1 /* 2 * Shared part of driver for MMC/SDHC controller on Cavium OCTEON and 3 * ThunderX SOCs. 4 * 5 * This file is subject to the terms and conditions of the GNU General Public 6 * License. See the file "COPYING" in the main directory of this archive 7 * for more details. 8 * 9 * Copyright (C) 2012-2017 Cavium Inc. 10 * Authors: 11 * David Daney <david.daney@cavium.com> 12 * Peter Swain <pswain@cavium.com> 13 * Steven J. Hill <steven.hill@cavium.com> 14 * Jan Glauber <jglauber@cavium.com> 15 */ 16 #include <linux/bitfield.h> 17 #include <linux/delay.h> 18 #include <linux/dma-direction.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/interrupt.h> 22 #include <linux/mmc/mmc.h> 23 #include <linux/mmc/slot-gpio.h> 24 #include <linux/module.h> 25 #include <linux/regulator/consumer.h> 26 #include <linux/scatterlist.h> 27 #include <linux/time.h> 28 29 #include "cavium.h" 30 31 const char *cvm_mmc_irq_names[] = { 32 "MMC Buffer", 33 "MMC Command", 34 "MMC DMA", 35 "MMC Command Error", 36 "MMC DMA Error", 37 "MMC Switch", 38 "MMC Switch Error", 39 "MMC DMA int Fifo", 40 "MMC DMA int", 41 }; 42 43 /* 44 * The Cavium MMC host hardware assumes that all commands have fixed 45 * command and response types. These are correct if MMC devices are 46 * being used. However, non-MMC devices like SD use command and 47 * response types that are unexpected by the host hardware. 48 * 49 * The command and response types can be overridden by supplying an 50 * XOR value that is applied to the type. We calculate the XOR value 51 * from the values in this table and the flags passed from the MMC 52 * core. 53 */ 54 static struct cvm_mmc_cr_type cvm_mmc_cr_types[] = { 55 {0, 0}, /* CMD0 */ 56 {0, 3}, /* CMD1 */ 57 {0, 2}, /* CMD2 */ 58 {0, 1}, /* CMD3 */ 59 {0, 0}, /* CMD4 */ 60 {0, 1}, /* CMD5 */ 61 {0, 1}, /* CMD6 */ 62 {0, 1}, /* CMD7 */ 63 {1, 1}, /* CMD8 */ 64 {0, 2}, /* CMD9 */ 65 {0, 2}, /* CMD10 */ 66 {1, 1}, /* CMD11 */ 67 {0, 1}, /* CMD12 */ 68 {0, 1}, /* CMD13 */ 69 {1, 1}, /* CMD14 */ 70 {0, 0}, /* CMD15 */ 71 {0, 1}, /* CMD16 */ 72 {1, 1}, /* CMD17 */ 73 {1, 1}, /* CMD18 */ 74 {3, 1}, /* CMD19 */ 75 {2, 1}, /* CMD20 */ 76 {0, 0}, /* CMD21 */ 77 {0, 0}, /* CMD22 */ 78 {0, 1}, /* CMD23 */ 79 {2, 1}, /* CMD24 */ 80 {2, 1}, /* CMD25 */ 81 {2, 1}, /* CMD26 */ 82 {2, 1}, /* CMD27 */ 83 {0, 1}, /* CMD28 */ 84 {0, 1}, /* CMD29 */ 85 {1, 1}, /* CMD30 */ 86 {1, 1}, /* CMD31 */ 87 {0, 0}, /* CMD32 */ 88 {0, 0}, /* CMD33 */ 89 {0, 0}, /* CMD34 */ 90 {0, 1}, /* CMD35 */ 91 {0, 1}, /* CMD36 */ 92 {0, 0}, /* CMD37 */ 93 {0, 1}, /* CMD38 */ 94 {0, 4}, /* CMD39 */ 95 {0, 5}, /* CMD40 */ 96 {0, 0}, /* CMD41 */ 97 {2, 1}, /* CMD42 */ 98 {0, 0}, /* CMD43 */ 99 {0, 0}, /* CMD44 */ 100 {0, 0}, /* CMD45 */ 101 {0, 0}, /* CMD46 */ 102 {0, 0}, /* CMD47 */ 103 {0, 0}, /* CMD48 */ 104 {0, 0}, /* CMD49 */ 105 {0, 0}, /* CMD50 */ 106 {0, 0}, /* CMD51 */ 107 {0, 0}, /* CMD52 */ 108 {0, 0}, /* CMD53 */ 109 {0, 0}, /* CMD54 */ 110 {0, 1}, /* CMD55 */ 111 {0xff, 0xff}, /* CMD56 */ 112 {0, 0}, /* CMD57 */ 113 {0, 0}, /* CMD58 */ 114 {0, 0}, /* CMD59 */ 115 {0, 0}, /* CMD60 */ 116 {0, 0}, /* CMD61 */ 117 {0, 0}, /* CMD62 */ 118 {0, 0} /* CMD63 */ 119 }; 120 121 static struct cvm_mmc_cr_mods cvm_mmc_get_cr_mods(struct mmc_command *cmd) 122 { 123 struct cvm_mmc_cr_type *cr; 124 u8 hardware_ctype, hardware_rtype; 125 u8 desired_ctype = 0, desired_rtype = 0; 126 struct cvm_mmc_cr_mods r; 127 128 cr = cvm_mmc_cr_types + (cmd->opcode & 0x3f); 129 hardware_ctype = cr->ctype; 130 hardware_rtype = cr->rtype; 131 if (cmd->opcode == MMC_GEN_CMD) 132 hardware_ctype = (cmd->arg & 1) ? 1 : 2; 133 134 switch (mmc_cmd_type(cmd)) { 135 case MMC_CMD_ADTC: 136 desired_ctype = (cmd->data->flags & MMC_DATA_WRITE) ? 