xref: /openbmc/linux/drivers/mmc/host/cqhci-core.c (revision d47f163c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015, The Linux Foundation. All rights reserved.
3  */
4 
5 #include <linux/delay.h>
6 #include <linux/highmem.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/module.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/slab.h>
12 #include <linux/scatterlist.h>
13 #include <linux/platform_device.h>
14 #include <linux/ktime.h>
15 
16 #include <linux/mmc/mmc.h>
17 #include <linux/mmc/host.h>
18 #include <linux/mmc/card.h>
19 
20 #include "cqhci.h"
21 #include "cqhci-crypto.h"
22 
23 #define DCMD_SLOT 31
24 #define NUM_SLOTS 32
25 
26 struct cqhci_slot {
27 	struct mmc_request *mrq;
28 	unsigned int flags;
29 #define CQHCI_EXTERNAL_TIMEOUT	BIT(0)
30 #define CQHCI_COMPLETED		BIT(1)
31 #define CQHCI_HOST_CRC		BIT(2)
32 #define CQHCI_HOST_TIMEOUT	BIT(3)
33 #define CQHCI_HOST_OTHER	BIT(4)
34 };
35 
36 static inline u8 *get_desc(struct cqhci_host *cq_host, u8 tag)
37 {
38 	return cq_host->desc_base + (tag * cq_host->slot_sz);
39 }
40 
41 static inline u8 *get_link_desc(struct cqhci_host *cq_host, u8 tag)
42 {
43 	u8 *desc = get_desc(cq_host, tag);
44 
45 	return desc + cq_host->task_desc_len;
46 }
47 
48 static inline size_t get_trans_desc_offset(struct cqhci_host *cq_host, u8 tag)
49 {
50 	return cq_host->trans_desc_len * cq_host->mmc->max_segs * tag;
51 }
52 
53 static inline dma_addr_t get_trans_desc_dma(struct cqhci_host *cq_host, u8 tag)
54 {
55 	size_t offset = get_trans_desc_offset(cq_host, tag);
56 
57 	return cq_host->trans_desc_dma_base + offset;
58 }
59 
60 static inline u8 *get_trans_desc(struct cqhci_host *cq_host, u8 tag)
61 {
62 	size_t offset = get_trans_desc_offset(cq_host, tag);
63 
64 	return cq_host->trans_desc_base + offset;
65 }
66 
67 static void setup_trans_desc(struct cqhci_host *cq_host, u8 tag)
68 {
69 	u8 *link_temp;
70 	dma_addr_t trans_temp;
71 
72 	link_temp = get_link_desc(cq_host, tag);
73 	trans_temp = get_trans_desc_dma(cq_host, tag);
74 
75 	memset(link_temp, 0, cq_host->link_desc_len);
76 	if (cq_host->link_desc_len > 8)
77 		*(link_temp + 8) = 0;
78 
79 	if (tag == DCMD_SLOT && (cq_host->mmc->caps2 & MMC_CAP2_CQE_DCMD)) {
80 		*link_temp = CQHCI_VALID(0) | CQHCI_ACT(0) | CQHCI_END(1);
81 		return;
82 	}
83 
84 	*link_temp = CQHCI_VALID(1) | CQHCI_ACT(0x6) | CQHCI_END(0);
85 
86 	if (cq_host->dma64) {
87 		__le64 *data_addr = (__le64 __force *)(link_temp + 4);
88 
89 		data_addr[0] = cpu_to_le64(trans_temp);
90 	} else {
91 		__le32 *data_addr = (__le32 __force *)(link_temp + 4);
92 
93 		data_addr[0] = cpu_to_le32(trans_temp);
94 	}
95 }
96 
97 static void cqhci_set_irqs(struct cqhci_host *cq_host, u32 set)
98 {
99 	cqhci_writel(cq_host, set, CQHCI_ISTE);
100 	cqhci_writel(cq_host, set, CQHCI_ISGE);
101 }
102 
103 #define DRV_NAME "cqhci"
104 
105 #define CQHCI_DUMP(f, x...) \
106 	pr_err("%s: " DRV_NAME ": " f, mmc_hostname(mmc), ## x)
107 
108 static void cqhci_dumpregs(struct cqhci_host *cq_host)
109 {
110 	struct mmc_host *mmc = cq_host->mmc;
111 
112 	CQHCI_DUMP("============ CQHCI REGISTER DUMP ===========\n");
113 
114 	CQHCI_DUMP("Caps:      0x%08x | Version:  0x%08x\n",
115 		   cqhci_readl(cq_host, CQHCI_CAP),
116 		   cqhci_readl(cq_host, CQHCI_VER));
117 	CQHCI_DUMP("Config:    0x%08x | Control:  0x%08x\n",
118 		   cqhci_readl(cq_host, CQHCI_CFG),
119 		   cqhci_readl(cq_host, CQHCI_CTL));
120 	CQHCI_DUMP("Int stat:  0x%08x | Int enab: 0x%08x\n",
121 		   cqhci_readl(cq_host, CQHCI_IS),
122 		   cqhci_readl(cq_host, CQHCI_ISTE));
123 	CQHCI_DUMP("Int sig:   0x%08x | Int Coal: 0x%08x\n",
124 		   cqhci_readl(cq_host, CQHCI_ISGE),
125 		   cqhci_readl(cq_host, CQHCI_IC));
126 	CQHCI_DUMP("TDL base:  0x%08x | TDL up32: 0x%08x\n",
127 		   cqhci_readl(cq_host, CQHCI_TDLBA),
128 		   cqhci_readl(cq_host, CQHCI_TDLBAU));
129 	CQHCI_DUMP("Doorbell:  0x%08x | TCN:      0x%08x\n",
130 		   cqhci_readl(cq_host, CQHCI_TDBR),
131 		   cqhci_readl(cq_host, CQHCI_TCN));
132 	CQHCI_DUMP("Dev queue: 0x%08x | Dev Pend: 0x%08x\n",
133 		   cqhci_readl(cq_host, CQHCI_DQS),
134 		   cqhci_readl(cq_host, CQHCI_DPT));
135 	CQHCI_DUMP("Task clr:  0x%08x | SSC1:     0x%08x\n",
136 		   cqhci_readl(cq_host, CQHCI_TCLR),
137 		   cqhci_readl(cq_host, CQHCI_SSC1));
138 	CQHCI_DUMP("SSC2:      0x%08x | DCMD rsp: 0x%08x\n",
139 		   cqhci_readl(cq_host, CQHCI_SSC2),
140 		   cqhci_readl(cq_host, CQHCI_CRDCT));
141 	CQHCI_DUMP("RED mask:  0x%08x | TERRI:    0x%08x\n",
142 		   cqhci_readl(cq_host, CQHCI_RMEM),
143 		   cqhci_readl(cq_host, CQHCI_TERRI));
144 	CQHCI_DUMP("Resp idx:  0x%08x | Resp arg: 0x%08x\n",
145 		   cqhci_readl(cq_host, CQHCI_CRI),
146 		   cqhci_readl(cq_host, CQHCI_CRA));
147 
148 	if (cq_host->ops->dumpregs)
149 		cq_host->ops->dumpregs(mmc);
150 	else
151 		CQHCI_DUMP(": ===========================================\n");
152 }
153 
154 /*
155  * The allocated descriptor table for task, link & transfer descriptors
156  * looks like:
157  * |----------|
158  * |task desc |  |->|----------|
159  * |----------|  |  |trans desc|
160  * |link desc-|->|  |----------|
161  * |----------|          .
