xref: /openbmc/linux/drivers/mmc/host/dw_mmc.c (revision 0f75c404)
1 /*
2  * Synopsys DesignWare Multimedia Card Interface driver
3  *  (Based on NXP driver for lpc 31xx)
4  *
5  * Copyright (C) 2009 NXP Semiconductors
6  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/mmc/dw_mmc.h>
36 #include <linux/bitops.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/of.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mmc/slot-gpio.h>
41 
42 #include "dw_mmc.h"
43 
44 /* Common flag combinations */
45 #define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
46 				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
47 				 SDMMC_INT_EBE | SDMMC_INT_HLE)
48 #define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
49 				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
50 #define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
51 				 DW_MCI_CMD_ERROR_FLAGS)
52 #define DW_MCI_SEND_STATUS	1
53 #define DW_MCI_RECV_STATUS	2
54 #define DW_MCI_DMA_THRESHOLD	16
55 
56 #define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
57 #define DW_MCI_FREQ_MIN	400000		/* unit: HZ */
58 
59 #define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
60 				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
61 				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
62 				 SDMMC_IDMAC_INT_TI)
63 
64 #define DESC_RING_BUF_SZ	PAGE_SIZE
65 
66 struct idmac_desc_64addr {
67 	u32		des0;	/* Control Descriptor */
68 
69 	u32		des1;	/* Reserved */
70 
71 	u32		des2;	/*Buffer sizes */
72 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
73 	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
74 	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
75 
76 	u32		des3;	/* Reserved */
77 
78 	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
79 	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
80 
81 	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
82 	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
83 };
84 
85 struct idmac_desc {
86 	__le32		des0;	/* Control Descriptor */
87 #define IDMAC_DES0_DIC	BIT(1)
88 #define IDMAC_DES0_LD	BIT(2)
89 #define IDMAC_DES0_FD	BIT(3)
90 #define IDMAC_DES0_CH	BIT(4)
91 #define IDMAC_DES0_ER	BIT(5)
92 #define IDMAC_DES0_CES	BIT(30)
93 #define IDMAC_DES0_OWN	BIT(31)
94 
95 	__le32		des1;	/* Buffer sizes */
96 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
97 	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
98 
99 	__le32		des2;	/* buffer 1 physical address */
100 
101 	__le32		des3;	/* buffer 2 physical address */
102 };
103 
104 /* Each descriptor can transfer up to 4KB of data in chained mode */
105 #define DW_MCI_DESC_DATA_LENGTH	0x1000
106 
107 static bool dw_mci_reset(struct dw_mci *host);
108 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset);
109 static int dw_mci_card_busy(struct mmc_host *mmc);
110 static int dw_mci_get_cd(struct mmc_host *mmc);
111 
112 #if defined(CONFIG_DEBUG_FS)
113 static int dw_mci_req_show(struct seq_file *s, void *v)
114 {
115 	struct dw_mci_slot *slot = s->private;
116 	struct mmc_request *mrq;
117 	struct mmc_command *cmd;
118 	struct mmc_command *stop;
119 	struct mmc_data	*data;
120 
121 	/* Make sure we get a consistent snapshot */
122 	spin_lock_bh(&slot->host->lock);
123 	mrq = slot->mrq;
124 
125 	if (mrq) {
126 		cmd = mrq->cmd;
127 		data = mrq->data;
128 		stop = mrq->stop;
129 
130 		if (cmd)
131 			seq_printf(s,
132 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
133 				   cmd->opcode, cmd->arg, cmd->flags,
134 				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
135 				   cmd->resp[2], cmd->error);
136 		if (data)
137 			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
138 				   data->bytes_xfered, data->blocks,
139 				   data->blksz, data->flags, data->error);
140 		if (stop)
141 			seq_printf(s,
142 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
143 				   stop->opcode, stop->arg, stop->flags,
144 				   stop->resp[0], stop->resp[1], stop->resp[2],
145 				   stop->resp[2], stop->error);
146 	}
147 
148 	spin_unlock_bh(&slot->host->lock);
149 
150 	return 0;
151 }
152 
153 static int dw_mci_req_open(struct inode *inode, struct file *file)
154 {
155 	return single_open(file, dw_mci_req_show, inode->i_private);
156 }
157 
158 static const struct file_operations dw_mci_req_fops = {
159 	.owner		= THIS_MODULE,
160 	.open		= dw_mci_req_open,
161 	.read		= seq_read,
162 	.llseek		= seq_lseek,
163 	.release	= single_release,
164 };
165 
166 static int dw_mci_regs_show(struct seq_file *s, void *v)
167 {
168 	seq_printf(s, "STATUS:\t0x%08x\n", SDMMC_STATUS);
169 	seq_printf(s, "RINTSTS:\t0x%08x\n", SDMMC_RINTSTS);
170 	seq_printf(s, "CMD:\t0x%08x\n", SDMMC_CMD);
171 	seq_printf(s, "CTRL:\t0x%08x\n", SDMMC_CTRL);
172 	seq_printf(s, "INTMASK:\t0x%08x\n", SDMMC_INTMASK);
173 	seq_printf(s, "CLKENA:\t0x%08x\n", SDMMC_CLKENA);
174 
175 	return 0;
176 }
177 
178 static int dw_mci_regs_open(struct inode *inode, struct file *file)
179 {
180 	return single_open(file, dw_mci_regs_show, inode->i_private);
181 }
182 
183 static const struct file_operations dw_mci_regs_fops = {
184 	.owner		= THIS_MODULE,
185 	.open		= dw_mci_regs_open,
186 	.read		= seq_read,
187 	.llseek		= seq_lseek,
188 	.release	= single_release,
189 };
190 
191 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
192 {
193 	struct mmc_host	*mmc = slot->mmc;
194 	struct dw_mci *host = slot->host;
195 	struct dentry *root;
196 	struct dentry *node;
197 
198 	root = mmc->debugfs_root;
199 	if (!root)
200 		return;
201 
202 	node = debugfs_create_file("regs", S_IRUSR, root, host,
203 				   &dw_mci_regs_fops);
204 	if (!node)
205 		goto err;
206 
207 	node = debugfs_create_file("req", S_IRUSR, root, slot,
208 				   &dw_mci_req_fops);
209 	if (!node)
210 		goto err;
211 
212 	node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
213 	if (!node)
214 		goto err;
215 
216 	node = debugfs_create_x32("pending_events", S_IRUSR, root,
217 				  (u32 *)&host->pending_events);
218 	if (!node)
219 		goto err;
220 
221 	node = debugfs_create_x32("completed_events", S_IRUSR, root,
222 				  (u32 *)&host->completed_events);
223 	if (!node)
224 		goto err;
225 
226 	return;
227 
228 err:
229 	dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
230 }
231 #endif /* defined(CONFIG_DEBUG_FS) */
232 
233 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg);
234 
235 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
236 {
237 	struct mmc_data	*data;
238 	struct dw_mci_slot *slot = mmc_priv(mmc);
239 	struct dw_mci *host = slot->host;
240 	u32 cmdr;
241 
242 	cmd->error = -EINPROGRESS;
243 	cmdr = cmd->opcode;
244 
245 	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
246 	    cmd->opcode == MMC_GO_IDLE_STATE ||
247 	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
248 	    (cmd->opcode == SD_IO_RW_DIRECT &&
249 	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
250 		cmdr |= SDMMC_CMD_STOP;
251 	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
252 		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
253 
254 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
255 		u32 clk_en_a;
256 
257 		/* Special bit makes CMD11 not die */
258 		cmdr |= SDMMC_CMD_VOLT_SWITCH;
259 
260 		/* Change state to continue to handle CMD11 weirdness */
261 		WARN_ON(slot->host->state != STATE_SENDING_CMD);
262 		slot->host->state = STATE_SENDING_CMD11;
263 
264 		/*
265 		 * We need to disable low power mode (automatic clock stop)
266 		 * while doing voltage switch so we don't confuse the card,
267 		 * since stopping the clock is a specific part of the UHS
268 		 * voltage change dance.
269 		 *
270 		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
271 		 * unconditionally turned back on in dw_mci_setup_bus() if it's
272 		 * ever called with a non-zero clock.  That shouldn't happen
273 		 * until the voltage change is all done.
274 		 */
275 		clk_en_a = mci_readl(host, CLKENA);
276 		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
277 		mci_writel(host, CLKENA, clk_en_a);
278 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
279 			     SDMMC_CMD_PRV_DAT_WAIT, 0);
280 	}
281 
282 	if (cmd->flags & MMC_RSP_PRESENT) {
283 		/* We expect a response, so set this bit */
284 		cmdr |= SDMMC_CMD_RESP_EXP;
285 		if (cmd->flags & MMC_RSP_136)
286 			cmdr |= SDMMC_CMD_RESP_LONG;
287 	}
288 
289 	if (cmd->flags & MMC_RSP_CRC)
290 		cmdr |= SDMMC_CMD_RESP_CRC;
291 
292 	data = cmd->data;
293 	if (data) {
294 		cmdr |= SDMMC_CMD_DAT_EXP;
295 		if (data->flags & MMC_DATA_WRITE)
296 			cmdr |= SDMMC_CMD_DAT_WR;
297 	}
298 
299 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
300 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
301 
302 	return cmdr;
303 }
304 
305 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
306 {
307 	struct mmc_command *stop;
308 	u32 cmdr;
309 
310 	if (!cmd->data)
311 		return 0;
312 
313 	stop = &host->stop_abort;
314 	cmdr = cmd->opcode;
315 	memset(stop, 0, sizeof(struct mmc_command));
316 
317 	if (cmdr == MMC_READ_SINGLE_BLOCK ||
318 	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
319 	    cmdr == MMC_WRITE_BLOCK ||
320 	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
321 	    cmdr == MMC_SEND_TUNING_BLOCK ||
322 	    cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
323 		stop->opcode = MMC_STOP_TRANSMISSION;
324 		stop->arg = 0;
325 		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
326 	} else if (cmdr == SD_IO_RW_EXTENDED) {
327 		stop->opcode = SD_IO_RW_DIRECT;
328 		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
329 			     ((cmd->arg >> 28) & 0x7);
330 		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
331 	} else {
332 		return 0;
333 	}
334 
335 	cmdr = stop->opcode | SDMMC_CMD_STOP |
336 		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
337 
338 	return cmdr;
339 }
340 
341 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
342 {
343 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
344 
345 	/*
346 	 * Databook says that before issuing a new data transfer command
347 	 * we need to check to see if the card is busy.  Data transfer commands
348 	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
349 	 *
350 	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
351 	 * expected.
352 	 */
353 	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
354 	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
355 		while (mci_readl(host, STATUS) & SDMMC_STATUS_BUSY) {
356 			if (time_after(jiffies, timeout)) {
357 				/* Command will fail; we'll pass error then */
358 				dev_err(host->dev, "Busy; trying anyway\n");
359 				break;
360 			}
361 			udelay(10);
362 		}
363 	}
364 }
365 
366 static void dw_mci_start_command(struct dw_mci *host,
367 				 struct mmc_command *cmd, u32 cmd_flags)
368 {
369 	host->cmd = cmd;
370 	dev_vdbg(host->dev,
371 		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
372 		 cmd->arg, cmd_flags);
373 
374 	mci_writel(host, CMDARG, cmd->arg);
375 	wmb(); /* drain writebuffer */
376 	dw_mci_wait_while_busy(host, cmd_flags);
377 
378 	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
379 }
380 
381 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
382 {
383 	struct mmc_command *stop = data->stop ? data->stop : &host->stop_abort;
384 
385 	dw_mci_start_command(host, stop, host->stop_cmdr);
386 }
387 
388 /* DMA interface functions */
389 static void dw_mci_stop_dma(struct dw_mci *host)
390 {
391 	if (host->using_dma) {
392 		host->dma_ops->stop(host);
393 		host->dma_ops->cleanup(host);
394 	}
395 
396 	/* Data transfer was stopped by the interrupt handler */
397 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
398 }
399 
400 static int dw_mci_get_dma_dir(struct mmc_data *data)
401 {
402 	if (data->flags & MMC_DATA_WRITE)
403 		return DMA_TO_DEVICE;
404 	else
405 		return DMA_FROM_DEVICE;
406 }
407 
408 static void dw_mci_dma_cleanup(struct dw_mci *host)
409 {
410 	struct mmc_data *data = host->data;
411 
412 	if (data)
413 		if (!data->host_cookie)
414 			dma_unmap_sg(host->dev,
415 				     data->sg,
416 				     data->sg_len,
417 				     dw_mci_get_dma_dir(data));
418 }
419 
420 static void dw_mci_idmac_reset(struct dw_mci *host)
421 {
422 	u32 bmod = mci_readl(host, BMOD);
423 	/* Software reset of DMA */
424 	bmod |= SDMMC_IDMAC_SWRESET;
425 	mci_writel(host, BMOD, bmod);
426 }
427 
428 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
429 {
430 	u32 temp;
431 
432 	/* Disable and reset the IDMAC interface */
433 	temp = mci_readl(host, CTRL);
434 	temp &= ~SDMMC_CTRL_USE_IDMAC;
435 	temp |= SDMMC_CTRL_DMA_RESET;
436 	mci_writel(host, CTRL, temp);
437 
438 	/* Stop the IDMAC running */
439 	temp = mci_readl(host, BMOD);
440 	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
441 	temp |= SDMMC_IDMAC_SWRESET;
442 	mci_writel(host, BMOD, temp);
443 }
444 
445 static void dw_mci_dmac_complete_dma(void *arg)
446 {
447 	struct dw_mci *host = arg;
448 	struct mmc_data *data = host->data;
449 
450 	dev_vdbg(host->dev, "DMA complete\n");
451 
452 	if ((host->use_dma == TRANS_MODE_EDMAC) &&
453 	    data && (data->flags & MMC_DATA_READ))
454 		/* Invalidate cache after read */
455 		dma_sync_sg_for_cpu(mmc_dev(host->cur_slot->mmc),
456 				    data->sg,
457 				    data->sg_len,
458 				    DMA_FROM_DEVICE);
459 
460 	host->dma_ops->cleanup(host);
461 
462 	/*
463 	 * If the card was removed, data will be NULL. No point in trying to
464 	 * send the stop command or waiting for NBUSY in this case.
