xref: /openbmc/linux/drivers/mmc/host/au1xmmc.c (revision c21b37f6)
1 /*
2  * linux/drivers/mmc/host/au1xmmc.c - AU1XX0 MMC driver
3  *
4  *  Copyright (c) 2005, Advanced Micro Devices, Inc.
5  *
6  *  Developed with help from the 2.4.30 MMC AU1XXX controller including
7  *  the following copyright notices:
8  *     Copyright (c) 2003-2004 Embedded Edge, LLC.
9  *     Portions Copyright (C) 2002 Embedix, Inc
10  *     Copyright 2002 Hewlett-Packard Company
11 
12  *  2.6 version of this driver inspired by:
13  *     (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman,
14  *     All Rights Reserved.
15  *     (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King,
16  *     All Rights Reserved.
17  *
18 
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License version 2 as
21  * published by the Free Software Foundation.
22  */
23 
24 /* Why is a timer used to detect insert events?
25  *
26  * From the AU1100 MMC application guide:
27  * If the Au1100-based design is intended to support both MultiMediaCards
28  * and 1- or 4-data bit SecureDigital cards, then the solution is to
29  * connect a weak (560KOhm) pull-up resistor to connector pin 1.
30  * In doing so, a MMC card never enters SPI-mode communications,
31  * but now the SecureDigital card-detect feature of CD/DAT3 is ineffective
32  * (the low to high transition will not occur).
33  *
34  * So we use the timer to check the status manually.
35  */
36 
37 #include <linux/module.h>
38 #include <linux/init.h>
39 #include <linux/platform_device.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/dma-mapping.h>
43 
44 #include <linux/mmc/host.h>
45 #include <asm/io.h>
46 #include <asm/mach-au1x00/au1000.h>
47 #include <asm/mach-au1x00/au1xxx_dbdma.h>
48 #include <asm/mach-au1x00/au1100_mmc.h>
49 #include <asm/scatterlist.h>
50 
51 #include <au1xxx.h>
52 #include "au1xmmc.h"
53 
54 #define DRIVER_NAME "au1xxx-mmc"
55 
56 /* Set this to enable special debugging macros */
57 
58 #ifdef DEBUG
59 #define DBG(fmt, idx, args...) printk("au1xx(%d): DEBUG: " fmt, idx, ##args)
60 #else
61 #define DBG(fmt, idx, args...)
62 #endif
63 
64 const struct {
65 	u32 iobase;
66 	u32 tx_devid, rx_devid;
67 	u16 bcsrpwr;
68 	u16 bcsrstatus;
69 	u16 wpstatus;
70 } au1xmmc_card_table[] = {
71 	{ SD0_BASE, DSCR_CMD0_SDMS_TX0, DSCR_CMD0_SDMS_RX0,
72 	  BCSR_BOARD_SD0PWR, BCSR_INT_SD0INSERT, BCSR_STATUS_SD0WP },
73 #ifndef CONFIG_MIPS_DB1200
74 	{ SD1_BASE, DSCR_CMD0_SDMS_TX1, DSCR_CMD0_SDMS_RX1,
75 	  BCSR_BOARD_DS1PWR, BCSR_INT_SD1INSERT, BCSR_STATUS_SD1WP }
76 #endif
77 };
78 
79 #define AU1XMMC_CONTROLLER_COUNT (ARRAY_SIZE(au1xmmc_card_table))
80 
81 /* This array stores pointers for the hosts (used by the IRQ handler) */
82 struct au1xmmc_host *au1xmmc_hosts[AU1XMMC_CONTROLLER_COUNT];
83 static int dma = 1;
84 
85 #ifdef MODULE
86 module_param(dma, bool, 0);
87 MODULE_PARM_DESC(dma, "Use DMA engine for data transfers (0 = disabled)");
88 #endif
89 
90 static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask)
91 {
92 	u32 val = au_readl(HOST_CONFIG(host));
93 	val |= mask;
94 	au_writel(val, HOST_CONFIG(host));
95 	au_sync();
96 }
97 
98 static inline void FLUSH_FIFO(struct au1xmmc_host *host)
99 {
100 	u32 val = au_readl(HOST_CONFIG2(host));
101 
102 	au_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host));
103 	au_sync_delay(1);
104 
105 	/* SEND_STOP will turn off clock control - this re-enables it */