162  *      .                .
163  *  no. of slots      max-segs
164  *      .           |----------|
165  * |----------|
166  * The idea here is to create the [task+trans] table and mark & point the
167  * link desc to the transfer desc table on a per slot basis.
168  */
169 static int cqhci_host_alloc_tdl(struct cqhci_host *cq_host)
170 {
171 	int i = 0;
172 
173 	/* task descriptor can be 64/128 bit irrespective of arch */
174 	if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
175 		cqhci_writel(cq_host, cqhci_readl(cq_host, CQHCI_CFG) |
176 			       CQHCI_TASK_DESC_SZ, CQHCI_CFG);
177 		cq_host->task_desc_len = 16;
178 	} else {
179 		cq_host->task_desc_len = 8;
180 	}
181 
182 	/*
183 	 * 96 bits length of transfer desc instead of 128 bits which means
184 	 * ADMA would expect next valid descriptor at the 96th bit
185 	 * or 128th bit
186 	 */
187 	if (cq_host->dma64) {
188 		if (cq_host->quirks & CQHCI_QUIRK_SHORT_TXFR_DESC_SZ)
189 			cq_host->trans_desc_len = 12;
190 		else
191 			cq_host->trans_desc_len = 16;
192 		cq_host->link_desc_len = 16;
193 	} else {
194 		cq_host->trans_desc_len = 8;
195 		cq_host->link_desc_len = 8;
196 	}
197 
198 	/* total size of a slot: 1 task & 1 transfer (link) */
199 	cq_host->slot_sz = cq_host->task_desc_len + cq_host->link_desc_len;
200 
201 	cq_host->desc_size = cq_host->slot_sz * cq_host->num_slots;
202 
203 	cq_host->data_size = get_trans_desc_offset(cq_host, cq_host->mmc->cqe_qdepth);
204 
205 	pr_debug("%s: cqhci: desc_size: %zu data_sz: %zu slot-sz: %d\n",
206 		 mmc_hostname(cq_host->mmc), cq_host->desc_size, cq_host->data_size,
207 		 cq_host->slot_sz);
208 
209 	/*
210 	 * allocate a dma-mapped chunk of memory for the descriptors
211 	 * allocate a dma-mapped chunk of memory for link descriptors
212 	 * setup each link-desc memory offset per slot-number to
213 	 * the descriptor table.
214 	 */
215 	cq_host->desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
216 						 cq_host->desc_size,
217 						 &cq_host->desc_dma_base,
218 						 GFP_KERNEL);
219 	if (!cq_host->desc_base)
220 		return -ENOMEM;
221 
222 	cq_host->trans_desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
223 					      cq_host->data_size,
224 					      &cq_host->trans_desc_dma_base,
225 					      GFP_KERNEL);
226 	if (!cq_host->trans_desc_base) {
227 		dmam_free_coherent(mmc_dev(cq_host->mmc), cq_host->desc_size,
228 				   cq_host->desc_base,
229 				   cq_host->desc_dma_base);
230 		cq_host->desc_base = NULL;
231 		cq_host->desc_dma_base = 0;
232 		return -ENOMEM;
233 	}
234 
235 	pr_debug("%s: cqhci: desc-base: 0x%p trans-base: 0x%p\n desc_dma 0x%llx trans_dma: 0x%llx\n",
236 		 mmc_hostname(cq_host->mmc), cq_host->desc_base, cq_host->trans_desc_base,
237 		(unsigned long long)cq_host->desc_dma_base,
238 		(unsigned long long)cq_host->trans_desc_dma_base);
239 
240 	for (; i < (cq_host->num_slots); i++)
241 		setup_trans_desc(cq_host, i);
242 
243 	return 0;
244 }
245 
246 static void __cqhci_enable(struct cqhci_host *cq_host)
247 {
248 	struct mmc_host *mmc = cq_host->mmc;
249 	u32 cqcfg;
250 
251 	cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
252 
253 	/* Configuration must not be changed while enabled */
254 	if (cqcfg & CQHCI_ENABLE) {
255 		cqcfg &= ~CQHCI_ENABLE;
256 		cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
257 	}
258 
259 	cqcfg &= ~(CQHCI_DCMD | CQHCI_TASK_DESC_SZ);
260 
261 	if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
262 		cqcfg |= CQHCI_DCMD;
263 
264 	if (cq_host->caps & CQHCI_TASK_DESC_SZ_128)
265 		cqcfg |= CQHCI_TASK_DESC_SZ;
266 
267 	if (mmc->caps2 & MMC_CAP2_CRYPTO)
268 		cqcfg |= CQHCI_CRYPTO_GENERAL_ENABLE;
269 
270 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
271 
272 	cqhci_writel(cq_host, lower_32_bits(cq_host->desc_dma_base),
273 		     CQHCI_TDLBA);
274 	cqhci_writel(cq_host, upper_32_bits(cq_host->desc_dma_base),
275 		     CQHCI_TDLBAU);
276 
277 	cqhci_writel(cq_host, cq_host->rca, CQHCI_SSC2);
278 
279 	cqhci_set_irqs(cq_host, 0);
280 
281 	cqcfg |= CQHCI_ENABLE;
282 
283 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
284 
285 	mmc->cqe_on = true;
286 
287 	if (cq_host->ops->enable)
288 		cq_host->ops->enable(mmc);
289 
290 	/* Ensure all writes are done before interrupts are enabled */
291 	wmb();
292 
293 	cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
294 
295 	cq_host->activated = true;
296 }
297 
298 static void __cqhci_disable(struct cqhci_host *cq_host)