465 	 */
466 	if (data) {
467 		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
468 		tasklet_schedule(&host->tasklet);
469 	}
470 }
471 
472 static int dw_mci_idmac_init(struct dw_mci *host)
473 {
474 	int i;
475 
476 	if (host->dma_64bit_address == 1) {
477 		struct idmac_desc_64addr *p;
478 		/* Number of descriptors in the ring buffer */
479 		host->ring_size =
480 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
481 
482 		/* Forward link the descriptor list */
483 		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
484 								i++, p++) {
485 			p->des6 = (host->sg_dma +
486 					(sizeof(struct idmac_desc_64addr) *
487 							(i + 1))) & 0xffffffff;
488 
489 			p->des7 = (u64)(host->sg_dma +
490 					(sizeof(struct idmac_desc_64addr) *
491 							(i + 1))) >> 32;
492 			/* Initialize reserved and buffer size fields to "0" */
493 			p->des1 = 0;
494 			p->des2 = 0;
495 			p->des3 = 0;
496 		}
497 
498 		/* Set the last descriptor as the end-of-ring descriptor */
499 		p->des6 = host->sg_dma & 0xffffffff;
500 		p->des7 = (u64)host->sg_dma >> 32;
501 		p->des0 = IDMAC_DES0_ER;
502 
503 	} else {
504 		struct idmac_desc *p;
505 		/* Number of descriptors in the ring buffer */
506 		host->ring_size =
507 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
508 
509 		/* Forward link the descriptor list */
510 		for (i = 0, p = host->sg_cpu;
511 		     i < host->ring_size - 1;
512 		     i++, p++) {
513 			p->des3 = cpu_to_le32(host->sg_dma +
514 					(sizeof(struct idmac_desc) * (i + 1)));
515 			p->des1 = 0;
516 		}
517 
518 		/* Set the last descriptor as the end-of-ring descriptor */
519 		p->des3 = cpu_to_le32(host->sg_dma);
520 		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
521 	}
522 
523 	dw_mci_idmac_reset(host);
524 
525 	if (host->dma_64bit_address == 1) {
526 		/* Mask out interrupts - get Tx & Rx complete only */
527 		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
528 		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
529 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
530 
531 		/* Set the descriptor base address */
532 		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
533 		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
534 
535 	} else {
536 		/* Mask out interrupts - get Tx & Rx complete only */
537 		mci_writel(host, IDSTS, IDMAC_INT_CLR);
538 		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
539 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
540 
541 		/* Set the descriptor base address */
542 		mci_writel(host, DBADDR, host->sg_dma);
543 	}
544 
545 	return 0;
546 }
547 
548 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
549 					 struct mmc_data *data,
550 					 unsigned int sg_len)
551 {
552 	unsigned int desc_len;
553 	struct idmac_desc_64addr *desc_first, *desc_last, *desc;
554 	unsigned long timeout;
555 	int i;
556 
557 	desc_first = desc_last = desc = host->sg_cpu;
558 
559 	for (i = 0; i < sg_len; i++) {
560 		unsigned int length = sg_dma_len(&data->sg[i]);
561 
562 		u64 mem_addr = sg_dma_address(&data->sg[i]);
563 
564 		for ( ; length ; desc++) {
565 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
566 				   length : DW_MCI_DESC_DATA_LENGTH;
567 
568 			length -= desc_len;
569 
570 			/*
571 			 * Wait for the former clear OWN bit operation
572 			 * of IDMAC to make sure that this descriptor
573 			 * isn't still owned by IDMAC as IDMAC's write
574 			 * ops and CPU's read ops are asynchronous.
575 			 */
576 			timeout = jiffies + msecs_to_jiffies(100);
577 			while (readl(&desc->des0) & IDMAC_DES0_OWN) {
578 				if (time_after(jiffies, timeout))
579 					goto err_own_bit;
580 				udelay(10);
581 			}
582 
583 			/*
584 			 * Set the OWN bit and disable interrupts
585 			 * for this descriptor
586 			 */
587 			desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
588 						IDMAC_DES0_CH;
589 
590 			/* Buffer length */
591 			IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
592 
593 			/* Physical address to DMA to/from */
594 			desc->des4 = mem_addr & 0xffffffff;
595 			desc->des5 = mem_addr >> 32;
596 
597 			/* Update physical address for the next desc */
598 			mem_addr += desc_len;
599 
600 			/* Save pointer to the last descriptor */
601 			desc_last = desc;
602 		}
603 	}
604 
605 	/* Set first descriptor */
606 	desc_first->des0 |= IDMAC_DES0_FD;
607 
608 	/* Set last descriptor */
609 	desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
610 	desc_last->des0 |= IDMAC_DES0_LD;
611 
612 	return 0;
613 err_own_bit:
614 	/* restore the descriptor chain as it's polluted */
615 	dev_dbg(host->dev, "desciptor is still owned by IDMAC.\n");
616 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
617 	dw_mci_idmac_init(host);
618 	return -EINVAL;
619 }
620 
621 
622 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
623 					 struct mmc_data *data,
624 					 unsigned int sg_len)
625 {
626 	unsigned int desc_len;
627 	struct idmac_desc *desc_first, *desc_last, *desc;
628 	unsigned long timeout;
629 	int i;
630 
631 	desc_first = desc_last = desc = host->sg_cpu;
632 
633 	for (i = 0; i < sg_len; i++) {
634 		unsigned int length = sg_dma_len(&data->sg[i]);
635 
636 		u32 mem_addr = sg_dma_address(&data->sg[i]);
637 
638 		for ( ; length ; desc++) {
639 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
640 				   length : DW_MCI_DESC_DATA_LENGTH;
641 
642 			length -= desc_len;
643 
644 			/*
645 			 * Wait for the former clear OWN bit operation
646 			 * of IDMAC to make sure that this descriptor
647 			 * isn't still owned by IDMAC as IDMAC's write
648 			 * ops and CPU's read ops are asynchronous.
649 			 */
650 			timeout = jiffies + msecs_to_jiffies(100);
651 			while (readl(&desc->des0) &
652 			       cpu_to_le32(IDMAC_DES0_OWN)) {
653 				if (time_after(jiffies, timeout))
654 					goto err_own_bit;
655 				udelay(10);
656 			}
657 
658 			/*
659 			 * Set the OWN bit and disable interrupts
660 			 * for this descriptor
661 			 */
662 			desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
663 						 IDMAC_DES0_DIC |
664 						 IDMAC_DES0_CH);
665 
666 			/* Buffer length */
667 			IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
668 
669 			/* Physical address to DMA to/from */
670 			desc->des2 = cpu_to_le32(mem_addr);
671 
672 			/* Update physical address for the next desc */
673 			mem_addr += desc_len;
674 
675 			/* Save pointer to the last descriptor */
676 			desc_last = desc;
677 		}
678 	}
679 
680 	/* Set first descriptor */
681 	desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
682 
683 	/* Set last descriptor */
684 	desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
685 				       IDMAC_DES0_DIC));
686 	desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
687 
688 	return 0;
689 err_own_bit:
690 	/* restore the descriptor chain as it's polluted */
691 	dev_dbg(host->dev, "desciptor is still owned by IDMAC.\n");
692 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
693 	dw_mci_idmac_init(host);
694 	return -EINVAL;
695 }
696 
697 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
698 {
699 	u32 temp;
700 	int ret;
701 
702 	if (host->dma_64bit_address == 1)
703 		ret = dw_mci_prepare_desc64(host, host->data, sg_len);
704 	else
705 		ret = dw_mci_prepare_desc32(host, host->data, sg_len);
706 
707 	if (ret)
708 		goto out;
709 
710 	/* drain writebuffer */
711 	wmb();
712 
713 	/* Make sure to reset DMA in case we did PIO before this */
714 	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
715 	dw_mci_idmac_reset(host);
716 
717 	/* Select IDMAC interface */
718 	temp = mci_readl(host, CTRL);
719 	temp |= SDMMC_CTRL_USE_IDMAC;
720 	mci_writel(host, CTRL, temp);
721 
722 	/* drain writebuffer */
723 	wmb();
724 
725 	/* Enable the IDMAC */
726 	temp = mci_readl(host, BMOD);
727 	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
728 	mci_writel(host, BMOD, temp);
729 
730 	/* Start it running */
731 	mci_writel(host, PLDMND, 1);
732 
733 out:
734 	return ret;
735 }
736 
737 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
738 	.init = dw_mci_idmac_init,
739 	.start = dw_mci_idmac_start_dma,
740 	.stop = dw_mci_idmac_stop_dma,
741 	.complete = dw_mci_dmac_complete_dma,
742 	.cleanup = dw_mci_dma_cleanup,
743 };
744 
745 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
746 {
747 	dmaengine_terminate_async(host->dms->ch);
748 }
749 
750 static int dw_mci_edmac_start_dma(struct dw_mci *host,
751 					    unsigned int sg_len)
752 {
753 	struct dma_slave_config cfg;
754 	struct dma_async_tx_descriptor *desc = NULL;
755 	struct scatterlist *sgl = host->data->sg;
756 	const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
757 	u32 sg_elems = host->data->sg_len;
758 	u32 fifoth_val;
759 	u32 fifo_offset = host->fifo_reg - host->regs;
760 	int ret = 0;
761 
762 	/* Set external dma config: burst size, burst width */
763 	cfg.dst_addr = host->phy_regs + fifo_offset;
764 	cfg.src_addr = cfg.dst_addr;
765 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
766 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
767 
768 	/* Match burst msize with external dma config */
769 	fifoth_val = mci_readl(host, FIFOTH);
770 	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
771 	cfg.src_maxburst = cfg.dst_maxburst;
772 
773 	if (host->data->flags & MMC_DATA_WRITE)
774 		cfg.direction = DMA_MEM_TO_DEV;
775 	else
776 		cfg.direction = DMA_DEV_TO_MEM;
777 
778 	ret = dmaengine_slave_config(host->dms->ch, &cfg);
779 	if (ret) {
780 		dev_err(host->dev, "Failed to config edmac.\n");
781 		return -EBUSY;
782 	}
783 
784 	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
785 				       sg_len, cfg.direction,
786 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
787 	if (!desc) {
788 		dev_err(host->dev, "Can't prepare slave sg.\n");
789 		return -EBUSY;
790 	}
791 
792 	/* Set dw_mci_dmac_complete_dma as callback */
793 	desc->callback = dw_mci_dmac_complete_dma;
794 	desc->callback_param = (void *)host;
795 	dmaengine_submit(desc);
796 
797 	/* Flush cache before write */
798 	if (host->data->flags & MMC_DATA_WRITE)
799 		dma_sync_sg_for_device(mmc_dev(host->cur_slot->mmc), sgl,
800 				       sg_elems, DMA_TO_DEVICE);
801 
802 	dma_async_issue_pending(host->dms->ch);
803 
804 	return 0;
805 }
806 
807 static int dw_mci_edmac_init(struct dw_mci *host)
808 {
809 	/* Request external dma channel */
810 	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
811 	if (!host->dms)
812 		return -ENOMEM;
813 
814 	host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
815 	if (!host->dms->ch) {
816 		dev_err(host->dev, "Failed to get external DMA channel.\n");
817 		kfree(host->dms);
818 		host->dms = NULL;
819 		return -ENXIO;
820 	}
821 
822 	return 0;
823 }
824 
825 static void dw_mci_edmac_exit(struct dw_mci *host)
826 {
827 	if (host->dms) {
828 		if (host->dms->ch) {
829 			dma_release_channel(host->dms->ch);
830 			host->dms->ch = NULL;
831 		}
832 		kfree(host->dms);
833 		host->dms = NULL;
834 	}
835 }
836 
837 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
838 	.init = dw_mci_edmac_init,
839 	.exit = dw_mci_edmac_exit,
840 	.start = dw_mci_edmac_start_dma,
841 	.stop = dw_mci_edmac_stop_dma,
842 	.complete = dw_mci_dmac_complete_dma,
843 	.cleanup = dw_mci_dma_cleanup,
844 };
845 
846 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
847 				   struct mmc_data *data,
848 				   bool next)
849 {
850 	struct scatterlist *sg;
851 	unsigned int i, sg_len;
852 
853 	if (!next && data->host_cookie)
854 		return data->host_cookie;
855 
856 	/*
857 	 * We don't do DMA on "complex" transfers, i.e. with
858 	 * non-word-aligned buffers or lengths. Also, we don't bother
859 	 * with all the DMA setup overhead for short transfers.
