	mci_writel(host, BMOD, bmod);
450 }
451 
452 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
453 {
454 	u32 temp;
455 
456 	/* Disable and reset the IDMAC interface */
457 	temp = mci_readl(host, CTRL);
458 	temp &= ~SDMMC_CTRL_USE_IDMAC;
459 	temp |= SDMMC_CTRL_DMA_RESET;
460 	mci_writel(host, CTRL, temp);
461 
462 	/* Stop the IDMAC running */
463 	temp = mci_readl(host, BMOD);
464 	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
465 	temp |= SDMMC_IDMAC_SWRESET;
466 	mci_writel(host, BMOD, temp);
467 }
468 
469 static void dw_mci_dmac_complete_dma(void *arg)
470 {
471 	struct dw_mci *host = arg;
472 	struct mmc_data *data = host->data;
473 
474 	dev_vdbg(host->dev, "DMA complete\n");
475 
476 	if ((host->use_dma == TRANS_MODE_EDMAC) &&
477 	    data && (data->flags & MMC_DATA_READ))
478 		/* Invalidate cache after read */
479 		dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
480 				    data->sg,
481 				    data->sg_len,
482 				    DMA_FROM_DEVICE);
483 
484 	host->dma_ops->cleanup(host);
485 
486 	/*
487 	 * If the card was removed, data will be NULL. No point in trying to
488 	 * send the stop command or waiting for NBUSY in this case.
489 	 */
490 	if (data) {
491 		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
492 		tasklet_schedule(&host->tasklet);
493 	}
494 }
495 
496 static int dw_mci_idmac_init(struct dw_mci *host)
497 {
498 	int i;
499 
500 	if (host->dma_64bit_address == 1) {
501 		struct idmac_desc_64addr *p;
502 		/* Number of descriptors in the ring buffer */
503 		host->ring_size =
504 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
505 
506 		/* Forward link the descriptor list */
507 		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
508 								i++, p++) {
509 			p->des6 = (host->sg_dma +
510 					(sizeof(struct idmac_desc_64addr) *
511 							(i + 1))) & 0xffffffff;
512 
513 			p->des7 = (u64)(host->sg_dma +
514 					(sizeof(struct idmac_desc_64addr) *
515 							(i + 1))) >> 32;
516 			/* Initialize reserved and buffer size fields to "0" */
517 			p->des0 = 0;
518 			p->des1 = 0;
519 			p->des2 = 0;
520 			p->des3 = 0;
521 		}
522 
523 		/* Set the last descriptor as the end-of-ring descriptor */
524 		p->des6 = host->sg_dma & 0xffffffff;
525 		p->des7 = (u64)host->sg_dma >> 32;
526 		p->des0 = IDMAC_DES0_ER;
527 
528 	} else {
529 		struct idmac_desc *p;
530 		/* Number of descriptors in the ring buffer */
531 		host->ring_size =
532 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
533 
534 		/* Forward link the descriptor list */
535 		for (i = 0, p = host->sg_cpu;
536 		     i < host->ring_size - 1;
537 		     i++, p++) {
538 			p->des3 = cpu_to_le32(host->sg_dma +
539 					(sizeof(struct idmac_desc) * (i + 1)));
540 			p->des0 = 0;
541 			p->des1 = 0;
542 		}
543 
544 		/* Set the last descriptor as the end-of-ring descriptor */
545 		p->des3 = cpu_to_le32(host->sg_dma);
546 		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
547 	}
548 
549 	dw_mci_idmac_reset(host);
550 
551 	if (host->dma_64bit_address == 1) {
552 		/* Mask out interrupts - get Tx & Rx complete only */
553 		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
554 		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
555 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
556 
557 		/* Set the descriptor base address */
558 		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
559 		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
560 
561 	} else {
562 		/* Mask out interrupts - get Tx & Rx complete only */
563 		mci_writel(host, IDSTS, IDMAC_INT_CLR);
564 		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
565 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
566 
567 		/* Set the descriptor base address */
568 		mci_writel(host, DBADDR, host->sg_dma);
569 	}
570 
571 	return 0;
572 }
573 
574 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
575 					 struct mmc_data *data,
576 					 unsigned int sg_len)
577 {
578 	unsigned int desc_len;
579 	struct idmac_desc_64addr *desc_first, *desc_last, *desc;
580 	u32 val;
581 	int i;
582 
583 	desc_first = desc_last = desc = host->sg_cpu;
584 
585 	for (i = 0; i < sg_len; i++) {
586 		unsigned int length = sg_dma_len(&data->sg[i]);
587 
588 		u64 mem_addr = sg_dma_address(&data->sg[i]);
589 
590 		for ( ; length ; desc++) {
591 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
592 				   length : DW_MCI_DESC_DATA_LENGTH;
593 
594 			length -= desc_len;
595 
596 			/*
597 			 * Wait for the former clear OWN bit operation
598 			 * of IDMAC to make sure that this descriptor
599 			 * isn't still owned by IDMAC as IDMAC's write
600 			 * ops and CPU's read ops are asynchronous.
601 			 */
602 			if (readl_poll_timeout_atomic(&desc->des0, val,
603 						!(val & IDMAC_DES0_OWN),
604 						10, 100 * USEC_PER_MSEC))
605 				goto err_own_bit;
606 
607 			/*
608 			 * Set the OWN bit and disable interrupts
609 			 * for this descriptor
610 			 */
611 			desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
612 						IDMAC_DES0_CH;
613 
614 			/* Buffer length */
615 			IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
616 
617 			/* Physical address to DMA to/from */
618 			desc->des4 = mem_addr & 0xffffffff;
619 			desc->des5 = mem_addr >> 32;
620 
621 			/* Update physical address for the next desc */
622 			mem_addr += desc_len;
623 
624 			/* Save pointer to the last descriptor */
625 			desc_last = desc;
626 		}
627 	}
628 
629 	/* Set first descriptor */
630 	desc_first->des0 |= IDMAC_DES0_FD;
631 
632 	/* Set last descriptor */
633 	desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
634 	desc_last->des0 |= IDMAC_DES0_LD;
635 
636 	return 0;
637 err_own_bit:
638 	/* restore the descriptor chain as it's polluted */
639 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
640 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
641 	dw_mci_idmac_init(host);
642 	return -EINVAL;
643 }
644 
645 
646 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
647 					 struct mmc_data *data,
648 					 unsigned int sg_len)
649 {
650 	unsigned int desc_len;
651 	struct idmac_desc *desc_first, *desc_last, *desc;
652 	u32 val;
653 	int i;
654 
655 	desc_first = desc_last = desc = host->sg_cpu;
656 
657 	for (i = 0; i < sg_len; i++) {
658 		unsigned int length = sg_dma_len(&data->sg[i]);
659 
660 		u32 mem_addr = sg_dma_address(&data->sg[i]);
661 
662 		for ( ; length ; desc++) {
663 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
664 				   length : DW_MCI_DESC_DATA_LENGTH;
665 
666 			length -= desc_len;
667 
668 			/*
669 			 * Wait for the former clear OWN bit operation
670 			 * of IDMAC to make sure that this descriptor
671 			 * isn't still owned by IDMAC as IDMAC's write
672 			 * ops and CPU's read ops are asynchronous.
673 			 */
674 			if (readl_poll_timeout_atomic(&desc->des0, val,
675 						      IDMAC_OWN_CLR64(val),
676 						      10,
677 						      100 * USEC_PER_MSEC))
678 				goto err_own_bit;
679 
680 			/*
681 			 * Set the OWN bit and disable interrupts
682 			 * for this descriptor
683 			 */
684 			desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
685 						 IDMAC_DES0_DIC |
686 						 IDMAC_DES0_CH);
687 
688 			/* Buffer length */
689 			IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
690 
691 			/* Physical address to DMA to/from */
692 			desc->des2 = cpu_to_le32(mem_addr);
693 
694 			/* Update physical address for the next desc */
695 			mem_addr += desc_len;
696 
697 			/* Save pointer to the last descriptor */
698 			desc_last = desc;
699 		}
700 	}
701 
702 	/* Set first descriptor */
703 	desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
704 
705 	/* Set last descriptor */
706 	desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
707 				       IDMAC_DES0_DIC));
708 	desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
709 
710 	return 0;
711 err_own_bit:
712 	/* restore the descriptor chain as it's polluted */
713 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
714 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
715 	dw_mci_idmac_init(host);
716 	return -EINVAL;
717 }
718 
719 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
720 {
721 	u32 temp;
722 	int ret;
723 
724 	if (host->dma_64bit_address == 1)
725 		ret = dw_mci_prepare_desc64(host, host->data, sg_len);
726 	else
727 		ret = dw_mci_prepare_desc32(host, host->data, sg_len);
728 
729 	if (ret)
730 		goto out;
731 
732 	/* drain writebuffer */
733 	wmb();
734 
735 	/* Make sure to reset DMA in case we did PIO before this */
736 	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
737 	dw_mci_idmac_reset(host);
738 
739 	/* Select IDMAC interface */
740 	temp = mci_readl(host, CTRL);
741 	temp |= SDMMC_CTRL_USE_IDMAC;
742 	mci_writel(host, CTRL, temp);
743 
744 	/* drain writebuffer */
745 	wmb();
746 
747 	/* Enable the IDMAC */
748 	temp = mci_readl(host, BMOD);
749 	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
750 	mci_writel(host, BMOD, temp);
751 
752 	/* Start it running */
753 	mci_writel(host, PLDMND, 1);
754 
755 out:
756 	return ret;
757 }
758 
759 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
760 	.init = dw_mci_idmac_init,
761 	.start = dw_mci_idmac_start_dma,
762 	.stop = dw_mci_idmac_stop_dma,
763 	.complete = dw_mci_dmac_complete_dma,
764 	.cleanup = dw_mci_dma_cleanup,
765 };
766 
767 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
768 {
769 	dmaengine_terminate_async(host->dms->ch);
770 }
771 
772 static int dw_mci_edmac_start_dma(struct dw_mci *host,
773 					    unsigned int sg_len)
774 {
775 	struct dma_slave_config cfg;
776 	struct dma_async_tx_descriptor *desc = NULL;
777 	struct scatterlist *sgl = host->data->sg;
778 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
779 	u32 sg_elems = host->data->sg_len;
780 	u32 fifoth_val;
781 	u32 fifo_offset = host->fifo_reg - host->regs;
782 	int ret = 0;
783 
784 	/* Set external dma config: burst size, burst width */
785 	cfg.dst_addr = host->phy_regs + fifo_offset;
786 	cfg.src_addr = cfg.dst_addr;
787 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
788 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
789 
790 	/* Match burst msize with external dma config */
791 	fifoth_val = mci_readl(host, FIFOTH);
792 	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
793 	cfg.src_maxburst = cfg.dst_maxburst;
794 
795 	if (host->data->flags & MMC_DATA_WRITE)
796 		cfg.direction = DMA_MEM_TO_DEV;
797 	else
798 		cfg.direction = DMA_DEV_TO_MEM;
799 
800 	ret = dmaengine_slave_config(host->dms->ch, &cfg);
801 	if (ret) {
802 		dev_err(host->dev, "Failed to config edmac.\n");
803 		return -EBUSY;
804 	}
805 
806 	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
807 				       sg_len, cfg.direction,
808 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
809 	if (!desc) {
810 		dev_err(host->dev, "Can't prepare slave sg.\n");
811 		return -EBUSY;
812 	}
813 
814 	/* Set dw_mci_dmac_complete_dma as callback */
815 	desc->callback = dw_mci_dmac_complete_dma;
816 	desc->callback_param = (void *)host;
817 	dmaengine_submit(desc);
818 
819 	/* Flush cache before write */
820 	if (host->data->flags & MMC_DATA_WRITE)
821 		dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
822 				       sg_elems, DMA_TO_DEVICE);
823 
824 	dma_async_issue_pending(host->dms->ch);
825 
826 	return 0;
827 }
828 
829 static int dw_mci_edmac_init(struct dw_mci *host)
830 {
831 	/* Request external dma channel */
832 	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
833 	if (!host->dms)
834 		return -ENOMEM;
835 
836 	host->dms->ch = dma_request_chan(host->dev, "rx-tx");
837 	if (IS_ERR(host->dms->ch)) {
838 		int ret = PTR_ERR(host->dms->ch);
839 
840 		dev_err(host->dev, "Failed to get external DMA channel.\n");
841 		kfree(host->dms);
842 		host->dms = NULL;
843 		return ret;
844 	}
845 
846 	return 0;
847 }
848 
849 static void dw_mci_edmac_exit(struct dw_mci *host)
850 {
851 	if (host->dms) {
852 		if (host->dms->ch) {
853 			dma_release_channel(host->dms->ch);
854 			host->dms->ch = NULL;
855 		}
856 		kfree(host->dms);
857 		host->dms = NULL;
858 	}
859 }
860 
861 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
862 	.init = dw_mci_edmac_init,
863 	.exit = dw_mci_edmac_exit,
864 	.start = dw_mci_edmac_start_dma,
865 	.stop = dw_mci_edmac_stop_dma,
866 	.complete = dw_mci_dmac_complete_dma,
867 	.cleanup = dw_mci_dma_cleanup,
868 };
869 
870 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
871 				   struct mmc_data *data,
872 				   int cookie)
873 {
874 	struct scatterlist *sg;
875 	unsigned int i, sg_len;
876 
877 	if (data->host_cookie == COOKIE_PRE_MAPPED)
878 		return data->sg_len;
879 
880 	/*
881 	 * We don't do DMA on "complex" transfers, i.e. with
882 	 * non-word-aligned buffers or lengths. Also, we don't bother
883 	 * with all the DMA setup overhead for short transfers.