299 {
300 	u32 cqcfg;
301 
302 	cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
303 	cqcfg &= ~CQHCI_ENABLE;
304 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
305 
306 	cq_host->mmc->cqe_on = false;
307 
308 	cq_host->activated = false;
309 }
310 
311 int cqhci_deactivate(struct mmc_host *mmc)
312 {
313 	struct cqhci_host *cq_host = mmc->cqe_private;
314 
315 	if (cq_host->enabled && cq_host->activated)
316 		__cqhci_disable(cq_host);
317 
318 	return 0;
319 }
320 EXPORT_SYMBOL(cqhci_deactivate);
321 
322 int cqhci_resume(struct mmc_host *mmc)
323 {
324 	/* Re-enable is done upon first request */
325 	return 0;
326 }
327 EXPORT_SYMBOL(cqhci_resume);
328 
329 static int cqhci_enable(struct mmc_host *mmc, struct mmc_card *card)
330 {
331 	struct cqhci_host *cq_host = mmc->cqe_private;
332 	int err;
333 
334 	if (!card->ext_csd.cmdq_en)
335 		return -EINVAL;
336 
337 	if (cq_host->enabled)
338 		return 0;
339 
340 	cq_host->rca = card->rca;
341 
342 	err = cqhci_host_alloc_tdl(cq_host);
343 	if (err) {
344 		pr_err("%s: Failed to enable CQE, error %d\n",
345 		       mmc_hostname(mmc), err);
346 		return err;
347 	}
348 
349 	__cqhci_enable(cq_host);
350 
351 	cq_host->enabled = true;
352 
353 #ifdef DEBUG
354 	cqhci_dumpregs(cq_host);
355 #endif
356 	return 0;
357 }
358 
359 /* CQHCI is idle and should halt immediately, so set a small timeout */
360 #define CQHCI_OFF_TIMEOUT 100
361 
362 static u32 cqhci_read_ctl(struct cqhci_host *cq_host)
363 {
364 	return cqhci_readl(cq_host, CQHCI_CTL);
365 }
366 
367 static void cqhci_off(struct mmc_host *mmc)
368 {
369 	struct cqhci_host *cq_host = mmc->cqe_private;
370 	u32 reg;
371 	int err;
372 
373 	if (!cq_host->enabled || !mmc->cqe_on || cq_host->recovery_halt)
374 		return;
375 
376 	if (cq_host->ops->disable)
377 		cq_host->ops->disable(mmc, false);
378 
379 	cqhci_writel(cq_host, CQHCI_HALT, CQHCI_CTL);
380 
381 	err = readx_poll_timeout(cqhci_read_ctl, cq_host, reg,
382 				 reg & CQHCI_HALT, 0, CQHCI_OFF_TIMEOUT);
383 	if (err < 0)
384 		pr_err("%s: cqhci: CQE stuck on\n", mmc_hostname(mmc));
385 	else
386 		pr_debug("%s: cqhci: CQE off\n", mmc_hostname(mmc));
387 
388 	if (cq_host->ops->post_disable)
389 		cq_host->ops->post_disable(mmc);
390 
391 	mmc->cqe_on = false;
392 }
393 
394 static void cqhci_disable(struct mmc_host *mmc)
395 {
396 	struct cqhci_host *cq_host = mmc->cqe_private;
397 
398 	if (!cq_host->enabled)
399 		return;
400 
401 	cqhci_off(mmc);
402 
403 	__cqhci_disable(cq_host);
404 
405 	dmam_free_coherent(mmc_dev(mmc), cq_host->data_size,
406 			   cq_host->trans_desc_base,
407 			   cq_host->trans_desc_dma_base);
408 
409 	dmam_free_coherent(mmc_dev(mmc), cq_host->desc_size,
410 			   cq_host->desc_base,
411 			   cq_host->desc_dma_base);
412 
413 	cq_host->trans_desc_base = NULL;
414 	cq_host->desc_base = NULL;
415 
416 	cq_host->enabled = false;
417 }
418 
419 static void cqhci_prep_task_desc(struct mmc_request *mrq,
420 				 struct cqhci_host *cq_host, int tag)
421 {
422 	__le64 *task_desc = (__le64 __force *)get_desc(cq_host, tag);
423 	u32 req_flags = mrq->data->flags;
424 	u64 desc0;
425 
426 	desc0 = CQHCI_VALID(1) |
427 		CQHCI_END(1) |
428 		CQHCI_INT(1) |
429 		CQHCI_ACT(0x5) |
430 		CQHCI_FORCED_PROG(!!(req_flags & MMC_DATA_FORCED_PRG)) |
431 		CQHCI_DATA_TAG(!!(req_flags & MMC_DATA_DAT_TAG)) |
432 		CQHCI_DATA_DIR(!!(req_flags & MMC_DATA_READ)) |
433 		CQHCI_PRIORITY(!!(req_flags & MMC_DATA_PRIO)) |
434 		CQHCI_QBAR(!!(req_flags & MMC_DATA_QBR)) |
435 		CQHCI_REL_WRITE(!!(req_flags & MMC_DATA_REL_WR)) |
436 		CQHCI_BLK_COUNT(mrq->data->blocks) |
437 		CQHCI_BLK_ADDR((u64)mrq->data->blk_addr);
438 
439 	task_desc[0] = cpu_to_le64(desc0);
440 
441 	if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
442 		u64 desc1 = cqhci_crypto_prep_task_desc(mrq);
443 
444 		task_desc[1] = cpu_to_le64(desc1);
445 
446 		pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx%016llx\n",
447 			 mmc_hostname(mrq->host), mrq->tag, desc1, desc0);
448 	} else {
449 		pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx\n",
450 			 mmc_hostname(mrq->host), mrq->tag, desc0);
451 	}
452 }
453 
454 static int cqhci_dma_map(struct mmc_host *host, struct mmc_request *mrq)
455 {
456 	int sg_count;
457 	struct mmc_data *data = mrq->data;
458 
459 	if (!data)
460 		return -EINVAL;
461 
462 	sg_count = dma_map_sg(mmc_dev(host), data->sg,
463 			      data->sg_len,
464 			      (data->flags & MMC_DATA_WRITE) ?