860 	 */
861 	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
862 		return -EINVAL;
863 
864 	if (data->blksz & 3)
865 		return -EINVAL;
866 
867 	for_each_sg(data->sg, sg, data->sg_len, i) {
868 		if (sg->offset & 3 || sg->length & 3)
869 			return -EINVAL;
870 	}
871 
872 	sg_len = dma_map_sg(host->dev,
873 			    data->sg,
874 			    data->sg_len,
875 			    dw_mci_get_dma_dir(data));
876 	if (sg_len == 0)
877 		return -EINVAL;
878 
879 	if (next)
880 		data->host_cookie = sg_len;
881 
882 	return sg_len;
883 }
884 
885 static void dw_mci_pre_req(struct mmc_host *mmc,
886 			   struct mmc_request *mrq,
887 			   bool is_first_req)
888 {
889 	struct dw_mci_slot *slot = mmc_priv(mmc);
890 	struct mmc_data *data = mrq->data;
891 
892 	if (!slot->host->use_dma || !data)
893 		return;
894 
895 	if (data->host_cookie) {
896 		data->host_cookie = 0;
897 		return;
898 	}
899 
900 	if (dw_mci_pre_dma_transfer(slot->host, mrq->data, 1) < 0)
901 		data->host_cookie = 0;
902 }
903 
904 static void dw_mci_post_req(struct mmc_host *mmc,
905 			    struct mmc_request *mrq,
906 			    int err)
907 {
908 	struct dw_mci_slot *slot = mmc_priv(mmc);
909 	struct mmc_data *data = mrq->data;
910 
911 	if (!slot->host->use_dma || !data)
912 		return;
913 
914 	if (data->host_cookie)
915 		dma_unmap_sg(slot->host->dev,
916 			     data->sg,
917 			     data->sg_len,
918 			     dw_mci_get_dma_dir(data));
919 	data->host_cookie = 0;
920 }
921 
922 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
923 {
924 	unsigned int blksz = data->blksz;
925 	const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
926 	u32 fifo_width = 1 << host->data_shift;
927 	u32 blksz_depth = blksz / fifo_width, fifoth_val;
928 	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
929 	int idx = ARRAY_SIZE(mszs) - 1;
930 
931 	/* pio should ship this scenario */
932 	if (!host->use_dma)
933 		return;
934 
935 	tx_wmark = (host->fifo_depth) / 2;
936 	tx_wmark_invers = host->fifo_depth - tx_wmark;
937 
938 	/*
939 	 * MSIZE is '1',
940 	 * if blksz is not a multiple of the FIFO width
941 	 */
942 	if (blksz % fifo_width)
943 		goto done;
944 
945 	do {
946 		if (!((blksz_depth % mszs[idx]) ||
947 		     (tx_wmark_invers % mszs[idx]))) {
948 			msize = idx;
949 			rx_wmark = mszs[idx] - 1;
950 			break;
951 		}
952 	} while (--idx > 0);
953 	/*
954 	 * If idx is '0', it won't be tried
955 	 * Thus, initial values are uesed
956 	 */
957 done:
958 	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
959 	mci_writel(host, FIFOTH, fifoth_val);
960 }
961 
962 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
963 {
964 	unsigned int blksz = data->blksz;
965 	u32 blksz_depth, fifo_depth;
966 	u16 thld_size;
967 	u8 enable;
968 
969 	/*
970 	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
971 	 * in the FIFO region, so we really shouldn't access it).
972 	 */
973 	if (host->verid < DW_MMC_240A ||
974 		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
975 		return;
976 
977 	/*
978 	 * Card write Threshold is introduced since 2.80a
979 	 * It's used when HS400 mode is enabled.
980 	 */
981 	if (data->flags & MMC_DATA_WRITE &&
982 		!(host->timing != MMC_TIMING_MMC_HS400))
983 		return;
984 
985 	if (data->flags & MMC_DATA_WRITE)
986 		enable = SDMMC_CARD_WR_THR_EN;
987 	else
988 		enable = SDMMC_CARD_RD_THR_EN;
989 
990 	if (host->timing != MMC_TIMING_MMC_HS200 &&
991 	    host->timing != MMC_TIMING_UHS_SDR104)
992 		goto disable;
993 
994 	blksz_depth = blksz / (1 << host->data_shift);
995 	fifo_depth = host->fifo_depth;
996 
997 	if (blksz_depth > fifo_depth)
998 		goto disable;
999 
1000 	/*
1001 	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1002 	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1003 	 * Currently just choose blksz.
1004 	 */
1005 	thld_size = blksz;
1006 	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1007 	return;
1008 
1009 disable:
1010 	mci_writel(host, CDTHRCTL, 0);
1011 }
1012 
1013 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1014 {
1015 	unsigned long irqflags;
1016 	int sg_len;
1017 	u32 temp;
1018 
1019 	host->using_dma = 0;
1020 
1021 	/* If we don't have a channel, we can't do DMA */
1022 	if (!host->use_dma)
1023 		return -ENODEV;
1024 
1025 	sg_len = dw_mci_pre_dma_transfer(host, data, 0);
1026 	if (sg_len < 0) {
1027 		host->dma_ops->stop(host);
1028 		return sg_len;
1029 	}
1030 
1031 	host->using_dma = 1;
1032 
1033 	if (host->use_dma == TRANS_MODE_IDMAC)
1034 		dev_vdbg(host->dev,
1035 			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1036 			 (unsigned long)host->sg_cpu,
1037 			 (unsigned long)host->sg_dma,
1038 			 sg_len);
1039 
1040 	/*
1041 	 * Decide the MSIZE and RX/TX Watermark.
1042 	 * If current block size is same with previous size,
1043 	 * no need to update fifoth.
1044 	 */
1045 	if (host->prev_blksz != data->blksz)
1046 		dw_mci_adjust_fifoth(host, data);
1047 
1048 	/* Enable the DMA interface */
1049 	temp = mci_readl(host, CTRL);
1050 	temp |= SDMMC_CTRL_DMA_ENABLE;
1051 	mci_writel(host, CTRL, temp);
1052 
1053 	/* Disable RX/TX IRQs, let DMA handle it */
1054 	spin_lock_irqsave(&host->irq_lock, irqflags);
1055 	temp = mci_readl(host, INTMASK);
1056 	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1057 	mci_writel(host, INTMASK, temp);
1058 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1059 
1060 	if (host->dma_ops->start(host, sg_len)) {
1061 		/* We can't do DMA, try PIO for this one */
1062 		dev_dbg(host->dev,
1063 			"%s: fall back to PIO mode for current transfer\n",
1064 			__func__);
1065 		return -ENODEV;
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1072 {
1073 	unsigned long irqflags;
1074 	int flags = SG_MITER_ATOMIC;
1075 	u32 temp;
1076 
1077 	data->error = -EINPROGRESS;
1078 
1079 	WARN_ON(host->data);
1080 	host->sg = NULL;
1081 	host->data = data;
1082 
1083 	if (data->flags & MMC_DATA_READ)
1084 		host->dir_status = DW_MCI_RECV_STATUS;
1085 	else
1086 		host->dir_status = DW_MCI_SEND_STATUS;
1087 
1088 	dw_mci_ctrl_thld(host, data);
1089 
1090 	if (dw_mci_submit_data_dma(host, data)) {
1091 		if (host->data->flags & MMC_DATA_READ)
1092 			flags |= SG_MITER_TO_SG;
1093 		else
1094 			flags |= SG_MITER_FROM_SG;
1095 
1096 		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1097 		host->sg = data->sg;
1098 		host->part_buf_start = 0;
1099 		host->part_buf_count = 0;
1100 
1101 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1102 
1103 		spin_lock_irqsave(&host->irq_lock, irqflags);
1104 		temp = mci_readl(host, INTMASK);
1105 		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1106 		mci_writel(host, INTMASK, temp);
1107 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1108 
1109 		temp = mci_readl(host, CTRL);
1110 		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1111 		mci_writel(host, CTRL, temp);
1112 
1113 		/*
1114 		 * Use the initial fifoth_val for PIO mode.
1115 		 * If next issued data may be transfered by DMA mode,
1116 		 * prev_blksz should be invalidated.
1117 		 */
1118 		mci_writel(host, FIFOTH, host->fifoth_val);
1119 		host->prev_blksz = 0;
1120 	} else {
1121 		/*
1122 		 * Keep the current block size.
1123 		 * It will be used to decide whether to update
1124 		 * fifoth register next time.
1125 		 */
1126 		host->prev_blksz = data->blksz;
1127 	}
1128 }
1129 
1130 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
1131 {
1132 	struct dw_mci *host = slot->host;
1133 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
1134 	unsigned int cmd_status = 0;
1135 
1136 	mci_writel(host, CMDARG, arg);
1137 	wmb(); /* drain writebuffer */
1138 	dw_mci_wait_while_busy(host, cmd);
1139 	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
1140 
1141 	while (time_before(jiffies, timeout)) {
1142 		cmd_status = mci_readl(host, CMD);
1143 		if (!(cmd_status & SDMMC_CMD_START))
1144 			return;
1145 	}
1146 	dev_err(&slot->mmc->class_dev,
1147 		"Timeout sending command (cmd %#x arg %#x status %#x)\n",
1148 		cmd, arg, cmd_status);
1149 }
1150 
1151 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1152 {
1153 	struct dw_mci *host = slot->host;
1154 	unsigned int clock = slot->clock;
1155 	u32 div;
1156 	u32 clk_en_a;
1157 	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1158 
1159 	/* We must continue to set bit 28 in CMD until the change is complete */
1160 	if (host->state == STATE_WAITING_CMD11_DONE)
1161 		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1162 
1163 	if (!clock) {
1164 		mci_writel(host, CLKENA, 0);
1165 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1166 	} else if (clock != host->current_speed || force_clkinit) {
1167 		div = host->bus_hz / clock;
1168 		if (host->bus_hz % clock && host->bus_hz > clock)
1169 			/*
1170 			 * move the + 1 after the divide to prevent
1171 			 * over-clocking the card.
1172 			 */
1173 			div += 1;
1174 
1175 		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1176 
1177 		if (clock != slot->__clk_old || force_clkinit)
1178 			dev_info(&slot->mmc->class_dev,
1179 				 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1180 				 slot->id, host->bus_hz, clock,
1181 				 div ? ((host->bus_hz / div) >> 1) :
1182 				 host->bus_hz, div);
1183 
1184 		/* disable clock */
1185 		mci_writel(host, CLKENA, 0);
1186 		mci_writel(host, CLKSRC, 0);
1187 
1188 		/* inform CIU */
1189 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1190 
1191 		/* set clock to desired speed */
1192 		mci_writel(host, CLKDIV, div);
1193 
1194 		/* inform CIU */
1195 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1196 
1197 		/* enable clock; only low power if no SDIO */
1198 		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1199 		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1200 			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1201 		mci_writel(host, CLKENA, clk_en_a);
1202 
1203 		/* inform CIU */
1204 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1205 
1206 		/* keep the last clock value that was requested from core */
1207 		slot->__clk_old = clock;
1208 	}
1209 
1210 	host->current_speed = clock;
1211 
1212 	/* Set the current slot bus width */
1213 	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1214 }
1215 
1216 static void __dw_mci_start_request(struct dw_mci *host,
1217 				   struct dw_mci_slot *slot,
1218 				   struct mmc_command *cmd)
1219 {
1220 	struct mmc_request *mrq;
1221 	struct mmc_data	*data;
1222 	u32 cmdflags;
1223 
1224 	mrq = slot->mrq;
1225 
1226 	host->cur_slot = slot;
1227 	host->mrq = mrq;
1228 
1229 	host->pending_events = 0;
1230 	host->completed_events = 0;
1231 	host->cmd_status = 0;
1232 	host->data_status = 0;
1233 	host->dir_status = 0;
1234 
1235 	data = cmd->data;
1236 	if (data) {
1237 		mci_writel(host, TMOUT, 0xFFFFFFFF);
1238 		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1239 		mci_writel(host, BLKSIZ, data->blksz);
1240 	}
1241 
1242 	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1243 
1244 	/* this is the first command, send the initialization clock */
1245 	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1246 		cmdflags |= SDMMC_CMD_INIT;
1247 
1248 	if (data) {
1249 		dw_mci_submit_data(host, data);
1250 		wmb(); /* drain writebuffer */
1251 	}
1252 
1253 	dw_mci_start_command(host, cmd, cmdflags);
1254 
1255 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1256 		unsigned long irqflags;
1257 
1258 		/*
1259 		 * Databook says to fail after 2ms w/ no response, but evidence
1260 		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1261 		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1262 		 * is just about to roll over.
1263 		 *
1264 		 * We do this whole thing under spinlock and only if the
1265 		 * command hasn't already completed (indicating the the irq
1266 		 * already ran so we don't want the timeout).
1267 		 */
1268 		spin_lock_irqsave(&host->irq_lock, irqflags);
1269 		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1270 			mod_timer(&host->cmd11_timer,
1271 				jiffies + msecs_to_jiffies(500) + 1);
1272 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1273 	}
1274 
1275 	if (mrq->stop)
1276 		host->stop_cmdr = dw_mci_prepare_command(slot->mmc, mrq->stop);
1277 	else
1278 		host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1279 }
1280 
1281 static void dw_mci_start_request(struct dw_mci *host,
1282 				 struct dw_mci_slot *slot)
1283 {
1284 	struct mmc_request *mrq = slot->mrq;
1285 	struct mmc_command *cmd;
1286 
1287 	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1288 	__dw_mci_start_request(host, slot, cmd);
1289 }
1290 
1291 /* must be called with host->lock held */
1292 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1293 				 struct mmc_request *mrq)
1294 {
1295 	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1296 		 host->state);
1297 
1298 	slot->mrq = mrq;
1299 
1300 	if (host->state == STATE_WAITING_CMD11_DONE) {
1301 		dev_warn(&slot->mmc->class_dev,
1302 			 "Voltage change didn't complete\n");
1303 		/*
1304 		 * this case isn't expected to happen, so we can
1305 		 * either crash here or just try to continue on
1306 		 * in the closest possible state
1307 		 */
1308 		host->state = STATE_IDLE;
1309 	}
1310 
1311 	if (host->state == STATE_IDLE) {
1312 		host->state = STATE_SENDING_CMD;
1313 		dw_mci_start_request(host, slot);
1314 	} else {
1315 		list_add_tail(&slot->queue_node, &host->queue);
1316 	}
1317 }
1318 
1319 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1320 {
1321 	struct dw_mci_slot *slot = mmc_priv(mmc);
1322 	struct dw_mci *host = slot->host;
1323 
1324 	WARN_ON(slot->mrq);
1325 
1326 	/*
1327 	 * The check for card presence and queueing of the request must be
1328 	 * atomic, otherwise the card could be removed in between and the
1329 	 * request wouldn't fail until another card was inserted.