2 : 1; 137 break; 138 case MMC_CMD_AC: 139 case MMC_CMD_BC: 140 case MMC_CMD_BCR: 141 desired_ctype = 0; 142 break; 143 } 144 145 switch (mmc_resp_type(cmd)) { 146 case MMC_RSP_NONE: 147 desired_rtype = 0; 148 break; 149 case MMC_RSP_R1:/* MMC_RSP_R5, MMC_RSP_R6, MMC_RSP_R7 */ 150 case MMC_RSP_R1B: 151 desired_rtype = 1; 152 break; 153 case MMC_RSP_R2: 154 desired_rtype = 2; 155 break; 156 case MMC_RSP_R3: /* MMC_RSP_R4 */ 157 desired_rtype = 3; 158 break; 159 } 160 r.ctype_xor = desired_ctype ^ hardware_ctype; 161 r.rtype_xor = desired_rtype ^ hardware_rtype; 162 return r; 163 } 164 165 static void check_switch_errors(struct cvm_mmc_host *host) 166 { 167 u64 emm_switch; 168 169 emm_switch = readq(host->base + MIO_EMM_SWITCH(host)); 170 if (emm_switch & MIO_EMM_SWITCH_ERR0) 171 dev_err(host->dev, "Switch power class error\n"); 172 if (emm_switch & MIO_EMM_SWITCH_ERR1) 173 dev_err(host->dev, "Switch hs timing error\n"); 174 if (emm_switch & MIO_EMM_SWITCH_ERR2) 175 dev_err(host->dev, "Switch bus width error\n"); 176 } 177 178 static void clear_bus_id(u64 *reg) 179 { 180 u64 bus_id_mask = GENMASK_ULL(61, 60); 181 182 *reg &= ~bus_id_mask; 183 } 184 185 static void set_bus_id(u64 *reg, int bus_id) 186 { 187 clear_bus_id(reg); 188 *reg |= FIELD_PREP(GENMASK(61, 60), bus_id); 189 } 190 191 static int get_bus_id(u64 reg) 192 { 193 return FIELD_GET(GENMASK_ULL(61, 60), reg); 194 } 195 196 /* 197 * We never set the switch_exe bit since that would interfere 198 * with the commands send by the MMC core. 199 */ 200 static void do_switch(struct cvm_mmc_host *host, u64 emm_switch) 201 { 202 int retries = 100; 203 u64 rsp_sts; 204 int bus_id; 205 206 /* 207 * Modes setting only taken from slot 0. Work around that hardware 208 * issue by first switching to slot 0. 209 */ 210 bus_id = get_bus_id(emm_switch); 211 clear_bus_id(&emm_switch); 212 writeq(emm_switch, host->base + MIO_EMM_SWITCH(host)); 213 214 set_bus_id(&emm_switch, bus_id); 215 writeq(emm_switch, host->base + MIO_EMM_SWITCH(host)); 216 217 /* wait for the switch to finish */ 218 do { 219 rsp_sts = readq(host->base + MIO_EMM_RSP_STS(host)); 220 if (!(rsp_sts & MIO_EMM_RSP_STS_SWITCH_VAL)) 221 break; 222 udelay(10); 223 } while (--retries); 224 225 check_switch_errors(host); 226 } 227 228 static bool switch_val_changed(struct cvm_mmc_slot *slot, u64 new_val) 229 { 230 /* Match BUS_ID, HS_TIMING, BUS_WIDTH, POWER_CLASS, CLK_HI, CLK_LO */ 231 u64 match = 0x3001070fffffffffull; 232 233 return (slot->cached_switch & match) != (new_val & match); 234 } 235 236 static void set_wdog(struct cvm_mmc_slot *slot, unsigned int ns) 237 { 238 u64 timeout; 239 240 if (!slot->clock) 241 return; 242 243 if (ns) 244 timeout = (slot->clock * ns) / NSEC_PER_SEC; 245 else 246 timeout = (slot->clock * 850ull) / 1000ull; 247 writeq(timeout, slot->host->base + MIO_EMM_WDOG(slot->host)); 248 } 249 250 static void cvm_mmc_reset_bus(struct cvm_mmc_slot *slot) 251 { 252 struct cvm_mmc_host *host = slot->host; 253 u64 emm_switch, wdog; 254 255 emm_switch = readq(slot->host->base + MIO_EMM_SWITCH(host)); 256 emm_switch &= ~(MIO_EMM_SWITCH_EXE | MIO_EMM_SWITCH_ERR0 | 257 MIO_EMM_SWITCH_ERR1 | MIO_EMM_SWITCH_ERR2); 258 set_bus_id(&emm_switch, slot->bus_id); 259 260 wdog = readq(slot->host->base + MIO_EMM_WDOG(host)); 261 do_switch(slot->host, emm_switch); 262 263 slot->cached_switch = emm_switch; 264 265 msleep(20); 266 267 writeq(wdog, slot->host->base + MIO_EMM_WDOG(host)); 268 } 269 270 /* Switch to another slot if needed */ 271 static void cvm_mmc_switch_to(struct cvm_mmc_slot *slot) 272 { 273 struct cvm_mmc_host *host = slot->host; 274 struct cvm_mmc_slot *old_slot; 275 u64 emm_sample, emm_switch; 276 277 if (slot->bus_id == host->last_slot) 278 return; 279 280 if (host->last_slot >= 0 && host->slot[host->last_slot]) { 281 old_slot = host->slot[host->last_slot]; 282 old_slot->cached_switch = readq(host->base + MIO_EMM_SWITCH(host)); 283 old_slot->cached_rca = readq(host->base + MIO_EMM_RCA(host)); 284 } 285 286 writeq(slot->cached_rca, host->base + MIO_EMM_RCA(host)); 287 emm_switch = slot->cached_switch; 288 