465 			      DMA_TO_DEVICE : DMA_FROM_DEVICE);
466 	if (!sg_count) {
467 		pr_err("%s: sg-len: %d\n", __func__, data->sg_len);
468 		return -ENOMEM;
469 	}
470 
471 	return sg_count;
472 }
473 
474 static void cqhci_set_tran_desc(u8 *desc, dma_addr_t addr, int len, bool end,
475 				bool dma64)
476 {
477 	__le32 *attr = (__le32 __force *)desc;
478 
479 	*attr = (CQHCI_VALID(1) |
480 		 CQHCI_END(end ? 1 : 0) |
481 		 CQHCI_INT(0) |
482 		 CQHCI_ACT(0x4) |
483 		 CQHCI_DAT_LENGTH(len));
484 
485 	if (dma64) {
486 		__le64 *dataddr = (__le64 __force *)(desc + 4);
487 
488 		dataddr[0] = cpu_to_le64(addr);
489 	} else {
490 		__le32 *dataddr = (__le32 __force *)(desc + 4);
491 
492 		dataddr[0] = cpu_to_le32(addr);
493 	}
494 }
495 
496 static int cqhci_prep_tran_desc(struct mmc_request *mrq,
497 			       struct cqhci_host *cq_host, int tag)
498 {
499 	struct mmc_data *data = mrq->data;
500 	int i, sg_count, len;
501 	bool end = false;
502 	bool dma64 = cq_host->dma64;
503 	dma_addr_t addr;
504 	u8 *desc;
505 	struct scatterlist *sg;
506 
507 	sg_count = cqhci_dma_map(mrq->host, mrq);
508 	if (sg_count < 0) {
509 		pr_err("%s: %s: unable to map sg lists, %d\n",
510 				mmc_hostname(mrq->host), __func__, sg_count);
511 		return sg_count;
512 	}
513 
514 	desc = get_trans_desc(cq_host, tag);
515 
516 	for_each_sg(data->sg, sg, sg_count, i) {
517 		addr = sg_dma_address(sg);
518 		len = sg_dma_len(sg);
519 
520 		if ((i+1) == sg_count)
521 			end = true;
522 		cqhci_set_tran_desc(desc, addr, len, end, dma64);
523 		desc += cq_host->trans_desc_len;
524 	}
525 
526 	return 0;
527 }
528 
529 static void cqhci_prep_dcmd_desc(struct mmc_host *mmc,
530 				   struct mmc_request *mrq)
531 {
532 	u64 *task_desc = NULL;
533 	u64 data = 0;
534 	u8 resp_type;
535 	u8 *desc;
536 	__le64 *dataddr;
537 	struct cqhci_host *cq_host = mmc->cqe_private;
538 	u8 timing;
539 
540 	if (!(mrq->cmd->flags & MMC_RSP_PRESENT)) {
541 		resp_type = 0x0;
542 		timing = 0x1;
543 	} else {
544 		if (mrq->cmd->flags & MMC_RSP_R1B) {
545 			resp_type = 0x3;
546 			timing = 0x0;
547 		} else {
548 			resp_type = 0x2;
549 			timing = 0x1;
550 		}
551 	}
552 
553 	task_desc = (__le64 __force *)get_desc(cq_host, cq_host->dcmd_slot);
554 	memset(task_desc, 0, cq_host->task_desc_len);
555 	data |= (CQHCI_VALID(1) |
556 		 CQHCI_END(1) |
557 		 CQHCI_INT(1) |
558 		 CQHCI_QBAR(1) |
559 		 CQHCI_ACT(0x5) |
560 		 CQHCI_CMD_INDEX(mrq->cmd->opcode) |
561 		 CQHCI_CMD_TIMING(timing) | CQHCI_RESP_TYPE(resp_type));
562 	if (cq_host->ops->update_dcmd_desc)
563 		cq_host->ops->update_dcmd_desc(mmc, mrq, &data);
564 	*task_desc |= data;
565 	desc = (u8 *)task_desc;
566 	pr_debug("%s: cqhci: dcmd: cmd: %d timing: %d resp: %d\n",
567 		 mmc_hostname(mmc), mrq->cmd->opcode, timing, resp_type);
568 	dataddr = (__le64 __force *)(desc + 4);
569 	dataddr[0] = cpu_to_le64((u64)mrq->cmd->arg);
570 
571 }
572 
573 static void cqhci_post_req(struct mmc_host *host, struct mmc_request *mrq)
574 {
575 	struct mmc_data *data = mrq->data;
576 
577 	if (data) {
578 		dma_unmap_sg(mmc_dev(host), data->sg, data->sg_len,
579 			     (data->flags & MMC_DATA_READ) ?