1330 	 */
1331 
1332 	if (!dw_mci_get_cd(mmc)) {
1333 		mrq->cmd->error = -ENOMEDIUM;
1334 		mmc_request_done(mmc, mrq);
1335 		return;
1336 	}
1337 
1338 	spin_lock_bh(&host->lock);
1339 
1340 	dw_mci_queue_request(host, slot, mrq);
1341 
1342 	spin_unlock_bh(&host->lock);
1343 }
1344 
1345 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1346 {
1347 	struct dw_mci_slot *slot = mmc_priv(mmc);
1348 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1349 	u32 regs;
1350 	int ret;
1351 
1352 	switch (ios->bus_width) {
1353 	case MMC_BUS_WIDTH_4:
1354 		slot->ctype = SDMMC_CTYPE_4BIT;
1355 		break;
1356 	case MMC_BUS_WIDTH_8:
1357 		slot->ctype = SDMMC_CTYPE_8BIT;
1358 		break;
1359 	default:
1360 		/* set default 1 bit mode */
1361 		slot->ctype = SDMMC_CTYPE_1BIT;
1362 	}
1363 
1364 	regs = mci_readl(slot->host, UHS_REG);
1365 
1366 	/* DDR mode set */
1367 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1368 	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1369 	    ios->timing == MMC_TIMING_MMC_HS400)
1370 		regs |= ((0x1 << slot->id) << 16);
1371 	else
1372 		regs &= ~((0x1 << slot->id) << 16);
1373 
1374 	mci_writel(slot->host, UHS_REG, regs);
1375 	slot->host->timing = ios->timing;
1376 
1377 	/*
1378 	 * Use mirror of ios->clock to prevent race with mmc
1379 	 * core ios update when finding the minimum.
1380 	 */
1381 	slot->clock = ios->clock;
1382 
1383 	if (drv_data && drv_data->set_ios)
1384 		drv_data->set_ios(slot->host, ios);
1385 
1386 	switch (ios->power_mode) {
1387 	case MMC_POWER_UP:
1388 		if (!IS_ERR(mmc->supply.vmmc)) {
1389 			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1390 					ios->vdd);
1391 			if (ret) {
1392 				dev_err(slot->host->dev,
1393 					"failed to enable vmmc regulator\n");
1394 				/*return, if failed turn on vmmc*/
1395 				return;
1396 			}
1397 		}
1398 		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1399 		regs = mci_readl(slot->host, PWREN);
1400 		regs |= (1 << slot->id);
1401 		mci_writel(slot->host, PWREN, regs);
1402 		break;
1403 	case MMC_POWER_ON:
1404 		if (!slot->host->vqmmc_enabled) {
1405 			if (!IS_ERR(mmc->supply.vqmmc)) {
1406 				ret = regulator_enable(mmc->supply.vqmmc);
1407 				if (ret < 0)
1408 					dev_err(slot->host->dev,
1409 						"failed to enable vqmmc\n");
1410 				else
1411 					slot->host->vqmmc_enabled = true;
1412 
1413 			} else {
1414 				/* Keep track so we don't reset again */
1415 				slot->host->vqmmc_enabled = true;
1416 			}
1417 
1418 			/* Reset our state machine after powering on */
1419 			dw_mci_ctrl_reset(slot->host,
1420 					  SDMMC_CTRL_ALL_RESET_FLAGS);
1421 		}
1422 
1423 		/* Adjust clock / bus width after power is up */
1424 		dw_mci_setup_bus(slot, false);
1425 
1426 		break;
1427 	case MMC_POWER_OFF:
1428 		/* Turn clock off before power goes down */
1429 		dw_mci_setup_bus(slot, false);
1430 
1431 		if (!IS_ERR(mmc->supply.vmmc))
1432 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1433 
1434 		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1435 			regulator_disable(mmc->supply.vqmmc);
1436 		slot->host->vqmmc_enabled = false;
1437 
1438 		regs = mci_readl(slot->host, PWREN);
1439 		regs &= ~(1 << slot->id);
1440 		mci_writel(slot->host, PWREN, regs);
1441 		break;
1442 	default:
1443 		break;
1444 	}
1445 
1446 	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1447 		slot->host->state = STATE_IDLE;
1448 }
1449 
1450 static int dw_mci_card_busy(struct mmc_host *mmc)
1451 {
1452 	struct dw_mci_slot *slot = mmc_priv(mmc);
1453 	u32 status;
1454 
1455 	/*
1456 	 * Check the busy bit which is low when DAT[3:0]
1457 	 * (the data lines) are 0000
1458 	 */
1459 	status = mci_readl(slot->host, STATUS);
1460 
1461 	return !!(status & SDMMC_STATUS_BUSY);
1462 }
1463 
1464 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1465 {
1466 	struct dw_mci_slot *slot = mmc_priv(mmc);
1467 	struct dw_mci *host = slot->host;
1468 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1469 	u32 uhs;
1470 	u32 v18 = SDMMC_UHS_18V << slot->id;
1471 	int ret;
1472 
1473 	if (drv_data && drv_data->switch_voltage)
1474 		return drv_data->switch_voltage(mmc, ios);
1475 
1476 	/*
1477 	 * Program the voltage.  Note that some instances of dw_mmc may use
1478 	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1479 	 * does no harm but you need to set the regulator directly.  Try both.
1480 	 */
1481 	uhs = mci_readl(host, UHS_REG);
1482 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1483 		uhs &= ~v18;
1484 	else
1485 		uhs |= v18;
1486 
1487 	if (!IS_ERR(mmc->supply.vqmmc)) {
1488 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1489 
1490 		if (ret) {
1491 			dev_dbg(&mmc->class_dev,
1492 					 "Regulator set error %d - %s V\n",
1493 					 ret, uhs & v18 ? "1.8" : "3.3");
1494 			return ret;
1495 		}
1496 	}
1497 	mci_writel(host, UHS_REG, uhs);
1498 
1499 	return 0;
1500 }
1501 
1502 static int dw_mci_get_ro(struct mmc_host *mmc)
1503 {
1504 	int read_only;
1505 	struct dw_mci_slot *slot = mmc_priv(mmc);
1506 	int gpio_ro = mmc_gpio_get_ro(mmc);
1507 
1508 	/* Use platform get_ro function, else try on board write protect */
1509 	if (gpio_ro >= 0)
1510 		read_only = gpio_ro;
1511 	else
1512 		read_only =
1513 			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1514 
1515 	dev_dbg(&mmc->class_dev, "card is %s\n",
1516 		read_only ? "read-only" : "read-write");
1517 
1518 	return read_only;
1519 }
1520 
1521 static int dw_mci_get_cd(struct mmc_host *mmc)
1522 {
1523 	int present;
1524 	struct dw_mci_slot *slot = mmc_priv(mmc);
1525 	struct dw_mci *host = slot->host;
1526 	int gpio_cd = mmc_gpio_get_cd(mmc);
1527 
1528 	/* Use platform get_cd function, else try onboard card detect */
1529 	if ((mmc->caps & MMC_CAP_NEEDS_POLL) || !mmc_card_is_removable(mmc))
1530 		present = 1;
1531 	else if (gpio_cd >= 0)
1532 		present = gpio_cd;
1533 	else
1534 		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
1535 			== 0 ? 1 : 0;
1536 
1537 	spin_lock_bh(&host->lock);
1538 	if (present) {
1539 		set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1540 		dev_dbg(&mmc->class_dev, "card is present\n");
1541 	} else {
1542 		clear_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1543 		dev_dbg(&mmc->class_dev, "card is not present\n");
1544 	}
1545 	spin_unlock_bh(&host->lock);
1546 
1547 	return present;
1548 }
1549 
1550 static void dw_mci_hw_reset(struct mmc_host *mmc)
1551 {
1552 	struct dw_mci_slot *slot = mmc_priv(mmc);
1553 	struct dw_mci *host = slot->host;
1554 	int reset;
1555 
1556 	if (host->use_dma == TRANS_MODE_IDMAC)
1557 		dw_mci_idmac_reset(host);
1558 
1559 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1560 				     SDMMC_CTRL_FIFO_RESET))
1561 		return;
1562 
1563 	/*
1564 	 * According to eMMC spec, card reset procedure:
1565 	 * tRstW >= 1us:   RST_n pulse width
1566 	 * tRSCA >= 200us: RST_n to Command time
1567 	 * tRSTH >= 1us:   RST_n high period
1568 	 */
1569 	reset = mci_readl(host, RST_N);
1570 	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1571 	mci_writel(host, RST_N, reset);
1572 	usleep_range(1, 2);
1573 	reset |= SDMMC_RST_HWACTIVE << slot->id;
1574 	mci_writel(host, RST_N, reset);
1575 	usleep_range(200, 300);
1576 }
1577 
1578 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1579 {
1580 	struct dw_mci_slot *slot = mmc_priv(mmc);
1581 	struct dw_mci *host = slot->host;
1582 
1583 	/*
1584 	 * Low power mode will stop the card clock when idle.  According to the
1585 	 * description of the CLKENA register we should disable low power mode
1586 	 * for SDIO cards if we need SDIO interrupts to work.
1587 	 */
1588 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1589 		const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1590 		u32 clk_en_a_old;
1591 		u32 clk_en_a;
1592 
1593 		clk_en_a_old = mci_readl(host, CLKENA);
1594 
1595 		if (card->type == MMC_TYPE_SDIO ||
1596 		    card->type == MMC_TYPE_SD_COMBO) {
1597 			set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1598 			clk_en_a = clk_en_a_old & ~clken_low_pwr;
1599 		} else {
1600 			clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1601 			clk_en_a = clk_en_a_old | clken_low_pwr;
1602 		}
1603 
1604 		if (clk_en_a != clk_en_a_old) {
1605 			mci_writel(host, CLKENA, clk_en_a);
1606 			mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1607 				     SDMMC_CMD_PRV_DAT_WAIT, 0);
1608 		}
1609 	}
1610 }
1611 
1612 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1613 {
1614 	struct dw_mci_slot *slot = mmc_priv(mmc);
1615 	struct dw_mci *host = slot->host;
1616 	unsigned long irqflags;
1617 	u32 int_mask;
1618 
1619 	spin_lock_irqsave(&host->irq_lock, irqflags);
1620 
1621 	/* Enable/disable Slot Specific SDIO interrupt */
1622 	int_mask = mci_readl(host, INTMASK);
1623 	if (enb)
1624 		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1625 	else
1626 		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1627 	mci_writel(host, INTMASK, int_mask);
1628 
1629 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1630 }
1631 
1632 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1633 {
1634 	struct dw_mci_slot *slot = mmc_priv(mmc);
1635 	struct dw_mci *host = slot->host;
1636 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1637 	int err = -EINVAL;
1638 
1639 	if (drv_data && drv_data->execute_tuning)
1640 		err = drv_data->execute_tuning(slot, opcode);
1641 	return err;
1642 }
1643 
1644 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1645 				       struct mmc_ios *ios)
1646 {
1647 	struct dw_mci_slot *slot = mmc_priv(mmc);
1648 	struct dw_mci *host = slot->host;
1649 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1650 
1651 	if (drv_data && drv_data->prepare_hs400_tuning)
1652 		return drv_data->prepare_hs400_tuning(host, ios);
1653 
1654 	return 0;
1655 }
1656 
1657 static const struct mmc_host_ops dw_mci_ops = {
1658 	.request		= dw_mci_request,
1659 	.pre_req		= dw_mci_pre_req,
1660 	.post_req		= dw_mci_post_req,
1661 	.set_ios		= dw_mci_set_ios,
1662 	.get_ro			= dw_mci_get_ro,
1663 	.get_cd			= dw_mci_get_cd,
1664 	.hw_reset               = dw_mci_hw_reset,
1665 	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1666 	.execute_tuning		= dw_mci_execute_tuning,
1667 	.card_busy		= dw_mci_card_busy,
1668 	.start_signal_voltage_switch = dw_mci_switch_voltage,
1669 	.init_card		= dw_mci_init_card,
1670 	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1671 };
1672 
1673 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1674 	__releases(&host->lock)
1675 	__acquires(&host->lock)
1676 {
1677 	struct dw_mci_slot *slot;
1678 	struct mmc_host	*prev_mmc = host->cur_slot->mmc;
1679 
1680 	WARN_ON(host->cmd || host->data);
1681 
1682 	host->cur_slot->mrq = NULL;
1683 	host->mrq = NULL;
1684 	if (!list_empty(&host->queue)) {
1685 		slot = list_entry(host->queue.next,
1686 				  struct dw_mci_slot, queue_node);
1687 		list_del(&slot->queue_node);
1688 		dev_vdbg(host->dev, "list not empty: %s is next\n",
1689 			 mmc_hostname(slot->mmc));
1690 		host->state = STATE_SENDING_CMD;
1691 		dw_mci_start_request(host, slot);
1692 	} else {
1693 		dev_vdbg(host->dev, "list empty\n");
1694 
1695 		if (host->state == STATE_SENDING_CMD11)
1696 			host->state = STATE_WAITING_CMD11_DONE;
1697 		else
1698 			host->state = STATE_IDLE;
1699 	}
1700 
1701 	spin_unlock(&host->lock);
1702 	mmc_request_done(prev_mmc, mrq);
1703 	spin_lock(&host->lock);
1704 }
1705 
1706 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1707 {
1708 	u32 status = host->cmd_status;
1709 
1710 	host->cmd_status = 0;
1711 
1712 	/* Read the response from the card (up to 16 bytes) */
1713 	if (cmd->flags & MMC_RSP_PRESENT) {
1714 		if (cmd->flags & MMC_RSP_136) {
1715 			cmd->resp[3] = mci_readl(host, RESP0);
1716 			cmd->resp[2] = mci_readl(host, RESP1);
1717 			cmd->resp[1] = mci_readl(host, RESP2);
1718 			cmd->resp[0] = mci_readl(host, RESP3);
1719 		} else {
1720 			cmd->resp[0] = mci_readl(host, RESP0);
1721 			cmd->resp[1] = 0;
1722 			cmd->resp[2] = 0;
1723 			cmd->resp[3] = 0;
1724 		}
1725 	}
1726 
1727 	if (status & SDMMC_INT_RTO)
1728 		cmd->error = -ETIMEDOUT;
1729 	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1730 		cmd->error = -EILSEQ;
1731 	else if (status & SDMMC_INT_RESP_ERR)
1732 		cmd->error = -EIO;
1733 	else
1734 		cmd->error = 0;
1735 
1736 	return cmd->error;
1737 }
1738 
1739 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1740 {
1741 	u32 status = host->data_status;
1742 
1743 	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1744 		if (status & SDMMC_INT_DRTO) {
1745 			data->error = -ETIMEDOUT;
1746 		} else if (status & SDMMC_INT_DCRC) {
1747 			data->error = -EILSEQ;
1748 		} else if (status & SDMMC_INT_EBE) {
1749 			if (host->dir_status ==
1750 				DW_MCI_SEND_STATUS) {
1751 				/*
1752 				 * No data CRC status was returned.