106 	val &= ~SD_CONFIG2_DF;
107 
108 	au_writel(val, HOST_CONFIG2(host));
109 	au_sync();
110 }
111 
112 static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask)
113 {
114 	u32 val = au_readl(HOST_CONFIG(host));
115 	val &= ~mask;
116 	au_writel(val, HOST_CONFIG(host));
117 	au_sync();
118 }
119 
120 static inline void SEND_STOP(struct au1xmmc_host *host)
121 {
122 
123 	/* We know the value of CONFIG2, so avoid a read we don't need */
124 	u32 mask = SD_CONFIG2_EN;
125 
126 	WARN_ON(host->status != HOST_S_DATA);
127 	host->status = HOST_S_STOP;
128 
129 	au_writel(mask | SD_CONFIG2_DF, HOST_CONFIG2(host));
130 	au_sync();
131 
132 	/* Send the stop commmand */
133 	au_writel(STOP_CMD, HOST_CMD(host));
134 }
135 
136 static void au1xmmc_set_power(struct au1xmmc_host *host, int state)
137 {
138 
139 	u32 val = au1xmmc_card_table[host->id].bcsrpwr;
140 
141 	bcsr->board &= ~val;
142 	if (state) bcsr->board |= val;
143 
144 	au_sync_delay(1);
145 }
146 
147 static inline int au1xmmc_card_inserted(struct au1xmmc_host *host)
148 {
149 	return (bcsr->sig_status & au1xmmc_card_table[host->id].bcsrstatus)
150 		? 1 : 0;
151 }
152 
153 static int au1xmmc_card_readonly(struct mmc_host *mmc)
154 {
155 	struct au1xmmc_host *host = mmc_priv(mmc);
156 	return (bcsr->status & au1xmmc_card_table[host->id].wpstatus)
157 		? 1 : 0;
158 }
159 
160 static void au1xmmc_finish_request(struct au1xmmc_host *host)
161 {
162 
163 	struct mmc_request *mrq = host->mrq;
164 
165 	host->mrq = NULL;
166 	host->flags &= HOST_F_ACTIVE;
167 
168 	host->dma.len = 0;
169 	host->dma.dir = 0;
170 
171 	host->pio.index  = 0;
172 	host->pio.offset = 0;
173 	host->pio.len = 0;
174 
175 	host->status = HOST_S_IDLE;
176 
177 	bcsr->disk_leds |= (1 << 8);
178 
179 	mmc_request_done(host->mmc, mrq);
180 }
181 
182 static void au1xmmc_tasklet_finish(unsigned long param)
183 {
184 	struct au1xmmc_host *host = (struct au1xmmc_host *) param;
185 	au1xmmc_finish_request(host);
186 }
187 
188 static int au1xmmc_send_command(struct au1xmmc_host *host, int wait,
189 				struct mmc_command *cmd, unsigned int flags)
190 {
191 	u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT);
192 
193 	switch (mmc_resp_type(cmd)) {
194 	case MMC_RSP_NONE:
195 		break;
196 	case MMC_RSP_R1:
197 		mmccmd |= SD_CMD_RT_1;
198 		break;
199 	case MMC_RSP_R1B:
200 		mmccmd |= SD_CMD_RT_1B;
201 		break;
202 	case MMC_RSP_R2:
203 		mmccmd |= SD_CMD_RT_2;
204 		break;
205 	case MMC_RSP_R3:
206 		mmccmd |= SD_CMD_RT_3;
207 		break;
208 	default:
209 		printk(KERN_INFO "au1xmmc: unhandled response type %02x\n",
210 			mmc_resp_type(cmd));
211 		return MMC_ERR_INVALID;
212 	}
213 
214 	if (flags & MMC_DATA_READ) {
215 		if (flags & MMC_DATA_MULTI)
216 			mmccmd |= SD_CMD_CT_4;
217 		else
218 			mmccmd |= SD_CMD_CT_2;
219 	} else if (flags & MMC_DATA_WRITE) {
220 		if (flags & MMC_DATA_MULTI)
221 			mmccmd |= SD_CMD_CT_3;
222 		else
223 			mmccmd |= SD_CMD_CT_1;
224 	}
225 
226 	au_writel(cmd->arg, HOST_CMDARG(host));
227 	au_sync();
228 
229 	if (wait)
230 		IRQ_OFF(host, SD_CONFIG_CR);
231 
232 	au_writel((mmccmd | SD_CMD_GO), HOST_CMD(host));
233 	au_sync();
234 
235 	/* Wait for the command to go on the line */
236 
237 	while(1) {
238 		if (!(au_readl(HOST_CMD(host)) & SD_CMD_GO))
239 			break;
240 	}
241 
242 	/* Wait for the command to come back */
243 
244 	if (wait) {
245 		u32 status = au_readl(HOST_STATUS(host));
246 
247 		while(!(status & SD_STATUS_CR))
