1 /* 2 * linux/drivers/mmc/host/au1xmmc.c - AU1XX0 MMC driver 3 * 4 * Copyright (c) 2005, Advanced Micro Devices, Inc. 5 * 6 * Developed with help from the 2.4.30 MMC AU1XXX controller including 7 * the following copyright notices: 8 * Copyright (c) 2003-2004 Embedded Edge, LLC. 9 * Portions Copyright (C) 2002 Embedix, Inc 10 * Copyright 2002 Hewlett-Packard Company 11 12 * 2.6 version of this driver inspired by: 13 * (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman, 14 * All Rights Reserved. 15 * (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King, 16 * All Rights Reserved. 17 * 18 19 * This program is free software; you can redistribute it and/or modify 20 * it under the terms of the GNU General Public License version 2 as 21 * published by the Free Software Foundation. 22 */ 23 24 /* Why is a timer used to detect insert events? 25 * 26 * From the AU1100 MMC application guide: 27 * If the Au1100-based design is intended to support both MultiMediaCards 28 * and 1- or 4-data bit SecureDigital cards, then the solution is to 29 * connect a weak (560KOhm) pull-up resistor to connector pin 1. 30 * In doing so, a MMC card never enters SPI-mode communications, 31 * but now the SecureDigital card-detect feature of CD/DAT3 is ineffective 32 * (the low to high transition will not occur). 33 * 34 * So we use the timer to check the status manually. 35 */ 36 37 #include <linux/module.h> 38 #include <linux/init.h> 39 #include <linux/platform_device.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/dma-mapping.h> 43 44 #include <linux/mmc/host.h> 45 #include <asm/io.h> 46 #include <asm/mach-au1x00/au1000.h> 47 #include <asm/mach-au1x00/au1xxx_dbdma.h> 48 #include <asm/mach-au1x00/au1100_mmc.h> 49 #include <asm/scatterlist.h> 50 51 #include <au1xxx.h> 52 #include "au1xmmc.h" 53 54 #define DRIVER_NAME "au1xxx-mmc" 55 56 /* Set this to enable special debugging macros */ 57 58 #ifdef DEBUG 59 #define DBG(fmt, idx, args...) printk("au1xx(%d): DEBUG: " fmt, idx, ##args) 60 #else 61 #define DBG(fmt, idx, args...) 62 #endif 63 64 const struct { 65 u32 iobase; 66 u32 tx_devid, rx_devid; 67 u16 bcsrpwr; 68 u16 bcsrstatus; 69 u16 wpstatus; 70 } au1xmmc_card_table[] = { 71 { SD0_BASE, DSCR_CMD0_SDMS_TX0, DSCR_CMD0_SDMS_RX0, 72 BCSR_BOARD_SD0PWR, BCSR_INT_SD0INSERT, BCSR_STATUS_SD0WP }, 73 #ifndef CONFIG_MIPS_DB1200 74 { SD1_BASE, DSCR_CMD0_SDMS_TX1, DSCR_CMD0_SDMS_RX1, 75 BCSR_BOARD_DS1PWR, BCSR_INT_SD1INSERT, BCSR_STATUS_SD1WP } 76 #endif 77 }; 78 79 #define AU1XMMC_CONTROLLER_COUNT (ARRAY_SIZE(au1xmmc_card_table)) 80 81 /* This array stores pointers for the hosts (used by the IRQ handler) */ 82 struct au1xmmc_host *au1xmmc_hosts[AU1XMMC_CONTROLLER_COUNT]; 83 static int dma = 1; 84 85 #ifdef MODULE 86 module_param(dma, bool, 0); 87 MODULE_PARM_DESC(dma, "Use DMA engine for data transfers (0 = disabled)"); 88 #endif 89 90 static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask) 91 { 92 u32 val = au_readl(HOST_CONFIG(host)); 93 val |= mask; 94 au_writel(val, HOST_CONFIG(host)); 95 au_sync(); 96 } 97 98 static inline void FLUSH_FIFO(struct au1xmmc_host *host) 99 { 100 u32 val = au_readl(HOST_CONFIG2(host)); 101 102 au_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host)); 103 au_sync_delay(1); 