1753 				 * The number of bytes transferred
1754 				 * will be exaggerated in PIO mode.
1755 				 */
1756 				data->bytes_xfered = 0;
1757 				data->error = -ETIMEDOUT;
1758 			} else if (host->dir_status ==
1759 					DW_MCI_RECV_STATUS) {
1760 				data->error = -EILSEQ;
1761 			}
1762 		} else {
1763 			/* SDMMC_INT_SBE is included */
1764 			data->error = -EILSEQ;
1765 		}
1766 
1767 		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1768 
1769 		/*
1770 		 * After an error, there may be data lingering
1771 		 * in the FIFO
1772 		 */
1773 		dw_mci_reset(host);
1774 	} else {
1775 		data->bytes_xfered = data->blocks * data->blksz;
1776 		data->error = 0;
1777 	}
1778 
1779 	return data->error;
1780 }
1781 
1782 static void dw_mci_set_drto(struct dw_mci *host)
1783 {
1784 	unsigned int drto_clks;
1785 	unsigned int drto_ms;
1786 
1787 	drto_clks = mci_readl(host, TMOUT) >> 8;
1788 	drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
1789 
1790 	/* add a bit spare time */
1791 	drto_ms += 10;
1792 
1793 	mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1794 }
1795 
1796 static void dw_mci_tasklet_func(unsigned long priv)
1797 {
1798 	struct dw_mci *host = (struct dw_mci *)priv;
1799 	struct mmc_data	*data;
1800 	struct mmc_command *cmd;
1801 	struct mmc_request *mrq;
1802 	enum dw_mci_state state;
1803 	enum dw_mci_state prev_state;
1804 	unsigned int err;
1805 
1806 	spin_lock(&host->lock);
1807 
1808 	state = host->state;
1809 	data = host->data;
1810 	mrq = host->mrq;
1811 
1812 	do {
1813 		prev_state = state;
1814 
1815 		switch (state) {
1816 		case STATE_IDLE:
1817 		case STATE_WAITING_CMD11_DONE:
1818 			break;
1819 
1820 		case STATE_SENDING_CMD11:
1821 		case STATE_SENDING_CMD:
1822 			if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1823 						&host->pending_events))
1824 				break;
1825 
1826 			cmd = host->cmd;
1827 			host->cmd = NULL;
1828 			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1829 			err = dw_mci_command_complete(host, cmd);
1830 			if (cmd == mrq->sbc && !err) {
1831 				prev_state = state = STATE_SENDING_CMD;
1832 				__dw_mci_start_request(host, host->cur_slot,
1833 						       mrq->cmd);
1834 				goto unlock;
1835 			}
1836 
1837 			if (cmd->data && err) {
1838 				/*
1839 				 * During UHS tuning sequence, sending the stop
1840 				 * command after the response CRC error would
1841 				 * throw the system into a confused state
1842 				 * causing all future tuning phases to report
1843 				 * failure.
1844 				 *
1845 				 * In such case controller will move into a data
1846 				 * transfer state after a response error or
1847 				 * response CRC error. Let's let that finish
1848 				 * before trying to send a stop, so we'll go to
1849 				 * STATE_SENDING_DATA.
1850 				 *
1851 				 * Although letting the data transfer take place
1852 				 * will waste a bit of time (we already know
1853 				 * the command was bad), it can't cause any
1854 				 * errors since it's possible it would have
1855 				 * taken place anyway if this tasklet got
1856 				 * delayed. Allowing the transfer to take place
1857 				 * avoids races and keeps things simple.
1858 				 */
1859 				if ((err != -ETIMEDOUT) &&
1860 				    (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
1861 					state = STATE_SENDING_DATA;
1862 					continue;
1863 				}
1864 
1865 				dw_mci_stop_dma(host);
1866 				send_stop_abort(host, data);
1867 				state = STATE_SENDING_STOP;
1868 				break;
1869 			}
1870 
1871 			if (!cmd->data || err) {
1872 				dw_mci_request_end(host, mrq);
1873 				goto unlock;
1874 			}
1875 
1876 			prev_state = state = STATE_SENDING_DATA;
1877 			/* fall through */
1878 
1879 		case STATE_SENDING_DATA:
1880 			/*
1881 			 * We could get a data error and never a transfer
1882 			 * complete so we'd better check for it here.
1883 			 *
1884 			 * Note that we don't really care if we also got a
1885 			 * transfer complete; stopping the DMA and sending an
1886 			 * abort won't hurt.
1887 			 */
1888 			if (test_and_clear_bit(EVENT_DATA_ERROR,
1889 					       &host->pending_events)) {
1890 				dw_mci_stop_dma(host);
1891 				if (data->stop ||
1892 				    !(host->data_status & (SDMMC_INT_DRTO |
1893 							   SDMMC_INT_EBE)))
1894 					send_stop_abort(host, data);
1895 				state = STATE_DATA_ERROR;
1896 				break;
1897 			}
1898 
1899 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1900 						&host->pending_events)) {
1901 				/*
1902 				 * If all data-related interrupts don't come
1903 				 * within the given time in reading data state.
1904 				 */
1905 				if (host->dir_status == DW_MCI_RECV_STATUS)
1906 					dw_mci_set_drto(host);
1907 				break;
1908 			}
1909 
1910 			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
1911 
1912 			/*
1913 			 * Handle an EVENT_DATA_ERROR that might have shown up
1914 			 * before the transfer completed.  This might not have
1915 			 * been caught by the check above because the interrupt
1916 			 * could have gone off between the previous check and
1917 			 * the check for transfer complete.
1918 			 *
1919 			 * Technically this ought not be needed assuming we
1920 			 * get a DATA_COMPLETE eventually (we'll notice the
1921 			 * error and end the request), but it shouldn't hurt.
1922 			 *
1923 			 * This has the advantage of sending the stop command.
1924 			 */
1925 			if (test_and_clear_bit(EVENT_DATA_ERROR,
1926 					       &host->pending_events)) {
1927 				dw_mci_stop_dma(host);
1928 				if (data->stop ||
1929 				    !(host->data_status & (SDMMC_INT_DRTO |
1930 							   SDMMC_INT_EBE)))
1931 					send_stop_abort(host, data);
1932 				state = STATE_DATA_ERROR;
1933 				break;
1934 			}
1935 			prev_state = state = STATE_DATA_BUSY;
1936 
1937 			/* fall through */
1938 
1939 		case STATE_DATA_BUSY:
1940 			if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
1941 						&host->pending_events)) {
1942 				/*
1943 				 * If data error interrupt comes but data over
1944 				 * interrupt doesn't come within the given time.
1945 				 * in reading data state.
1946 				 */
1947 				if (host->dir_status == DW_MCI_RECV_STATUS)
1948 					dw_mci_set_drto(host);
1949 				break;
1950 			}
1951 
1952 			host->data = NULL;
1953 			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
1954 			err = dw_mci_data_complete(host, data);
1955 
1956 			if (!err) {
1957 				if (!data->stop || mrq->sbc) {
1958 					if (mrq->sbc && data->stop)
1959 						data->stop->error = 0;
1960 					dw_mci_request_end(host, mrq);
1961 					goto unlock;
1962 				}
1963 
1964 				/* stop command for open-ended transfer*/
1965 				if (data->stop)
1966 					send_stop_abort(host, data);
1967 			} else {
1968 				/*
1969 				 * If we don't have a command complete now we'll
1970 				 * never get one since we just reset everything;
1971 				 * better end the request.
1972 				 *
1973 				 * If we do have a command complete we'll fall
1974 				 * through to the SENDING_STOP command and
1975 				 * everything will be peachy keen.
1976 				 */
1977 				if (!test_bit(EVENT_CMD_COMPLETE,
1978 					      &host->pending_events)) {
1979 					host->cmd = NULL;
1980 					dw_mci_request_end(host, mrq);
1981 					goto unlock;
1982 				}
1983 			}
1984 
1985 			/*
1986 			 * If err has non-zero,
1987 			 * stop-abort command has been already issued.