248 			status = au_readl(HOST_STATUS(host));
249 
250 		/* Clear the CR status */
251 		au_writel(SD_STATUS_CR, HOST_STATUS(host));
252 
253 		IRQ_ON(host, SD_CONFIG_CR);
254 	}
255 
256 	return MMC_ERR_NONE;
257 }
258 
259 static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status)
260 {
261 
262 	struct mmc_request *mrq = host->mrq;
263 	struct mmc_data *data;
264 	u32 crc;
265 
266 	WARN_ON(host->status != HOST_S_DATA && host->status != HOST_S_STOP);
267 
268 	if (host->mrq == NULL)
269 		return;
270 
271 	data = mrq->cmd->data;
272 
273 	if (status == 0)
274 		status = au_readl(HOST_STATUS(host));
275 
276 	/* The transaction is really over when the SD_STATUS_DB bit is clear */
277 
278 	while((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB))
279 		status = au_readl(HOST_STATUS(host));
280 
281 	data->error = MMC_ERR_NONE;
282 	dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir);
283 
284         /* Process any errors */
285 
286 	crc = (status & (SD_STATUS_WC | SD_STATUS_RC));
287 	if (host->flags & HOST_F_XMIT)
288 		crc |= ((status & 0x07) == 0x02) ? 0 : 1;
289 
290 	if (crc)
291 		data->error = MMC_ERR_BADCRC;
292 
293 	/* Clear the CRC bits */
294 	au_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host));
295 
296 	data->bytes_xfered = 0;
297 
298 	if (data->error == MMC_ERR_NONE) {
299 		if (host->flags & HOST_F_DMA) {
300 			u32 chan = DMA_CHANNEL(host);
301 
302 			chan_tab_t *c = *((chan_tab_t **) chan);
303 			au1x_dma_chan_t *cp = c->chan_ptr;
304 			data->bytes_xfered = cp->ddma_bytecnt;
305 		}
306 		else
307 			data->bytes_xfered =
308 				(data->blocks * data->blksz) -
309 				host->pio.len;
310 	}
311 
312 	au1xmmc_finish_request(host);
313 }
314 
315 static void au1xmmc_tasklet_data(unsigned long param)
316 {
317 	struct au1xmmc_host *host = (struct au1xmmc_host *) param;
318 
319 	u32 status = au_readl(HOST_STATUS(host));
320 	au1xmmc_data_complete(host, status);
321 }
322 
323 #define AU1XMMC_MAX_TRANSFER 8
324 
325 static void au1xmmc_send_pio(struct au1xmmc_host *host)
326 {
327 
328 	struct mmc_data *data = 0;
329 	int sg_len, max, count = 0;
330 	unsigned char *sg_ptr;
331 	u32 status = 0;
332 	struct scatterlist *sg;
333 
334 	data = host->mrq->data;
335 
336 	if (!(host->flags & HOST_F_XMIT))
337 		return;
338 
339 	/* This is the pointer to the data buffer */
340 	sg = &data->sg[host->pio.index];
341 	sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset;
342 
343 	/* This is the space left inside the buffer */
344 	sg_len = data->sg[host->pio.index].length - host->pio.offset;
345 
346 	/* Check to if we need less then the size of the sg_buffer */
347 
348 	max = (sg_len > host->pio.len) ? host->pio.len : sg_len;
349 	if (max > AU1XMMC_MAX_TRANSFER) max = AU1XMMC_MAX_TRANSFER;
350 
351 	for(count = 0; count < max; count++ ) {
352 		unsigned char val;
353 
354 		status = au_readl(HOST_STATUS(host));
355 
356 		if (!(status & SD_STATUS_TH))
357 			break;
358 
359 		val = *sg_ptr++;
360 
361 		au_writel((unsigned long) val, HOST_TXPORT(host));
362 		au_sync();
363 	}
364 
365 	host->pio.len -= count;
366 	host->pio.offset += count;
367 
368 	if (count == sg_len) {
369 		host->pio.index++;
370 		host->pio.offset = 0;
371 	}
372 
373 	if (host->pio.len == 0) {
374 		IRQ_OFF(host, SD_CONFIG_TH);
375 
376 		if (host->flags & HOST_F_STOP)
377 			SEND_STOP(host);
378 
379 		tasklet_schedule(&host->data_task);
380 	}