104 105 /* SEND_STOP will turn off clock control - this re-enables it */ 106 val &= ~SD_CONFIG2_DF; 107 108 au_writel(val, HOST_CONFIG2(host)); 109 au_sync(); 110 } 111 112 static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask) 113 { 114 u32 val = au_readl(HOST_CONFIG(host)); 115 val &= ~mask; 116 au_writel(val, HOST_CONFIG(host)); 117 au_sync(); 118 } 119 120 static inline void SEND_STOP(struct au1xmmc_host *host) 121 { 122 123 /* We know the value of CONFIG2, so avoid a read we don't need */ 124 u32 mask = SD_CONFIG2_EN; 125 126 WARN_ON(host->status != HOST_S_DATA); 127 host->status = HOST_S_STOP; 128 129 au_writel(mask | SD_CONFIG2_DF, HOST_CONFIG2(host)); 130 au_sync(); 131 132 /* Send the stop commmand */ 133 au_writel(STOP_CMD, HOST_CMD(host)); 134 } 135 136 static void au1xmmc_set_power(struct au1xmmc_host *host, int state) 137 { 138 139 u32 val = au1xmmc_card_table[host->id].bcsrpwr; 140 141 bcsr->board &= ~val; 142 if (state) bcsr->board |= val; 143 144 au_sync_delay(1); 145 } 146 147 static inline int au1xmmc_card_inserted(struct au1xmmc_host *host) 148 { 149 return (bcsr->sig_status & au1xmmc_card_table[host->id].bcsrstatus) 150 ? 1 : 0; 151 } 152 153 static int au1xmmc_card_readonly(struct mmc_host *mmc) 154 { 155 struct au1xmmc_host *host = mmc_priv(mmc); 156 return (bcsr->status & au1xmmc_card_table[host->id].wpstatus) 157 ? 1 : 0; 158 } 159 160 static void au1xmmc_finish_request(struct au1xmmc_host *host) 161 { 162 163 struct mmc_request *mrq = host->mrq; 164 165 host->mrq = NULL; 166 host->flags &= HOST_F_ACTIVE; 167 168 host->dma.len = 0; 169 host->dma.dir = 0; 170 171 host->pio.index = 0; 172 host->pio.offset = 0; 173 host->pio.len = 0; 174 175 host->status = HOST_S_IDLE; 176 177 bcsr->disk_leds |= (1 << 8); 178 179 mmc_request_done(host->mmc, mrq); 180 } 181 182 static void au1xmmc_tasklet_finish(unsigned long param) 183 { 184 struct au1xmmc_host *host = (struct au1xmmc_host *) param; 185 au1xmmc_finish_request(host); 186 } 187 188 static int au1xmmc_send_command(struct au1xmmc_host *host, int wait, 189 struct mmc_command *cmd, unsigned int flags) 190 { 191 u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT); 192 193 switch (mmc_resp_type(cmd)) { 194 case MMC_RSP_NONE: 195 break; 196 case MMC_RSP_R1: 197 mmccmd |= SD_CMD_RT_1; 198 break; 199 case MMC_RSP_R1B: 200 mmccmd |= SD_CMD_RT_1B; 201 break; 202 case MMC_RSP_R2: 203 mmccmd |= SD_CMD_RT_2; 204 break; 205 case MMC_RSP_R3: 206 mmccmd |= SD_CMD_RT_3; 207 break; 208 default: 209 printk(KERN_INFO "au1xmmc: unhandled response type %02x\n", 210 mmc_resp_type(cmd)); 211 return MMC_ERR_INVALID; 212 } 213 214 if (flags & MMC_DATA_READ) { 215 if (flags & MMC_DATA_MULTI) 216 mmccmd |= SD_CMD_CT_4; 217 else 218 mmccmd |= SD_CMD_CT_2; 219 } else if (flags & MMC_DATA_WRITE) { 220 if (flags & MMC_DATA_MULTI) 221 mmccmd |= SD_CMD_CT_3; 222 else 223 mmccmd |= SD_CMD_CT_1; 224 } 225 226 au_writel(cmd->arg, HOST_CMDARG(host)); 227 au_sync(); 228 229 if (wait) 230 IRQ_OFF(host, SD_CONFIG_CR); 231 232 au_writel((mmccmd | SD_CMD_GO), HOST_CMD(host)); 233 au_sync(); 234 235 /* Wait for the command to go on the line */ 236 237 while(1) { 238 if (!