580 			     DMA_FROM_DEVICE : DMA_TO_DEVICE);
581 	}
582 }
583 
584 static inline int cqhci_tag(struct mmc_request *mrq)
585 {
586 	return mrq->cmd ? DCMD_SLOT : mrq->tag;
587 }
588 
589 static int cqhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
590 {
591 	int err = 0;
592 	int tag = cqhci_tag(mrq);
593 	struct cqhci_host *cq_host = mmc->cqe_private;
594 	unsigned long flags;
595 
596 	if (!cq_host->enabled) {
597 		pr_err("%s: cqhci: not enabled\n", mmc_hostname(mmc));
598 		return -EINVAL;
599 	}
600 
601 	/* First request after resume has to re-enable */
602 	if (!cq_host->activated)
603 		__cqhci_enable(cq_host);
604 
605 	if (!mmc->cqe_on) {
606 		if (cq_host->ops->pre_enable)
607 			cq_host->ops->pre_enable(mmc);
608 
609 		cqhci_writel(cq_host, 0, CQHCI_CTL);
610 		mmc->cqe_on = true;
611 		pr_debug("%s: cqhci: CQE on\n", mmc_hostname(mmc));
612 		if (cqhci_readl(cq_host, CQHCI_CTL) && CQHCI_HALT) {
613 			pr_err("%s: cqhci: CQE failed to exit halt state\n",
614 			       mmc_hostname(mmc));
615 		}
616 		if (cq_host->ops->enable)
617 			cq_host->ops->enable(mmc);
618 	}
619 
620 	if (mrq->data) {
621 		cqhci_prep_task_desc(mrq, cq_host, tag);
622 
623 		err = cqhci_prep_tran_desc(mrq, cq_host, tag);
624 		if (err) {
625 			pr_err("%s: cqhci: failed to setup tx desc: %d\n",
626 			       mmc_hostname(mmc), err);
627 			return err;
628 		}
629 	} else {
630 		cqhci_prep_dcmd_desc(mmc, mrq);
631 	}
632 
633 	spin_lock_irqsave(&cq_host->lock, flags);
634 
635 	if (cq_host->recovery_halt) {
636 		err = -EBUSY;
637 		goto out_unlock;
638 	}
639 
640 	cq_host->slot[tag].mrq = mrq;
641 	cq_host->slot[tag].flags = 0;
642 
643 	cq_host->qcnt += 1;
644 	/* Make sure descriptors are ready before ringing the doorbell */
645 	wmb();
646 	cqhci_writel(cq_host, 1 << tag, CQHCI_TDBR);
647 	if (!(cqhci_readl(cq_host, CQHCI_TDBR) & (1 << tag)))
648 		pr_debug("%s: cqhci: doorbell not set for tag %d\n",
649 			 mmc_hostname(mmc), tag);
650 out_unlock:
651 	spin_unlock_irqrestore(&cq_host->lock, flags);
652 
653 	if (err)
654 		cqhci_post_req(mmc, mrq);
655 
656 	return err;
657 }
658 
659 static void cqhci_recovery_needed(struct mmc_host *mmc, struct mmc_request *mrq,
660 				  bool notify)
661 {
662 	struct cqhci_host *cq_host = mmc->cqe_private;
663 
664 	if (!cq_host->recovery_halt) {
665 		cq_host->recovery_halt = true;
666 		pr_debug("%s: cqhci: recovery needed\n", mmc_hostname(mmc));
667 		wake_up(&cq_host->wait_queue);
668 		if (notify && mrq->recovery_notifier)
669 			mrq->recovery_notifier(mrq);
670 	}
671 }
672 
673 static unsigned int cqhci_error_flags(int error1, int error2)
674 {
675 	int error = error1 ? error1 : error2;
676 
677 	switch (error) {
678 	case -EILSEQ:
679 		return CQHCI_HOST_CRC;
680 	case -ETIMEDOUT:
681 		return CQHCI_HOST_TIMEOUT;
682 	default:
683 		return CQHCI_HOST_OTHER;
684 	}
685 }
686 
687 static void cqhci_error_irq(struct mmc_host *mmc, u32 status, int cmd_error,
688 			    int data_error)
689 {
690 	struct cqhci_host *cq_host = mmc->cqe_private;
691 	struct cqhci_slot *slot;
692 	u32 terri;
693 	u32 tdpe;
694 	int tag;
695 
696 	spin_lock(&cq_host->lock);
697 
698 	terri = cqhci_readl(cq_host, CQHCI_TERRI);
699 
700 	pr_debug("%s: cqhci: error IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
701 		 mmc_hostname(mmc), status, cmd_error, data_error, terri);
702 
703 	/* Forget about errors when recovery has already been triggered */
704 	if (cq_host->recovery_halt)
705 		goto out_unlock;
706 
707 	if (!cq_host->qcnt) {
708 		WARN_ONCE(1, "%s: cqhci: error when idle. IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
709 			  mmc_hostname(mmc), status, cmd_error, data_error,
710 			  terri);
711 		goto out_unlock;
712 	}
713 
714 	if (CQHCI_TERRI_C_VALID(terri)) {
715 		tag = CQHCI_TERRI_C_TASK(terri);
716 		slot = &cq_host->slot[tag];
717 		if (slot->mrq) {
718 			slot->flags = cqhci_error_flags(cmd_error, data_error);
719 			cqhci_recovery_needed(mmc, slot->mrq, true);
720 		}
721 	}
722 
723 	if (CQHCI_TERRI_D_VALID(terri)) {
724 		tag = CQHCI_TERRI_D_TASK(terri);
725 		slot = &cq_host->slot[tag];
726 		if (slot->mrq) {
727 			slot->flags = cqhci_error_flags(data_error, cmd_error);
728 			cqhci_recovery_needed(mmc, slot->mrq, true);
729 		}
730 	}
731 
732 	/*
733 	 * Handle ICCE ("Invalid Crypto Configuration Error").  This should
734 	 * never happen, since the block layer ensures that all crypto-enabled
735 	 * I/O requests have a valid keyslot before they reach the driver.
736 	 *
737 	 * Note that GCE ("General Crypto Error") is different; it already got
738 	 * handled above by checking TERRI.
739 	 */
740 	if (status & CQHCI_IS_ICCE) {
741 		tdpe = cqhci_readl(cq_host, CQHCI_TDPE);
742 		WARN_ONCE(1,
743 			  "%s: cqhci: invalid crypto configuration error. IRQ status: 0x%08x TDPE: 0x%08x\n",
744 			  mmc_hostname(mmc), status, tdpe);
745 		while (tdpe != 0) {
746 			tag = __ffs(tdpe);
747 			tdpe &= ~(1 << tag);
748 			slot = &cq_host->slot[tag];
749 			if (!slot->mrq)
750 				continue;
751 			slot->flags = cqhci_error_flags(data_error, cmd_error);
752 			cqhci_recovery_needed(mmc, slot->mrq, true);
753 		}
754 	}
755 
756 	if (!cq_host->recovery_halt) {
757 		/*
758 		 * The only way to guarantee forward progress is to mark at
759 		 * least one task in error, so if none is indicated, pick one.