1988 			 */
1989 			prev_state = state = STATE_SENDING_STOP;
1990 
1991 			/* fall through */
1992 
1993 		case STATE_SENDING_STOP:
1994 			if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1995 						&host->pending_events))
1996 				break;
1997 
1998 			/* CMD error in data command */
1999 			if (mrq->cmd->error && mrq->data)
2000 				dw_mci_reset(host);
2001 
2002 			host->cmd = NULL;
2003 			host->data = NULL;
2004 
2005 			if (mrq->stop)
2006 				dw_mci_command_complete(host, mrq->stop);
2007 			else
2008 				host->cmd_status = 0;
2009 
2010 			dw_mci_request_end(host, mrq);
2011 			goto unlock;
2012 
2013 		case STATE_DATA_ERROR:
2014 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2015 						&host->pending_events))
2016 				break;
2017 
2018 			state = STATE_DATA_BUSY;
2019 			break;
2020 		}
2021 	} while (state != prev_state);
2022 
2023 	host->state = state;
2024 unlock:
2025 	spin_unlock(&host->lock);
2026 
2027 }
2028 
2029 /* push final bytes to part_buf, only use during push */
2030 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2031 {
2032 	memcpy((void *)&host->part_buf, buf, cnt);
2033 	host->part_buf_count = cnt;
2034 }
2035 
2036 /* append bytes to part_buf, only use during push */
2037 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2038 {
2039 	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2040 	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2041 	host->part_buf_count += cnt;
2042 	return cnt;
2043 }
2044 
2045 /* pull first bytes from part_buf, only use during pull */
2046 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2047 {
2048 	cnt = min_t(int, cnt, host->part_buf_count);
2049 	if (cnt) {
2050 		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2051 		       cnt);
2052 		host->part_buf_count -= cnt;
2053 		host->part_buf_start += cnt;
2054 	}
2055 	return cnt;
2056 }
2057 
2058 /* pull final bytes from the part_buf, assuming it's just been filled */
2059 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2060 {
2061 	memcpy(buf, &host->part_buf, cnt);
2062 	host->part_buf_start = cnt;
2063 	host->part_buf_count = (1 << host->data_shift) - cnt;
2064 }
2065 
2066 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2067 {
2068 	struct mmc_data *data = host->data;
2069 	int init_cnt = cnt;
2070 
2071 	/* try and push anything in the part_buf */
2072 	if (unlikely(host->part_buf_count)) {
2073 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2074 
2075 		buf += len;
2076 		cnt -= len;
2077 		if (host->part_buf_count == 2) {
2078 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2079 			host->part_buf_count = 0;
2080 		}
2081 	}
2082 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2083 	if (unlikely((unsigned long)buf & 0x1)) {
2084 		while (cnt >= 2) {
2085 			u16 aligned_buf[64];
2086 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2087 			int items = len >> 1;
2088 			int i;
2089 			/* memcpy from input buffer into aligned buffer */
2090 			memcpy(aligned_buf, buf, len);
2091 			buf += len;
2092 			cnt -= len;
2093 			/* push data from aligned buffer into fifo */
2094 			for (i = 0; i < items; ++i)
2095 				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2096 		}
2097 	} else
2098 #endif
2099 	{
2100 		u16 *pdata = buf;
2101 
2102 		for (; cnt >= 2; cnt -= 2)
2103 			mci_fifo_writew(host->fifo_reg, *pdata++);
2104 		buf = pdata;
2105 	}
2106 	/* put anything remaining in the part_buf */
2107 	if (cnt) {
2108 		dw_mci_set_part_bytes(host, buf, cnt);
2109 		 /* Push data if we have reached the expected data length */
2110 		if ((data->bytes_xfered + init_cnt) ==
2111 		    (data->blksz * data->blocks))
2112 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2113 	}
2114 }
2115 
2116 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2117 {
2118 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2119 	if (unlikely((unsigned long)buf & 0x1)) {
2120 		while (cnt >= 2) {
2121 			/* pull data from fifo into aligned buffer */
2122 			u16 aligned_buf[64];
2123 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2124 			int items = len >> 1;
2125 			int i;
2126 
2127 			for (i = 0; i < items; ++i)
2128 				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2129 			/* memcpy from aligned buffer into output buffer */
2130 			memcpy(buf, aligned_buf, len);
2131 			buf += len;
2132 			cnt -= len;
2133 		}
2134 	} else
2135 #endif
2136 	{
2137 		u16 *pdata = buf;
2138 
2139 		for (; cnt >= 2; cnt -= 2)
2140 			*pdata++ = mci_fifo_readw(host->fifo_reg);
2141 		buf = pdata;
2142 	}
2143 	if (cnt) {
2144 		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2145 		dw_mci_pull_final_bytes(host, buf, cnt);
2146 	}
2147 }
2148 
2149 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2150 {
2151 	struct mmc_data *data = host->data;
2152 	int init_cnt = cnt;
2153 
2154 	/* try and push anything in the part_buf */
2155 	if (unlikely(host->part_buf_count)) {
2156 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2157 
2158 		buf += len;
2159 		cnt -= len;
2160 		if (host->part_buf_count == 4) {
2161 			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2162 			host->part_buf_count = 0;
2163 		}
2164 	}
2165 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2166 	if (unlikely((unsigned long)buf & 0x3)) {
2167 		while (cnt >= 4) {
2168 			u32 aligned_buf[32];
2169 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2170 			int items = len >> 2;
2171 			int i;
2172 			/* memcpy from input buffer into aligned buffer */
2173 			memcpy(aligned_buf, buf, len);
2174 			buf += len;
2175 			cnt -= len;
2176 			/* push data from aligned buffer into fifo */
2177 			for (i = 0; i < items; ++i)
2178 				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2179 		}
2180 	} else
2181 #endif
2182 	{
2183 		u32 *pdata = buf;
2184 
2185 		for (; cnt >= 4; cnt -= 4)
2186 			mci_fifo_writel(host->fifo_reg, *pdata++);
2187 		buf = pdata;
2188 	}
2189 	/* put anything remaining in the part_buf */
2190 	if (cnt) {
2191 		dw_mci_set_part_bytes(host, buf, cnt);
2192 		 /* Push data if we have reached the expected data length */
2193 		if ((data->bytes_xfered + init_cnt) ==
2194 		    (data->blksz * data->blocks))
2195 			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2196 	}
2197 }
2198 
2199 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2200 {
2201 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2202 	if (unlikely((unsigned long)buf & 0x3)) {
2203 		while (cnt >= 4) {
2204 			/* pull data from fifo into aligned buffer */
2205 			u32 aligned_buf[32];
2206 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2207 			int items = len >> 2;
2208 			int i;
2209 
2210 			for (i = 0; i < items; ++i)
2211 				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2212 			/* memcpy from aligned buffer into output buffer */
2213 			memcpy(buf, aligned_buf, len);
2214 			buf += len;
2215 			cnt -= len;
2216 		}
2217 	} else
2218 #endif
2219 	{
2220 		u32 *pdata = buf;
2221 
2222 		for (; cnt >= 4; cnt -= 4)
2223 			*pdata++ = mci_fifo_readl(host->fifo_reg);
2224 		buf = pdata;
2225 	}
2226 	if (cnt) {
2227 		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2228 		dw_mci_pull_final_bytes(host, buf, cnt);
2229 	}
2230 }
2231 
2232 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2233 {
2234 	struct mmc_data *data = host->data;
2235 	int init_cnt = cnt;
2236 
2237 	/* try and push anything in the part_buf */
2238 	if (unlikely(host->part_buf_count)) {
2239 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2240 
2241 		buf += len;
2242 		cnt -= len;
2243 
2244 		if (host->part_buf_count == 8) {
2245 			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2246 			host->part_buf_count = 0;
2247 		}
2248 	}
2249 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2250 	if (unlikely((unsigned long)buf & 0x7)) {
2251 		while (cnt >= 8) {
2252 			u64 aligned_buf[16];
2253 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2254 			int items = len >> 3;
2255 			int i;
2256 			/* memcpy from input buffer into aligned buffer */
2257 			memcpy(aligned_buf, buf, len);
2258 			buf += len;
2259 			cnt -= len;
2260 			/* push data from aligned buffer into fifo */
2261 			for (i = 0; i < items; ++i)
2262 				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2263 		}
2264 	} else
2265 #endif
2266 	{
2267 		u64 *pdata = buf;
2268 
2269 		for (; cnt >= 8; cnt -= 8)
2270 			mci_fifo_writeq(host->fifo_reg, *pdata++);
2271 		buf = pdata;
2272 	}
2273 	/* put anything remaining in the part_buf */
2274 	if (cnt) {
2275 		dw_mci_set_part_bytes(host, buf, cnt);
2276 		/* Push data if we have reached the expected data length */
2277 		if ((data->bytes_xfered + init_cnt) ==
2278 		    (data->blksz * data->blocks))
2279 			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2280 	}
2281 }
2282 
2283 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2284 {
2285 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2286 	if (unlikely((unsigned long)buf & 0x7)) {
2287 		while (cnt >= 8) {
2288 			/* pull data from fifo into aligned buffer */
2289 			u64 aligned_buf[16];
2290 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2291 			int items = len >> 3;
2292 			int i;
2293 
2294 			for (i = 0; i < items; ++i)
2295 				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2296 
2297 			/* memcpy from aligned buffer into output buffer */
2298 			memcpy(buf, aligned_buf, len);
2299 			buf += len;
2300 			cnt -= len;
2301 		}
2302 	} else
2303 #endif
2304 	{
2305 		u64 *pdata = buf;
2306 
2307 		for (; cnt >= 8; cnt -= 8)
2308 			*pdata++ = mci_fifo_readq(host->fifo_reg);
2309 		buf = pdata;
2310 	}
2311 	if (cnt) {
2312 		host->part_buf = mci_fifo_readq(host->fifo_reg);
2313 		dw_mci_pull_final_bytes(host, buf, cnt);
2314 	}
2315 }
2316 
2317 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2318 {
2319 	int len;
2320 
2321 	/* get remaining partial bytes */
2322 	len = dw_mci_pull_part_bytes(host, buf, cnt);
2323 	if (unlikely(len == cnt))
2324 		return;
2325 	buf += len;
2326 	cnt -= len;
2327 
2328 	/* get the rest of the data */
2329 	host->pull_data(host, buf, cnt);
2330 }
2331 
2332 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2333 {
2334 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2335 	void *buf;
2336 	unsigned int offset;
2337 	struct mmc_data	*data = host->data;
2338 	int shift = host->data_shift;
2339 	u32 status;
2340 	unsigned int len;
2341 	unsigned int remain, fcnt;
2342 
2343 	do {
2344 		if (!sg_miter_next(sg_miter))
2345 			goto done;
2346 
2347 		host->sg = sg_miter->piter.sg;
2348 		buf = sg_miter->addr;
2349 		remain = sg_miter->length;
2350 		offset = 0;
2351 
2352 		do {
2353 			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2354 					<< shift) + host->part_buf_count;
2355 			len = min(remain, fcnt);
2356 			if (!len)
2357 				break;
2358 			dw_mci_pull_data(host, (void *)(buf + offset), len);
2359 			data->bytes_xfered += len;
2360 			offset += len;
2361 			remain -= len;
2362 		} while (remain);
2363 
2364 		sg_miter->consumed = offset;
2365 		status = mci_readl(host, MINTSTS);
2366 		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2367 	/* if the RXDR is ready read again */
2368 	} while ((status & SDMMC_INT_RXDR) ||
2369 		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2370 
2371 	if (!remain) {
2372 		if (!sg_miter_next(sg_miter))
2373 			goto done;
2374 		sg_miter->consumed = 0;
2375 	}
2376 	sg_miter_stop(sg_miter);
2377 	return;
2378 
2379 done:
2380 	sg_miter_stop(sg_miter);
2381 	host->sg = NULL;
2382 	smp_wmb(); /* drain writebuffer */
2383 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2384 }
2385 
2386 static void dw_mci_write_data_pio(struct dw_mci *host)
2387 {
2388 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2389 	void *buf;
2390 	unsigned int offset;
2391 	struct mmc_data	*data = host->data;
2392 	int shift = host->data_shift;
2393 	u32 status;
2394 	unsigned int len;
2395 	unsigned int fifo_depth = host->fifo_depth;
2396 	unsigned int remain, fcnt;
2397 
2398 	do {
2399 		if (!sg_miter_next(sg_miter))
2400 			goto done;
2401 
2402 		host->sg = sg_miter->piter.sg;
2403 		buf = sg_miter->addr;
2404 		remain = sg_miter->length;
2405 		offset = 0;
2406 
2407 		do {
2408 			fcnt = ((fifo_depth -
2409 				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2410 					<< shift) - host->part_buf_count;
2411 			len = min(remain, fcnt);
2412 			if (!len)
2413 				break;
2414 			host->push_data(host, (void *)(buf + offset), len);
2415 			data->bytes_xfered += len;
2416 			offset += len;
2417 			remain -= len;
2418 		} while (remain);
2419 
2420 		sg_miter->consumed = offset;
2421 		status = mci_readl(host, MINTSTS);
2422 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2423 	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2424 
2425 	if (!remain) {
2426 		if (!sg_miter_next(sg_miter))
2427 			goto done;
2428 		sg_miter->consumed = 0;
2429 	}
2430 	sg_miter_stop(sg_miter);
2431 	return;
2432 
2433 done:
2434 	sg_miter_stop(sg_miter);
2435 	host->sg = NULL;
2436 	smp_wmb(); /* drain writebuffer */
2437 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2438 }
2439 
2440 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2441 {
2442 	if (!host->cmd_status)
2443 		host->cmd_status = status;
2444 
2445 	smp_wmb(); /* drain writebuffer */
2446 
2447 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2448 	tasklet_schedule(&host->tasklet);
2449 }
2450 
2451 static void dw_mci_handle_cd(struct dw_mci *host)
2452 {
2453 	int i;
2454 
2455 	for (i = 0; i < host->num_slots; i++) {
2456 		struct dw_mci_slot *slot = host->slot[i];
2457 
2458 		if (!slot)
2459 			continue;
2460 
2461 		if (slot->mmc->ops->card_event)
2462 			slot->mmc->ops->card_event(slot->mmc);
2463 		mmc_detect_change(slot->mmc,
2464 			msecs_to_jiffies(host->pdata->detect_delay_ms));
2465 	}
2466 }
2467 
2468 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2469 {
2470 	struct dw_mci *host = dev_id;
2471 	u32 pending;
2472 	int i;
2473 
2474 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2475 
2476 	if (pending) {
2477 		/* Check volt switch first, since it can look like an error */
2478 		if ((host->state == STATE_SENDING_CMD11) &&
2479 		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2480 			unsigned long irqflags;
2481 
2482 			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2483 			pending &= ~SDMMC_INT_VOLT_SWITCH;
2484 
2485 			/*
2486 			 * Hold the lock; we know cmd11_timer can't be kicked
2487 			 * off after the lock is released, so safe to delete.