(au_readl(HOST_CMD(host)) & SD_CMD_GO)) 239 break; 240 } 241 242 /* Wait for the command to come back */ 243 244 if (wait) { 245 u32 status = au_readl(HOST_STATUS(host)); 246 247 while(!(status & SD_STATUS_CR)) 248 status = au_readl(HOST_STATUS(host)); 249 250 /* Clear the CR status */ 251 au_writel(SD_STATUS_CR, HOST_STATUS(host)); 252 253 IRQ_ON(host, SD_CONFIG_CR); 254 } 255 256 return MMC_ERR_NONE; 257 } 258 259 static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status) 260 { 261 262 struct mmc_request *mrq = host->mrq; 263 struct mmc_data *data; 264 u32 crc; 265 266 WARN_ON(host->status != HOST_S_DATA && host->status != HOST_S_STOP); 267 268 if (host->mrq == NULL) 269 return; 270 271 data = mrq->cmd->data; 272 273 if (status == 0) 274 status = au_readl(HOST_STATUS(host)); 275 276 /* The transaction is really over when the SD_STATUS_DB bit is clear */ 277 278 while((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB)) 279 status = au_readl(HOST_STATUS(host)); 280 281 data->error = MMC_ERR_NONE; 282 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir); 283 284 /* Process any errors */ 285 286 crc = (status & (SD_STATUS_WC | SD_STATUS_RC)); 287 if (host->flags & HOST_F_XMIT) 288 crc |= ((status & 0x07) == 0x02) ? 0 : 1; 289 290 if (crc) 291 data->error = MMC_ERR_BADCRC; 292 293 /* Clear the CRC bits */ 294 au_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host)); 295 296 data->bytes_xfered = 0; 297 298 if (data->error == MMC_ERR_NONE) { 299 if (host->flags & HOST_F_DMA) { 300 u32 chan = DMA_CHANNEL(host); 301 302 chan_tab_t *c = *((chan_tab_t **) chan); 303 au1x_dma_chan_t *cp = c->chan_ptr; 304 data->bytes_xfered = cp->ddma_bytecnt; 305 } 306 else 307 data->bytes_xfered = 308 (data->blocks * data->blksz) - 309 host->pio.len; 310 } 311 312 au1xmmc_finish_request(host); 313 } 314 315 static void au1xmmc_tasklet_data(unsigned long param) 316 { 317 struct au1xmmc_host *host = (struct au1xmmc_host *) param; 318 319 u32 status = au_readl(HOST_STATUS(host)); 320 au1xmmc_data_complete(host, status); 321 } 322 323 #define AU1XMMC_MAX_TRANSFER 8 324 325 static void au1xmmc_send_pio(struct au1xmmc_host *host) 326 { 327 328 struct mmc_data *data = 0; 329 int sg_len, max, count = 0; 330 unsigned char *sg_ptr; 331 u32 status = 0; 332 struct scatterlist *sg; 333 334 data = host->mrq->data; 335 336 if (!(host->flags & HOST_F_XMIT)) 337 return; 338 339 /* This is the pointer to the data buffer */ 340 sg = &data->sg[host->pio.index]; 341 sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset; 342 343 /* This is the space left inside the buffer */ 344 sg_len = data->sg[host->pio.index].length - host->pio.offset; 345 346 /* Check to if we need less then the size of the sg_buffer */ 347 348 max = (sg_len > host->pio.len) ? host->pio.len : sg_len; 349 if (max > AU1XMMC_MAX_TRANSFER) max = AU1XMMC_MAX_TRANSFER; 350 351 for(count = 0; count < max; count++ ) { 352 unsigned char val; 353 354 status = au_readl(HOST_STATUS(host)); 355 356 if (!