381 }
382 
383 static void au1xmmc_receive_pio(struct au1xmmc_host *host)
384 {
385 
386 	struct mmc_data *data = 0;
387 	int sg_len = 0, max = 0, count = 0;
388 	unsigned char *sg_ptr = 0;
389 	u32 status = 0;
390 	struct scatterlist *sg;
391 
392 	data = host->mrq->data;
393 
394 	if (!(host->flags & HOST_F_RECV))
395 		return;
396 
397 	max = host->pio.len;
398 
399 	if (host->pio.index < host->dma.len) {
400 		sg = &data->sg[host->pio.index];
401 		sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset;
402 
403 		/* This is the space left inside the buffer */
404 		sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset;
405 
406 		/* Check to if we need less then the size of the sg_buffer */
407 		if (sg_len < max) max = sg_len;
408 	}
409 
410 	if (max > AU1XMMC_MAX_TRANSFER)
411 		max = AU1XMMC_MAX_TRANSFER;
412 
413 	for(count = 0; count < max; count++ ) {
414 		u32 val;
415 		status = au_readl(HOST_STATUS(host));
416 
417 		if (!(status & SD_STATUS_NE))
418 			break;
419 
420 		if (status & SD_STATUS_RC) {
421 			DBG("RX CRC Error [%d + %d].\n", host->id,
422 					host->pio.len, count);
423 			break;
424 		}
425 
426 		if (status & SD_STATUS_RO) {
427 			DBG("RX Overrun [%d + %d]\n", host->id,
428 					host->pio.len, count);
429 			break;
430 		}
431 		else if (status & SD_STATUS_RU) {
432 			DBG("RX Underrun [%d + %d]\n", host->id,
433 					host->pio.len,	count);
434 			break;
435 		}
436 
437 		val = au_readl(HOST_RXPORT(host));
438 
439 		if (sg_ptr)
440 			*sg_ptr++ = (unsigned char) (val & 0xFF);
441 	}
442 
443 	host->pio.len -= count;
444 	host->pio.offset += count;
445 
446 	if (sg_len && count == sg_len) {
447 		host->pio.index++;
448 		host->pio.offset = 0;
449 	}
450 
451 	if (host->pio.len == 0) {
452 		//IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF);
453 		IRQ_OFF(host, SD_CONFIG_NE);
454 
455 		if (host->flags & HOST_F_STOP)
456 			SEND_STOP(host);
457 
458 		tasklet_schedule(&host->data_task);
459 	}
460 }
461 
462 /* static void au1xmmc_cmd_complete
463    This is called when a command has been completed - grab the response
464    and check for errors.  Then start the data transfer if it is indicated.
465 */
466 
467 static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status)
468 {
469 
470 	struct mmc_request *mrq = host->mrq;
471 	struct mmc_command *cmd;
472 	int trans;
473 
474 	if (!host->mrq)
475 		return;
476 
477 	cmd = mrq->cmd;
478 	cmd->error = MMC_ERR_NONE;
479 
480 	if (cmd->flags & MMC_RSP_PRESENT) {
481 		if (cmd->flags & MMC_RSP_136) {
482 			u32 r[4];
483 			int i;
484 
485 			r[0] = au_readl(host->iobase + SD_RESP3);
486 			r[1] = au_readl(host->iobase + SD_RESP2);
487 			r[2] = au_readl(host->iobase + SD_RESP1);
488 			r[3] = au_readl(host->iobase + SD_RESP0);
489 
490 			/* The CRC is omitted from the response, so really
491 			 * we only got 120 bytes, but the engine expects
492 			 * 128 bits, so we have to shift things up
493 			 */
494 
495 			for(i = 0; i < 4; i++) {
496 				cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8;
497 				if (i != 3)
498 					cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24;
499 			}
500 		} else {
501 			/* Techincally, we should be getting all 48 bits of
502 			 * the response (SD_RESP1 + SD_RESP2), but because
503 			 * our response omits the CRC, our data ends up
504 			 * being shifted 8 bits to the right.  In this case,
505 			 * that means that the OSR data starts at bit 31,