884 	 */
885 	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
886 		return -EINVAL;
887 
888 	if (data->blksz & 3)
889 		return -EINVAL;
890 
891 	for_each_sg(data->sg, sg, data->sg_len, i) {
892 		if (sg->offset & 3 || sg->length & 3)
893 			return -EINVAL;
894 	}
895 
896 	sg_len = dma_map_sg(host->dev,
897 			    data->sg,
898 			    data->sg_len,
899 			    mmc_get_dma_dir(data));
900 	if (sg_len == 0)
901 		return -EINVAL;
902 
903 	data->host_cookie = cookie;
904 
905 	return sg_len;
906 }
907 
908 static void dw_mci_pre_req(struct mmc_host *mmc,
909 			   struct mmc_request *mrq)
910 {
911 	struct dw_mci_slot *slot = mmc_priv(mmc);
912 	struct mmc_data *data = mrq->data;
913 
914 	if (!slot->host->use_dma || !data)
915 		return;
916 
917 	/* This data might be unmapped at this time */
918 	data->host_cookie = COOKIE_UNMAPPED;
919 
920 	if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
921 				COOKIE_PRE_MAPPED) < 0)
922 		data->host_cookie = COOKIE_UNMAPPED;
923 }
924 
925 static void dw_mci_post_req(struct mmc_host *mmc,
926 			    struct mmc_request *mrq,
927 			    int err)
928 {
929 	struct dw_mci_slot *slot = mmc_priv(mmc);
930 	struct mmc_data *data = mrq->data;
931 
932 	if (!slot->host->use_dma || !data)
933 		return;
934 
935 	if (data->host_cookie != COOKIE_UNMAPPED)
936 		dma_unmap_sg(slot->host->dev,
937 			     data->sg,
938 			     data->sg_len,
939 			     mmc_get_dma_dir(data));
940 	data->host_cookie = COOKIE_UNMAPPED;
941 }
942 
943 static int dw_mci_get_cd(struct mmc_host *mmc)
944 {
945 	int present;
946 	struct dw_mci_slot *slot = mmc_priv(mmc);
947 	struct dw_mci *host = slot->host;
948 	int gpio_cd = mmc_gpio_get_cd(mmc);
949 
950 	/* Use platform get_cd function, else try onboard card detect */
951 	if (((mmc->caps & MMC_CAP_NEEDS_POLL)
952 				|| !mmc_card_is_removable(mmc))) {
953 		present = 1;
954 
955 		if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
956 			if (mmc->caps & MMC_CAP_NEEDS_POLL) {
957 				dev_info(&mmc->class_dev,
958 					"card is polling.\n");
959 			} else {
960 				dev_info(&mmc->class_dev,
961 					"card is non-removable.\n");
962 			}
963 			set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
964 		}
965 
966 		return present;
967 	} else if (gpio_cd >= 0)
968 		present = gpio_cd;
969 	else
970 		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
971 			== 0 ? 1 : 0;
972 
973 	spin_lock_bh(&host->lock);
974 	if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
975 		dev_dbg(&mmc->class_dev, "card is present\n");
976 	else if (!present &&
977 			!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
978 		dev_dbg(&mmc->class_dev, "card is not present\n");
979 	spin_unlock_bh(&host->lock);
980 
981 	return present;
982 }
983 
984 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
985 {
986 	unsigned int blksz = data->blksz;
987 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
988 	u32 fifo_width = 1 << host->data_shift;
989 	u32 blksz_depth = blksz / fifo_width, fifoth_val;
990 	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
991 	int idx = ARRAY_SIZE(mszs) - 1;
992 
993 	/* pio should ship this scenario */
994 	if (!host->use_dma)
995 		return;
996 
997 	tx_wmark = (host->fifo_depth) / 2;
998 	tx_wmark_invers = host->fifo_depth - tx_wmark;
999 
1000 	/*
1001 	 * MSIZE is '1',
1002 	 * if blksz is not a multiple of the FIFO width
1003 	 */
1004 	if (blksz % fifo_width)
1005 		goto done;
1006 
1007 	do {
1008 		if (!((blksz_depth % mszs[idx]) ||
1009 		     (tx_wmark_invers % mszs[idx]))) {
1010 			msize = idx;
1011 			rx_wmark = mszs[idx] - 1;
1012 			break;
1013 		}
1014 	} while (--idx > 0);
1015 	/*
1016 	 * If idx is '0', it won't be tried
1017 	 * Thus, initial values are uesed
1018 	 */
1019 done:
1020 	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1021 	mci_writel(host, FIFOTH, fifoth_val);
1022 }
1023 
1024 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1025 {
1026 	unsigned int blksz = data->blksz;
1027 	u32 blksz_depth, fifo_depth;
1028 	u16 thld_size;
1029 	u8 enable;
1030 
1031 	/*
1032 	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1033 	 * in the FIFO region, so we really shouldn't access it).
1034 	 */
1035 	if (host->verid < DW_MMC_240A ||
1036 		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1037 		return;
1038 
1039 	/*
1040 	 * Card write Threshold is introduced since 2.80a
1041 	 * It's used when HS400 mode is enabled.
1042 	 */
1043 	if (data->flags & MMC_DATA_WRITE &&
1044 		host->timing != MMC_TIMING_MMC_HS400)
1045 		goto disable;
1046 
1047 	if (data->flags & MMC_DATA_WRITE)
1048 		enable = SDMMC_CARD_WR_THR_EN;
1049 	else
1050 		enable = SDMMC_CARD_RD_THR_EN;
1051 
1052 	if (host->timing != MMC_TIMING_MMC_HS200 &&
1053 	    host->timing != MMC_TIMING_UHS_SDR104 &&
1054 	    host->timing != MMC_TIMING_MMC_HS400)
1055 		goto disable;
1056 
1057 	blksz_depth = blksz / (1 << host->data_shift);
1058 	fifo_depth = host->fifo_depth;
1059 
1060 	if (blksz_depth > fifo_depth)
1061 		goto disable;
1062 
1063 	/*
1064 	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1065 	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1066 	 * Currently just choose blksz.
1067 	 */
1068 	thld_size = blksz;
1069 	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1070 	return;
1071 
1072 disable:
1073 	mci_writel(host, CDTHRCTL, 0);
1074 }
1075 
1076 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1077 {
1078 	unsigned long irqflags;
1079 	int sg_len;
1080 	u32 temp;
1081 
1082 	host->using_dma = 0;
1083 
1084 	/* If we don't have a channel, we can't do DMA */
1085 	if (!host->use_dma)
1086 		return -ENODEV;
1087 
1088 	sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1089 	if (sg_len < 0) {
1090 		host->dma_ops->stop(host);
1091 		return sg_len;
1092 	}
1093 
1094 	host->using_dma = 1;
1095 
1096 	if (host->use_dma == TRANS_MODE_IDMAC)
1097 		dev_vdbg(host->dev,
1098 			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1099 			 (unsigned long)host->sg_cpu,
1100 			 (unsigned long)host->sg_dma,
1101 			 sg_len);
1102 
1103 	/*
1104 	 * Decide the MSIZE and RX/TX Watermark.
1105 	 * If current block size is same with previous size,
1106 	 * no need to update fifoth.
1107 	 */
1108 	if (host->prev_blksz != data->blksz)
1109 		dw_mci_adjust_fifoth(host, data);
1110 
1111 	/* Enable the DMA interface */
1112 	temp = mci_readl(host, CTRL);
1113 	temp |= SDMMC_CTRL_DMA_ENABLE;
1114 	mci_writel(host, CTRL, temp);
1115 
1116 	/* Disable RX/TX IRQs, let DMA handle it */
1117 	spin_lock_irqsave(&host->irq_lock, irqflags);
1118 	temp = mci_readl(host, INTMASK);
1119 	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1120 	mci_writel(host, INTMASK, temp);
1121 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1122 
1123 	if (host->dma_ops->start(host, sg_len)) {
1124 		host->dma_ops->stop(host);
1125 		/* We can't do DMA, try PIO for this one */
1126 		dev_dbg(host->dev,
1127 			"%s: fall back to PIO mode for current transfer\n",
1128 			__func__);
1129 		return -ENODEV;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1136 {
1137 	unsigned long irqflags;
1138 	int flags = SG_MITER_ATOMIC;
1139 	u32 temp;
1140 
1141 	data->error = -EINPROGRESS;
1142 
1143 	WARN_ON(host->data);
1144 	host->sg = NULL;
1145 	host->data = data;
1146 
1147 	if (data->flags & MMC_DATA_READ)
1148 		host->dir_status = DW_MCI_RECV_STATUS;
1149 	else
1150 		host->dir_status = DW_MCI_SEND_STATUS;
1151 
1152 	dw_mci_ctrl_thld(host, data);
1153 
1154 	if (dw_mci_submit_data_dma(host, data)) {
1155 		if (host->data->flags & MMC_DATA_READ)
1156 			flags |= SG_MITER_TO_SG;
1157 		else
1158 			flags |= SG_MITER_FROM_SG;
1159 
1160 		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1161 		host->sg = data->sg;
1162 		host->part_buf_start = 0;
1163 		host->part_buf_count = 0;
1164 
1165 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1166 
1167 		spin_lock_irqsave(&host->irq_lock, irqflags);
1168 		temp = mci_readl(host, INTMASK);
1169 		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1170 		mci_writel(host, INTMASK, temp);
1171 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1172 
1173 		temp = mci_readl(host, CTRL);
1174 		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1175 		mci_writel(host, CTRL, temp);
1176 
1177 		/*
1178 		 * Use the initial fifoth_val for PIO mode. If wm_algined
1179 		 * is set, we set watermark same as data size.
1180 		 * If next issued data may be transfered by DMA mode,
1181 		 * prev_blksz should be invalidated.
1182 		 */
1183 		if (host->wm_aligned)
1184 			dw_mci_adjust_fifoth(host, data);
1185 		else
1186 			mci_writel(host, FIFOTH, host->fifoth_val);
1187 		host->prev_blksz = 0;
1188 	} else {
1189 		/*
1190 		 * Keep the current block size.
1191 		 * It will be used to decide whether to update
1192 		 * fifoth register next time.
1193 		 */
1194 		host->prev_blksz = data->blksz;
1195 	}
1196 }
1197 
1198 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1199 {
1200 	struct dw_mci *host = slot->host;
1201 	unsigned int clock = slot->clock;
1202 	u32 div;
1203 	u32 clk_en_a;
1204 	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1205 
1206 	/* We must continue to set bit 28 in CMD until the change is complete */
1207 	if (host->state == STATE_WAITING_CMD11_DONE)
1208 		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1209 
1210 	slot->mmc->actual_clock = 0;
1211 
1212 	if (!clock) {
1213 		mci_writel(host, CLKENA, 0);
1214 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1215 	} else if (clock != host->current_speed || force_clkinit) {
1216 		div = host->bus_hz / clock;
1217 		if (host->bus_hz % clock && host->bus_hz > clock)
1218 			/*
1219 			 * move the + 1 after the divide to prevent
1220 			 * over-clocking the card.