set_bus_id(&emm_switch, slot->bus_id); 289 do_switch(host, emm_switch); 290 291 emm_sample = FIELD_PREP(MIO_EMM_SAMPLE_CMD_CNT, slot->cmd_cnt) | 292 FIELD_PREP(MIO_EMM_SAMPLE_DAT_CNT, slot->dat_cnt); 293 writeq(emm_sample, host->base + MIO_EMM_SAMPLE(host)); 294 295 host->last_slot = slot->bus_id; 296 } 297 298 static void do_read(struct cvm_mmc_host *host, struct mmc_request *req, 299 u64 dbuf) 300 { 301 struct sg_mapping_iter *smi = &host->smi; 302 int data_len = req->data->blocks * req->data->blksz; 303 int bytes_xfered, shift = -1; 304 u64 dat = 0; 305 306 /* Auto inc from offset zero */ 307 writeq((0x10000 | (dbuf << 6)), host->base + MIO_EMM_BUF_IDX(host)); 308 309 for (bytes_xfered = 0; bytes_xfered < data_len;) { 310 if (smi->consumed >= smi->length) { 311 if (!sg_miter_next(smi)) 312 break; 313 smi->consumed = 0; 314 } 315 316 if (shift < 0) { 317 dat = readq(host->base + MIO_EMM_BUF_DAT(host)); 318 shift = 56; 319 } 320 321 while (smi->consumed < smi->length && shift >= 0) { 322 ((u8 *)smi->addr)[smi->consumed] = (dat >> shift) & 0xff; 323 bytes_xfered++; 324 smi->consumed++; 325 shift -= 8; 326 } 327 } 328 329 sg_miter_stop(smi); 330 req->data->bytes_xfered = bytes_xfered; 331 req->data->error = 0; 332 } 333 334 static void do_write(struct mmc_request *req) 335 { 336 req->data->bytes_xfered = req->data->blocks * req->data->blksz; 337 req->data->error = 0; 338 } 339 340 static void set_cmd_response(struct cvm_mmc_host *host, struct mmc_request *req, 341 u64 rsp_sts) 342 { 343 u64 rsp_hi, rsp_lo; 344 345 if (!(rsp_sts & MIO_EMM_RSP_STS_RSP_VAL)) 346 return; 347 348 rsp_lo = readq(host->base + MIO_EMM_RSP_LO(host)); 349 350 switch (FIELD_GET(MIO_EMM_RSP_STS_RSP_TYPE, rsp_sts)) { 351 case 1: 352 case 3: 353 req->cmd->resp[0] = (rsp_lo >> 8) & 0xffffffff; 354 req->cmd->resp[1] = 0; 355 req->cmd->resp[2] = 0; 356 req->cmd->resp[3] = 0; 357 break; 358 case 2: 359 req->cmd->resp[3] = rsp_lo & 0xffffffff; 360 req->cmd->resp[2] = (rsp_lo >> 32) & 0xffffffff; 361 rsp_hi = readq(host->base + MIO_EMM_RSP_HI(host)); 362 req->cmd->resp[1] = rsp_hi & 0xffffffff; 363 req->cmd->resp[0] = (rsp_hi >> 32) & 0xffffffff; 364 break; 365 } 366 } 367 368 static int get_dma_dir(struct mmc_data *data) 369 { 370 return (data->flags & MMC_DATA_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 371 } 372 373 static int finish_dma_single(struct cvm_mmc_host *host, struct mmc_data *data) 374 { 375 data->bytes_xfered = data->blocks * data->blksz; 376 data->error = 0; 377 return 1; 378 } 379 380 static int finish_dma_sg(struct cvm_mmc_host *host, struct mmc_data *data) 381 { 382 u64 fifo_cfg; 383 int count; 384 385 /* Check if there are any pending requests left */ 386 fifo_cfg = readq(host->dma_base + MIO_EMM_DMA_FIFO_CFG(host)); 387 count = FIELD_GET(MIO_EMM_DMA_FIFO_CFG_COUNT, fifo_cfg); 388 if (count) 389 dev_err(host->dev, "%u requests still pending\n", count); 390 391 data->bytes_xfered = data->blocks * data->blksz; 392 data->error = 0; 393 394 /* Clear and disable FIFO */ 395 writeq(BIT_ULL(16), host->dma_base + MIO_EMM_DMA_FIFO_CFG(host)); 396 dma_unmap_sg(host->dev, data->sg, data->sg_len, get_dma_dir(data)); 397 return 1; 398 } 399 400 static int finish_dma(struct cvm_mmc_host *host, struct mmc_data *data) 401 { 402 if (host->use_sg && data->sg_len > 1) 403 return finish_dma_sg(host, data); 404 else 405 return finish_dma_single(host, data); 406 } 407 408 static int check_status(u64 rsp_sts) 409 { 410 if (rsp_sts & MIO_EMM_RSP_STS_RSP_BAD_STS || 411 rsp_sts & MIO_EMM_RSP_STS_RSP_CRC_ERR || 412 rsp_sts & MIO_EMM_RSP_STS_BLK_CRC_ERR) 413 return -EILSEQ; 414 if (rsp_sts & MIO_EMM_RSP_STS_RSP_TIMEOUT || 415 rsp_sts & MIO_EMM_RSP_STS_BLK_TIMEOUT) 416 return -ETIMEDOUT; 417 if (rsp_sts & MIO_EMM_RSP_STS_DBUF_ERR) 418 return -EIO; 419 return 0; 420 } 421 422 /* Try to clean up failed DMA. */ 423 static void cleanup_dma(struct cvm_mmc_host *host, u64 rsp_sts) 424 { 425 u64 emm_dma; 