1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * CQHCI crypto engine (inline encryption) support 4 * 5 * Copyright 2020 Google LLC 6 */ 7 8 #include <linux/blk-crypto.h> 9 #include <linux/blk-crypto-profile.h> 10 #include <linux/mmc/host.h> 11 12 #include "cqhci-crypto.h" 13 14 /* Map from blk-crypto modes to CQHCI crypto algorithm IDs and key sizes */ 15 static const struct cqhci_crypto_alg_entry { 16 enum cqhci_crypto_alg alg; 17 enum cqhci_crypto_key_size key_size; 18 } cqhci_crypto_algs[BLK_ENCRYPTION_MODE_MAX] = { 19 [BLK_ENCRYPTION_MODE_AES_256_XTS] = { 20 .alg = CQHCI_CRYPTO_ALG_AES_XTS, 21 .key_size = CQHCI_CRYPTO_KEY_SIZE_256, 22 }, 23 }; 24 25 static inline struct cqhci_host * 26 cqhci_host_from_crypto_profile(struct blk_crypto_profile *profile) 27 { 28 struct mmc_host *mmc = 29 container_of(profile, struct mmc_host, crypto_profile); 30 31 return mmc->cqe_private; 32 } 33 34 static int cqhci_crypto_program_key(struct cqhci_host *cq_host, 35 const union cqhci_crypto_cfg_entry *cfg, 36 int slot) 37 { 38 u32 slot_offset = cq_host->crypto_cfg_register + slot * sizeof(*cfg); 39 int i; 40 41 if (cq_host->ops->program_key) 42 return cq_host->ops->program_key(cq_host, cfg, slot); 43 44 /* Clear CFGE */ 45 cqhci_writel(cq_host, 0, slot_offset + 16 * sizeof(cfg->reg_val[0])); 46 47 /* Write the key */ 48 for (i = 0; i < 16; i++) { 49 cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[i]), 50 slot_offset + i * sizeof(cfg->reg_val[0])); 51 } 52 /* Write dword 17 */ 53 cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[17]), 54 slot_offset + 17 * sizeof(cfg->reg_val[0])); 55 /* Write dword 16, which includes the new value of CFGE */ 56 cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[16]), 57 slot_offset + 16 * sizeof(cfg->reg_val[0])); 58 return 0; 59 } 60 61 static int cqhci_crypto_keyslot_program(struct blk_crypto_profile *profile, 62 const struct blk_crypto_key *key, 63 unsigned int slot) 64 65 { 66 struct cqhci_host *cq_host = cqhci_host_from_crypto_profile(profile); 67 const union cqhci_crypto_cap_entry *ccap_array = 68 cq_host->crypto_cap_array; 69 const struct cqhci_crypto_alg_entry *alg = 70 &cqhci_crypto_algs[key->crypto_cfg.crypto_mode]; 71 u8 data_unit_mask = key->crypto_cfg.data_unit_size / 512; 72 int i; 73 int cap_idx = -1; 74 union cqhci_crypto_cfg_entry cfg = {}; 75 int err; 76 77 BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0); 78 for (i = 0; i < cq_host->crypto_capabilities.num_crypto_cap; i++) { 79 if (ccap_array[i].algorithm_id == alg->alg && 80 ccap_array[i].key_size == alg->key_size && 81 (ccap_array[i].sdus_mask & data_unit_mask)) { 82 cap_idx = i; 83 break; 84 } 85 } 86 if (WARN_ON(cap_idx < 0)) 87 return -EOPNOTSUPP; 88 89 cfg.data_unit_size = data_unit_mask; 90 cfg.crypto_cap_idx = cap_idx; 91 cfg.config_enable = CQHCI_CRYPTO_CONFIGURATION_ENABLE; 92 93 if (ccap_array[cap_idx].algorithm_id == CQHCI_CRYPTO_ALG_AES_XTS) { 94 /* In XTS mode, the blk_crypto_key's size is already doubled */ 95 memcpy(cfg.crypto_key, key->raw, key->size/2); 96 memcpy(cfg.crypto_key + CQHCI_CRYPTO_KEY_MAX_SIZE/2, 97 key->raw + key->size/2, key->size/2); 98 } else { 99 memcpy(cfg.crypto_key, key->raw, key->size); 100 } 101 102 err = cqhci_crypto_program_key(cq_host, &cfg, slot); 103 104 memzero_explicit(&cfg, sizeof(cfg)); 105 return err; 106 } 107 108 static int cqhci_crypto_clear_keyslot(struct cqhci_host *cq_host, int slot) 109 { 110 /* 111 * Clear the crypto cfg on the device. Clearing CFGE 112 * might not be sufficient, so just clear the entire cfg. 113 */ 114 union cqhci_crypto_cfg_entry cfg = {}; 115 116 return cqhci_crypto_program_key(cq_host, &cfg, slot); 117 } 118 119 static int cqhci_crypto_keyslot_evict(struct blk_crypto_profile *profile, 120 const struct blk_crypto_key *key, 121 unsigned int slot) 122 { 123 struct cqhci_host *cq_host = cqhci_host_from_crypto_profile(profile); 124 125 return cqhci_crypto_clear_keyslot(cq_host, slot); 126 } 127 128 /* 129 * The keyslot management operations for CQHCI crypto. 