506 			 * so we can just read RESP0 and return that
507 			 */
508 			cmd->resp[0] = au_readl(host->iobase + SD_RESP0);
509 		}
510 	}
511 
512         /* Figure out errors */
513 
514 	if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC))
515 		cmd->error = MMC_ERR_BADCRC;
516 
517 	trans = host->flags & (HOST_F_XMIT | HOST_F_RECV);
518 
519 	if (!trans || cmd->error != MMC_ERR_NONE) {
520 
521 		IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA|SD_CONFIG_RF);
522 		tasklet_schedule(&host->finish_task);
523 		return;
524 	}
525 
526 	host->status = HOST_S_DATA;
527 
528 	if (host->flags & HOST_F_DMA) {
529 		u32 channel = DMA_CHANNEL(host);
530 
531 		/* Start the DMA as soon as the buffer gets something in it */
532 
533 		if (host->flags & HOST_F_RECV) {
534 			u32 mask = SD_STATUS_DB | SD_STATUS_NE;
535 
536 			while((status & mask) != mask)
537 				status = au_readl(HOST_STATUS(host));
538 		}
539 
540 		au1xxx_dbdma_start(channel);
541 	}
542 }
543 
544 static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate)
545 {
546 
547 	unsigned int pbus = get_au1x00_speed();
548 	unsigned int divisor;
549 	u32 config;
550 
551 	/* From databook:
552 	   divisor = ((((cpuclock / sbus_divisor) / 2) / mmcclock) / 2) - 1
553 	*/
554 
555 	pbus /= ((au_readl(SYS_POWERCTRL) & 0x3) + 2);
556 	pbus /= 2;
557 
558 	divisor = ((pbus / rate) / 2) - 1;
559 
560 	config = au_readl(HOST_CONFIG(host));
561 
562 	config &= ~(SD_CONFIG_DIV);
563 	config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE;
564 
565 	au_writel(config, HOST_CONFIG(host));
566 	au_sync();
567 }
568 
569 static int
570 au1xmmc_prepare_data(struct au1xmmc_host *host, struct mmc_data *data)
571 {
572 
573 	int datalen = data->blocks * data->blksz;
574 
575 	if (dma != 0)
576 		host->flags |= HOST_F_DMA;
577 
578 	if (data->flags & MMC_DATA_READ)
579 		host->flags |= HOST_F_RECV;
580 	else
581 		host->flags |= HOST_F_XMIT;
582 
583 	if (host->mrq->stop)
584 		host->flags |= HOST_F_STOP;
585 
586 	host->dma.dir = DMA_BIDIRECTIONAL;
587 
588 	host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg,
589 				   data->sg_len, host->dma.dir);
590 
591 	if (host->dma.len == 0)
592 		return MMC_ERR_TIMEOUT;
593 
594 	au_writel(data->blksz - 1, HOST_BLKSIZE(host));
595 
596 	if (host->flags & HOST_F_DMA) {
597 		int i;
598 		u32 channel = DMA_CHANNEL(host);
599 
600 		au1xxx_dbdma_stop(channel);
601 
602 		for(i = 0; i < host->dma.len; i++) {
603 			u32 ret = 0, flags = DDMA_FLAGS_NOIE;
604 			struct scatterlist *sg = &data->sg[i];
605 			int sg_len = sg->length;
606 
607 			int len = (datalen > sg_len) ? sg_len : datalen;
608 
609 			if (i == host->dma.len - 1)
610 				flags = DDMA_FLAGS_IE;
611 
612     			if (host->flags & HOST_F_XMIT){
613       				ret = au1xxx_dbdma_put_source_flags(channel,
614 					(void *) (page_address(sg->page) +
615 						  sg->offset),
616 					len, flags);
617 			}
618     			else {
619       				ret = au1xxx_dbdma_put_dest_flags(channel,
620 					(void *) (page_address(sg->page) +
621 						  sg->offset),
622 					len, flags);
623 			}
624 
625     			if (!ret)
626 				goto dataerr;
627 
628 			datalen -= len;
629 		}
630 	}
631 	else {
632 		host->pio.index = 0;
633 		host->pio.offset = 0;
634 		host->pio.len = datalen;
635 
636 		if (host->flags & HOST_F_XMIT)
637 			IRQ_ON(host, SD_CONFIG_TH);
638 		else
639 			IRQ_ON(host, SD_CONFIG_NE);