426 427 emm_dma = readq(host->base + MIO_EMM_DMA(host)); 428 emm_dma |= FIELD_PREP(MIO_EMM_DMA_VAL, 1) | 429 FIELD_PREP(MIO_EMM_DMA_DAT_NULL, 1); 430 set_bus_id(&emm_dma, get_bus_id(rsp_sts)); 431 writeq(emm_dma, host->base + MIO_EMM_DMA(host)); 432 } 433 434 irqreturn_t cvm_mmc_interrupt(int irq, void *dev_id) 435 { 436 struct cvm_mmc_host *host = dev_id; 437 struct mmc_request *req; 438 unsigned long flags = 0; 439 u64 emm_int, rsp_sts; 440 bool host_done; 441 442 if (host->need_irq_handler_lock) 443 spin_lock_irqsave(&host->irq_handler_lock, flags); 444 else 445 __acquire(&host->irq_handler_lock); 446 447 /* Clear interrupt bits (write 1 clears ). */ 448 emm_int = readq(host->base + MIO_EMM_INT(host)); 449 writeq(emm_int, host->base + MIO_EMM_INT(host)); 450 451 if (emm_int & MIO_EMM_INT_SWITCH_ERR) 452 check_switch_errors(host); 453 454 req = host->current_req; 455 if (!req) 456 goto out; 457 458 rsp_sts = readq(host->base + MIO_EMM_RSP_STS(host)); 459 /* 460 * dma_val set means DMA is still in progress. Don't touch 461 * the request and wait for the interrupt indicating that 462 * the DMA is finished. 463 */ 464 if ((rsp_sts & MIO_EMM_RSP_STS_DMA_VAL) && host->dma_active) 465 goto out; 466 467 if (!host->dma_active && req->data && 468 (emm_int & MIO_EMM_INT_BUF_DONE)) { 469 unsigned int type = (rsp_sts >> 7) & 3; 470 471 if (type == 1) 472 do_read(host, req, rsp_sts & MIO_EMM_RSP_STS_DBUF); 473 else if (type == 2) 474 do_write(req); 475 } 476 477 host_done = emm_int & MIO_EMM_INT_CMD_DONE || 478 emm_int & MIO_EMM_INT_DMA_DONE || 479 emm_int & MIO_EMM_INT_CMD_ERR || 480 emm_int & MIO_EMM_INT_DMA_ERR; 481 482 if (!(host_done && req->done)) 483 goto no_req_done; 484 485 req->cmd->error = check_status(rsp_sts); 486 487 if (host->dma_active && req->data) 488 if (!finish_dma(host, req->data)) 489 goto no_req_done; 490 491 set_cmd_response(host, req, rsp_sts); 492 if ((emm_int & MIO_EMM_INT_DMA_ERR) && 493 (rsp_sts & MIO_EMM_RSP_STS_DMA_PEND)) 494 cleanup_dma(host, rsp_sts); 495 496 host->current_req = NULL; 497 req->done(req); 498 499 no_req_done: 500 if (host->dmar_fixup_done) 501 host->dmar_fixup_done(host); 502 if (host_done) 503 host->release_bus(host); 504 out: 505 if (host->need_irq_handler_lock) 506 spin_unlock_irqrestore(&host->irq_handler_lock, flags); 507 else 508 __release(&host->irq_handler_lock); 509 return IRQ_RETVAL(emm_int != 0); 510 } 511 512 /* 513 * Program DMA_CFG and if needed DMA_ADR. 514 * Returns 0 on error, DMA address otherwise. 515 */ 516 static u64 prepare_dma_single(struct cvm_mmc_host *host, struct mmc_data *data) 517 { 518 u64 dma_cfg, addr; 519 int count, rw; 520 521 count = dma_map_sg(host->dev, data->sg, data->sg_len, 522 get_dma_dir(data)); 523 if (!count) 524 return 0; 525 526 rw = (data->flags & MMC_DATA_WRITE) ? 1 : 0; 527 dma_cfg = FIELD_PREP(MIO_EMM_DMA_CFG_EN, 1) | 528 FIELD_PREP(MIO_EMM_DMA_CFG_RW, rw); 529 #ifdef __LITTLE_ENDIAN 530 dma_cfg |= FIELD_PREP(MIO_EMM_DMA_CFG_ENDIAN, 1); 531 #endif 532 dma_cfg |= FIELD_PREP(MIO_EMM_DMA_CFG_SIZE, 533 (sg_dma_len(&data->sg[0]) / 8) - 1); 534 535 addr = sg_dma_address(&data->sg[0]); 536 if (!host->big_dma_addr) 537 dma_cfg |= FIELD_PREP(MIO_EMM_DMA_CFG_ADR, addr); 538 writeq(dma_cfg, host->dma_base + MIO_EMM_DMA_CFG(host)); 539 540 pr_debug("[%s] sg_dma_len: %u total sg_elem: %d\n", 541 (rw) ? "W" : "R", sg_dma_len(&data->sg[0]), count); 542 543 if (host->big_dma_addr) 544 writeq(addr, host->dma_base + MIO_EMM_DMA_ADR(host)); 545 return addr; 546 } 547 548 /* 549 * Queue complete sg list into the FIFO. 550 * Returns 0 on error, 1 otherwise. 