(status & SD_STATUS_TH)) 357 break; 358 359 val = *sg_ptr++; 360 361 au_writel((unsigned long) val, HOST_TXPORT(host)); 362 au_sync(); 363 } 364 365 host->pio.len -= count; 366 host->pio.offset += count; 367 368 if (count == sg_len) { 369 host->pio.index++; 370 host->pio.offset = 0; 371 } 372 373 if (host->pio.len == 0) { 374 IRQ_OFF(host, SD_CONFIG_TH); 375 376 if (host->flags & HOST_F_STOP) 377 SEND_STOP(host); 378 379 tasklet_schedule(&host->data_task); 380 } 381 } 382 383 static void au1xmmc_receive_pio(struct au1xmmc_host *host) 384 { 385 386 struct mmc_data *data = 0; 387 int sg_len = 0, max = 0, count = 0; 388 unsigned char *sg_ptr = 0; 389 u32 status = 0; 390 struct scatterlist *sg; 391 392 data = host->mrq->data; 393 394 if (!(host->flags & HOST_F_RECV)) 395 return; 396 397 max = host->pio.len; 398 399 if (host->pio.index < host->dma.len) { 400 sg = &data->sg[host->pio.index]; 401 sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset; 402 403 /* This is the space left inside the buffer */ 404 sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset; 405 406 /* Check to if we need less then the size of the sg_buffer */ 407 if (sg_len < max) max = sg_len; 408 } 409 410 if (max > AU1XMMC_MAX_TRANSFER) 411 max = AU1XMMC_MAX_TRANSFER; 412 413 for(count = 0; count < max; count++ ) { 414 u32 val; 415 status = au_readl(HOST_STATUS(host)); 416 417 if (!(status & SD_STATUS_NE)) 418 break; 419 420 if (status & SD_STATUS_RC) { 421 DBG("RX CRC Error [%d + %d].\n", host->id, 422 host->pio.len, count); 423 break; 424 } 425 426 if (status & SD_STATUS_RO) { 427 DBG("RX Overrun [%d + %d]\n", host->id, 428 host->pio.len, count); 429 break; 430 } 431 else if (status & SD_STATUS_RU) { 432 DBG("RX Underrun [%d + %d]\n", host->id, 433 host->pio.len, count); 434 break; 435 } 436 437 val = au_readl(HOST_RXPORT(host)); 438 439 if (sg_ptr) 440 *sg_ptr++ = (unsigned char) (val & 0xFF); 441 } 442 443 host->pio.len -= count; 444 host->pio.offset += count; 445 446 if (sg_len && count == sg_len) { 447 host->pio.index++; 448 host->pio.offset = 0; 449 } 450 451 if (host->pio.len == 0) { 452 //IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF); 453 IRQ_OFF(host, SD_CONFIG_NE); 454 455 if (host->flags & HOST_F_STOP) 456 SEND_STOP(host); 457 458 tasklet_schedule(&host->data_task); 459 } 460 } 461 462 /* static void au1xmmc_cmd_complete 463 This is called when a command has been completed - grab the response 464 and check for errors. Then start the data transfer if it is indicated. 465 */ 466 467 static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status) 468 { 469 470 struct mmc_request *mrq = host->mrq; 471 struct mmc_command *cmd; 472 int trans; 473 474 if (!host->mrq) 475 return; 476 477 cmd = mrq->cmd; 478 cmd->error = MMC_ERR_NONE; 479 480 if (cmd->flags & MMC_RSP_PRESENT) { 481 if (cmd->flags & MMC_RSP_136) { 482 u32 r[4]; 483 int i; 484 485 r[0] = au_readl(host->iobase + SD_RESP3); 486 r[1] = au_readl(host->iobase + SD_RESP2); 487 r[2] = au_readl(host->iobase + SD_RESP1); 488 r[3] = au_readl(host->iobase + SD_RESP0); 489 490 /* The CRC is omitted from the response, so really 491 * we only got 120 bytes, but the engine expects 492 * 128 bits, so we have to shift things up 493 */ 494 495 for(i = 0; i < 4; i++) { 496 cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8; 497 if (i != 3) 498 cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24; 499 } 500 } else { 501 /* Techincally, we should be getting all 48 bits of 502 * the response (SD_RESP1 + SD_RESP2), but because 503 * our response omits the CRC, our data ends up 