640 			//IRQ_ON(host, SD_CONFIG_RA|SD_CONFIG_RF);
641 	}
642 
643 	return MMC_ERR_NONE;
644 
645  dataerr:
646 	dma_unmap_sg(mmc_dev(host->mmc),data->sg,data->sg_len,host->dma.dir);
647 	return MMC_ERR_TIMEOUT;
648 }
649 
650 /* static void au1xmmc_request
651    This actually starts a command or data transaction
652 */
653 
654 static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq)
655 {
656 
657 	struct au1xmmc_host *host = mmc_priv(mmc);
658 	unsigned int flags = 0;
659 	int ret = MMC_ERR_NONE;
660 
661 	WARN_ON(irqs_disabled());
662 	WARN_ON(host->status != HOST_S_IDLE);
663 
664 	host->mrq = mrq;
665 	host->status = HOST_S_CMD;
666 
667 	bcsr->disk_leds &= ~(1 << 8);
668 
669 	if (mrq->data) {
670 		FLUSH_FIFO(host);
671 		flags = mrq->data->flags;
672 		ret = au1xmmc_prepare_data(host, mrq->data);
673 	}
674 
675 	if (ret == MMC_ERR_NONE)
676 		ret = au1xmmc_send_command(host, 0, mrq->cmd, flags);
677 
678 	if (ret != MMC_ERR_NONE) {
679 		mrq->cmd->error = ret;
680 		au1xmmc_finish_request(host);
681 	}
682 }
683 
684 static void au1xmmc_reset_controller(struct au1xmmc_host *host)
685 {
686 
687 	/* Apply the clock */
688 	au_writel(SD_ENABLE_CE, HOST_ENABLE(host));
689         au_sync_delay(1);
690 
691 	au_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host));
692 	au_sync_delay(5);
693 
694 	au_writel(~0, HOST_STATUS(host));
695 	au_sync();
696 
697 	au_writel(0, HOST_BLKSIZE(host));
698 	au_writel(0x001fffff, HOST_TIMEOUT(host));
699 	au_sync();
700 
701 	au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
702         au_sync();
703 
704 	au_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host));
705 	au_sync_delay(1);
706 
707 	au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
708 	au_sync();
709 
710 	/* Configure interrupts */
711 	au_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host));
712 	au_sync();
713 }
714 
715 
716 static void au1xmmc_set_ios(struct mmc_host* mmc, struct mmc_ios* ios)
717 {
718 	struct au1xmmc_host *host = mmc_priv(mmc);
719 
720 	if (ios->power_mode == MMC_POWER_OFF)
721 		au1xmmc_set_power(host, 0);
722 	else if (ios->power_mode == MMC_POWER_ON) {
723 		au1xmmc_set_power(host, 1);
724 	}
725 
726 	if (ios->clock && ios->clock != host->clock) {
727 		au1xmmc_set_clock(host, ios->clock);
728 		host->clock = ios->clock;
729 	}
730 }
731 
732 static void au1xmmc_dma_callback(int irq, void *dev_id)
733 {
734 	struct au1xmmc_host *host = (struct au1xmmc_host *) dev_id;
735 
736 	/* Avoid spurious interrupts */
737 
738 	if (!host->mrq)
739 		return;
740 
741 	if (host->flags & HOST_F_STOP)
742 		SEND_STOP(host);
743 
744 	tasklet_schedule(&host->data_task);
745 }
746 
747 #define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT)
748 #define STATUS_DATA_IN  (SD_STATUS_NE)
749 #define STATUS_DATA_OUT (SD_STATUS_TH)
750 
751 static irqreturn_t au1xmmc_irq(int irq, void *dev_id)
752 {
753 
754 	u32 status;
755 	int i, ret = 0;
756 
757 	disable_irq(AU1100_SD_IRQ);
758 
759 	for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
760 		struct au1xmmc_host * host = au1xmmc_hosts[i];
761 		u32 handled = 1;
762 
763 		status = au_readl(HOST_STATUS(host));
764 
765 		if (host->mrq && (status & STATUS_TIMEOUT)) {
766 			if (status & SD_STATUS_RAT)
767 				host->mrq->cmd->error = MMC_ERR_TIMEOUT;
768 
769 			else if (status & SD_STATUS_DT)
770 				host->mrq->data->error = MMC_ERR_TIMEOUT;
771 
772 			/* In PIO mode, interrupts might still be enabled */