551 */ 552 static u64 prepare_dma_sg(struct cvm_mmc_host *host, struct mmc_data *data) 553 { 554 struct scatterlist *sg; 555 u64 fifo_cmd, addr; 556 int count, i, rw; 557 558 count = dma_map_sg(host->dev, data->sg, data->sg_len, 559 get_dma_dir(data)); 560 if (!count) 561 return 0; 562 if (count > 16) 563 goto error; 564 565 /* Enable FIFO by removing CLR bit */ 566 writeq(0, host->dma_base + MIO_EMM_DMA_FIFO_CFG(host)); 567 568 for_each_sg(data->sg, sg, count, i) { 569 /* Program DMA address */ 570 addr = sg_dma_address(sg); 571 if (addr & 7) 572 goto error; 573 writeq(addr, host->dma_base + MIO_EMM_DMA_FIFO_ADR(host)); 574 575 /* 576 * If we have scatter-gather support we also have an extra 577 * register for the DMA addr, so no need to check 578 * host->big_dma_addr here. 579 */ 580 rw = (data->flags & MMC_DATA_WRITE) ? 1 : 0; 581 fifo_cmd = FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_RW, rw); 582 583 /* enable interrupts on the last element */ 584 fifo_cmd |= FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_INTDIS, 585 (i + 1 == count) ? 0 : 1); 586 587 #ifdef __LITTLE_ENDIAN 588 fifo_cmd |= FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_ENDIAN, 1); 589 #endif 590 fifo_cmd |= FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_SIZE, 591 sg_dma_len(sg) / 8 - 1); 592 /* 593 * The write copies the address and the command to the FIFO 594 * and increments the FIFO's COUNT field. 595 */ 596 writeq(fifo_cmd, host->dma_base + MIO_EMM_DMA_FIFO_CMD(host)); 597 pr_debug("[%s] sg_dma_len: %u sg_elem: %d/%d\n", 598 (rw) ? "W" : "R", sg_dma_len(sg), i, count); 599 } 600 601 /* 602 * In difference to prepare_dma_single we don't return the 603 * address here, as it would not make sense for scatter-gather. 604 * The dma fixup is only required on models that don't support 605 * scatter-gather, so that is not a problem. 606 */ 607 return 1; 608 609 error: 610 WARN_ON_ONCE(1); 611 dma_unmap_sg(host->dev, data->sg, data->sg_len, get_dma_dir(data)); 612 /* Disable FIFO */ 613 writeq(BIT_ULL(16), host->dma_base + MIO_EMM_DMA_FIFO_CFG(host)); 614 return 0; 615 } 616 617 static u64 prepare_dma(struct cvm_mmc_host *host, struct mmc_data *data) 618 { 619 if (host->use_sg && data->sg_len > 1) 620 return prepare_dma_sg(host, data); 621 else 622 return prepare_dma_single(host, data); 623 } 624 625 static u64 prepare_ext_dma(struct mmc_host *mmc, struct mmc_request *mrq) 626 { 627 struct cvm_mmc_slot *slot = mmc_priv(mmc); 628 u64 emm_dma; 629 630 emm_dma = FIELD_PREP(MIO_EMM_DMA_VAL, 1) | 631 FIELD_PREP(MIO_EMM_DMA_SECTOR, 632 mmc_card_is_blockaddr(mmc->card) ? 1 : 0) | 633 FIELD_PREP(MIO_EMM_DMA_RW, 634 (mrq->data->flags & MMC_DATA_WRITE) ? 1 : 0) | 635 FIELD_PREP(MIO_EMM_DMA_BLOCK_CNT, mrq->data->blocks) | 636 FIELD_PREP(MIO_EMM_DMA_CARD_ADDR, mrq->cmd->arg); 637 set_bus_id(&emm_dma, slot->bus_id); 638 639 if (mmc_card_mmc(mmc->card) || (mmc_card_sd(mmc->card) && 640 (mmc->card->scr.cmds & SD_SCR_CMD23_SUPPORT))) 641 emm_dma |= FIELD_PREP(MIO_EMM_DMA_MULTI, 1); 642 643 pr_debug("[%s] blocks: %u multi: %d\n", 644 (emm_dma & MIO_EMM_DMA_RW) ? "W" : "R", 645 mrq->data->blocks, (emm_dma & MIO_EMM_DMA_MULTI) ? 1 : 0); 646 return emm_dma; 647 } 648 649 static void cvm_mmc_dma_request(struct mmc_host *mmc, 650 struct mmc_request *mrq) 651 { 652 struct cvm_mmc_slot *slot = mmc_priv(mmc); 653 struct cvm_mmc_host *host = slot->host; 654 struct mmc_data *data; 655 u64 emm_dma, addr; 656 657 if (!mrq->data || !mrq->data->sg || !mrq->data->sg_len || 658 !mrq->stop || mrq->stop->opcode != MMC_STOP_TRANSMISSION) { 659 dev_err(&mmc->card->dev, 660 "Error: cmv_mmc_dma_request no data\n"); 661 goto error; 662 } 663 664 cvm_mmc_switch_to(slot); 665 666 data = mrq->data; 667 pr_debug("DMA request blocks: %d block_size: %d total_size: %d\n", 668 data->blocks, data->blksz, data->blocks * data->blksz); 669 if (data->timeout_ns) 670 set_wdog(slot, data->timeout_ns); 671 672 WARN_ON(host->current_req); 673 host->current_req = mrq; 674 675 emm_dma = prepare_ext_dma(mmc, mrq); 676 addr = prepare_dma(host, data); 677 if (!addr) { 678 dev_err(host->dev, "prepare_dma failed\n"); 679 goto error; 680 } 681 682 host->dma_active = true; 683 host->int_enable(host, MIO_EMM_INT_CMD_ERR | MIO_EMM_INT_DMA_DONE | 684 MIO_EMM_INT_DMA_ERR); 685 686 if (host->dmar_fixup) 687 host->dmar_fixup(host, mrq->cmd, data, addr); 688 689 /* 690 * If we have a valid SD card in the slot, we set the response 691 * bit mask to check for CRC errors and timeouts only. 692 * Otherwise, use the default power reset value. 