1221 			 */
1222 			div += 1;
1223 
1224 		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1225 
1226 		if ((clock != slot->__clk_old &&
1227 			!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1228 			force_clkinit) {
1229 			/* Silent the verbose log if calling from PM context */
1230 			if (!force_clkinit)
1231 				dev_info(&slot->mmc->class_dev,
1232 					 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1233 					 slot->id, host->bus_hz, clock,
1234 					 div ? ((host->bus_hz / div) >> 1) :
1235 					 host->bus_hz, div);
1236 
1237 			/*
1238 			 * If card is polling, display the message only
1239 			 * one time at boot time.
1240 			 */
1241 			if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1242 					slot->mmc->f_min == clock)
1243 				set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1244 		}
1245 
1246 		/* disable clock */
1247 		mci_writel(host, CLKENA, 0);
1248 		mci_writel(host, CLKSRC, 0);
1249 
1250 		/* inform CIU */
1251 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1252 
1253 		/* set clock to desired speed */
1254 		mci_writel(host, CLKDIV, div);
1255 
1256 		/* inform CIU */
1257 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1258 
1259 		/* enable clock; only low power if no SDIO */
1260 		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1261 		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1262 			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1263 		mci_writel(host, CLKENA, clk_en_a);
1264 
1265 		/* inform CIU */
1266 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1267 
1268 		/* keep the last clock value that was requested from core */
1269 		slot->__clk_old = clock;
1270 		slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
1271 					  host->bus_hz;
1272 	}
1273 
1274 	host->current_speed = clock;
1275 
1276 	/* Set the current slot bus width */
1277 	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1278 }
1279 
1280 static void __dw_mci_start_request(struct dw_mci *host,
1281 				   struct dw_mci_slot *slot,
1282 				   struct mmc_command *cmd)
1283 {
1284 	struct mmc_request *mrq;
1285 	struct mmc_data	*data;
1286 	u32 cmdflags;
1287 
1288 	mrq = slot->mrq;
1289 
1290 	host->mrq = mrq;
1291 
1292 	host->pending_events = 0;
1293 	host->completed_events = 0;
1294 	host->cmd_status = 0;
1295 	host->data_status = 0;
1296 	host->dir_status = 0;
1297 
1298 	data = cmd->data;
1299 	if (data) {
1300 		mci_writel(host, TMOUT, 0xFFFFFFFF);
1301 		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1302 		mci_writel(host, BLKSIZ, data->blksz);
1303 	}
1304 
1305 	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1306 
1307 	/* this is the first command, send the initialization clock */
1308 	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1309 		cmdflags |= SDMMC_CMD_INIT;
1310 
1311 	if (data) {
1312 		dw_mci_submit_data(host, data);
1313 		wmb(); /* drain writebuffer */
1314 	}
1315 
1316 	dw_mci_start_command(host, cmd, cmdflags);
1317 
1318 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1319 		unsigned long irqflags;
1320 
1321 		/*
1322 		 * Databook says to fail after 2ms w/ no response, but evidence
1323 		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1324 		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1325 		 * is just about to roll over.
1326 		 *
1327 		 * We do this whole thing under spinlock and only if the
1328 		 * command hasn't already completed (indicating the the irq
1329 		 * already ran so we don't want the timeout).
1330 		 */
1331 		spin_lock_irqsave(&host->irq_lock, irqflags);
1332 		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1333 			mod_timer(&host->cmd11_timer,
1334 				jiffies + msecs_to_jiffies(500) + 1);
1335 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1336 	}
1337 
1338 	host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1339 }
1340 
1341 static void dw_mci_start_request(struct dw_mci *host,
1342 				 struct dw_mci_slot *slot)
1343 {
1344 	struct mmc_request *mrq = slot->mrq;
1345 	struct mmc_command *cmd;
1346 
1347 	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1348 	__dw_mci_start_request(host, slot, cmd);
1349 }
1350 
1351 /* must be called with host->lock held */
1352 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1353 				 struct mmc_request *mrq)
1354 {
1355 	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1356 		 host->state);
1357 
1358 	slot->mrq = mrq;
1359 
1360 	if (host->state == STATE_WAITING_CMD11_DONE) {
1361 		dev_warn(&slot->mmc->class_dev,
1362 			 "Voltage change didn't complete\n");
1363 		/*
1364 		 * this case isn't expected to happen, so we can
1365 		 * either crash here or just try to continue on
1366 		 * in the closest possible state
1367 		 */
1368 		host->state = STATE_IDLE;
1369 	}
1370 
1371 	if (host->state == STATE_IDLE) {
1372 		host->state = STATE_SENDING_CMD;
1373 		dw_mci_start_request(host, slot);
1374 	} else {
1375 		list_add_tail(&slot->queue_node, &host->queue);
1376 	}
1377 }
1378 
1379 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1380 {
1381 	struct dw_mci_slot *slot = mmc_priv(mmc);
1382 	struct dw_mci *host = slot->host;
1383 
1384 	WARN_ON(slot->mrq);
1385 
1386 	/*
1387 	 * The check for card presence and queueing of the request must be
1388 	 * atomic, otherwise the card could be removed in between and the
1389 	 * request wouldn't fail until another card was inserted.
1390 	 */
1391 
1392 	if (!dw_mci_get_cd(mmc)) {
1393 		mrq->cmd->error = -ENOMEDIUM;
1394 		mmc_request_done(mmc, mrq);
1395 		return;
1396 	}
1397 
1398 	spin_lock_bh(&host->lock);
1399 
1400 	dw_mci_queue_request(host, slot, mrq);
1401 
1402 	spin_unlock_bh(&host->lock);
1403 }
1404 
1405 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1406 {
1407 	struct dw_mci_slot *slot = mmc_priv(mmc);
1408 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1409 	u32 regs;
1410 	int ret;
1411 
1412 	switch (ios->bus_width) {
1413 	case MMC_BUS_WIDTH_4:
1414 		slot->ctype = SDMMC_CTYPE_4BIT;
1415 		break;
1416 	case MMC_BUS_WIDTH_8:
1417 		slot->ctype = SDMMC_CTYPE_8BIT;
1418 		break;
1419 	default:
1420 		/* set default 1 bit mode */
1421 		slot->ctype = SDMMC_CTYPE_1BIT;
1422 	}
1423 
1424 	regs = mci_readl(slot->host, UHS_REG);
1425 
1426 	/* DDR mode set */
1427 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1428 	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1429 	    ios->timing == MMC_TIMING_MMC_HS400)
1430 		regs |= ((0x1 << slot->id) << 16);
1431 	else
1432 		regs &= ~((0x1 << slot->id) << 16);
1433 
1434 	mci_writel(slot->host, UHS_REG, regs);
1435 	slot->host->timing = ios->timing;
1436 
1437 	/*
1438 	 * Use mirror of ios->clock to prevent race with mmc
1439 	 * core ios update when finding the minimum.
1440 	 */
1441 	slot->clock = ios->clock;
1442 
1443 	if (drv_data && drv_data->set_ios)
1444 		drv_data->set_ios(slot->host, ios);
1445 
1446 	switch (ios->power_mode) {
1447 	case MMC_POWER_UP:
1448 		if (!IS_ERR(mmc->supply.vmmc)) {
1449 			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1450 					ios->vdd);
1451 			if (ret) {
1452 				dev_err(slot->host->dev,
1453 					"failed to enable vmmc regulator\n");
1454 				/*return, if failed turn on vmmc*/
1455 				return;
1456 			}
1457 		}
1458 		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1459 		regs = mci_readl(slot->host, PWREN);
1460 		regs |= (1 << slot->id);
1461 		mci_writel(slot->host, PWREN, regs);
1462 		break;
1463 	case MMC_POWER_ON:
1464 		if (!slot->host->vqmmc_enabled) {
1465 			if (!IS_ERR(mmc->supply.vqmmc)) {
1466 				ret = regulator_enable(mmc->supply.vqmmc);
1467 				if (ret < 0)
1468 					dev_err(slot->host->dev,
1469 						"failed to enable vqmmc\n");
1470 				else
1471 					slot->host->vqmmc_enabled = true;
1472 
1473 			} else {
1474 				/* Keep track so we don't reset again */
1475 				slot->host->vqmmc_enabled = true;
1476 			}
1477 
1478 			/* Reset our state machine after powering on */
1479 			dw_mci_ctrl_reset(slot->host,
1480 					  SDMMC_CTRL_ALL_RESET_FLAGS);
1481 		}
1482 
1483 		/* Adjust clock / bus width after power is up */
1484 		dw_mci_setup_bus(slot, false);
1485 
1486 		break;
1487 	case MMC_POWER_OFF:
1488 		/* Turn clock off before power goes down */
1489 		dw_mci_setup_bus(slot, false);
1490 
1491 		if (!IS_ERR(mmc->supply.vmmc))
1492 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1493 
1494 		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1495 			regulator_disable(mmc->supply.vqmmc);
1496 		slot->host->vqmmc_enabled = false;
1497 
1498 		regs = mci_readl(slot->host, PWREN);
1499 		regs &= ~(1 << slot->id);
1500 		mci_writel(slot->host, PWREN, regs);
1501 		break;
1502 	default:
1503 		break;
1504 	}
1505 
1506 	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1507 		slot->host->state = STATE_IDLE;
1508 }
1509 
1510 static int dw_mci_card_busy(struct mmc_host *mmc)
1511 {
1512 	struct dw_mci_slot *slot = mmc_priv(mmc);
1513 	u32 status;
1514 
1515 	/*
1516 	 * Check the busy bit which is low when DAT[3:0]
1517 	 * (the data lines) are 0000
1518 	 */
1519 	status = mci_readl(slot->host, STATUS);
1520 
1521 	return !!(status & SDMMC_STATUS_BUSY);
1522 }
1523 
1524 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1525 {
1526 	struct dw_mci_slot *slot = mmc_priv(mmc);
1527 	struct dw_mci *host = slot->host;
1528 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1529 	u32 uhs;
1530 	u32 v18 = SDMMC_UHS_18V << slot->id;
1531 	int ret;
1532 
1533 	if (drv_data && drv_data->switch_voltage)
1534 		return drv_data->switch_voltage(mmc, ios);
1535 
1536 	/*
1537 	 * Program the voltage.  Note that some instances of dw_mmc may use
1538 	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1539 	 * does no harm but you need to set the regulator directly.  Try both.
1540 	 */
1541 	uhs = mci_readl(host, UHS_REG);
1542 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1543 		uhs &= ~v18;
1544 	else
1545 		uhs |= v18;
1546 
1547 	if (!IS_ERR(mmc->supply.vqmmc)) {
1548 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1549 		if (ret < 0) {
1550 			dev_dbg(&mmc->class_dev,
1551 					 "Regulator set error %d - %s V\n",
1552 					 ret, uhs & v18 ? "1.8" : "3.3");
1553 			return ret;
1554 		}
1555 	}
1556 	mci_writel(host, UHS_REG, uhs);
1557 
1558 	return 0;
1559 }
1560 
1561 static int dw_mci_get_ro(struct mmc_host *mmc)
1562 {
1563 	int read_only;
1564 	struct dw_mci_slot *slot = mmc_priv(mmc);
1565 	int gpio_ro = mmc_gpio_get_ro(mmc);
1566 
1567 	/* Use platform get_ro function, else try on board write protect */
1568 	if (gpio_ro >= 0)
1569 		read_only = gpio_ro;
1570 	else
1571 		read_only =
1572 			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1573 
1574 	dev_dbg(&mmc->class_dev, "card is %s\n",
1575 		read_only ? "read-only" : "read-write");
1576 
1577 	return read_only;
1578 }
1579 
1580 static void dw_mci_hw_reset(struct mmc_host *mmc)
1581 {
1582 	struct dw_mci_slot *slot = mmc_priv(mmc);
1583 	struct dw_mci *host = slot->host;
1584 	int reset;
1585 
1586 	if (host->use_dma == TRANS_MODE_IDMAC)
1587 		dw_mci_idmac_reset(host);
1588 
1589 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1590 				     SDMMC_CTRL_FIFO_RESET))
1591 		return;
1592 
1593 	/*
1594 	 * According to eMMC spec, card reset procedure:
1595 	 * tRstW >= 1us:   RST_n pulse width
1596 	 * tRSCA >= 200us: RST_n to Command time
1597 	 * tRSTH >= 1us:   RST_n high period
1598 	 */
1599 	reset = mci_readl(host, RST_N);
1600 	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1601 	mci_writel(host, RST_N, reset);
1602 	usleep_range(1, 2);
1603 	reset |= SDMMC_RST_HWACTIVE << slot->id;
1604 	mci_writel(host, RST_N, reset);
1605 	usleep_range(200, 300);
1606 }
1607 
1608 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1609 {
1610 	struct dw_mci_slot *slot = mmc_priv(mmc);
1611 	struct dw_mci *host = slot->host;
1612 
1613 	/*
1614 	 * Low power mode will stop the card clock when idle.  According to the
1615 	 * description of the CLKENA register we should disable low power mode
1616 	 * for SDIO cards if we need SDIO interrupts to work.