773 			IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH);
774 
775 			//IRQ_OFF(host, SD_CONFIG_TH|SD_CONFIG_RA|SD_CONFIG_RF);
776 			tasklet_schedule(&host->finish_task);
777 		}
778 #if 0
779 		else if (status & SD_STATUS_DD) {
780 
781 			/* Sometimes we get a DD before a NE in PIO mode */
782 
783 			if (!(host->flags & HOST_F_DMA) &&
784 					(status & SD_STATUS_NE))
785 				au1xmmc_receive_pio(host);
786 			else {
787 				au1xmmc_data_complete(host, status);
788 				//tasklet_schedule(&host->data_task);
789 			}
790 		}
791 #endif
792 		else if (status & (SD_STATUS_CR)) {
793 			if (host->status == HOST_S_CMD)
794 				au1xmmc_cmd_complete(host,status);
795 		}
796 		else if (!(host->flags & HOST_F_DMA)) {
797 			if ((host->flags & HOST_F_XMIT) &&
798 			    (status & STATUS_DATA_OUT))
799 				au1xmmc_send_pio(host);
800 			else if ((host->flags & HOST_F_RECV) &&
801 			    (status & STATUS_DATA_IN))
802 				au1xmmc_receive_pio(host);
803 		}
804 		else if (status & 0x203FBC70) {
805 			DBG("Unhandled status %8.8x\n", host->id, status);
806 			handled = 0;
807 		}
808 
809 		au_writel(status, HOST_STATUS(host));
810 		au_sync();
811 
812 		ret |= handled;
813 	}
814 
815 	enable_irq(AU1100_SD_IRQ);
816 	return ret;
817 }
818 
819 static void au1xmmc_poll_event(unsigned long arg)
820 {
821 	struct au1xmmc_host *host = (struct au1xmmc_host *) arg;
822 
823 	int card = au1xmmc_card_inserted(host);
824         int controller = (host->flags & HOST_F_ACTIVE) ? 1 : 0;
825 
826 	if (card != controller) {
827 		host->flags &= ~HOST_F_ACTIVE;
828 		if (card) host->flags |= HOST_F_ACTIVE;
829 		mmc_detect_change(host->mmc, 0);
830 	}
831 
832 	if (host->mrq != NULL) {
833 		u32 status = au_readl(HOST_STATUS(host));
834 		DBG("PENDING - %8.8x\n", host->id, status);
835 	}
836 
837 	mod_timer(&host->timer, jiffies + AU1XMMC_DETECT_TIMEOUT);
838 }
839 
840 static dbdev_tab_t au1xmmc_mem_dbdev =
841 {
842 	DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 8, 0x00000000, 0, 0
843 };
844 
845 static void au1xmmc_init_dma(struct au1xmmc_host *host)
846 {
847 
848 	u32 rxchan, txchan;
849 
850 	int txid = au1xmmc_card_table[host->id].tx_devid;
851 	int rxid = au1xmmc_card_table[host->id].rx_devid;
852 
853 	/* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride
854 	   of 8 bits.  And since devices are shared, we need to create
855 	   our own to avoid freaking out other devices
856 	*/
857 
858 	int memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev);
859 
860 	txchan = au1xxx_dbdma_chan_alloc(memid, txid,
861 					 au1xmmc_dma_callback, (void *) host);
862 
863 	rxchan = au1xxx_dbdma_chan_alloc(rxid, memid,
864 					 au1xmmc_dma_callback, (void *) host);
865 
866 	au1xxx_dbdma_set_devwidth(txchan, 8);
867 	au1xxx_dbdma_set_devwidth(rxchan, 8);
868 
869 	au1xxx_dbdma_ring_alloc(txchan, AU1XMMC_DESCRIPTOR_COUNT);
870 	au1xxx_dbdma_ring_alloc(rxchan, AU1XMMC_DESCRIPTOR_COUNT);
871 
872 	host->tx_chan = txchan;
873 	host->rx_chan = rxchan;
874 }
875 
876 static const struct mmc_host_ops au1xmmc_ops = {
877 	.request	= au1xmmc_request,
878 	.set_ios	= au1xmmc_set_ios,
879 	.get_ro		= au1xmmc_card_readonly,
880 };
881 
882 static int __devinit au1xmmc_probe(struct platform_device *pdev)
883 {
884 
885 	int i, ret = 0;
886 
887 	/* THe interrupt is shared among all controllers */
888 	ret = request_irq(AU1100_SD_IRQ, au1xmmc_irq, IRQF_DISABLED, "MMC", 0);