760 		 */
761 		for (tag = 0; tag < NUM_SLOTS; tag++) {
762 			slot = &cq_host->slot[tag];
763 			if (!slot->mrq)
764 				continue;
765 			slot->flags = cqhci_error_flags(data_error, cmd_error);
766 			cqhci_recovery_needed(mmc, slot->mrq, true);
767 			break;
768 		}
769 	}
770 
771 out_unlock:
772 	spin_unlock(&cq_host->lock);
773 }
774 
775 static void cqhci_finish_mrq(struct mmc_host *mmc, unsigned int tag)
776 {
777 	struct cqhci_host *cq_host = mmc->cqe_private;
778 	struct cqhci_slot *slot = &cq_host->slot[tag];
779 	struct mmc_request *mrq = slot->mrq;
780 	struct mmc_data *data;
781 
782 	if (!mrq) {
783 		WARN_ONCE(1, "%s: cqhci: spurious TCN for tag %d\n",
784 			  mmc_hostname(mmc), tag);
785 		return;
786 	}
787 
788 	/* No completions allowed during recovery */
789 	if (cq_host->recovery_halt) {
790 		slot->flags |= CQHCI_COMPLETED;
791 		return;
792 	}
793 
794 	slot->mrq = NULL;
795 
796 	cq_host->qcnt -= 1;
797 
798 	data = mrq->data;
799 	if (data) {
800 		if (data->error)
801 			data->bytes_xfered = 0;
802 		else
803 			data->bytes_xfered = data->blksz * data->blocks;
804 	}
805 
806 	mmc_cqe_request_done(mmc, mrq);
807 }
808 
809 irqreturn_t cqhci_irq(struct mmc_host *mmc, u32 intmask, int cmd_error,
810 		      int data_error)
811 {
812 	u32 status;
813 	unsigned long tag = 0, comp_status;
814 	struct cqhci_host *cq_host = mmc->cqe_private;
815 
816 	status = cqhci_readl(cq_host, CQHCI_IS);
817 	cqhci_writel(cq_host, status, CQHCI_IS);
818 
819 	pr_debug("%s: cqhci: IRQ status: 0x%08x\n", mmc_hostname(mmc), status);
820 
821 	if ((status & (CQHCI_IS_RED | CQHCI_IS_GCE | CQHCI_IS_ICCE)) ||
822 	    cmd_error || data_error)
823 		cqhci_error_irq(mmc, status, cmd_error, data_error);
824 
825 	if (status & CQHCI_IS_TCC) {
826 		/* read TCN and complete the request */
827 		comp_status = cqhci_readl(cq_host, CQHCI_TCN);
828 		cqhci_writel(cq_host, comp_status, CQHCI_TCN);
829 		pr_debug("%s: cqhci: TCN: 0x%08lx\n",
830 			 mmc_hostname(mmc), comp_status);
831 
832 		spin_lock(&cq_host->lock);
833 
834 		for_each_set_bit(tag, &comp_status, cq_host->num_slots) {
835 			/* complete the corresponding mrq */
836 			pr_debug("%s: cqhci: completing tag %lu\n",
837 				 mmc_hostname(mmc), tag);
838 			cqhci_finish_mrq(mmc, tag);
839 		}
840 
841 		if (cq_host->waiting_for_idle && !cq_host->qcnt) {
842 			cq_host->waiting_for_idle = false;
843 			wake_up(&cq_host->wait_queue);
844 		}
845 
846 		spin_unlock(&cq_host->lock);
847 	}
848 
849 	if (status & CQHCI_IS_TCL)
850 		wake_up(&cq_host->wait_queue);
851 
852 	if (status & CQHCI_IS_HAC)
853 		wake_up(&cq_host->wait_queue);
854 
855 	return IRQ_HANDLED;
856 }
857 EXPORT_SYMBOL(cqhci_irq);
858 
859 static bool cqhci_is_idle(struct cqhci_host *cq_host, int *ret)
860 {
861 	unsigned long flags;
862 	bool is_idle;
863 
864 	spin_lock_irqsave(&cq_host->lock, flags);
865 	is_idle = !cq_host->qcnt || cq_host->recovery_halt;
866 	*ret = cq_host->recovery_halt ? -EBUSY : 0;
867 	cq_host->waiting_for_idle = !is_idle;
868 	spin_unlock_irqrestore(&cq_host->lock, flags);
869 
870 	return is_idle;
871 }
872 
873 static int cqhci_wait_for_idle(struct mmc_host *mmc)
874 {
875 	struct cqhci_host *cq_host = mmc->cqe_private;
876 	int ret;
877 
878 	wait_event(cq_host->wait_queue, cqhci_is_idle(cq_host, &ret));
879 
880 	return ret;
881 }
882 
883 static bool cqhci_timeout(struct mmc_host *mmc, struct mmc_request *mrq,
884 			  bool *recovery_needed)
885 {
886 	struct cqhci_host *cq_host = mmc->cqe_private;
887 	int tag = cqhci_tag(mrq);
888 	struct cqhci_slot *slot = &cq_host->slot[tag];
889 	unsigned long flags;
890 	bool timed_out;
891 
892 	spin_lock_irqsave(&cq_host->lock, flags);
893 	timed_out = slot->mrq == mrq;
894 	if (timed_out) {
895 		slot->flags |= CQHCI_EXTERNAL_TIMEOUT;
896 		cqhci_recovery_needed(mmc, mrq, false);
897 		*recovery_needed = cq_host->recovery_halt;
898 	}
899 	spin_unlock_irqrestore(&cq_host->lock, flags);
900 
901 	if (timed_out) {
902 		pr_err("%s: cqhci: timeout for tag %d, qcnt %d\n",
903 		       mmc_hostname(mmc), tag, cq_host->qcnt);
904 		cqhci_dumpregs(cq_host);
905 	}
906 
907 	return timed_out;
908 }
909 
910 static bool cqhci_tasks_cleared(struct cqhci_host *cq_host)
911 {
912 	return !(cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_CLEAR_ALL_TASKS);
913 }
914 
915 static bool cqhci_clear_all_tasks(struct mmc_host *mmc, unsigned int timeout)
916 {