693 */ 694 if (mmc_card_sd(mmc->card)) 695 writeq(0x00b00000ull, host->base + MIO_EMM_STS_MASK(host)); 696 else 697 writeq(0xe4390080ull, host->base + MIO_EMM_STS_MASK(host)); 698 writeq(emm_dma, host->base + MIO_EMM_DMA(host)); 699 return; 700 701 error: 702 mrq->cmd->error = -EINVAL; 703 if (mrq->done) 704 mrq->done(mrq); 705 host->release_bus(host); 706 } 707 708 static void do_read_request(struct cvm_mmc_host *host, struct mmc_request *mrq) 709 { 710 sg_miter_start(&host->smi, mrq->data->sg, mrq->data->sg_len, 711 SG_MITER_ATOMIC | SG_MITER_TO_SG); 712 } 713 714 static void do_write_request(struct cvm_mmc_host *host, struct mmc_request *mrq) 715 { 716 unsigned int data_len = mrq->data->blocks * mrq->data->blksz; 717 struct sg_mapping_iter *smi = &host->smi; 718 unsigned int bytes_xfered; 719 int shift = 56; 720 u64 dat = 0; 721 722 /* Copy data to the xmit buffer before issuing the command. */ 723 sg_miter_start(smi, mrq->data->sg, mrq->data->sg_len, SG_MITER_FROM_SG); 724 725 /* Auto inc from offset zero, dbuf zero */ 726 writeq(0x10000ull, host->base + MIO_EMM_BUF_IDX(host)); 727 728 for (bytes_xfered = 0; bytes_xfered < data_len;) { 729 if (smi->consumed >= smi->length) { 730 if (!sg_miter_next(smi)) 731 break; 732 smi->consumed = 0; 733 } 734 735 while (smi->consumed < smi->length && shift >= 0) { 736 dat |= (u64)((u8 *)smi->addr)[smi->consumed] << shift; 737 bytes_xfered++; 738 smi->consumed++; 739 shift -= 8; 740 } 741 742 if (shift < 0) { 743 writeq(dat, host->base + MIO_EMM_BUF_DAT(host)); 744 shift = 56; 745 dat = 0; 746 } 747 } 748 sg_miter_stop(smi); 749 } 750 751 static void cvm_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq) 752 { 753 struct cvm_mmc_slot *slot = mmc_priv(mmc); 754 struct cvm_mmc_host *host = slot->host; 755 struct mmc_command *cmd = mrq->cmd; 756 struct cvm_mmc_cr_mods mods; 757 u64 emm_cmd, rsp_sts; 758 int retries = 100; 759 760 /* 761 * Note about locking: 762 * All MMC devices share the same bus and controller. Allow only a 763 * single user of the bootbus/MMC bus at a time. The lock is acquired 764 * on all entry points from the MMC layer. 765 * 766 * For requests the lock is only released after the completion 767 * interrupt! 768 */ 769 host->acquire_bus(host); 770 771 if (cmd->opcode == MMC_READ_MULTIPLE_BLOCK || 772 cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK) 773 return cvm_mmc_dma_request(mmc, mrq); 774 775 cvm_mmc_switch_to(slot); 776 777 mods = cvm_mmc_get_cr_mods(cmd); 778 779 WARN_ON(host->current_req); 780 host->current_req = mrq; 781 782 if (cmd->data) { 783 if (cmd->data->flags & MMC_DATA_READ) 784 do_read_request(host, mrq); 785 else 786 do_write_request(host, mrq); 787 788 if (cmd->data->timeout_ns) 789 set_wdog(slot, cmd->data->timeout_ns); 790 } else 791 set_wdog(slot, 0); 792 793 host->dma_active = false; 794 host->int_enable(host, MIO_EMM_INT_CMD_DONE | MIO_EMM_INT_CMD_ERR); 795 796 emm_cmd = FIELD_PREP(MIO_EMM_CMD_VAL, 1) | 797 FIELD_PREP(MIO_EMM_CMD_CTYPE_XOR, mods.ctype_xor) | 798 FIELD_PREP(MIO_EMM_CMD_RTYPE_XOR, mods.rtype_xor) | 799 FIELD_PREP(MIO_EMM_CMD_IDX, cmd->opcode) | 800 FIELD_PREP(MIO_EMM_CMD_ARG, cmd->arg); 801 set_bus_id(&emm_cmd, slot->bus_id); 802 if (cmd->data && mmc_cmd_type(cmd) == MMC_CMD_ADTC) 803 emm_cmd |= FIELD_PREP(MIO_EMM_CMD_OFFSET, 804 64 - ((cmd->data->blocks * cmd->data->blksz) / 8)); 805 806 writeq(0, host->base + MIO_EMM_STS_MASK(host)); 807 808 retry: 809 rsp_sts = readq(host->base + MIO_EMM_RSP_STS(host)); 810 if (rsp_sts & MIO_EMM_RSP_STS_DMA_VAL || 811 rsp_sts & MIO_EMM_RSP_STS_CMD_VAL || 812 rsp_sts & MIO_EMM_RSP_STS_SWITCH_VAL || 813 rsp_sts & MIO_EMM_RSP_STS_DMA_PEND) { 814 udelay(10); 815 if (--retries) 816 goto retry; 817 } 818 if (!retries) 819 dev_err(host->dev, "Bad status: %llx before command write\n", rsp_sts); 820 writeq(emm_cmd, host->base + MIO_EMM_CMD(host)); 821 } 822 823 static void cvm_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 824 { 825 struct cvm_mmc_slot *slot = mmc_priv(mmc); 826 struct cvm_mmc_host *host = slot->host; 827 int clk_period = 0, power_class = 10, bus_width = 0; 828 u64 clock, emm_switch; 829 830 host->acquire_bus(host); 831 cvm_mmc_switch_to(slot); 832 833 /* Set the power state */ 834 switch (ios->power_mode) { 835 case MMC_POWER_ON: 836 break; 837 838 case MMC_POWER_OFF: 839 cvm_mmc_reset_bus(slot); 840 if (host->global_pwr_gpiod) 841 host->set_shared_power(host, 0); 842 else if (!IS_ERR(mmc->supply.vmmc)) 843 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 844 break; 845 846 case MMC_POWER_UP: 847 if (host->global_pwr_gpiod) 848 host->set_shared_power(host, 1); 849 else if (!IS_ERR(mmc->supply.vmmc)) 850 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); 851 break; 852 } 853 854 /* Convert bus width to HW definition */ 855 switch (ios->bus_width) { 856 case MMC_BUS_WIDTH_8: 857 bus_width = 2; 858 break; 859 case MMC_BUS_WIDTH_4: 860 bus_width = 1; 861 break; 862 case MMC_BUS_WIDTH_1: 863 bus_width = 0; 864 break; 865 } 866 867 /* DDR is available for 4/8 bit bus width */ 868 if (ios->bus_width && ios->timing == MMC_TIMING_MMC_DDR52) 869 bus_width |= 4; 870 871 /* Change the clock frequency. */ 872 clock = ios->clock; 873 if (clock > 52000000) 874 clock = 52000000; 875 slot->clock = clock; 876 877 if (clock) 878 clk_period = (host->sys_freq + clock - 1) / (2 * clock); 879 880 emm_switch = FIELD_PREP(MIO_EMM_SWITCH_HS_TIMING, 881 (ios->timing == MMC_TIMING_MMC_HS)) | 882 FIELD_PREP(MIO_EMM_SWITCH_BUS_WIDTH, bus_width) | 883 FIELD_PREP(MIO_EMM_SWITCH_POWER_CLASS, power_class) | 884 FIELD_PREP(MIO_EMM_SWITCH_CLK_HI, clk_period) | 885 FIELD_PREP(MIO_EMM_SWITCH_CLK_LO, clk_period); 886 set_bus_id(&emm_switch, slot->bus_id); 887 888 if (!switch_val_changed(slot, emm_switch)) 889 goto out; 890 891 set_wdog(slot, 0); 892 do_switch(host, emm_switch); 893 slot->cached_switch = emm_switch; 894 out: 895 host->release_bus(host); 896 } 897 898 static const struct mmc_host_ops cvm_mmc_ops = { 899 .request = cvm_mmc_request, 900 .set_ios = cvm_mmc_set_ios, 901 .get_ro = mmc_gpio_get_ro, 902 .get_cd = mmc_gpio_get_cd, 903 }; 904 905 static void cvm_mmc_set_clock(struct cvm_mmc_slot *slot, unsigned int clock) 906 { 907 struct mmc_host *mmc = slot->mmc; 908 909 clock = min(clock, mmc->f_max); 910 clock = max(clock, mmc->f_min); 911 slot->clock = clock; 912 } 913 914 static int cvm_mmc_init_lowlevel(struct cvm_mmc_slot *slot) 915 { 916 struct cvm_mmc_host *host = slot->host; 917 u64 emm_switch; 918 919 /* Enable this bus slot. */ 920 host->emm_cfg |= (1ull << slot->bus_id); 921 writeq(host->emm_cfg, slot->host->base + MIO_EMM_CFG(host)); 922 udelay(10); 923 924 /* Program initial clock speed and power. */ 925 cvm_mmc_set_clock(slot, slot->mmc->f_min); 926 emm_switch = FIELD_PREP(MIO_EMM_SWITCH_POWER_CLASS, 10); 927 emm_switch |= FIELD_PREP(MIO_EMM_SWITCH_CLK_HI, 928 (host->sys_freq / slot->clock) / 2); 929 emm_switch |= FIELD_PREP(MIO_EMM_SWITCH_CLK_LO, 930 (host->sys_freq / slot->clock) / 2); 931 932 /* Make the changes take effect on this bus slot. */ 933 set_bus_id(&emm_switch, slot->bus_id); 934 do_switch(host, emm_switch); 935 936 slot->cached_switch = emm_switch; 937 938 /* 939 * Set watchdog timeout value and default reset value 940 * for the mask register. Finally, set the CARD_RCA 941 * bit so that we can get the card address relative 942 * to the CMD register for CMD7 transactions. 