130 * 131 * Note that the block layer ensures that these are never called while the host 132 * controller is runtime-suspended. However, the CQE won't necessarily be 133 * "enabled" when these are called, i.e. CQHCI_ENABLE might not be set in the 134 * CQHCI_CFG register. But the hardware allows that. 135 */ 136 static const struct blk_crypto_ll_ops cqhci_crypto_ops = { 137 .keyslot_program = cqhci_crypto_keyslot_program, 138 .keyslot_evict = cqhci_crypto_keyslot_evict, 139 }; 140 141 static enum blk_crypto_mode_num 142 cqhci_find_blk_crypto_mode(union cqhci_crypto_cap_entry cap) 143 { 144 int i; 145 146 for (i = 0; i < ARRAY_SIZE(cqhci_crypto_algs); i++) { 147 BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0); 148 if (cqhci_crypto_algs[i].alg == cap.algorithm_id && 149 cqhci_crypto_algs[i].key_size == cap.key_size) 150 return i; 151 } 152 return BLK_ENCRYPTION_MODE_INVALID; 153 } 154 155 /** 156 * cqhci_crypto_init - initialize CQHCI crypto support 157 * @cq_host: a cqhci host 158 * 159 * If the driver previously set MMC_CAP2_CRYPTO and the CQE declares 160 * CQHCI_CAP_CS, initialize the crypto support. This involves reading the 161 * crypto capability registers, initializing the blk_crypto_profile, clearing 162 * all keyslots, and enabling 128-bit task descriptors. 163 * 164 * Return: 0 if crypto was initialized or isn't supported; whether 165 * MMC_CAP2_CRYPTO remains set indicates which one of those cases it is. 166 * Also can return a negative errno value on unexpected error. 167 */ 168 int cqhci_crypto_init(struct cqhci_host *cq_host) 169 { 170 struct mmc_host *mmc = cq_host->mmc; 171 struct device *dev = mmc_dev(mmc); 172 struct blk_crypto_profile *profile = &mmc->crypto_profile; 173 unsigned int num_keyslots; 174 unsigned int cap_idx; 175 enum blk_crypto_mode_num blk_mode_num; 176 unsigned int slot; 177 int err = 0; 178 179 if (!(mmc->caps2 & MMC_CAP2_CRYPTO) || 180 !(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS)) 181 goto out; 182 183 cq_host->crypto_capabilities.reg_val = 184 cpu_to_le32(cqhci_readl(cq_host, CQHCI_CCAP)); 185 186 cq_host->crypto_cfg_register = 187 (u32)cq_host->crypto_capabilities.config_array_ptr * 0x100; 188 189 cq_host->crypto_cap_array = 190 devm_kcalloc(dev, cq_host->crypto_capabilities.num_crypto_cap, 191 sizeof(cq_host->crypto_cap_array[0]), GFP_KERNEL); 192 if (!cq_host->crypto_cap_array) { 193 err = -ENOMEM; 194 goto out; 195 } 196 197 /* 198 * CCAP.CFGC is off by one, so the actual number of crypto 199 * configurations (a.k.a. keyslots) is CCAP.CFGC + 1. 200 */ 201 num_keyslots = cq_host->crypto_capabilities.config_count + 1; 202 203 err = devm_blk_crypto_profile_init(dev, profile, num_keyslots); 204 if (err) 205 goto out; 206 207 profile->ll_ops = cqhci_crypto_ops; 208 profile->dev = dev; 209 210 /* Unfortunately, CQHCI crypto only supports 32 DUN bits. */ 211 profile->max_dun_bytes_supported = 4; 212 213 /* 214 * Cache all the crypto capabilities and advertise the supported crypto 215 * modes and data unit sizes to the block layer. 216 */ 217 for (cap_idx = 0; cap_idx < cq_host->crypto_capabilities.num_crypto_cap; 218 cap_idx++) { 219 cq_host->crypto_cap_array[cap_idx].reg_val = 220 cpu_to_le32(cqhci_readl(cq_host, 221 CQHCI_CRYPTOCAP + 222 cap_idx * sizeof(__le32))); 223 blk_mode_num = cqhci_find_blk_crypto_mode( 224 cq_host->crypto_cap_array[cap_idx]); 225 if (blk_mode_num == BLK_ENCRYPTION_MODE_INVALID) 226 continue; 227 profile->modes_supported[blk_mode_num] |= 228 cq_host->crypto_cap_array[cap_idx].sdus_mask * 512; 229 } 230 231 /* Clear all the keyslots so that we start in a known state. */ 232 for (slot = 0; slot < num_keyslots; slot++) 233 cqhci_crypto_clear_keyslot(cq_host, slot); 234 235 /* CQHCI crypto requires the use of 128-bit task descriptors. */ 236 cq_host->caps |= CQHCI_TASK_DESC_SZ_128; 237 238 return 0; 239 240 out: 241 mmc->caps2 &= ~MMC_CAP2_CRYPTO; 242 return err; 243 } 244