917 	struct cqhci_host *cq_host = mmc->cqe_private;
918 	bool ret;
919 	u32 ctl;
920 
921 	cqhci_set_irqs(cq_host, CQHCI_IS_TCL);
922 
923 	ctl = cqhci_readl(cq_host, CQHCI_CTL);
924 	ctl |= CQHCI_CLEAR_ALL_TASKS;
925 	cqhci_writel(cq_host, ctl, CQHCI_CTL);
926 
927 	wait_event_timeout(cq_host->wait_queue, cqhci_tasks_cleared(cq_host),
928 			   msecs_to_jiffies(timeout) + 1);
929 
930 	cqhci_set_irqs(cq_host, 0);
931 
932 	ret = cqhci_tasks_cleared(cq_host);
933 
934 	if (!ret)
935 		pr_debug("%s: cqhci: Failed to clear tasks\n",
936 			 mmc_hostname(mmc));
937 
938 	return ret;
939 }
940 
941 static bool cqhci_halted(struct cqhci_host *cq_host)
942 {
943 	return cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT;
944 }
945 
946 static bool cqhci_halt(struct mmc_host *mmc, unsigned int timeout)
947 {
948 	struct cqhci_host *cq_host = mmc->cqe_private;
949 	bool ret;
950 	u32 ctl;
951 
952 	if (cqhci_halted(cq_host))
953 		return true;
954 
955 	cqhci_set_irqs(cq_host, CQHCI_IS_HAC);
956 
957 	ctl = cqhci_readl(cq_host, CQHCI_CTL);
958 	ctl |= CQHCI_HALT;
959 	cqhci_writel(cq_host, ctl, CQHCI_CTL);
960 
961 	wait_event_timeout(cq_host->wait_queue, cqhci_halted(cq_host),
962 			   msecs_to_jiffies(timeout) + 1);
963 
964 	cqhci_set_irqs(cq_host, 0);
965 
966 	ret = cqhci_halted(cq_host);
967 
968 	if (!ret)
969 		pr_debug("%s: cqhci: Failed to halt\n", mmc_hostname(mmc));
970 
971 	return ret;
972 }
973 
974 /*
975  * After halting we expect to be able to use the command line. We interpret the
976  * failure to halt to mean the data lines might still be in use (and the upper
977  * layers will need to send a STOP command), so we set the timeout based on a
978  * generous command timeout.
979  */
980 #define CQHCI_START_HALT_TIMEOUT	5
981 
982 static void cqhci_recovery_start(struct mmc_host *mmc)
983 {
984 	struct cqhci_host *cq_host = mmc->cqe_private;
985 
986 	pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
987 
988 	WARN_ON(!cq_host->recovery_halt);
989 
990 	cqhci_halt(mmc, CQHCI_START_HALT_TIMEOUT);
991 
992 	if (cq_host->ops->disable)
993 		cq_host->ops->disable(mmc, true);
994 
995 	mmc->cqe_on = false;
996 }
997 
998 static int cqhci_error_from_flags(unsigned int flags)
999 {
1000 	if (!flags)
1001 		return 0;
1002 
1003 	/* CRC errors might indicate re-tuning so prefer to report that */
1004 	if (flags & CQHCI_HOST_CRC)
1005 		return -EILSEQ;
1006 
1007 	if (flags & (CQHCI_EXTERNAL_TIMEOUT | CQHCI_HOST_TIMEOUT))
1008 		return -ETIMEDOUT;
1009 
1010 	return -EIO;
1011 }
1012 
1013 static void cqhci_recover_mrq(struct cqhci_host *cq_host, unsigned int tag)
1014 {
1015 	struct cqhci_slot *slot = &cq_host->slot[tag];
1016 	struct mmc_request *mrq = slot->mrq;
1017 	struct mmc_data *data;
1018 
1019 	if (!mrq)
1020 		return;
1021 
1022 	slot->mrq = NULL;
1023 
1024 	cq_host->qcnt -= 1;
1025 
1026 	data = mrq->data;
1027 	if (data) {
1028 		data->bytes_xfered = 0;
1029 		data->error = cqhci_error_from_flags(slot->flags);
1030 	} else {
1031 		mrq->cmd->error = cqhci_error_from_flags(slot->flags);
1032 	}
1033 
1034 	mmc_cqe_request_done(cq_host->mmc, mrq);
1035 }
1036 
1037 static void cqhci_recover_mrqs(struct cqhci_host *cq_host)
1038 {
1039 	int i;
1040 
1041 	for (i = 0; i < cq_host->num_slots; i++)
1042 		cqhci_recover_mrq(cq_host, i);
1043 }
1044 
1045 /*
1046  * By now the command and data lines should be unused so there is no reason for
1047  * CQHCI to take a long time to halt, but if it doesn't halt there could be
1048  * problems clearing tasks, so be generous.
1049  */
1050 #define CQHCI_FINISH_HALT_TIMEOUT	20
1051 
1052 /* CQHCI could be expected to clear it's internal state pretty quickly */
1053 #define CQHCI_CLEAR_TIMEOUT		20
1054 
1055 static void cqhci_recovery_finish(struct mmc_host *mmc)
1056 {
1057 	struct cqhci_host *cq_host = mmc->cqe_private;
1058 	unsigned long flags;
1059 	u32 cqcfg;
1060 	bool ok;
1061 
1062 	pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
1063 
1064 	WARN_ON(!cq_host->recovery_halt);
1065 
1066 	ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1067 
1068 	if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1069 		ok = false;
1070 
1071 	/*
1072 	 * The specification contradicts itself, by saying that tasks cannot be
1073 	 * cleared if CQHCI does not halt, but if CQHCI does not halt, it should
1074 	 * be disabled/re-enabled, but not to disable before clearing tasks.
1075 	 * Have a go anyway.