1617 	 */
1618 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1619 		const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1620 		u32 clk_en_a_old;
1621 		u32 clk_en_a;
1622 
1623 		clk_en_a_old = mci_readl(host, CLKENA);
1624 
1625 		if (card->type == MMC_TYPE_SDIO ||
1626 		    card->type == MMC_TYPE_SD_COMBO) {
1627 			set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1628 			clk_en_a = clk_en_a_old & ~clken_low_pwr;
1629 		} else {
1630 			clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1631 			clk_en_a = clk_en_a_old | clken_low_pwr;
1632 		}
1633 
1634 		if (clk_en_a != clk_en_a_old) {
1635 			mci_writel(host, CLKENA, clk_en_a);
1636 			mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1637 				     SDMMC_CMD_PRV_DAT_WAIT, 0);
1638 		}
1639 	}
1640 }
1641 
1642 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1643 {
1644 	struct dw_mci *host = slot->host;
1645 	unsigned long irqflags;
1646 	u32 int_mask;
1647 
1648 	spin_lock_irqsave(&host->irq_lock, irqflags);
1649 
1650 	/* Enable/disable Slot Specific SDIO interrupt */
1651 	int_mask = mci_readl(host, INTMASK);
1652 	if (enb)
1653 		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1654 	else
1655 		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1656 	mci_writel(host, INTMASK, int_mask);
1657 
1658 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1659 }
1660 
1661 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1662 {
1663 	struct dw_mci_slot *slot = mmc_priv(mmc);
1664 	struct dw_mci *host = slot->host;
1665 
1666 	__dw_mci_enable_sdio_irq(slot, enb);
1667 
1668 	/* Avoid runtime suspending the device when SDIO IRQ is enabled */
1669 	if (enb)
1670 		pm_runtime_get_noresume(host->dev);
1671 	else
1672 		pm_runtime_put_noidle(host->dev);
1673 }
1674 
1675 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1676 {
1677 	struct dw_mci_slot *slot = mmc_priv(mmc);
1678 
1679 	__dw_mci_enable_sdio_irq(slot, 1);
1680 }
1681 
1682 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1683 {
1684 	struct dw_mci_slot *slot = mmc_priv(mmc);
1685 	struct dw_mci *host = slot->host;
1686 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1687 	int err = -EINVAL;
1688 
1689 	if (drv_data && drv_data->execute_tuning)
1690 		err = drv_data->execute_tuning(slot, opcode);
1691 	return err;
1692 }
1693 
1694 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1695 				       struct mmc_ios *ios)
1696 {
1697 	struct dw_mci_slot *slot = mmc_priv(mmc);
1698 	struct dw_mci *host = slot->host;
1699 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1700 
1701 	if (drv_data && drv_data->prepare_hs400_tuning)
1702 		return drv_data->prepare_hs400_tuning(host, ios);
1703 
1704 	return 0;
1705 }
1706 
1707 static bool dw_mci_reset(struct dw_mci *host)
1708 {
1709 	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1710 	bool ret = false;
1711 	u32 status = 0;
1712 
1713 	/*
1714 	 * Resetting generates a block interrupt, hence setting
1715 	 * the scatter-gather pointer to NULL.
1716 	 */
1717 	if (host->sg) {
1718 		sg_miter_stop(&host->sg_miter);
1719 		host->sg = NULL;
1720 	}
1721 
1722 	if (host->use_dma)
1723 		flags |= SDMMC_CTRL_DMA_RESET;
1724 
1725 	if (dw_mci_ctrl_reset(host, flags)) {
1726 		/*
1727 		 * In all cases we clear the RAWINTS
1728 		 * register to clear any interrupts.
1729 		 */
1730 		mci_writel(host, RINTSTS, 0xFFFFFFFF);
1731 
1732 		if (!host->use_dma) {
1733 			ret = true;
1734 			goto ciu_out;
1735 		}
1736 
1737 		/* Wait for dma_req to be cleared */
1738 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1739 					      status,
1740 					      !(status & SDMMC_STATUS_DMA_REQ),
1741 					      1, 500 * USEC_PER_MSEC)) {
1742 			dev_err(host->dev,
1743 				"%s: Timeout waiting for dma_req to be cleared\n",
1744 				__func__);
1745 			goto ciu_out;
1746 		}
1747 
1748 		/* when using DMA next we reset the fifo again */
1749 		if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1750 			goto ciu_out;
1751 	} else {
1752 		/* if the controller reset bit did clear, then set clock regs */
1753 		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1754 			dev_err(host->dev,
1755 				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1756 				__func__);
1757 			goto ciu_out;
1758 		}
1759 	}
1760 
1761 	if (host->use_dma == TRANS_MODE_IDMAC)
1762 		/* It is also required that we reinit idmac */
1763 		dw_mci_idmac_init(host);
1764 
1765 	ret = true;
1766 
1767 ciu_out:
1768 	/* After a CTRL reset we need to have CIU set clock registers  */
1769 	mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1770 
1771 	return ret;
1772 }
1773 
1774 static const struct mmc_host_ops dw_mci_ops = {
1775 	.request		= dw_mci_request,
1776 	.pre_req		= dw_mci_pre_req,
1777 	.post_req		= dw_mci_post_req,
1778 	.set_ios		= dw_mci_set_ios,
1779 	.get_ro			= dw_mci_get_ro,
1780 	.get_cd			= dw_mci_get_cd,
1781 	.hw_reset               = dw_mci_hw_reset,
1782 	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1783 	.ack_sdio_irq		= dw_mci_ack_sdio_irq,
1784 	.execute_tuning		= dw_mci_execute_tuning,
1785 	.card_busy		= dw_mci_card_busy,
1786 	.start_signal_voltage_switch = dw_mci_switch_voltage,
1787 	.init_card		= dw_mci_init_card,
1788 	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1789 };
1790 
1791 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1792 	__releases(&host->lock)
1793 	__acquires(&host->lock)
1794 {
1795 	struct dw_mci_slot *slot;
1796 	struct mmc_host	*prev_mmc = host->slot->mmc;
1797 
1798 	WARN_ON(host->cmd || host->data);
1799 
1800 	host->slot->mrq = NULL;
1801 	host->mrq = NULL;
1802 	if (!list_empty(&host->queue)) {
1803 		slot = list_entry(host->queue.next,
1804 				  struct dw_mci_slot, queue_node);
1805 		list_del(&slot->queue_node);
1806 		dev_vdbg(host->dev, "list not empty: %s is next\n",
1807 			 mmc_hostname(slot->mmc));
1808 		host->state = STATE_SENDING_CMD;
1809 		dw_mci_start_request(host, slot);
1810 	} else {
1811 		dev_vdbg(host->dev, "list empty\n");
1812 
1813 		if (host->state == STATE_SENDING_CMD11)
1814 			host->state = STATE_WAITING_CMD11_DONE;
1815 		else
1816 			host->state = STATE_IDLE;
1817 	}
1818 
1819 	spin_unlock(&host->lock);
1820 	mmc_request_done(prev_mmc, mrq);
1821 	spin_lock(&host->lock);
1822 }
1823 
1824 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1825 {
1826 	u32 status = host->cmd_status;
1827 
1828 	host->cmd_status = 0;
1829 
1830 	/* Read the response from the card (up to 16 bytes) */
1831 	if (cmd->flags & MMC_RSP_PRESENT) {
1832 		if (cmd->flags & MMC_RSP_136) {
1833 			cmd->resp[3] = mci_readl(host, RESP0);
1834 			cmd->resp[2] = mci_readl(host, RESP1);
1835 			cmd->resp[1] = mci_readl(host, RESP2);
1836 			cmd->resp[0] = mci_readl(host, RESP3);
1837 		} else {
1838 			cmd->resp[0] = mci_readl(host, RESP0);
1839 			cmd->resp[1] = 0;
1840 			cmd->resp[2] = 0;
1841 			cmd->resp[3] = 0;
1842 		}
1843 	}
1844 
1845 	if (status & SDMMC_INT_RTO)
1846 		cmd->error = -ETIMEDOUT;
1847 	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1848 		cmd->error = -EILSEQ;
1849 	else if (status & SDMMC_INT_RESP_ERR)
1850 		cmd->error = -EIO;
1851 	else
1852 		cmd->error = 0;
1853 
1854 	return cmd->error;
1855 }
1856 
1857 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1858 {
1859 	u32 status = host->data_status;
1860 
1861 	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1862 		if (status & SDMMC_INT_DRTO) {
1863 			data->error = -ETIMEDOUT;
1864 		} else if (status & SDMMC_INT_DCRC) {
1865 			data->error = -EILSEQ;
1866 		} else if (status & SDMMC_INT_EBE) {
1867 			if (host->dir_status ==
1868 				DW_MCI_SEND_STATUS) {
1869 				/*
1870 				 * No data CRC status was returned.
1871 				 * The number of bytes transferred
1872 				 * will be exaggerated in PIO mode.
1873 				 */
1874 				data->bytes_xfered = 0;
1875 				data->error = -ETIMEDOUT;
1876 			} else if (host->dir_status ==
1877 					DW_MCI_RECV_STATUS) {
1878 				data->error = -EILSEQ;
1879 			}
1880 		} else {
1881 			/* SDMMC_INT_SBE is included */
1882 			data->error = -EILSEQ;
1883 		}
1884 
1885 		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1886 
1887 		/*
1888 		 * After an error, there may be data lingering
1889 		 * in the FIFO
1890 		 */
1891 		dw_mci_reset(host);
1892 	} else {
1893 		data->bytes_xfered = data->blocks * data->blksz;
1894 		data->error = 0;
1895 	}
1896 
1897 	return data->error;
1898 }
1899 
1900 static void dw_mci_set_drto(struct dw_mci *host)
1901 {
1902 	unsigned int drto_clks;
1903 	unsigned int drto_div;
1904 	unsigned int drto_ms;
1905 	unsigned long irqflags;
1906 
1907 	drto_clks = mci_readl(host, TMOUT) >> 8;
1908 	drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
1909 	if (drto_div == 0)
1910 		drto_div = 1;
1911 
1912 	drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
1913 				   host->bus_hz);
1914 
1915 	/* add a bit spare time */
1916 	drto_ms += 10;
1917 
1918 	spin_lock_irqsave(&host->irq_lock, irqflags);
1919 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1920 		mod_timer(&host->dto_timer,
1921 			  jiffies + msecs_to_jiffies(drto_ms));
1922 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1923 }
1924 
1925 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
1926 {
1927 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1928 		return false;
1929 
1930 	/*
1931 	 * Really be certain that the timer has stopped.  This is a bit of
1932 	 * paranoia and could only really happen if we had really bad
1933 	 * interrupt latency and the interrupt routine and timeout were
1934 	 * running concurrently so that the del_timer() in the interrupt
1935 	 * handler couldn't run.