504 * being shifted 8 bits to the right. In this case, 505 * that means that the OSR data starts at bit 31, 506 * so we can just read RESP0 and return that 507 */ 508 cmd->resp[0] = au_readl(host->iobase + SD_RESP0); 509 } 510 } 511 512 /* Figure out errors */ 513 514 if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC)) 515 cmd->error = MMC_ERR_BADCRC; 516 517 trans = host->flags & (HOST_F_XMIT | HOST_F_RECV); 518 519 if (!trans || cmd->error != MMC_ERR_NONE) { 520 521 IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA|SD_CONFIG_RF); 522 tasklet_schedule(&host->finish_task); 523 return; 524 } 525 526 host->status = HOST_S_DATA; 527 528 if (host->flags & HOST_F_DMA) { 529 u32 channel = DMA_CHANNEL(host); 530 531 /* Start the DMA as soon as the buffer gets something in it */ 532 533 if (host->flags & HOST_F_RECV) { 534 u32 mask = SD_STATUS_DB | SD_STATUS_NE; 535 536 while((status & mask) != mask) 537 status = au_readl(HOST_STATUS(host)); 538 } 539 540 au1xxx_dbdma_start(channel); 541 } 542 } 543 544 static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate) 545 { 546 547 unsigned int pbus = get_au1x00_speed(); 548 unsigned int divisor; 549 u32 config; 550 551 /* From databook: 552 divisor = ((((cpuclock / sbus_divisor) / 2) / mmcclock) / 2) - 1 553 */ 554 555 pbus /= ((au_readl(SYS_POWERCTRL) & 0x3) + 2); 556 pbus /= 2; 557 558 divisor = ((pbus / rate) / 2) - 1; 559 560 config = au_readl(HOST_CONFIG(host)); 561 562 config &= ~(SD_CONFIG_DIV); 563 config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE; 564 565 au_writel(config, HOST_CONFIG(host)); 566 au_sync(); 567 } 568 569 static int 570 au1xmmc_prepare_data(struct au1xmmc_host *host, struct mmc_data *data) 571 { 572 573 int datalen = data->blocks * data->blksz; 574 575 if (dma != 0) 576 host->flags |= HOST_F_DMA; 577 578 if (data->flags & MMC_DATA_READ) 579 host->flags |= HOST_F_RECV; 580 else 581 host->flags |= HOST_F_XMIT; 582 583 if (host->mrq->stop) 584 host->flags |= HOST_F_STOP; 585 586 host->dma.dir = DMA_BIDIRECTIONAL; 587 588 host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg, 589 data->sg_len, host->dma.dir); 590 591 if (host->dma.len == 0) 592 return MMC_ERR_TIMEOUT; 593 594 au_writel(data->blksz - 1, HOST_BLKSIZE(host)); 595 596 if (host->flags & HOST_F_DMA) { 597 int i; 598 u32 channel = DMA_CHANNEL(host); 599 600 au1xxx_dbdma_stop(channel); 601 602 for(i = 0; i < host->dma.len; i++) { 603 u32 ret = 0, flags = DDMA_FLAGS_NOIE; 604 struct scatterlist *sg = &data->sg[i]; 605 int sg_len = sg->length; 606 607 int len = (datalen > sg_len) ? sg_len : datalen; 608 609 if (i == host->dma.len - 1) 610 flags = DDMA_FLAGS_IE; 611 612 if (host->flags & HOST_F_XMIT){ 613 ret = au1xxx_dbdma_put_source_flags(channel, 614 (void *) (page_address(sg->page) + 615 sg->offset), 616 len, flags); 617 } 618 else { 619 ret = au1xxx_dbdma_put_dest_flags(channel, 620 (void *) (page_address(sg->page) + 621 sg->offset), 622 len, flags); 623 } 624 625 if (!ret) 626 goto dataerr; 627 628 datalen -= len; 629 } 630 } 631 else { 632 host->pio.index = 0; 633 host->pio.offset = 0; 634 host->pio.len = datalen; 635 636 if (host->flags & HOST_F_XMIT) 637 IRQ_ON(host, SD_CONFIG_TH); 638 else 639 IRQ_ON(host, SD_CONFIG_NE); 640 //IRQ_ON(host, SD_CONFIG_RA|SD_CONFIG_RF); 641 } 642 643 return MMC_ERR_NONE; 644 645 dataerr: 646 dma_unmap_sg(mmc_dev(host->mmc),data->sg,data->sg_len,host->dma.dir); 647 return MMC_ERR_TIMEOUT; 648 } 649 650 /* static void au1xmmc_request 651 This actually starts a command or data transaction 652 */ 653 654 static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq) 655 { 656 657 struct au1xmmc_host *host = mmc_priv(mmc); 658 unsigned int flags = 0; 659 int ret = MMC_ERR_NONE; 660 661 WARN_ON(irqs_disabled()); 662 WARN_ON(host->status != HOST_S_IDLE); 663 664 host->mrq = mrq; 665 host->status = HOST_S_CMD; 666 667 bcsr->disk_leds &= ~(1 << 8); 668 669 if (mrq->data) { 670 FLUSH_FIFO(host); 671 flags = mrq->data->flags; 672 ret = au1xmmc_prepare_data(host, mrq->data); 673 } 674 675 if (ret == MMC_ERR_NONE) 676 ret = au1xmmc_send_command(host, 0, mrq->cmd, flags); 677 678 if (ret != MMC_ERR_NONE) { 679 mrq->cmd->error = ret; 680 au1xmmc_finish_request(host); 681 } 682 } 683 684 static void au1xmmc_reset_controller(struct au1xmmc_host *host) 685 { 686 687 /* Apply the clock */ 688 au_writel(SD_ENABLE_CE, HOST_ENABLE(host)); 689 au_sync_delay(1); 690 691 au_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host)); 692 au_sync_delay(5); 693 694 au_writel(~0, HOST_STATUS(host)); 695 au_sync(); 696 697 au_writel(0, HOST_BLKSIZE(host)); 698 au_writel(0x001fffff, HOST_TIMEOUT(host)); 699 au_sync(); 700 701 au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host)); 702 au_sync(); 703 704 au_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host)); 705 au_sync_delay(1); 706 707 au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host)); 708 au_sync(); 709 710 /* Configure interrupts */ 711 au_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host)); 712 au_sync(); 713 } 714 715 716 static void au1xmmc_set_ios(struct mmc_host* mmc, struct mmc_ios* ios) 717 { 718 struct au1xmmc_host *host = mmc_priv(mmc); 719 720 if (ios->power_mode == MMC_POWER_OFF) 721 au1xmmc_set_power(host, 0); 722 else if (ios->power_mode == MMC_POWER_ON) { 723 au1xmmc_set_power(host, 1); 724 } 725 726 if (ios->clock && ios->clock != host->clock) { 727 au1xmmc_set_clock(host, ios->clock); 728 host->clock = ios->clock; 729 } 730 } 731 732 static void au1xmmc_dma_callback(int irq, void *dev_id) 733 { 734 struct au1xmmc_host *host = (struct au1xmmc_host *) dev_id; 735 736 /* Avoid spurious interrupts */ 737 738 if (!host->mrq) 739 return; 740 741 if (host->flags & HOST_F_STOP) 742 SEND_STOP(host); 743 744 tasklet_schedule(&host->data_task); 745 } 746 747 #define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT) 748 #define STATUS_DATA_IN (SD_STATUS_NE) 749 #define STATUS_DATA_OUT (SD_STATUS_TH) 750 751 static irqreturn_t au1xmmc_irq(int irq, void *dev_id) 752 { 753 754 u32 status; 755 int i, ret = 0; 756 757 disable_irq(AU1100_SD_IRQ); 758 759 for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) { 760 struct au1xmmc_host * host = au1xmmc_hosts[i]; 761 u32 handled = 1; 762 763 status = au_readl(HOST_STATUS(host)); 764 765 if (host->mrq && (status & STATUS_TIMEOUT)) { 766 if (status & SD_STATUS_RAT) 767 host->mrq->cmd->error = MMC_ERR_TIMEOUT; 768 769 else if (status & SD_STATUS_DT) 770 host->mrq->data->error = MMC_ERR_TIMEOUT; 771 772 /* In PIO mode, interrupts might still be enabled */ 773 IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH); 774 775 //IRQ_OFF(host, SD_CONFIG_TH|SD_CONFIG_RA|SD_CONFIG_RF); 776 tasklet_schedule(&host->finish_task); 777 } 778 #if 0 779 else if (status & SD_STATUS_DD) { 780 781 /* Sometimes we get a DD before a NE in PIO mode */ 782 783 if (!