2488 			 */
2489 			spin_lock_irqsave(&host->irq_lock, irqflags);
2490 			dw_mci_cmd_interrupt(host, pending);
2491 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2492 
2493 			del_timer(&host->cmd11_timer);
2494 		}
2495 
2496 		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2497 			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2498 			host->cmd_status = pending;
2499 			smp_wmb(); /* drain writebuffer */
2500 			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2501 		}
2502 
2503 		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2504 			/* if there is an error report DATA_ERROR */
2505 			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2506 			host->data_status = pending;
2507 			smp_wmb(); /* drain writebuffer */
2508 			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2509 			tasklet_schedule(&host->tasklet);
2510 		}
2511 
2512 		if (pending & SDMMC_INT_DATA_OVER) {
2513 			del_timer(&host->dto_timer);
2514 
2515 			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2516 			if (!host->data_status)
2517 				host->data_status = pending;
2518 			smp_wmb(); /* drain writebuffer */
2519 			if (host->dir_status == DW_MCI_RECV_STATUS) {
2520 				if (host->sg != NULL)
2521 					dw_mci_read_data_pio(host, true);
2522 			}
2523 			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2524 			tasklet_schedule(&host->tasklet);
2525 		}
2526 
2527 		if (pending & SDMMC_INT_RXDR) {
2528 			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2529 			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2530 				dw_mci_read_data_pio(host, false);
2531 		}
2532 
2533 		if (pending & SDMMC_INT_TXDR) {
2534 			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2535 			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2536 				dw_mci_write_data_pio(host);
2537 		}
2538 
2539 		if (pending & SDMMC_INT_CMD_DONE) {
2540 			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2541 			dw_mci_cmd_interrupt(host, pending);
2542 		}
2543 
2544 		if (pending & SDMMC_INT_CD) {
2545 			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2546 			dw_mci_handle_cd(host);
2547 		}
2548 
2549 		/* Handle SDIO Interrupts */
2550 		for (i = 0; i < host->num_slots; i++) {
2551 			struct dw_mci_slot *slot = host->slot[i];
2552 
2553 			if (!slot)
2554 				continue;
2555 
2556 			if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2557 				mci_writel(host, RINTSTS,
2558 					   SDMMC_INT_SDIO(slot->sdio_id));
2559 				mmc_signal_sdio_irq(slot->mmc);
2560 			}
2561 		}
2562 
2563 	}
2564 
2565 	if (host->use_dma != TRANS_MODE_IDMAC)
2566 		return IRQ_HANDLED;
2567 
2568 	/* Handle IDMA interrupts */
2569 	if (host->dma_64bit_address == 1) {
2570 		pending = mci_readl(host, IDSTS64);
2571 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2572 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2573 							SDMMC_IDMAC_INT_RI);
2574 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2575 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2576 				host->dma_ops->complete((void *)host);
2577 		}
2578 	} else {
2579 		pending = mci_readl(host, IDSTS);
2580 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2581 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2582 							SDMMC_IDMAC_INT_RI);
2583 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2584 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2585 				host->dma_ops->complete((void *)host);
2586 		}
2587 	}
2588 
2589 	return IRQ_HANDLED;
2590 }
2591 
2592 static int dw_mci_init_slot(struct dw_mci *host, unsigned int id)
2593 {
2594 	struct mmc_host *mmc;
2595 	struct dw_mci_slot *slot;
2596 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2597 	int ctrl_id, ret;
2598 	u32 freq[2];
2599 
2600 	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2601 	if (!mmc)
2602 		return -ENOMEM;
2603 
2604 	slot = mmc_priv(mmc);
2605 	slot->id = id;
2606 	slot->sdio_id = host->sdio_id0 + id;
2607 	slot->mmc = mmc;
2608 	slot->host = host;
2609 	host->slot[id] = slot;
2610 
2611 	mmc->ops = &dw_mci_ops;
2612 	if (of_property_read_u32_array(host->dev->of_node,
2613 				       "clock-freq-min-max", freq, 2)) {
2614 		mmc->f_min = DW_MCI_FREQ_MIN;
2615 		mmc->f_max = DW_MCI_FREQ_MAX;
2616 	} else {
2617 		mmc->f_min = freq[0];
2618 		mmc->f_max = freq[1];
2619 	}
2620 
2621 	/*if there are external regulators, get them*/
2622 	ret = mmc_regulator_get_supply(mmc);
2623 	if (ret == -EPROBE_DEFER)
2624 		goto err_host_allocated;
2625 
2626 	if (!mmc->ocr_avail)
2627 		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2628 
2629 	if (host->pdata->caps)
2630 		mmc->caps = host->pdata->caps;
2631 
2632 	/*
2633 	 * Support MMC_CAP_ERASE by default.
2634 	 * It needs to use trim/discard/erase commands.
2635 	 */
2636 	mmc->caps |= MMC_CAP_ERASE;
2637 
2638 	if (host->pdata->pm_caps)
2639 		mmc->pm_caps = host->pdata->pm_caps;
2640 
2641 	if (host->dev->of_node) {
2642 		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2643 		if (ctrl_id < 0)
2644 			ctrl_id = 0;
2645 	} else {
2646 		ctrl_id = to_platform_device(host->dev)->id;
2647 	}
2648 	if (drv_data && drv_data->caps)
2649 		mmc->caps |= drv_data->caps[ctrl_id];
2650 
2651 	if (host->pdata->caps2)
2652 		mmc->caps2 = host->pdata->caps2;
2653 
2654 	ret = mmc_of_parse(mmc);
2655 	if (ret)
2656 		goto err_host_allocated;
2657 
2658 	/* Useful defaults if platform data is unset. */
2659 	if (host->use_dma == TRANS_MODE_IDMAC) {
2660 		mmc->max_segs = host->ring_size;
2661 		mmc->max_blk_size = 65535;
2662 		mmc->max_seg_size = 0x1000;
2663 		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2664 		mmc->max_blk_count = mmc->max_req_size / 512;
2665 	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2666 		mmc->max_segs = 64;
2667 		mmc->max_blk_size = 65535;
2668 		mmc->max_blk_count = 65535;
2669 		mmc->max_req_size =
2670 				mmc->max_blk_size * mmc->max_blk_count;
2671 		mmc->max_seg_size = mmc->max_req_size;
2672 	} else {
2673 		/* TRANS_MODE_PIO */
2674 		mmc->max_segs = 64;
2675 		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2676 		mmc->max_blk_count = 512;
2677 		mmc->max_req_size = mmc->max_blk_size *
2678 				    mmc->max_blk_count;
2679 		mmc->max_seg_size = mmc->max_req_size;
2680 	}
2681 
2682 	dw_mci_get_cd(mmc);
2683 
2684 	ret = mmc_add_host(mmc);
2685 	if (ret)
2686 		goto err_host_allocated;
2687 
2688 #if defined(CONFIG_DEBUG_FS)
2689 	dw_mci_init_debugfs(slot);
2690 #endif
2691 
2692 	return 0;
2693 
2694 err_host_allocated:
2695 	mmc_free_host(mmc);
2696 	return ret;
2697 }
2698 
2699 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot, unsigned int id)
2700 {
2701 	/* Debugfs stuff is cleaned up by mmc core */
2702 	mmc_remove_host(slot->mmc);
2703 	slot->host->slot[id] = NULL;
2704 	mmc_free_host(slot->mmc);
2705 }
2706 
2707 static void dw_mci_init_dma(struct dw_mci *host)
2708 {
2709 	int addr_config;
2710 	struct device *dev = host->dev;
2711 	struct device_node *np = dev->of_node;
2712 
2713 	/*
2714 	* Check tansfer mode from HCON[17:16]
2715 	* Clear the ambiguous description of dw_mmc databook:
2716 	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
2717 	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2718 	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2719 	* 2b'11: Non DW DMA Interface -> pio only
2720 	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
2721 	* simpler request/acknowledge handshake mechanism and both of them
2722 	* are regarded as external dma master for dw_mmc.
2723 	*/
2724 	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2725 	if (host->use_dma == DMA_INTERFACE_IDMA) {
2726 		host->use_dma = TRANS_MODE_IDMAC;
2727 	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2728 		   host->use_dma == DMA_INTERFACE_GDMA) {
2729 		host->use_dma = TRANS_MODE_EDMAC;
2730 	} else {
2731 		goto no_dma;
2732 	}
2733 
2734 	/* Determine which DMA interface to use */
2735 	if (host->use_dma == TRANS_MODE_IDMAC) {
2736 		/*
2737 		* Check ADDR_CONFIG bit in HCON to find
2738 		* IDMAC address bus width
2739 		*/
2740 		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2741 
2742 		if (addr_config == 1) {
2743 			/* host supports IDMAC in 64-bit address mode */
2744 			host->dma_64bit_address = 1;
2745 			dev_info(host->dev,
2746 				 "IDMAC supports 64-bit address mode.\n");
2747 			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2748 				dma_set_coherent_mask(host->dev,
2749 						      DMA_BIT_MASK(64));
2750 		} else {
2751 			/* host supports IDMAC in 32-bit address mode */
2752 			host->dma_64bit_address = 0;
2753 			dev_info(host->dev,
2754 				 "IDMAC supports 32-bit address mode.\n");
2755 		}
2756 
2757 		/* Alloc memory for sg translation */
2758 		host->sg_cpu = dmam_alloc_coherent(host->dev,
2759 						   DESC_RING_BUF_SZ,
2760 						   &host->sg_dma, GFP_KERNEL);
2761 		if (!host->sg_cpu) {
2762 			dev_err(host->dev,
2763 				"%s: could not alloc DMA memory\n",
2764 				__func__);
2765 			goto no_dma;
2766 		}
2767 
2768 		host->dma_ops = &dw_mci_idmac_ops;
2769 		dev_info(host->dev, "Using internal DMA controller.\n");
2770 	} else {
2771 		/* TRANS_MODE_EDMAC: check dma bindings again */
2772 		if ((of_property_count_strings(np, "dma-names") < 0) ||
2773 		    (!of_find_property(np, "dmas", NULL))) {
2774 			goto no_dma;
2775 		}
2776 		host->dma_ops = &dw_mci_edmac_ops;
2777 		dev_info(host->dev, "Using external DMA controller.\n");
2778 	}
2779 
2780 	if (host->dma_ops->init && host->dma_ops->start &&
2781 	    host->dma_ops->stop && host->dma_ops->cleanup) {
2782 		if (host->dma_ops->init(host)) {
2783 			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2784 				__func__);
2785 			goto no_dma;
2786 		}
2787 	} else {
2788 		dev_err(host->dev, "DMA initialization not found.\n");
2789 		goto no_dma;
2790 	}
2791 
2792 	return;
2793 
2794 no_dma:
2795 	dev_info(host->dev, "Using PIO mode.\n");
2796 	host->use_dma = TRANS_MODE_PIO;
2797 }
2798 
2799 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
2800 {
2801 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
2802 	u32 ctrl;
2803 
2804 	ctrl = mci_readl(host, CTRL);
2805 	ctrl |= reset;
2806 	mci_writel(host, CTRL, ctrl);
2807 
2808 	/* wait till resets clear */
2809 	do {
2810 		ctrl = mci_readl(host, CTRL);
2811 		if (!(ctrl & reset))
2812 			return true;
2813 	} while (time_before(jiffies, timeout));
2814 
2815 	dev_err(host->dev,
2816 		"Timeout resetting block (ctrl reset %#x)\n",
2817 		ctrl & reset);
2818 
2819 	return false;
2820 }
2821 
2822 static bool dw_mci_reset(struct dw_mci *host)
2823 {
2824 	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
2825 	bool ret = false;
2826 
2827 	/*
2828 	 * Reseting generates a block interrupt, hence setting
2829 	 * the scatter-gather pointer to NULL.
2830 	 */
2831 	if (host->sg) {
2832 		sg_miter_stop(&host->sg_miter);
2833 		host->sg = NULL;
2834 	}
2835 
2836 	if (host->use_dma)
2837 		flags |= SDMMC_CTRL_DMA_RESET;
2838 
2839 	if (dw_mci_ctrl_reset(host, flags)) {
2840 		/*
2841 		 * In all cases we clear the RAWINTS register to clear any
2842 		 * interrupts.
2843 		 */
2844 		mci_writel(host, RINTSTS, 0xFFFFFFFF);
2845 
2846 		/* if using dma we wait for dma_req to clear */
2847 		if (host->use_dma) {
2848 			unsigned long timeout = jiffies + msecs_to_jiffies(500);
2849 			u32 status;
2850 
2851 			do {
2852 				status = mci_readl(host, STATUS);
2853 				if (!(status & SDMMC_STATUS_DMA_REQ))
2854 					break;
2855 				cpu_relax();
2856 			} while (time_before(jiffies, timeout));
2857 
2858 			if (status & SDMMC_STATUS_DMA_REQ) {
2859 				dev_err(host->dev,
2860 					"%s: Timeout waiting for dma_req to clear during reset\n",
2861 					__func__);
2862 				goto ciu_out;
2863 			}
2864 
2865 			/* when using DMA next we reset the fifo again */
2866 			if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
2867 				goto ciu_out;
2868 		}
2869 	} else {
2870 		/* if the controller reset bit did clear, then set clock regs */
2871 		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
2872 			dev_err(host->dev,
2873 				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
2874 				__func__);
2875 			goto ciu_out;
2876 		}
2877 	}
2878 
2879 	if (host->use_dma == TRANS_MODE_IDMAC)
2880 		/* It is also recommended that we reset and reprogram idmac */
2881 		dw_mci_idmac_reset(host);
2882 
2883 	ret = true;
2884 
2885 ciu_out:
2886 	/* After a CTRL reset we need to have CIU set clock registers  */
2887 	mci_send_cmd(host->cur_slot, SDMMC_CMD_UPD_CLK, 0);
2888 
2889 	return ret;
2890 }
2891 
2892 static void dw_mci_cmd11_timer(unsigned long arg)
2893 {
2894 	struct dw_mci *host = (struct dw_mci *)arg;
2895 
2896 	if (host->state != STATE_SENDING_CMD11) {
2897 		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2898 		return;
2899 	}
2900 
2901 	host->cmd_status = SDMMC_INT_RTO;
2902 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2903 	tasklet_schedule(&host->tasklet);
2904 }
2905 
2906 static void dw_mci_dto_timer(unsigned long arg)
2907 {
2908 	struct dw_mci *host = (struct dw_mci *)arg;
2909 
2910 	switch (host->state) {
2911 	case STATE_SENDING_DATA:
2912 	case STATE_DATA_BUSY:
2913 		/*
2914 		 * If DTO interrupt does NOT come in sending data state,
2915 		 * we should notify the driver to terminate current transfer
2916 		 * and report a data timeout to the core.