1936 	 */
1937 	WARN_ON(del_timer_sync(&host->cto_timer));
1938 	clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
1939 
1940 	return true;
1941 }
1942 
1943 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
1944 {
1945 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1946 		return false;
1947 
1948 	/* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
1949 	WARN_ON(del_timer_sync(&host->dto_timer));
1950 	clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
1951 
1952 	return true;
1953 }
1954 
1955 static void dw_mci_tasklet_func(unsigned long priv)
1956 {
1957 	struct dw_mci *host = (struct dw_mci *)priv;
1958 	struct mmc_data	*data;
1959 	struct mmc_command *cmd;
1960 	struct mmc_request *mrq;
1961 	enum dw_mci_state state;
1962 	enum dw_mci_state prev_state;
1963 	unsigned int err;
1964 
1965 	spin_lock(&host->lock);
1966 
1967 	state = host->state;
1968 	data = host->data;
1969 	mrq = host->mrq;
1970 
1971 	do {
1972 		prev_state = state;
1973 
1974 		switch (state) {
1975 		case STATE_IDLE:
1976 		case STATE_WAITING_CMD11_DONE:
1977 			break;
1978 
1979 		case STATE_SENDING_CMD11:
1980 		case STATE_SENDING_CMD:
1981 			if (!dw_mci_clear_pending_cmd_complete(host))
1982 				break;
1983 
1984 			cmd = host->cmd;
1985 			host->cmd = NULL;
1986 			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1987 			err = dw_mci_command_complete(host, cmd);
1988 			if (cmd == mrq->sbc && !err) {
1989 				__dw_mci_start_request(host, host->slot,
1990 						       mrq->cmd);
1991 				goto unlock;
1992 			}
1993 
1994 			if (cmd->data && err) {
1995 				/*
1996 				 * During UHS tuning sequence, sending the stop
1997 				 * command after the response CRC error would
1998 				 * throw the system into a confused state
1999 				 * causing all future tuning phases to report
2000 				 * failure.
2001 				 *
2002 				 * In such case controller will move into a data
2003 				 * transfer state after a response error or
2004 				 * response CRC error. Let's let that finish
2005 				 * before trying to send a stop, so we'll go to
2006 				 * STATE_SENDING_DATA.
2007 				 *
2008 				 * Although letting the data transfer take place
2009 				 * will waste a bit of time (we already know
2010 				 * the command was bad), it can't cause any
2011 				 * errors since it's possible it would have
2012 				 * taken place anyway if this tasklet got
2013 				 * delayed. Allowing the transfer to take place
2014 				 * avoids races and keeps things simple.
2015 				 */
2016 				if (err != -ETIMEDOUT) {
2017 					state = STATE_SENDING_DATA;
2018 					continue;
2019 				}
2020 
2021 				dw_mci_stop_dma(host);
2022 				send_stop_abort(host, data);
2023 				state = STATE_SENDING_STOP;
2024 				break;
2025 			}
2026 
2027 			if (!cmd->data || err) {
2028 				dw_mci_request_end(host, mrq);
2029 				goto unlock;
2030 			}
2031 
2032 			prev_state = state = STATE_SENDING_DATA;
2033 			/* fall through */
2034 
2035 		case STATE_SENDING_DATA:
2036 			/*
2037 			 * We could get a data error and never a transfer
2038 			 * complete so we'd better check for it here.
2039 			 *
2040 			 * Note that we don't really care if we also got a
2041 			 * transfer complete; stopping the DMA and sending an
2042 			 * abort won't hurt.
2043 			 */
2044 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2045 					       &host->pending_events)) {
2046 				dw_mci_stop_dma(host);
2047 				if (!(host->data_status & (SDMMC_INT_DRTO |
2048 							   SDMMC_INT_EBE)))
2049 					send_stop_abort(host, data);
2050 				state = STATE_DATA_ERROR;
2051 				break;
2052 			}
2053 
2054 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2055 						&host->pending_events)) {
2056 				/*
2057 				 * If all data-related interrupts don't come
2058 				 * within the given time in reading data state.
2059 				 */
2060 				if (host->dir_status == DW_MCI_RECV_STATUS)
2061 					dw_mci_set_drto(host);
2062 				break;
2063 			}
2064 
2065 			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2066 
2067 			/*
2068 			 * Handle an EVENT_DATA_ERROR that might have shown up
2069 			 * before the transfer completed.  This might not have
2070 			 * been caught by the check above because the interrupt
2071 			 * could have gone off between the previous check and
2072 			 * the check for transfer complete.
2073 			 *
2074 			 * Technically this ought not be needed assuming we
2075 			 * get a DATA_COMPLETE eventually (we'll notice the
2076 			 * error and end the request), but it shouldn't hurt.
2077 			 *
2078 			 * This has the advantage of sending the stop command.
2079 			 */
2080 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2081 					       &host->pending_events)) {
2082 				dw_mci_stop_dma(host);
2083 				if (!(host->data_status & (SDMMC_INT_DRTO |
2084 							   SDMMC_INT_EBE)))
2085 					send_stop_abort(host, data);
2086 				state = STATE_DATA_ERROR;
2087 				break;
2088 			}
2089 			prev_state = state = STATE_DATA_BUSY;
2090 
2091 			/* fall through */
2092 
2093 		case STATE_DATA_BUSY:
2094 			if (!dw_mci_clear_pending_data_complete(host)) {
2095 				/*
2096 				 * If data error interrupt comes but data over
2097 				 * interrupt doesn't come within the given time.
2098 				 * in reading data state.
2099 				 */
2100 				if (host->dir_status == DW_MCI_RECV_STATUS)
2101 					dw_mci_set_drto(host);
2102 				break;
2103 			}
2104 
2105 			host->data = NULL;
2106 			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2107 			err = dw_mci_data_complete(host, data);
2108 
2109 			if (!err) {
2110 				if (!data->stop || mrq->sbc) {
2111 					if (mrq->sbc && data->stop)
2112 						data->stop->error = 0;
2113 					dw_mci_request_end(host, mrq);
2114 					goto unlock;
2115 				}
2116 
2117 				/* stop command for open-ended transfer*/
2118 				if (data->stop)
2119 					send_stop_abort(host, data);
2120 			} else {
2121 				/*
2122 				 * If we don't have a command complete now we'll
2123 				 * never get one since we just reset everything;
2124 				 * better end the request.
2125 				 *
2126 				 * If we do have a command complete we'll fall
2127 				 * through to the SENDING_STOP command and
2128 				 * everything will be peachy keen.
2129 				 */
2130 				if (!test_bit(EVENT_CMD_COMPLETE,
2131 					      &host->pending_events)) {
2132 					host->cmd = NULL;
2133 					dw_mci_request_end(host, mrq);
2134 					goto unlock;
2135 				}
2136 			}
2137 
2138 			/*
2139 			 * If err has non-zero,
2140 			 * stop-abort command has been already issued.
2141 			 */
2142 			prev_state = state = STATE_SENDING_STOP;
2143 
2144 			/* fall through */
2145 
2146 		case STATE_SENDING_STOP:
2147 			if (!dw_mci_clear_pending_cmd_complete(host))
2148 				break;
2149 
2150 			/* CMD error in data command */
2151 			if (mrq->cmd->error && mrq->data)
2152 				dw_mci_reset(host);
2153 
2154 			host->cmd = NULL;
2155 			host->data = NULL;
2156 
2157 			if (!mrq->sbc && mrq->stop)
2158 				dw_mci_command_complete(host, mrq->stop);
2159 			else
2160 				host->cmd_status = 0;
2161 
2162 			dw_mci_request_end(host, mrq);
2163 			goto unlock;
2164 
2165 		case STATE_DATA_ERROR:
2166 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2167 						&host->pending_events))
2168 				break;
2169 
2170 			state = STATE_DATA_BUSY;
2171 			break;
2172 		}
2173 	} while (state != prev_state);
2174 
2175 	host->state = state;
2176 unlock:
2177 	spin_unlock(&host->lock);
2178 
2179 }
2180 
2181 /* push final bytes to part_buf, only use during push */
2182 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2183 {
2184 	memcpy((void *)&host->part_buf, buf, cnt);
2185 	host->part_buf_count = cnt;
2186 }
2187 
2188 /* append bytes to part_buf, only use during push */
2189 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2190 {
2191 	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2192 	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2193 	host->part_buf_count += cnt;
2194 	return cnt;
2195 }
2196 
2197 /* pull first bytes from part_buf, only use during pull */
2198 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2199 {
2200 	cnt = min_t(int, cnt, host->part_buf_count);
2201 	if (cnt) {
2202 		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2203 		       cnt);
2204 		host->part_buf_count -= cnt;
2205 		host->part_buf_start += cnt;
2206 	}
2207 	return cnt;
2208 }
2209 
2210 /* pull final bytes from the part_buf, assuming it's just been filled */
2211 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2212 {
2213 	memcpy(buf, &host->part_buf, cnt);
2214 	host->part_buf_start = cnt;
2215 	host->part_buf_count = (1 << host->data_shift) - cnt;
2216 }
2217 
2218 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2219 {
2220 	struct mmc_data *data = host->data;
2221 	int init_cnt = cnt;
2222 
2223 	/* try and push anything in the part_buf */
2224 	if (unlikely(host->part_buf_count)) {
2225 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2226 
2227 		buf += len;
2228 		cnt -= len;
2229 		if (host->part_buf_count == 2) {
2230 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2231 			host->part_buf_count = 0;
2232 		}
2233 	}
2234 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2235 	if (unlikely((unsigned long)buf & 0x1)) {
2236 		while (cnt >= 2) {
2237 			u16 aligned_buf[64];
2238 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2239 			int items = len >> 1;
2240 			int i;
2241 			/* memcpy from input buffer into aligned buffer */
2242 			memcpy(aligned_buf, buf, len);
2243 			buf += len;
2244 			cnt -= len;
2245 			/* push data from aligned buffer into fifo */
2246 			for (i = 0; i < items; ++i)
2247 				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2248 		}
2249 	} else
2250 #endif
2251 	{
2252 		u16 *pdata = buf;
2253 
2254 		for (; cnt >= 2; cnt -= 2)
2255 			mci_fifo_writew(host->fifo_reg, *pdata++);
2256 		buf = pdata;
2257 	}
2258 	/* put anything remaining in the part_buf */
2259 	if (cnt) {
2260 		dw_mci_set_part_bytes(host, buf, cnt);
2261 		 /* Push data if we have reached the expected data length */
2262 		if ((data->bytes_xfered + init_cnt) ==
2263 		    (data->blksz * data->blocks))
2264 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2265 	}
2266 }
2267 
2268 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2269 {
2270 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2271 	if (unlikely((unsigned long)buf & 0x1)) {
2272 		while (cnt >= 2) {
2273 			/* pull data from fifo into aligned buffer */
2274 			u16 aligned_buf[64];
2275 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2276 			int items = len >> 1;
2277 			int i;
2278 
2279 			for (i = 0; i < items; ++i)
2280 				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2281 			/* memcpy from aligned buffer into output buffer */
2282 			memcpy(buf, aligned_buf, len);
2283 			buf += len;
2284 			cnt -= len;
2285 		}
2286 	} else
2287 #endif
2288 	{
2289 		u16 *pdata = buf;
2290 
2291 		for (; cnt >= 2; cnt -= 2)
2292 			*pdata++ = mci_fifo_readw(host->fifo_reg);
2293 		buf = pdata;
2294 	}
2295 	if (cnt) {
2296 		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2297 		dw_mci_pull_final_bytes(host, buf, cnt);
2298 	}
2299 }
2300 
2301 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2302 {
2303 	struct mmc_data *data = host->data;
2304 	int init_cnt = cnt;
2305 
2306 	/* try and push anything in the part_buf */
2307 	if (unlikely(host->part_buf_count)) {
2308 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2309 
2310 		buf += len;
2311 		cnt -= len;
2312 		if (host->part_buf_count == 4) {
2313 			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2314 			host->part_buf_count = 0;
2315 		}
2316 	}
2317 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2318 	if (unlikely((unsigned long)buf & 0x3)) {
2319 		while (cnt >= 4) {
2320 			u32 aligned_buf[32];
2321 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2322 			int items = len >> 2;
2323 			int i;
2324 			/* memcpy from input buffer into aligned buffer */
2325 			memcpy(aligned_buf, buf, len);
2326 			buf += len;
2327 			cnt -= len;
2328 			/* push data from aligned buffer into fifo */
2329 			for (i = 0; i < items; ++i)
2330 				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2331 		}
2332 	} else
2333 #endif
2334 	{
2335 		u32 *pdata = buf;
2336 
2337 		for (; cnt >= 4; cnt -= 4)
2338 			mci_fifo_writel(host->fifo_reg, *pdata++);
2339 		buf = pdata;
2340 	}
2341 	/* put anything remaining in the part_buf */
2342 	if (cnt) {