1076 	 */
1077 	if (!ok) {
1078 		pr_debug("%s: cqhci: disable / re-enable\n", mmc_hostname(mmc));
1079 		cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
1080 		cqcfg &= ~CQHCI_ENABLE;
1081 		cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1082 		cqcfg |= CQHCI_ENABLE;
1083 		cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1084 		/* Be sure that there are no tasks */
1085 		ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1086 		if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1087 			ok = false;
1088 		WARN_ON(!ok);
1089 	}
1090 
1091 	cqhci_recover_mrqs(cq_host);
1092 
1093 	WARN_ON(cq_host->qcnt);
1094 
1095 	spin_lock_irqsave(&cq_host->lock, flags);
1096 	cq_host->qcnt = 0;
1097 	cq_host->recovery_halt = false;
1098 	mmc->cqe_on = false;
1099 	spin_unlock_irqrestore(&cq_host->lock, flags);
1100 
1101 	/* Ensure all writes are done before interrupts are re-enabled */
1102 	wmb();
1103 
1104 	cqhci_writel(cq_host, CQHCI_IS_HAC | CQHCI_IS_TCL, CQHCI_IS);
1105 
1106 	cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
1107 
1108 	pr_debug("%s: cqhci: recovery done\n", mmc_hostname(mmc));
1109 }
1110 
1111 static const struct mmc_cqe_ops cqhci_cqe_ops = {
1112 	.cqe_enable = cqhci_enable,
1113 	.cqe_disable = cqhci_disable,
1114 	.cqe_request = cqhci_request,
1115 	.cqe_post_req = cqhci_post_req,
1116 	.cqe_off = cqhci_off,
1117 	.cqe_wait_for_idle = cqhci_wait_for_idle,
1118 	.cqe_timeout = cqhci_timeout,
1119 	.cqe_recovery_start = cqhci_recovery_start,
1120 	.cqe_recovery_finish = cqhci_recovery_finish,
1121 };
1122 
1123 struct cqhci_host *cqhci_pltfm_init(struct platform_device *pdev)
1124 {
1125 	struct cqhci_host *cq_host;
1126 	struct resource *cqhci_memres = NULL;
1127 
1128 	/* check and setup CMDQ interface */
1129 	cqhci_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1130 						   "cqhci");
1131 	if (!cqhci_memres) {
1132 		dev_dbg(&pdev->dev, "CMDQ not supported\n");
1133 		return ERR_PTR(-EINVAL);
1134 	}
1135 
1136 	cq_host = devm_kzalloc(&pdev->dev, sizeof(*cq_host), GFP_KERNEL);
1137 	if (!cq_host)
1138 		return ERR_PTR(-ENOMEM);
1139 	cq_host->mmio = devm_ioremap(&pdev->dev,
1140 				     cqhci_memres->start,
1141 				     resource_size(cqhci_memres));
1142 	if (!cq_host->mmio) {
1143 		dev_err(&pdev->dev, "failed to remap cqhci regs\n");
1144 		return ERR_PTR(-EBUSY);
1145 	}
1146 	dev_dbg(&pdev->dev, "CMDQ ioremap: done\n");
1147 
1148 	return cq_host;
1149 }
1150 EXPORT_SYMBOL(cqhci_pltfm_init);
1151 
1152 static unsigned int cqhci_ver_major(struct cqhci_host *cq_host)
1153 {
1154 	return CQHCI_VER_MAJOR(cqhci_readl(cq_host, CQHCI_VER));
1155 }
1156 
1157 static unsigned int cqhci_ver_minor(struct cqhci_host *cq_host)
1158 {
1159 	u32 ver = cqhci_readl(cq_host, CQHCI_VER);
1160 
1161 	return CQHCI_VER_MINOR1(ver) * 10 + CQHCI_VER_MINOR2(ver);
1162 }
1163 
1164 int cqhci_init(struct cqhci_host *cq_host, struct mmc_host *mmc,
1165 	      bool dma64)
1166 {
1167 	int err;
1168 
1169 	cq_host->dma64 = dma64;
1170 	cq_host->mmc = mmc;
1171 	cq_host->mmc->cqe_private = cq_host;
1172 
1173 	cq_host->num_slots = NUM_SLOTS;
1174 	cq_host->dcmd_slot = DCMD_SLOT;
1175 
1176 	mmc->cqe_ops = &cqhci_cqe_ops;
1177 
1178 	mmc->cqe_qdepth = NUM_SLOTS;
1179 	if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
1180 		mmc->cqe_qdepth -= 1;
1181 
1182 	cq_host->slot = devm_kcalloc(mmc_dev(mmc), cq_host->num_slots,
1183 				     sizeof(*cq_host->slot), GFP_KERNEL);
1184 	if (!cq_host->slot) {
1185 		err = -ENOMEM;
1186 		goto out_err;
1187 	}
1188 
1189 	err = cqhci_crypto_init(cq_host);
1190 	if (err) {
1191 		pr_err("%s: CQHCI crypto initialization failed\n",
1192 		       mmc_hostname(mmc));
1193 		goto out_err;
1194 	}
1195 
1196 	spin_lock_init(&cq_host->lock);
1197 
1198 	init_completion(&cq_host->halt_comp);
1199 	init_waitqueue_head(&cq_host->wait_queue);
1200 
1201 	pr_info("%s: CQHCI version %u.%02u\n",
1202 		mmc_hostname(mmc), cqhci_ver_major(cq_host),
1203 		cqhci_ver_minor(cq_host));
1204 
1205 	return 0;
1206 
1207 out_err:
1208 	pr_err("%s: CQHCI version %u.%02u failed to initialize, error %d\n",
1209 	       mmc_hostname(mmc), cqhci_ver_major(cq_host),
1210 	       cqhci_ver_minor(cq_host), err);
1211 	return err;
1212 }
1213 EXPORT_SYMBOL(cqhci_init);
1214 
1215 MODULE_AUTHOR("Venkat Gopalakrishnan <venkatg@codeaurora.org>");
1216 MODULE_DESCRIPTION("Command Queue Host Controller Interface driver");
1217 MODULE_LICENSE("GPL v2");
1218