(host->flags & HOST_F_DMA) && 784 (status & SD_STATUS_NE)) 785 au1xmmc_receive_pio(host); 786 else { 787 au1xmmc_data_complete(host, status); 788 //tasklet_schedule(&host->data_task); 789 } 790 } 791 #endif 792 else if (status & (SD_STATUS_CR)) { 793 if (host->status == HOST_S_CMD) 794 au1xmmc_cmd_complete(host,status); 795 } 796 else if (!(host->flags & HOST_F_DMA)) { 797 if ((host->flags & HOST_F_XMIT) && 798 (status & STATUS_DATA_OUT)) 799 au1xmmc_send_pio(host); 800 else if ((host->flags & HOST_F_RECV) && 801 (status & STATUS_DATA_IN)) 802 au1xmmc_receive_pio(host); 803 } 804 else if (status & 0x203FBC70) { 805 DBG("Unhandled status %8.8x\n", host->id, status); 806 handled = 0; 807 } 808 809 au_writel(status, HOST_STATUS(host)); 810 au_sync(); 811 812 ret |= handled; 813 } 814 815 enable_irq(AU1100_SD_IRQ); 816 return ret; 817 } 818 819 static void au1xmmc_poll_event(unsigned long arg) 820 { 821 struct au1xmmc_host *host = (struct au1xmmc_host *) arg; 822 823 int card = au1xmmc_card_inserted(host); 824 int controller = (host->flags & HOST_F_ACTIVE) ? 1 : 0; 825 826 if (card != controller) { 827 host->flags &= ~HOST_F_ACTIVE; 828 if (card) host->flags |= HOST_F_ACTIVE; 829 mmc_detect_change(host->mmc, 0); 830 } 831 832 if (host->mrq != NULL) { 833 u32 status = au_readl(HOST_STATUS(host)); 834 DBG("PENDING - %8.8x\n", host->id, status); 835 } 836 837 mod_timer(&host->timer, jiffies + AU1XMMC_DETECT_TIMEOUT); 838 } 839 840 static dbdev_tab_t au1xmmc_mem_dbdev = 841 { 842 DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 8, 0x00000000, 0, 0 843 }; 844 845 static void au1xmmc_init_dma(struct au1xmmc_host *host) 846 { 847 848 u32 rxchan, txchan; 849 850 int txid = au1xmmc_card_table[host->id].tx_devid; 851 int rxid = au1xmmc_card_table[host->id].rx_devid; 852 853 /* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride 854 of 8 bits. And since devices are shared, we need to create 855 our own to avoid freaking out other devices 856 */ 857 858 int memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev); 859 860 txchan = au1xxx_dbdma_chan_alloc(memid, txid, 861 au1xmmc_dma_callback, (void *) host); 862 863 rxchan = au1xxx_dbdma_chan_alloc(rxid, memid, 864 au1xmmc_dma_callback, (void *) host); 865 866 au1xxx_dbdma_set_devwidth(txchan, 8); 867 au1xxx_dbdma_set_devwidth(rxchan, 8); 868 869 au1xxx_dbdma_ring_alloc(txchan, AU1XMMC_DESCRIPTOR_COUNT); 870 au1xxx_dbdma_ring_alloc(rxchan, AU1XMMC_DESCRIPTOR_COUNT); 871 872 host->tx_chan = txchan; 873 host->rx_chan = rxchan; 874 } 875 876 static const struct mmc_host_ops au1xmmc_ops = { 877 .request = au1xmmc_request, 878 .set_ios = au1xmmc_set_ios, 879 .get_ro = au1xmmc_card_readonly, 880 }; 881 882 static int __devinit au1xmmc_probe(struct platform_device *pdev) 883 { 884 885 int i, ret = 0; 886 887 /* THe interrupt is shared among all controllers */ 888 ret = request_irq(AU1100_SD_IRQ, au1xmmc_irq, IRQF_DISABLED, "MMC", 0); 889 890 if (ret) { 891 printk(DRIVER_NAME "ERROR: Couldn't get int %d: %d\n", 892 AU1100_SD_IRQ, ret); 893 return -ENXIO; 894 } 895 896 disable_irq(AU1100_SD_IRQ); 897 898 for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) { 899 struct mmc_host *mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev); 900 struct au1xmmc_host *host = 0; 901 902 if (!mmc) { 903 printk(DRIVER_NAME "ERROR: no mem for host %d\n", i); 904 au1xmmc_hosts[i] = 0; 905 continue; 906 } 907 908 mmc->ops = &au1xmmc_ops; 909 910 mmc->f_min = 450000; 911 mmc->f_max = 24000000; 912 913 mmc->max_seg_size = AU1XMMC_DESCRIPTOR_SIZE; 914 mmc->max_phys_segs = AU1XMMC_DESCRIPTOR_COUNT; 915 916 mmc->max_blk_size = 2048; 917 mmc->max_blk_count = 512; 918 919 mmc->ocr_avail = AU1XMMC_OCR; 920 921 host = mmc_priv(mmc); 922 host->mmc = mmc; 923 924 host->id = i; 925 host->iobase = au1xmmc_card_table[host->id].iobase; 926 host->clock = 0; 927 host->power_mode = MMC_POWER_OFF; 928 929 host->flags = au1xmmc_card_inserted(host) ? HOST_F_ACTIVE : 0; 930 host->status = HOST_S_IDLE; 931 932 init_timer(&host->timer); 933 934 host->timer.function = au1xmmc_poll_event; 935 host->timer.data = (unsigned long) host; 936 host->timer.expires = jiffies + AU1XMMC_DETECT_TIMEOUT; 937 938 tasklet_init(&host->data_task, au1xmmc_tasklet_data, 939 (unsigned long) host); 940 941 tasklet_init(&host->finish_task, au1xmmc_tasklet_finish, 942 (unsigned long) host); 943 944 spin_lock_init(&host->lock); 945 946 if (dma != 0) 947 au1xmmc_init_dma(host); 948 949 au1xmmc_reset_controller(host); 950 951 mmc_add_host(mmc); 952 au1xmmc_hosts[i] = host; 953 954 add_timer(&host->timer); 955 956 printk(KERN_INFO DRIVER_NAME ": MMC Controller %d set up at %8.8X (mode=%s)\n", 957 host->id, host->iobase, dma ? "dma" : "pio"); 958 } 959 960 enable_irq(AU1100_SD_IRQ); 961 962 return 0; 963 } 964 965 static int __devexit au1xmmc_remove(struct platform_device *pdev) 966 { 967 968 int i; 969 970 disable_irq(AU1100_SD_IRQ); 971 972 for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) { 973 struct au1xmmc_host *host = au1xmmc_hosts[i]; 974 if (!host) continue; 975 976 tasklet_kill(&host->data_task); 977 tasklet_kill(&host->finish_task); 978 979 del_timer_sync(&host->timer); 980 au1xmmc_set_power(host, 0); 981 982 mmc_remove_host(host->mmc); 983 984 au1xxx_dbdma_chan_free(host->tx_chan); 985 au1xxx_dbdma_chan_free(host->rx_chan); 986 987 au_writel(0x0, HOST_ENABLE(host)); 988 au_sync(); 989 } 990 991 free_irq(AU1100_SD_IRQ, 0); 992 return 0; 993 } 994 995 static struct platform_driver au1xmmc_driver = { 996 .probe = au1xmmc_probe, 997 .remove = au1xmmc_remove, 998 .suspend = NULL, 999 .resume = NULL, 1000 .driver = { 1001 .name = DRIVER_NAME, 1002 }, 1003 }; 1004 1005 static int __init au1xmmc_init(void) 1006 { 1007 return platform_driver_register(&au1xmmc_driver); 1008 } 1009 1010 static void __exit au1xmmc_exit(void) 1011 { 1012 platform_driver_unregister(&au1xmmc_driver); 1013 } 1014 1015 module_init(au1xmmc_init); 1016 module_exit(au1xmmc_exit); 1017 1018 #ifdef MODULE 1019 MODULE_AUTHOR("Advanced Micro Devices, Inc"); 1020 MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX"); 1021 MODULE_LICENSE("GPL"); 1022 #endif 1023 1024