2343 		dw_mci_set_part_bytes(host, buf, cnt);
2344 		 /* Push data if we have reached the expected data length */
2345 		if ((data->bytes_xfered + init_cnt) ==
2346 		    (data->blksz * data->blocks))
2347 			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2348 	}
2349 }
2350 
2351 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2352 {
2353 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2354 	if (unlikely((unsigned long)buf & 0x3)) {
2355 		while (cnt >= 4) {
2356 			/* pull data from fifo into aligned buffer */
2357 			u32 aligned_buf[32];
2358 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2359 			int items = len >> 2;
2360 			int i;
2361 
2362 			for (i = 0; i < items; ++i)
2363 				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2364 			/* memcpy from aligned buffer into output buffer */
2365 			memcpy(buf, aligned_buf, len);
2366 			buf += len;
2367 			cnt -= len;
2368 		}
2369 	} else
2370 #endif
2371 	{
2372 		u32 *pdata = buf;
2373 
2374 		for (; cnt >= 4; cnt -= 4)
2375 			*pdata++ = mci_fifo_readl(host->fifo_reg);
2376 		buf = pdata;
2377 	}
2378 	if (cnt) {
2379 		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2380 		dw_mci_pull_final_bytes(host, buf, cnt);
2381 	}
2382 }
2383 
2384 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2385 {
2386 	struct mmc_data *data = host->data;
2387 	int init_cnt = cnt;
2388 
2389 	/* try and push anything in the part_buf */
2390 	if (unlikely(host->part_buf_count)) {
2391 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2392 
2393 		buf += len;
2394 		cnt -= len;
2395 
2396 		if (host->part_buf_count == 8) {
2397 			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2398 			host->part_buf_count = 0;
2399 		}
2400 	}
2401 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2402 	if (unlikely((unsigned long)buf & 0x7)) {
2403 		while (cnt >= 8) {
2404 			u64 aligned_buf[16];
2405 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2406 			int items = len >> 3;
2407 			int i;
2408 			/* memcpy from input buffer into aligned buffer */
2409 			memcpy(aligned_buf, buf, len);
2410 			buf += len;
2411 			cnt -= len;
2412 			/* push data from aligned buffer into fifo */
2413 			for (i = 0; i < items; ++i)
2414 				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2415 		}
2416 	} else
2417 #endif
2418 	{
2419 		u64 *pdata = buf;
2420 
2421 		for (; cnt >= 8; cnt -= 8)
2422 			mci_fifo_writeq(host->fifo_reg, *pdata++);
2423 		buf = pdata;
2424 	}
2425 	/* put anything remaining in the part_buf */
2426 	if (cnt) {
2427 		dw_mci_set_part_bytes(host, buf, cnt);
2428 		/* Push data if we have reached the expected data length */
2429 		if ((data->bytes_xfered + init_cnt) ==
2430 		    (data->blksz * data->blocks))
2431 			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2432 	}
2433 }
2434 
2435 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2436 {
2437 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2438 	if (unlikely((unsigned long)buf & 0x7)) {
2439 		while (cnt >= 8) {
2440 			/* pull data from fifo into aligned buffer */
2441 			u64 aligned_buf[16];
2442 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2443 			int items = len >> 3;
2444 			int i;
2445 
2446 			for (i = 0; i < items; ++i)
2447 				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2448 
2449 			/* memcpy from aligned buffer into output buffer */
2450 			memcpy(buf, aligned_buf, len);
2451 			buf += len;
2452 			cnt -= len;
2453 		}
2454 	} else
2455 #endif
2456 	{
2457 		u64 *pdata = buf;
2458 
2459 		for (; cnt >= 8; cnt -= 8)
2460 			*pdata++ = mci_fifo_readq(host->fifo_reg);
2461 		buf = pdata;
2462 	}
2463 	if (cnt) {
2464 		host->part_buf = mci_fifo_readq(host->fifo_reg);
2465 		dw_mci_pull_final_bytes(host, buf, cnt);
2466 	}
2467 }
2468 
2469 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2470 {
2471 	int len;
2472 
2473 	/* get remaining partial bytes */
2474 	len = dw_mci_pull_part_bytes(host, buf, cnt);
2475 	if (unlikely(len == cnt))
2476 		return;
2477 	buf += len;
2478 	cnt -= len;
2479 
2480 	/* get the rest of the data */
2481 	host->pull_data(host, buf, cnt);
2482 }
2483 
2484 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2485 {
2486 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2487 	void *buf;
2488 	unsigned int offset;
2489 	struct mmc_data	*data = host->data;
2490 	int shift = host->data_shift;
2491 	u32 status;
2492 	unsigned int len;
2493 	unsigned int remain, fcnt;
2494 
2495 	do {
2496 		if (!sg_miter_next(sg_miter))
2497 			goto done;
2498 
2499 		host->sg = sg_miter->piter.sg;
2500 		buf = sg_miter->addr;
2501 		remain = sg_miter->length;
2502 		offset = 0;
2503 
2504 		do {
2505 			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2506 					<< shift) + host->part_buf_count;
2507 			len = min(remain, fcnt);
2508 			if (!len)
2509 				break;
2510 			dw_mci_pull_data(host, (void *)(buf + offset), len);
2511 			data->bytes_xfered += len;
2512 			offset += len;
2513 			remain -= len;
2514 		} while (remain);
2515 
2516 		sg_miter->consumed = offset;
2517 		status = mci_readl(host, MINTSTS);
2518 		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2519 	/* if the RXDR is ready read again */
2520 	} while ((status & SDMMC_INT_RXDR) ||
2521 		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2522 
2523 	if (!remain) {
2524 		if (!sg_miter_next(sg_miter))
2525 			goto done;
2526 		sg_miter->consumed = 0;
2527 	}
2528 	sg_miter_stop(sg_miter);
2529 	return;
2530 
2531 done:
2532 	sg_miter_stop(sg_miter);
2533 	host->sg = NULL;
2534 	smp_wmb(); /* drain writebuffer */
2535 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2536 }
2537 
2538 static void dw_mci_write_data_pio(struct dw_mci *host)
2539 {
2540 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2541 	void *buf;
2542 	unsigned int offset;
2543 	struct mmc_data	*data = host->data;
2544 	int shift = host->data_shift;
2545 	u32 status;
2546 	unsigned int len;
2547 	unsigned int fifo_depth = host->fifo_depth;
2548 	unsigned int remain, fcnt;
2549 
2550 	do {
2551 		if (!sg_miter_next(sg_miter))
2552 			goto done;
2553 
2554 		host->sg = sg_miter->piter.sg;
2555 		buf = sg_miter->addr;
2556 		remain = sg_miter->length;
2557 		offset = 0;
2558 
2559 		do {
2560 			fcnt = ((fifo_depth -
2561 				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2562 					<< shift) - host->part_buf_count;
2563 			len = min(remain, fcnt);
2564 			if (!len)
2565 				break;
2566 			host->push_data(host, (void *)(buf + offset), len);
2567 			data->bytes_xfered += len;
2568 			offset += len;
2569 			remain -= len;
2570 		} while (remain);
2571 
2572 		sg_miter->consumed = offset;
2573 		status = mci_readl(host, MINTSTS);
2574 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2575 	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2576 
2577 	if (!remain) {
2578 		if (!sg_miter_next(sg_miter))
2579 			goto done;
2580 		sg_miter->consumed = 0;
2581 	}
2582 	sg_miter_stop(sg_miter);
2583 	return;
2584 
2585 done:
2586 	sg_miter_stop(sg_miter);
2587 	host->sg = NULL;
2588 	smp_wmb(); /* drain writebuffer */
2589 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2590 }
2591 
2592 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2593 {
2594 	del_timer(&host->cto_timer);
2595 
2596 	if (!host->cmd_status)
2597 		host->cmd_status = status;
2598 
2599 	smp_wmb(); /* drain writebuffer */
2600 
2601 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2602 	tasklet_schedule(&host->tasklet);
2603 }
2604 
2605 static void dw_mci_handle_cd(struct dw_mci *host)
2606 {
2607 	struct dw_mci_slot *slot = host->slot;
2608 
2609 	if (slot->mmc->ops->card_event)
2610 		slot->mmc->ops->card_event(slot->mmc);
2611 	mmc_detect_change(slot->mmc,
2612 		msecs_to_jiffies(host->pdata->detect_delay_ms));
2613 }
2614 
2615 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2616 {
2617 	struct dw_mci *host = dev_id;
2618 	u32 pending;
2619 	struct dw_mci_slot *slot = host->slot;
2620 	unsigned long irqflags;
2621 
2622 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2623 
2624 	if (pending) {
2625 		/* Check volt switch first, since it can look like an error */
2626 		if ((host->state == STATE_SENDING_CMD11) &&
2627 		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2628 			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2629 			pending &= ~SDMMC_INT_VOLT_SWITCH;
2630 
2631 			/*
2632 			 * Hold the lock; we know cmd11_timer can't be kicked
2633 			 * off after the lock is released, so safe to delete.
2634 			 */
2635 			spin_lock_irqsave(&host->irq_lock, irqflags);
2636 			dw_mci_cmd_interrupt(host, pending);
2637 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2638 
2639 			del_timer(&host->cmd11_timer);
2640 		}
2641 
2642 		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2643 			spin_lock_irqsave(&host->irq_lock, irqflags);
2644 
2645 			del_timer(&host->cto_timer);
2646 			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2647 			host->cmd_status = pending;
2648 			smp_wmb(); /* drain writebuffer */
2649 			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2650 
2651 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2652 		}
2653 
2654 		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2655 			/* if there is an error report DATA_ERROR */
2656 			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2657 			host->data_status = pending;
2658 			smp_wmb(); /* drain writebuffer */
2659 			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2660 			tasklet_schedule(&host->tasklet);
2661 		}
2662 
2663 		if (pending & SDMMC_INT_DATA_OVER) {
2664 			spin_lock_irqsave(&host->irq_lock, irqflags);
2665 
2666 			del_timer(&host->dto_timer);
2667 
2668 			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2669 			if (!host->data_status)
2670 				host->data_status = pending;
2671 			smp_wmb(); /* drain writebuffer */
2672 			if (host->dir_status == DW_MCI_RECV_STATUS) {
2673 				if (host->sg != NULL)
2674 					dw_mci_read_data_pio(host, true);
2675 			}
2676 			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2677 			tasklet_schedule(&host->tasklet);
2678 
2679 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2680 		}
2681 
2682 		if (pending & SDMMC_INT_RXDR) {
2683 			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2684 			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2685 				dw_mci_read_data_pio(host, false);
2686 		}
2687 
2688 		if (pending & SDMMC_INT_TXDR) {
2689 			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2690 			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2691 				dw_mci_write_data_pio(host);
2692 		}
2693 
2694 		if (pending & SDMMC_INT_CMD_DONE) {
2695 			spin_lock_irqsave(&host->irq_lock, irqflags);
2696 
2697 			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2698 			dw_mci_cmd_interrupt(host, pending);
2699 
2700 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2701 		}
2702 
2703 		if (pending & SDMMC_INT_CD) {
2704 			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2705 			dw_mci_handle_cd(host);
2706 		}
2707 
2708 		if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2709 			mci_writel(host, RINTSTS,
2710 				   SDMMC_INT_SDIO(slot->sdio_id));
2711 			__dw_mci_enable_sdio_irq(slot, 0);
2712 			sdio_signal_irq(slot->mmc);
2713 		}
2714 
2715 	}
2716 
2717 	if (host->use_dma != TRANS_MODE_IDMAC)
2718 		return IRQ_HANDLED;
2719 
2720 	/* Handle IDMA interrupts */
2721 	if (host->dma_64bit_address == 1) {
2722 		pending = mci_readl(host, IDSTS64);
2723 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2724 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2725 							SDMMC_IDMAC_INT_RI);
2726 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2727 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2728 				host->dma_ops->complete((void *)host);
2729 		}
2730 	} else {
2731 		pending = mci_readl(host, IDSTS);
2732 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2733 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2734 							SDMMC_IDMAC_INT_RI);
2735 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2736 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2737 				host->dma_ops->complete((void *)host);
2738 		}
2739 	}
2740 
2741 	return IRQ_HANDLED;
2742 }
2743 
2744 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2745 {
2746 	struct dw_mci *host = slot->host;
2747 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2748 	struct mmc_host *mmc = slot->mmc;
2749 	int ctrl_id;
2750 