889 
890 	if (ret) {
891 		printk(DRIVER_NAME "ERROR: Couldn't get int %d: %d\n",
892 				AU1100_SD_IRQ, ret);
893 		return -ENXIO;
894 	}
895 
896 	disable_irq(AU1100_SD_IRQ);
897 
898 	for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
899 		struct mmc_host *mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev);
900 		struct au1xmmc_host *host = 0;
901 
902 		if (!mmc) {
903 			printk(DRIVER_NAME "ERROR: no mem for host %d\n", i);
904 			au1xmmc_hosts[i] = 0;
905 			continue;
906 		}
907 
908 		mmc->ops = &au1xmmc_ops;
909 
910 		mmc->f_min =   450000;
911 		mmc->f_max = 24000000;
912 
913 		mmc->max_seg_size = AU1XMMC_DESCRIPTOR_SIZE;
914 		mmc->max_phys_segs = AU1XMMC_DESCRIPTOR_COUNT;
915 
916 		mmc->max_blk_size = 2048;
917 		mmc->max_blk_count = 512;
918 
919 		mmc->ocr_avail = AU1XMMC_OCR;
920 
921 		host = mmc_priv(mmc);
922 		host->mmc = mmc;
923 
924 		host->id = i;
925 		host->iobase = au1xmmc_card_table[host->id].iobase;
926 		host->clock = 0;
927 		host->power_mode = MMC_POWER_OFF;
928 
929 		host->flags = au1xmmc_card_inserted(host) ? HOST_F_ACTIVE : 0;
930 		host->status = HOST_S_IDLE;
931 
932 		init_timer(&host->timer);
933 
934 		host->timer.function = au1xmmc_poll_event;
935 		host->timer.data = (unsigned long) host;
936 		host->timer.expires = jiffies + AU1XMMC_DETECT_TIMEOUT;
937 
938 		tasklet_init(&host->data_task, au1xmmc_tasklet_data,
939 				(unsigned long) host);
940 
941 		tasklet_init(&host->finish_task, au1xmmc_tasklet_finish,
942 				(unsigned long) host);
943 
944 		spin_lock_init(&host->lock);
945 
946 		if (dma != 0)
947 			au1xmmc_init_dma(host);
948 
949 		au1xmmc_reset_controller(host);
950 
951 		mmc_add_host(mmc);
952 		au1xmmc_hosts[i] = host;
953 
954 		add_timer(&host->timer);
955 
956 		printk(KERN_INFO DRIVER_NAME ": MMC Controller %d set up at %8.8X (mode=%s)\n",
957 		       host->id, host->iobase, dma ? "dma" : "pio");
958 	}
959 
960 	enable_irq(AU1100_SD_IRQ);
961 
962 	return 0;
963 }
964 
965 static int __devexit au1xmmc_remove(struct platform_device *pdev)
966 {
967 
968 	int i;
969 
970 	disable_irq(AU1100_SD_IRQ);
971 
972 	for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
973 		struct au1xmmc_host *host = au1xmmc_hosts[i];
974 		if (!host) continue;
975 
976 		tasklet_kill(&host->data_task);
977 		tasklet_kill(&host->finish_task);
978 
979 		del_timer_sync(&host->timer);
980 		au1xmmc_set_power(host, 0);
981 
982 		mmc_remove_host(host->mmc);
983 
984 		au1xxx_dbdma_chan_free(host->tx_chan);
985 		au1xxx_dbdma_chan_free(host->rx_chan);
986 
987 		au_writel(0x0, HOST_ENABLE(host));
988 		au_sync();
989 	}
990 
991 	free_irq(AU1100_SD_IRQ, 0);
992 	return 0;
993 }
994 
995 static struct platform_driver au1xmmc_driver = {
996 	.probe         = au1xmmc_probe,
997 	.remove        = au1xmmc_remove,
998 	.suspend       = NULL,
999 	.resume        = NULL,
1000 	.driver        = {
1001 		.name  = DRIVER_NAME,
1002 	},
1003 };
1004 
1005 static int __init au1xmmc_init(void)
1006 {
1007 	return platform_driver_register(&au1xmmc_driver);
1008 }
1009 
1010 static void __exit au1xmmc_exit(void)
1011 {
1012 	platform_driver_unregister(&au1xmmc_driver);
1013 }
1014 
1015 module_init(au1xmmc_init);
1016 module_exit(au1xmmc_exit);
1017 
1018 #ifdef MODULE
1019 MODULE_AUTHOR("Advanced Micro Devices, Inc");
1020 MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX");
1021 MODULE_LICENSE("GPL");
1022 #endif
1023 
1024