2917 		 */
2918 		host->data_status = SDMMC_INT_DRTO;
2919 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
2920 		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2921 		tasklet_schedule(&host->tasklet);
2922 		break;
2923 	default:
2924 		break;
2925 	}
2926 }
2927 
2928 #ifdef CONFIG_OF
2929 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2930 {
2931 	struct dw_mci_board *pdata;
2932 	struct device *dev = host->dev;
2933 	struct device_node *np = dev->of_node;
2934 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2935 	int ret;
2936 	u32 clock_frequency;
2937 
2938 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2939 	if (!pdata)
2940 		return ERR_PTR(-ENOMEM);
2941 
2942 	/* find reset controller when exist */
2943 	pdata->rstc = devm_reset_control_get_optional(dev, NULL);
2944 	if (IS_ERR(pdata->rstc)) {
2945 		if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
2946 			return ERR_PTR(-EPROBE_DEFER);
2947 	}
2948 
2949 	/* find out number of slots supported */
2950 	of_property_read_u32(np, "num-slots", &pdata->num_slots);
2951 
2952 	if (of_property_read_u32(np, "fifo-depth", &pdata->fifo_depth))
2953 		dev_info(dev,
2954 			 "fifo-depth property not found, using value of FIFOTH register as default\n");
2955 
2956 	of_property_read_u32(np, "card-detect-delay", &pdata->detect_delay_ms);
2957 
2958 	if (!of_property_read_u32(np, "clock-frequency", &clock_frequency))
2959 		pdata->bus_hz = clock_frequency;
2960 
2961 	if (drv_data && drv_data->parse_dt) {
2962 		ret = drv_data->parse_dt(host);
2963 		if (ret)
2964 			return ERR_PTR(ret);
2965 	}
2966 
2967 	return pdata;
2968 }
2969 
2970 #else /* CONFIG_OF */
2971 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2972 {
2973 	return ERR_PTR(-EINVAL);
2974 }
2975 #endif /* CONFIG_OF */
2976 
2977 static void dw_mci_enable_cd(struct dw_mci *host)
2978 {
2979 	unsigned long irqflags;
2980 	u32 temp;
2981 	int i;
2982 	struct dw_mci_slot *slot;
2983 
2984 	/*
2985 	 * No need for CD if all slots have a non-error GPIO
2986 	 * as well as broken card detection is found.
2987 	 */
2988 	for (i = 0; i < host->num_slots; i++) {
2989 		slot = host->slot[i];
2990 		if (slot->mmc->caps & MMC_CAP_NEEDS_POLL)
2991 			return;
2992 
2993 		if (mmc_gpio_get_cd(slot->mmc) < 0)
2994 			break;
2995 	}
2996 	if (i == host->num_slots)
2997 		return;
2998 
2999 	spin_lock_irqsave(&host->irq_lock, irqflags);
3000 	temp = mci_readl(host, INTMASK);
3001 	temp  |= SDMMC_INT_CD;
3002 	mci_writel(host, INTMASK, temp);
3003 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3004 }
3005 
3006 int dw_mci_probe(struct dw_mci *host)
3007 {
3008 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3009 	int width, i, ret = 0;
3010 	u32 fifo_size;
3011 	int init_slots = 0;
3012 
3013 	if (!host->pdata) {
3014 		host->pdata = dw_mci_parse_dt(host);
3015 		if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3016 			return -EPROBE_DEFER;
3017 		} else if (IS_ERR(host->pdata)) {
3018 			dev_err(host->dev, "platform data not available\n");
3019 			return -EINVAL;
3020 		}
3021 	}
3022 
3023 	host->biu_clk = devm_clk_get(host->dev, "biu");
3024 	if (IS_ERR(host->biu_clk)) {
3025 		dev_dbg(host->dev, "biu clock not available\n");
3026 	} else {
3027 		ret = clk_prepare_enable(host->biu_clk);
3028 		if (ret) {
3029 			dev_err(host->dev, "failed to enable biu clock\n");
3030 			return ret;
3031 		}
3032 	}
3033 
3034 	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3035 	if (IS_ERR(host->ciu_clk)) {
3036 		dev_dbg(host->dev, "ciu clock not available\n");
3037 		host->bus_hz = host->pdata->bus_hz;
3038 	} else {
3039 		ret = clk_prepare_enable(host->ciu_clk);
3040 		if (ret) {
3041 			dev_err(host->dev, "failed to enable ciu clock\n");
3042 			goto err_clk_biu;
3043 		}
3044 
3045 		if (host->pdata->bus_hz) {
3046 			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3047 			if (ret)
3048 				dev_warn(host->dev,
3049 					 "Unable to set bus rate to %uHz\n",
3050 					 host->pdata->bus_hz);
3051 		}
3052 		host->bus_hz = clk_get_rate(host->ciu_clk);
3053 	}
3054 
3055 	if (!host->bus_hz) {
3056 		dev_err(host->dev,
3057 			"Platform data must supply bus speed\n");
3058 		ret = -ENODEV;
3059 		goto err_clk_ciu;
3060 	}
3061 
3062 	if (drv_data && drv_data->init) {
3063 		ret = drv_data->init(host);
3064 		if (ret) {
3065 			dev_err(host->dev,
3066 				"implementation specific init failed\n");
3067 			goto err_clk_ciu;
3068 		}
3069 	}
3070 
3071 	if (!IS_ERR(host->pdata->rstc)) {
3072 		reset_control_assert(host->pdata->rstc);
3073 		usleep_range(10, 50);
3074 		reset_control_deassert(host->pdata->rstc);
3075 	}
3076 
3077 	setup_timer(&host->cmd11_timer,
3078 		    dw_mci_cmd11_timer, (unsigned long)host);
3079 
3080 	setup_timer(&host->dto_timer,
3081 		    dw_mci_dto_timer, (unsigned long)host);
3082 
3083 	spin_lock_init(&host->lock);
3084 	spin_lock_init(&host->irq_lock);
3085 	INIT_LIST_HEAD(&host->queue);
3086 
3087 	/*
3088 	 * Get the host data width - this assumes that HCON has been set with
3089 	 * the correct values.
3090 	 */
3091 	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3092 	if (!i) {
3093 		host->push_data = dw_mci_push_data16;
3094 		host->pull_data = dw_mci_pull_data16;
3095 		width = 16;
3096 		host->data_shift = 1;
3097 	} else if (i == 2) {
3098 		host->push_data = dw_mci_push_data64;
3099 		host->pull_data = dw_mci_pull_data64;
3100 		width = 64;
3101 		host->data_shift = 3;
3102 	} else {
3103 		/* Check for a reserved value, and warn if it is */
3104 		WARN((i != 1),
3105 		     "HCON reports a reserved host data width!\n"
3106 		     "Defaulting to 32-bit access.\n");
3107 		host->push_data = dw_mci_push_data32;
3108 		host->pull_data = dw_mci_pull_data32;
3109 		width = 32;
3110 		host->data_shift = 2;
3111 	}
3112 
3113 	/* Reset all blocks */
3114 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3115 		ret = -ENODEV;
3116 		goto err_clk_ciu;
3117 	}
3118 
3119 	host->dma_ops = host->pdata->dma_ops;
3120 	dw_mci_init_dma(host);
3121 
3122 	/* Clear the interrupts for the host controller */
3123 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3124 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3125 
3126 	/* Put in max timeout */
3127 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3128 
3129 	/*
3130 	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3131 	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3132 	 */
3133 	if (!host->pdata->fifo_depth) {
3134 		/*
3135 		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3136 		 * have been overwritten by the bootloader, just like we're
3137 		 * about to do, so if you know the value for your hardware, you
3138 		 * should put it in the platform data.
3139 		 */
3140 		fifo_size = mci_readl(host, FIFOTH);
3141 		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3142 	} else {
3143 		fifo_size = host->pdata->fifo_depth;
3144 	}
3145 	host->fifo_depth = fifo_size;
3146 	host->fifoth_val =
3147 		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3148 	mci_writel(host, FIFOTH, host->fifoth_val);
3149 
3150 	/* disable clock to CIU */
3151 	mci_writel(host, CLKENA, 0);
3152 	mci_writel(host, CLKSRC, 0);
3153 
3154 	/*
3155 	 * In 2.40a spec, Data offset is changed.
3156 	 * Need to check the version-id and set data-offset for DATA register.
3157 	 */
3158 	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3159 	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3160 
3161 	if (host->verid < DW_MMC_240A)
3162 		host->fifo_reg = host->regs + DATA_OFFSET;
3163 	else
3164 		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3165 
3166 	tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3167 	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3168 			       host->irq_flags, "dw-mci", host);
3169 	if (ret)
3170 		goto err_dmaunmap;
3171 
3172 	if (host->pdata->num_slots)
3173 		host->num_slots = host->pdata->num_slots;
3174 	else
3175 		host->num_slots = 1;
3176 
3177 	if (host->num_slots < 1 ||
3178 	    host->num_slots > SDMMC_GET_SLOT_NUM(mci_readl(host, HCON))) {
3179 		dev_err(host->dev,
3180 			"Platform data must supply correct num_slots.\n");
3181 		ret = -ENODEV;
3182 		goto err_clk_ciu;
3183 	}
3184 
3185 	/*
3186 	 * Enable interrupts for command done, data over, data empty,
3187 	 * receive ready and error such as transmit, receive timeout, crc error
3188 	 */
3189 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3190 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3191 		   DW_MCI_ERROR_FLAGS);
3192 	/* Enable mci interrupt */
3193 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3194 
3195 	dev_info(host->dev,
3196 		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3197 		 host->irq, width, fifo_size);
3198 
3199 	/* We need at least one slot to succeed */
3200 	for (i = 0; i < host->num_slots; i++) {
3201 		ret = dw_mci_init_slot(host, i);
3202 		if (ret)
3203 			dev_dbg(host->dev, "slot %d init failed\n", i);
3204 		else
3205 			init_slots++;
3206 	}
3207 
3208 	if (init_slots) {
3209 		dev_info(host->dev, "%d slots initialized\n", init_slots);
3210 	} else {
3211 		dev_dbg(host->dev,
3212 			"attempted to initialize %d slots, but failed on all\n",
3213 			host->num_slots);
3214 		goto err_dmaunmap;
3215 	}
3216 
3217 	/* Now that slots are all setup, we can enable card detect */
3218 	dw_mci_enable_cd(host);
3219 
3220 	return 0;
3221 
3222 err_dmaunmap:
3223 	if (host->use_dma && host->dma_ops->exit)
3224 		host->dma_ops->exit(host);
3225 
3226 	if (!IS_ERR(host->pdata->rstc))
3227 		reset_control_assert(host->pdata->rstc);
3228 
3229 err_clk_ciu:
3230 	clk_disable_unprepare(host->ciu_clk);
3231 
3232 err_clk_biu:
3233 	clk_disable_unprepare(host->biu_clk);
3234 
3235 	return ret;
3236 }
3237 EXPORT_SYMBOL(dw_mci_probe);
3238 
3239 void dw_mci_remove(struct dw_mci *host)
3240 {
3241 	int i;
3242 
3243 	for (i = 0; i < host->num_slots; i++) {
3244 		dev_dbg(host->dev, "remove slot %d\n", i);
3245 		if (host->slot[i])
3246 			dw_mci_cleanup_slot(host->slot[i], i);
3247 	}
3248 
3249 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3250 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3251 
3252 	/* disable clock to CIU */
3253 	mci_writel(host, CLKENA, 0);
3254 	mci_writel(host, CLKSRC, 0);
3255 
3256 	if (host->use_dma && host->dma_ops->exit)
3257 		host->dma_ops->exit(host);
3258 
3259 	if (!IS_ERR(host->pdata->rstc))
3260 		reset_control_assert(host->pdata->rstc);
3261 
3262 	clk_disable_unprepare(host->ciu_clk);
3263 	clk_disable_unprepare(host->biu_clk);
3264 }
3265 EXPORT_SYMBOL(dw_mci_remove);
3266 
3267 
3268 
3269 #ifdef CONFIG_PM_SLEEP
3270 /*
3271  * TODO: we should probably disable the clock to the card in the suspend path.
3272  */
3273 int dw_mci_suspend(struct dw_mci *host)
3274 {
3275 	if (host->use_dma && host->dma_ops->exit)
3276 		host->dma_ops->exit(host);
3277 
3278 	return 0;
3279 }
3280 EXPORT_SYMBOL(dw_mci_suspend);
3281 
3282 int dw_mci_resume(struct dw_mci *host)
3283 {
3284 	int i, ret;
3285 
3286 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3287 		ret = -ENODEV;
3288 		return ret;
3289 	}
3290 
3291 	if (host->use_dma && host->dma_ops->init)
3292 		host->dma_ops->init(host);
3293 
3294 	/*
3295 	 * Restore the initial value at FIFOTH register
3296 	 * And Invalidate the prev_blksz with zero
3297 	 */
3298 	mci_writel(host, FIFOTH, host->fifoth_val);
3299 	host->prev_blksz = 0;
3300 
3301 	/* Put in max timeout */
3302 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3303 
3304 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3305 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3306 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3307 		   DW_MCI_ERROR_FLAGS);
3308 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3309 
3310 	for (i = 0; i < host->num_slots; i++) {
3311 		struct dw_mci_slot *slot = host->slot[i];
3312 
3313 		if (!slot)
3314 			continue;
3315 		if (slot->mmc->pm_flags & MMC_PM_KEEP_POWER) {
3316 			dw_mci_set_ios(slot->mmc, &slot->mmc->ios);
3317 			dw_mci_setup_bus(slot, true);
3318 		}
3319 	}
3320 
3321 	/* Now that slots are all setup, we can enable card detect */
3322 	dw_mci_enable_cd(host);
3323 
3324 	return 0;
3325 }
3326 EXPORT_SYMBOL(dw_mci_resume);
3327 #endif /* CONFIG_PM_SLEEP */
3328 
3329 static int __init dw_mci_init(void)
3330 {
3331 	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3332 	return 0;
3333 }
3334 
3335 static void __exit dw_mci_exit(void)
3336 {
3337 }
3338 
3339 module_init(dw_mci_init);
3340 module_exit(dw_mci_exit);
3341 
3342 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3343 MODULE_AUTHOR("NXP Semiconductor VietNam");
3344 MODULE_AUTHOR("Imagination Technologies Ltd");
3345 MODULE_LICENSE("GPL v2");
3346