2751 	if (host->pdata->caps)
2752 		mmc->caps = host->pdata->caps;
2753 
2754 	if (host->pdata->pm_caps)
2755 		mmc->pm_caps = host->pdata->pm_caps;
2756 
2757 	if (host->dev->of_node) {
2758 		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2759 		if (ctrl_id < 0)
2760 			ctrl_id = 0;
2761 	} else {
2762 		ctrl_id = to_platform_device(host->dev)->id;
2763 	}
2764 
2765 	if (drv_data && drv_data->caps) {
2766 		if (ctrl_id >= drv_data->num_caps) {
2767 			dev_err(host->dev, "invalid controller id %d\n",
2768 				ctrl_id);
2769 			return -EINVAL;
2770 		}
2771 		mmc->caps |= drv_data->caps[ctrl_id];
2772 	}
2773 
2774 	if (host->pdata->caps2)
2775 		mmc->caps2 = host->pdata->caps2;
2776 
2777 	mmc->f_min = DW_MCI_FREQ_MIN;
2778 	if (!mmc->f_max)
2779 		mmc->f_max = DW_MCI_FREQ_MAX;
2780 
2781 	/* Process SDIO IRQs through the sdio_irq_work. */
2782 	if (mmc->caps & MMC_CAP_SDIO_IRQ)
2783 		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2784 
2785 	return 0;
2786 }
2787 
2788 static int dw_mci_init_slot(struct dw_mci *host)
2789 {
2790 	struct mmc_host *mmc;
2791 	struct dw_mci_slot *slot;
2792 	int ret;
2793 
2794 	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2795 	if (!mmc)
2796 		return -ENOMEM;
2797 
2798 	slot = mmc_priv(mmc);
2799 	slot->id = 0;
2800 	slot->sdio_id = host->sdio_id0 + slot->id;
2801 	slot->mmc = mmc;
2802 	slot->host = host;
2803 	host->slot = slot;
2804 
2805 	mmc->ops = &dw_mci_ops;
2806 
2807 	/*if there are external regulators, get them*/
2808 	ret = mmc_regulator_get_supply(mmc);
2809 	if (ret)
2810 		goto err_host_allocated;
2811 
2812 	if (!mmc->ocr_avail)
2813 		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2814 
2815 	ret = mmc_of_parse(mmc);
2816 	if (ret)
2817 		goto err_host_allocated;
2818 
2819 	ret = dw_mci_init_slot_caps(slot);
2820 	if (ret)
2821 		goto err_host_allocated;
2822 
2823 	/* Useful defaults if platform data is unset. */
2824 	if (host->use_dma == TRANS_MODE_IDMAC) {
2825 		mmc->max_segs = host->ring_size;
2826 		mmc->max_blk_size = 65535;
2827 		mmc->max_seg_size = 0x1000;
2828 		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2829 		mmc->max_blk_count = mmc->max_req_size / 512;
2830 	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2831 		mmc->max_segs = 64;
2832 		mmc->max_blk_size = 65535;
2833 		mmc->max_blk_count = 65535;
2834 		mmc->max_req_size =
2835 				mmc->max_blk_size * mmc->max_blk_count;
2836 		mmc->max_seg_size = mmc->max_req_size;
2837 	} else {
2838 		/* TRANS_MODE_PIO */
2839 		mmc->max_segs = 64;
2840 		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2841 		mmc->max_blk_count = 512;
2842 		mmc->max_req_size = mmc->max_blk_size *
2843 				    mmc->max_blk_count;
2844 		mmc->max_seg_size = mmc->max_req_size;
2845 	}
2846 
2847 	dw_mci_get_cd(mmc);
2848 
2849 	ret = mmc_add_host(mmc);
2850 	if (ret)
2851 		goto err_host_allocated;
2852 
2853 #if defined(CONFIG_DEBUG_FS)
2854 	dw_mci_init_debugfs(slot);
2855 #endif
2856 
2857 	return 0;
2858 
2859 err_host_allocated:
2860 	mmc_free_host(mmc);
2861 	return ret;
2862 }
2863 
2864 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2865 {
2866 	/* Debugfs stuff is cleaned up by mmc core */
2867 	mmc_remove_host(slot->mmc);
2868 	slot->host->slot = NULL;
2869 	mmc_free_host(slot->mmc);
2870 }
2871 
2872 static void dw_mci_init_dma(struct dw_mci *host)
2873 {
2874 	int addr_config;
2875 	struct device *dev = host->dev;
2876 
2877 	/*
2878 	* Check tansfer mode from HCON[17:16]
2879 	* Clear the ambiguous description of dw_mmc databook:
2880 	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
2881 	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2882 	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2883 	* 2b'11: Non DW DMA Interface -> pio only
2884 	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
2885 	* simpler request/acknowledge handshake mechanism and both of them
2886 	* are regarded as external dma master for dw_mmc.
2887 	*/
2888 	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2889 	if (host->use_dma == DMA_INTERFACE_IDMA) {
2890 		host->use_dma = TRANS_MODE_IDMAC;
2891 	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2892 		   host->use_dma == DMA_INTERFACE_GDMA) {
2893 		host->use_dma = TRANS_MODE_EDMAC;
2894 	} else {
2895 		goto no_dma;
2896 	}
2897 
2898 	/* Determine which DMA interface to use */
2899 	if (host->use_dma == TRANS_MODE_IDMAC) {
2900 		/*
2901 		* Check ADDR_CONFIG bit in HCON to find
2902 		* IDMAC address bus width
2903 		*/
2904 		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2905 
2906 		if (addr_config == 1) {
2907 			/* host supports IDMAC in 64-bit address mode */
2908 			host->dma_64bit_address = 1;
2909 			dev_info(host->dev,
2910 				 "IDMAC supports 64-bit address mode.\n");
2911 			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2912 				dma_set_coherent_mask(host->dev,
2913 						      DMA_BIT_MASK(64));
2914 		} else {
2915 			/* host supports IDMAC in 32-bit address mode */
2916 			host->dma_64bit_address = 0;
2917 			dev_info(host->dev,
2918 				 "IDMAC supports 32-bit address mode.\n");
2919 		}
2920 
2921 		/* Alloc memory for sg translation */
2922 		host->sg_cpu = dmam_alloc_coherent(host->dev,
2923 						   DESC_RING_BUF_SZ,
2924 						   &host->sg_dma, GFP_KERNEL);
2925 		if (!host->sg_cpu) {
2926 			dev_err(host->dev,
2927 				"%s: could not alloc DMA memory\n",
2928 				__func__);
2929 			goto no_dma;
2930 		}
2931 
2932 		host->dma_ops = &dw_mci_idmac_ops;
2933 		dev_info(host->dev, "Using internal DMA controller.\n");
2934 	} else {
2935 		/* TRANS_MODE_EDMAC: check dma bindings again */
2936 		if ((device_property_read_string_array(dev, "dma-names",
2937 						       NULL, 0) < 0) ||
2938 		    !device_property_present(dev, "dmas")) {
2939 			goto no_dma;
2940 		}
2941 		host->dma_ops = &dw_mci_edmac_ops;
2942 		dev_info(host->dev, "Using external DMA controller.\n");
2943 	}
2944 
2945 	if (host->dma_ops->init && host->dma_ops->start &&
2946 	    host->dma_ops->stop && host->dma_ops->cleanup) {
2947 		if (host->dma_ops->init(host)) {
2948 			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2949 				__func__);
2950 			goto no_dma;
2951 		}
2952 	} else {
2953 		dev_err(host->dev, "DMA initialization not found.\n");
2954 		goto no_dma;
2955 	}
2956 
2957 	return;
2958 
2959 no_dma:
2960 	dev_info(host->dev, "Using PIO mode.\n");
2961 	host->use_dma = TRANS_MODE_PIO;
2962 }
2963 
2964 static void dw_mci_cmd11_timer(struct timer_list *t)
2965 {
2966 	struct dw_mci *host = from_timer(host, t, cmd11_timer);
2967 
2968 	if (host->state != STATE_SENDING_CMD11) {
2969 		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2970 		return;
2971 	}
2972 
2973 	host->cmd_status = SDMMC_INT_RTO;
2974 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2975 	tasklet_schedule(&host->tasklet);
2976 }
2977 
2978 static void dw_mci_cto_timer(struct timer_list *t)
2979 {
2980 	struct dw_mci *host = from_timer(host, t, cto_timer);
2981 	unsigned long irqflags;
2982 	u32 pending;
2983 
2984 	spin_lock_irqsave(&host->irq_lock, irqflags);
2985 
2986 	/*
2987 	 * If somehow we have very bad interrupt latency it's remotely possible
2988 	 * that the timer could fire while the interrupt is still pending or
2989 	 * while the interrupt is midway through running.  Let's be paranoid
2990 	 * and detect those two cases.  Note that this is paranoia is somewhat
2991 	 * justified because in this function we don't actually cancel the
2992 	 * pending command in the controller--we just assume it will never come.
2993 	 */
2994 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2995 	if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
2996 		/* The interrupt should fire; no need to act but we can warn */
2997 		dev_warn(host->dev, "Unexpected interrupt latency\n");
2998 		goto exit;
2999 	}
3000 	if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3001 		/* Presumably interrupt handler couldn't delete the timer */
3002 		dev_warn(host->dev, "CTO timeout when already completed\n");
3003 		goto exit;
3004 	}
3005 
3006 	/*
3007 	 * Continued paranoia to make sure we're in the state we expect.
3008 	 * This paranoia isn't really justified but it seems good to be safe.
3009 	 */
3010 	switch (host->state) {
3011 	case STATE_SENDING_CMD11:
3012 	case STATE_SENDING_CMD:
3013 	case STATE_SENDING_STOP:
3014 		/*
3015 		 * If CMD_DONE interrupt does NOT come in sending command
3016 		 * state, we should notify the driver to terminate current
3017 		 * transfer and report a command timeout to the core.
3018 		 */
3019 		host->cmd_status = SDMMC_INT_RTO;
3020 		set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3021 		tasklet_schedule(&host->tasklet);
3022 		break;
3023 	default:
3024 		dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3025 			 host->state);
3026 		break;
3027 	}
3028 
3029 exit:
3030 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3031 }
3032 
3033 static void dw_mci_dto_timer(struct timer_list *t)
3034 {
3035 	struct dw_mci *host = from_timer(host, t, dto_timer);
3036 	unsigned long irqflags;
3037 	u32 pending;
3038 
3039 	spin_lock_irqsave(&host->irq_lock, irqflags);
3040 
3041 	/*
3042 	 * The DTO timer is much longer than the CTO timer, so it's even less
3043 	 * likely that we'll these cases, but it pays to be paranoid.
3044 	 */
3045 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3046 	if (pending & SDMMC_INT_DATA_OVER) {
3047 		/* The interrupt should fire; no need to act but we can warn */
3048 		dev_warn(host->dev, "Unexpected data interrupt latency\n");
3049 		goto exit;
3050 	}
3051 	if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3052 		/* Presumably interrupt handler couldn't delete the timer */
3053 		dev_warn(host->dev, "DTO timeout when already completed\n");
3054 		goto exit;
3055 	}
3056 
3057 	/*
3058 	 * Continued paranoia to make sure we're in the state we expect.
3059 	 * This paranoia isn't really justified but it seems good to be safe.
3060 	 */
3061 	switch (host->state) {
3062 	case STATE_SENDING_DATA:
3063 	case STATE_DATA_BUSY:
3064 		/*
3065 		 * If DTO interrupt does NOT come in sending data state,
3066 		 * we should notify the driver to terminate current transfer
3067 		 * and report a data timeout to the core.
3068 		 */
3069 		host->data_status = SDMMC_INT_DRTO;
3070 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
3071 		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3072 		tasklet_schedule(&host->tasklet);
3073 		break;
3074 	default:
3075 		dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3076 			 host->state);
3077 		break;
3078 	}
3079 
3080 exit:
3081 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3082 }
3083 
3084 #ifdef CONFIG_OF
3085 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3086 {
3087 	struct dw_mci_board *pdata;
3088 	struct device *dev = host->dev;
3089 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3090 	int ret;
3091 	u32 clock_frequency;
3092 
3093 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3094 	if (!pdata)
3095 		return ERR_PTR(-ENOMEM);
3096 
3097 	/* find reset controller when exist */
3098 	pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3099 	if (IS_ERR(pdata->rstc)) {
3100 		if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
3101 			return ERR_PTR(-EPROBE_DEFER);
3102 	}
3103 
3104 	if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3105 		dev_info(dev,
3106 			 "fifo-depth property not found, using value of FIFOTH register as default\n");
3107 
3108 	device_property_read_u32(dev, "card-detect-delay",
3109 				 &pdata->detect_delay_ms);
3110 
3111 	device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3112 
3113 	if (device_property_present(dev, "fifo-watermark-aligned"))
3114 		host->wm_aligned = true;
3115 
3116 	if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3117 		pdata->bus_hz = clock_frequency;
3118 
3119 	if (drv_data && drv_data->parse_dt) {
3120 		ret = drv_data->parse_dt(host);
3121 		if (ret)
3122 			return ERR_PTR(ret);
3123 	}
3124 
3125 	return pdata;
3126 }
3127 
3128 #else /* CONFIG_OF */
3129 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3130 {
3131 	return ERR_PTR(-EINVAL);
3132 }
3133 #endif /* CONFIG_OF */
3134 
3135 static void dw_mci_enable_cd(struct dw_mci *host)
3136 {
3137 	unsigned long irqflags;
3138 	u32 temp;
3139 
3140 	/*
3141 	 * No need for CD if all slots have a non-error GPIO
3142 	 * as well as broken card detection is found.