943 */ 944 set_wdog(slot, 0); 945 writeq(0xe4390080ull, host->base + MIO_EMM_STS_MASK(host)); 946 writeq(1, host->base + MIO_EMM_RCA(host)); 947 return 0; 948 } 949 950 static int cvm_mmc_of_parse(struct device *dev, struct cvm_mmc_slot *slot) 951 { 952 u32 id, cmd_skew = 0, dat_skew = 0, bus_width = 0; 953 struct device_node *node = dev->of_node; 954 struct mmc_host *mmc = slot->mmc; 955 u64 clock_period; 956 int ret; 957 958 ret = of_property_read_u32(node, "reg", &id); 959 if (ret) { 960 dev_err(dev, "Missing or invalid reg property on %pOF\n", node); 961 return ret; 962 } 963 964 if (id >= CAVIUM_MAX_MMC || slot->host->slot[id]) { 965 dev_err(dev, "Invalid reg property on %pOF\n", node); 966 return -EINVAL; 967 } 968 969 ret = mmc_regulator_get_supply(mmc); 970 if (ret == -EPROBE_DEFER) 971 return ret; 972 /* 973 * Legacy Octeon firmware has no regulator entry, fall-back to 974 * a hard-coded voltage to get a sane OCR. 975 */ 976 if (IS_ERR(mmc->supply.vmmc)) 977 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34; 978 979 /* Common MMC bindings */ 980 ret = mmc_of_parse(mmc); 981 if (ret) 982 return ret; 983 984 /* Set bus width */ 985 if (!(mmc->caps & (MMC_CAP_8_BIT_DATA | MMC_CAP_4_BIT_DATA))) { 986 of_property_read_u32(node, "cavium,bus-max-width", &bus_width); 987 if (bus_width == 8) 988 mmc->caps |= MMC_CAP_8_BIT_DATA | MMC_CAP_4_BIT_DATA; 989 else if (bus_width == 4) 990 mmc->caps |= MMC_CAP_4_BIT_DATA; 991 } 992 993 /* Set maximum and minimum frequency */ 994 if (!mmc->f_max) 995 of_property_read_u32(node, "spi-max-frequency", &mmc->f_max); 996 if (!mmc->f_max || mmc->f_max > 52000000) 997 mmc->f_max = 52000000; 998 mmc->f_min = 400000; 999 1000 /* Sampling register settings, period in picoseconds */ 1001 clock_period = 1000000000000ull / slot->host->sys_freq; 1002 of_property_read_u32(node, "cavium,cmd-clk-skew", &cmd_skew); 1003 of_property_read_u32(node, "cavium,dat-clk-skew", &dat_skew); 1004 slot->cmd_cnt = (cmd_skew + clock_period / 2) / clock_period; 1005 slot->dat_cnt = (dat_skew + clock_period / 2) / clock_period; 1006 1007 return id; 1008 } 1009 1010 int cvm_mmc_of_slot_probe(struct device *dev, struct cvm_mmc_host *host) 1011 { 1012 struct cvm_mmc_slot *slot; 1013 struct mmc_host *mmc; 1014 int ret, id; 1015 1016 mmc = mmc_alloc_host(sizeof(struct cvm_mmc_slot), dev); 1017 if (!mmc) 1018 return -ENOMEM; 1019 1020 slot = mmc_priv(mmc); 1021 slot->mmc = mmc; 1022 slot->host = host; 1023 1024 ret = cvm_mmc_of_parse(dev, slot); 1025 if (ret < 0) 1026 goto error; 1027 id = ret; 1028 1029 /* Set up host parameters */ 1030 mmc->ops = &cvm_mmc_ops; 1031 1032 /* 1033 * We only have a 3.3v supply, we cannot support any 1034 * of the UHS modes. We do support the high speed DDR 1035 * modes up to 52MHz. 1036 * 1037 * Disable bounce buffers for max_segs = 1 1038 */ 1039 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED | 1040 MMC_CAP_ERASE | MMC_CAP_CMD23 | MMC_CAP_POWER_OFF_CARD | 1041 MMC_CAP_3_3V_DDR; 1042 1043 if (host->use_sg) 1044 mmc->max_segs = 16; 1045 else 1046 mmc->max_segs = 1; 1047 1048 /* DMA size field can address up to 8 MB */ 1049 mmc->max_seg_size = 8 * 1024 * 1024; 1050 mmc->max_req_size = mmc->max_seg_size; 1051 /* External DMA is in 512 byte blocks */ 1052 mmc->max_blk_size = 512; 1053 /* DMA block count field is 15 bits */ 1054 mmc->max_blk_count = 32767; 1055 1056 slot->clock = mmc->f_min; 1057 slot->bus_id = id; 1058 slot->cached_rca = 1; 1059 1060 host->acquire_bus(host); 1061 host->slot[id] = slot; 1062 cvm_mmc_switch_to(slot); 1063 cvm_mmc_init_lowlevel(slot); 1064 host->release_bus(host); 1065 1066 ret = mmc_add_host(mmc); 1067 if (ret) { 1068 dev_err(dev, "mmc_add_host() returned %d\n", ret); 1069 slot->host->slot[id] = NULL; 1070 goto error; 1071 } 1072 return 0; 1073 1074 error: 1075 mmc_free_host(slot->mmc); 1076 return ret; 1077 } 1078 1079 int cvm_mmc_of_slot_remove(struct cvm_mmc_slot *slot) 1080 { 1081 mmc_remove_host(slot->mmc); 1082 slot->host->slot[slot->bus_id] = NULL; 1083 mmc_free_host(slot->mmc); 1084 return 0; 1085 } 1086