3143 	 */
3144 	if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3145 		return;
3146 
3147 	if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3148 		spin_lock_irqsave(&host->irq_lock, irqflags);
3149 		temp = mci_readl(host, INTMASK);
3150 		temp  |= SDMMC_INT_CD;
3151 		mci_writel(host, INTMASK, temp);
3152 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
3153 	}
3154 }
3155 
3156 int dw_mci_probe(struct dw_mci *host)
3157 {
3158 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3159 	int width, i, ret = 0;
3160 	u32 fifo_size;
3161 
3162 	if (!host->pdata) {
3163 		host->pdata = dw_mci_parse_dt(host);
3164 		if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3165 			return -EPROBE_DEFER;
3166 		} else if (IS_ERR(host->pdata)) {
3167 			dev_err(host->dev, "platform data not available\n");
3168 			return -EINVAL;
3169 		}
3170 	}
3171 
3172 	host->biu_clk = devm_clk_get(host->dev, "biu");
3173 	if (IS_ERR(host->biu_clk)) {
3174 		dev_dbg(host->dev, "biu clock not available\n");
3175 	} else {
3176 		ret = clk_prepare_enable(host->biu_clk);
3177 		if (ret) {
3178 			dev_err(host->dev, "failed to enable biu clock\n");
3179 			return ret;
3180 		}
3181 	}
3182 
3183 	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3184 	if (IS_ERR(host->ciu_clk)) {
3185 		dev_dbg(host->dev, "ciu clock not available\n");
3186 		host->bus_hz = host->pdata->bus_hz;
3187 	} else {
3188 		ret = clk_prepare_enable(host->ciu_clk);
3189 		if (ret) {
3190 			dev_err(host->dev, "failed to enable ciu clock\n");
3191 			goto err_clk_biu;
3192 		}
3193 
3194 		if (host->pdata->bus_hz) {
3195 			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3196 			if (ret)
3197 				dev_warn(host->dev,
3198 					 "Unable to set bus rate to %uHz\n",
3199 					 host->pdata->bus_hz);
3200 		}
3201 		host->bus_hz = clk_get_rate(host->ciu_clk);
3202 	}
3203 
3204 	if (!host->bus_hz) {
3205 		dev_err(host->dev,
3206 			"Platform data must supply bus speed\n");
3207 		ret = -ENODEV;
3208 		goto err_clk_ciu;
3209 	}
3210 
3211 	if (!IS_ERR(host->pdata->rstc)) {
3212 		reset_control_assert(host->pdata->rstc);
3213 		usleep_range(10, 50);
3214 		reset_control_deassert(host->pdata->rstc);
3215 	}
3216 
3217 	if (drv_data && drv_data->init) {
3218 		ret = drv_data->init(host);
3219 		if (ret) {
3220 			dev_err(host->dev,
3221 				"implementation specific init failed\n");
3222 			goto err_clk_ciu;
3223 		}
3224 	}
3225 
3226 	timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3227 	timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3228 	timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3229 
3230 	spin_lock_init(&host->lock);
3231 	spin_lock_init(&host->irq_lock);
3232 	INIT_LIST_HEAD(&host->queue);
3233 
3234 	/*
3235 	 * Get the host data width - this assumes that HCON has been set with
3236 	 * the correct values.
3237 	 */
3238 	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3239 	if (!i) {
3240 		host->push_data = dw_mci_push_data16;
3241 		host->pull_data = dw_mci_pull_data16;
3242 		width = 16;
3243 		host->data_shift = 1;
3244 	} else if (i == 2) {
3245 		host->push_data = dw_mci_push_data64;
3246 		host->pull_data = dw_mci_pull_data64;
3247 		width = 64;
3248 		host->data_shift = 3;
3249 	} else {
3250 		/* Check for a reserved value, and warn if it is */
3251 		WARN((i != 1),
3252 		     "HCON reports a reserved host data width!\n"
3253 		     "Defaulting to 32-bit access.\n");
3254 		host->push_data = dw_mci_push_data32;
3255 		host->pull_data = dw_mci_pull_data32;
3256 		width = 32;
3257 		host->data_shift = 2;
3258 	}
3259 
3260 	/* Reset all blocks */
3261 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3262 		ret = -ENODEV;
3263 		goto err_clk_ciu;
3264 	}
3265 
3266 	host->dma_ops = host->pdata->dma_ops;
3267 	dw_mci_init_dma(host);
3268 
3269 	/* Clear the interrupts for the host controller */
3270 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3271 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3272 
3273 	/* Put in max timeout */
3274 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3275 
3276 	/*
3277 	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3278 	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3279 	 */
3280 	if (!host->pdata->fifo_depth) {
3281 		/*
3282 		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3283 		 * have been overwritten by the bootloader, just like we're
3284 		 * about to do, so if you know the value for your hardware, you
3285 		 * should put it in the platform data.
3286 		 */
3287 		fifo_size = mci_readl(host, FIFOTH);
3288 		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3289 	} else {
3290 		fifo_size = host->pdata->fifo_depth;
3291 	}
3292 	host->fifo_depth = fifo_size;
3293 	host->fifoth_val =
3294 		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3295 	mci_writel(host, FIFOTH, host->fifoth_val);
3296 
3297 	/* disable clock to CIU */
3298 	mci_writel(host, CLKENA, 0);
3299 	mci_writel(host, CLKSRC, 0);
3300 
3301 	/*
3302 	 * In 2.40a spec, Data offset is changed.
3303 	 * Need to check the version-id and set data-offset for DATA register.
3304 	 */
3305 	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3306 	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3307 
3308 	if (host->data_addr_override)
3309 		host->fifo_reg = host->regs + host->data_addr_override;
3310 	else if (host->verid < DW_MMC_240A)
3311 		host->fifo_reg = host->regs + DATA_OFFSET;
3312 	else
3313 		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3314 
3315 	tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3316 	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3317 			       host->irq_flags, "dw-mci", host);
3318 	if (ret)
3319 		goto err_dmaunmap;
3320 
3321 	/*
3322 	 * Enable interrupts for command done, data over, data empty,
3323 	 * receive ready and error such as transmit, receive timeout, crc error
3324 	 */
3325 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3326 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3327 		   DW_MCI_ERROR_FLAGS);
3328 	/* Enable mci interrupt */
3329 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3330 
3331 	dev_info(host->dev,
3332 		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3333 		 host->irq, width, fifo_size);
3334 
3335 	/* We need at least one slot to succeed */
3336 	ret = dw_mci_init_slot(host);
3337 	if (ret) {
3338 		dev_dbg(host->dev, "slot %d init failed\n", i);
3339 		goto err_dmaunmap;
3340 	}
3341 
3342 	/* Now that slots are all setup, we can enable card detect */
3343 	dw_mci_enable_cd(host);
3344 
3345 	return 0;
3346 
3347 err_dmaunmap:
3348 	if (host->use_dma && host->dma_ops->exit)
3349 		host->dma_ops->exit(host);
3350 
3351 	if (!IS_ERR(host->pdata->rstc))
3352 		reset_control_assert(host->pdata->rstc);
3353 
3354 err_clk_ciu:
3355 	clk_disable_unprepare(host->ciu_clk);
3356 
3357 err_clk_biu:
3358 	clk_disable_unprepare(host->biu_clk);
3359 
3360 	return ret;
3361 }
3362 EXPORT_SYMBOL(dw_mci_probe);
3363 
3364 void dw_mci_remove(struct dw_mci *host)
3365 {
3366 	dev_dbg(host->dev, "remove slot\n");
3367 	if (host->slot)
3368 		dw_mci_cleanup_slot(host->slot);
3369 
3370 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3371 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3372 
3373 	/* disable clock to CIU */
3374 	mci_writel(host, CLKENA, 0);
3375 	mci_writel(host, CLKSRC, 0);
3376 
3377 	if (host->use_dma && host->dma_ops->exit)
3378 		host->dma_ops->exit(host);
3379 
3380 	if (!IS_ERR(host->pdata->rstc))
3381 		reset_control_assert(host->pdata->rstc);
3382 
3383 	clk_disable_unprepare(host->ciu_clk);
3384 	clk_disable_unprepare(host->biu_clk);
3385 }
3386 EXPORT_SYMBOL(dw_mci_remove);
3387 
3388 
3389 
3390 #ifdef CONFIG_PM
3391 int dw_mci_runtime_suspend(struct device *dev)
3392 {
3393 	struct dw_mci *host = dev_get_drvdata(dev);
3394 
3395 	if (host->use_dma && host->dma_ops->exit)
3396 		host->dma_ops->exit(host);
3397 
3398 	clk_disable_unprepare(host->ciu_clk);
3399 
3400 	if (host->slot &&
3401 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3402 	     !mmc_card_is_removable(host->slot->mmc)))
3403 		clk_disable_unprepare(host->biu_clk);
3404 
3405 	return 0;
3406 }
3407 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3408 
3409 int dw_mci_runtime_resume(struct device *dev)
3410 {
3411 	int ret = 0;
3412 	struct dw_mci *host = dev_get_drvdata(dev);
3413 
3414 	if (host->slot &&
3415 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3416 	     !mmc_card_is_removable(host->slot->mmc))) {
3417 		ret = clk_prepare_enable(host->biu_clk);
3418 		if (ret)
3419 			return ret;
3420 	}
3421 
3422 	ret = clk_prepare_enable(host->ciu_clk);
3423 	if (ret)
3424 		goto err;
3425 
3426 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3427 		clk_disable_unprepare(host->ciu_clk);
3428 		ret = -ENODEV;
3429 		goto err;
3430 	}
3431 
3432 	if (host->use_dma && host->dma_ops->init)
3433 		host->dma_ops->init(host);
3434 
3435 	/*
3436 	 * Restore the initial value at FIFOTH register
3437 	 * And Invalidate the prev_blksz with zero
3438 	 */
3439 	mci_writel(host, FIFOTH, host->fifoth_val);
3440 	host->prev_blksz = 0;
3441 
3442 	/* Put in max timeout */
3443 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3444 
3445 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3446 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3447 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3448 		   DW_MCI_ERROR_FLAGS);
3449 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3450 
3451 
3452 	if (host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3453 		dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3454 
3455 	/* Force setup bus to guarantee available clock output */
3456 	dw_mci_setup_bus(host->slot, true);
3457 
3458 	/* Re-enable SDIO interrupts. */
3459 	if (sdio_irq_claimed(host->slot->mmc))
3460 		__dw_mci_enable_sdio_irq(host->slot, 1);
3461 
3462 	/* Now that slots are all setup, we can enable card detect */
3463 	dw_mci_enable_cd(host);
3464 
3465 	return 0;
3466 
3467 err:
3468 	if (host->slot &&
3469 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3470 	     !mmc_card_is_removable(host->slot->mmc)))
3471 		clk_disable_unprepare(host->biu_clk);
3472 
3473 	return ret;
3474 }
3475 EXPORT_SYMBOL(dw_mci_runtime_resume);
3476 #endif /* CONFIG_PM */
3477 
3478 static int __init dw_mci_init(void)
3479 {
3480 	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3481 	return 0;
3482 }
3483 
3484 static void __exit dw_mci_exit(void)
3485 {
3486 }
3487 
3488 module_init(dw_mci_init);
3489 module_exit(dw_mci_exit);
3490 
3491 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3492 MODULE_AUTHOR("NXP Semiconductor VietNam");
3493 MODULE_AUTHOR("Imagination Technologies Ltd");
3494 MODULE_LICENSE("GPL v2");
3495