1 /* 2 * linux/drivers/mmc/host/au1xmmc.c - AU1XX0 MMC driver 3 * 4 * Copyright (c) 2005, Advanced Micro Devices, Inc. 5 * 6 * Developed with help from the 2.4.30 MMC AU1XXX controller including 7 * the following copyright notices: 8 * Copyright (c) 2003-2004 Embedded Edge, LLC. 9 * Portions Copyright (C) 2002 Embedix, Inc 10 * Copyright 2002 Hewlett-Packard Company 11 12 * 2.6 version of this driver inspired by: 13 * (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman, 14 * All Rights Reserved. 15 * (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King, 16 * All Rights Reserved. 17 * 18 19 * This program is free software; you can redistribute it and/or modify 20 * it under the terms of the GNU General Public License version 2 as 21 * published by the Free Software Foundation. 22 */ 23 24 /* Why don't we use the SD controllers' carddetect feature? 25 * 26 * From the AU1100 MMC application guide: 27 * If the Au1100-based design is intended to support both MultiMediaCards 28 * and 1- or 4-data bit SecureDigital cards, then the solution is to 29 * connect a weak (560KOhm) pull-up resistor to connector pin 1. 30 * In doing so, a MMC card never enters SPI-mode communications, 31 * but now the SecureDigital card-detect feature of CD/DAT3 is ineffective 32 * (the low to high transition will not occur). 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/platform_device.h> 38 #include <linux/mm.h> 39 #include <linux/interrupt.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/scatterlist.h> 42 #include <linux/leds.h> 43 #include <linux/mmc/host.h> 44 #include <linux/slab.h> 45 46 #include <asm/io.h> 47 #include <asm/mach-au1x00/au1000.h> 48 #include <asm/mach-au1x00/au1xxx_dbdma.h> 49 #include <asm/mach-au1x00/au1100_mmc.h> 50 51 #define DRIVER_NAME "au1xxx-mmc" 52 53 /* Set this to enable special debugging macros */ 54 /* #define DEBUG */ 55 56 #ifdef DEBUG 57 #define DBG(fmt, idx, args...) \ 58 pr_debug("au1xmmc(%d): DEBUG: " fmt, idx, ##args) 59 #else 60 #define DBG(fmt, idx, args...) do {} while (0) 61 #endif 62 63 /* Hardware definitions */ 64 #define AU1XMMC_DESCRIPTOR_COUNT 1 65 66 /* max DMA seg size: 64KB on Au1100, 4MB on Au1200 */ 67 #define AU1100_MMC_DESCRIPTOR_SIZE 0x0000ffff 68 #define AU1200_MMC_DESCRIPTOR_SIZE 0x003fffff 69 70 #define AU1XMMC_OCR (MMC_VDD_27_28 | MMC_VDD_28_29 | MMC_VDD_29_30 | \ 71 MMC_VDD_30_31 | MMC_VDD_31_32 | MMC_VDD_32_33 | \ 72 MMC_VDD_33_34 | MMC_VDD_34_35 | MMC_VDD_35_36) 73 74 /* This gives us a hard value for the stop command that we can write directly 75 * to the command register. 76 */ 77 #define STOP_CMD \ 78 (SD_CMD_RT_1B | SD_CMD_CT_7 | (0xC << SD_CMD_CI_SHIFT) | SD_CMD_GO) 79 80 /* This is the set of interrupts that we configure by default. */ 81 #define AU1XMMC_INTERRUPTS \ 82 (SD_CONFIG_SC | SD_CONFIG_DT | SD_CONFIG_RAT | \ 83 SD_CONFIG_CR | SD_CONFIG_I) 84 85 /* The poll event (looking for insert/remove events runs twice a second. */ 86 #define AU1XMMC_DETECT_TIMEOUT (HZ/2) 87 88 struct au1xmmc_host { 89 struct mmc_host *mmc; 90 struct mmc_request *mrq; 91 92 u32 flags; 93 u32 iobase; 94 u32 clock; 95 u32 bus_width; 96 u32 power_mode; 97 98 int status; 99 100 struct { 101 int len; 102 int dir; 103 } dma; 104 105 struct { 106 int index; 107 int offset; 108 int len; 109 } pio; 110 111 u32 tx_chan; 112 u32 rx_chan; 113 114 int irq; 115 116 struct tasklet_struct finish_task; 117 struct tasklet_struct data_task; 118 struct au1xmmc_platform_data *platdata; 119 struct platform_device *pdev; 120 struct resource *ioarea; 121 }; 122 123 /* Status flags used by the host structure */ 124 #define HOST_F_XMIT 0x0001 125 #define HOST_F_RECV 0x0002 126 #define HOST_F_DMA 0x0010 127 #define HOST_F_DBDMA 0x0020 128 #define HOST_F_ACTIVE 0x0100 129 #define HOST_F_STOP 0x1000 130 131 #define HOST_S_IDLE 0x0001 132 #define HOST_S_CMD 0x0002 133 #define HOST_S_DATA 0x0003 134 #define HOST_S_STOP 0x0004 135 136 /* Easy access macros */ 137 #define HOST_STATUS(h) ((h)->iobase + SD_STATUS) 138 #define HOST_CONFIG(h) ((h)->iobase + SD_CONFIG) 139 #define HOST_ENABLE(h) ((h)->iobase + SD_ENABLE) 140 #define HOST_TXPORT(h) ((h)->iobase + SD_TXPORT) 141 #define HOST_RXPORT(h) ((h)->iobase + SD_RXPORT) 142 #define HOST_CMDARG(h) ((h)->iobase + SD_CMDARG) 143 #define HOST_BLKSIZE(h) ((h)->iobase + SD_BLKSIZE) 144 #define HOST_CMD(h) ((h)->iobase + SD_CMD) 145 #define HOST_CONFIG2(h) ((h)->iobase + SD_CONFIG2) 146 #define HOST_TIMEOUT(h) ((h)->iobase + SD_TIMEOUT) 147 #define HOST_DEBUG(h) ((h)->iobase + SD_DEBUG) 148 149 #define DMA_CHANNEL(h) \ 150 (((h)->flags & HOST_F_XMIT) ? (h)->tx_chan : (h)->rx_chan) 151 152 static inline int has_dbdma(void) 153 { 154 switch (alchemy_get_cputype()) { 155 case ALCHEMY_CPU_AU1200: 156 case ALCHEMY_CPU_AU1300: 157 return 1; 158 default: 159 return 0; 160 } 161 } 162 163 static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask) 164 { 165 u32 val = au_readl(HOST_CONFIG(host)); 166 val |= mask; 167 au_writel(val, HOST_CONFIG(host)); 168 au_sync(); 169 } 170 171 static inline void FLUSH_FIFO(struct au1xmmc_host *host) 172 { 173 u32 val = au_readl(HOST_CONFIG2(host)); 174 175 au_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host)); 176 au_sync_delay(1); 177 178 /* SEND_STOP will turn off clock control - this re-enables it */ 179 val &= ~SD_CONFIG2_DF; 180 181 au_writel(val, HOST_CONFIG2(host)); 182 au_sync(); 183 } 184 185 static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask) 186 { 187 u32 val = au_readl(HOST_CONFIG(host)); 188 val &= ~mask; 189 au_writel(val, HOST_CONFIG(host)); 190 au_sync(); 191 } 192 193 static inline void SEND_STOP(struct au1xmmc_host *host) 194 { 195 u32 config2; 196 197 WARN_ON(host->status != HOST_S_DATA); 198 host->status = HOST_S_STOP; 199 200 config2 = au_readl(HOST_CONFIG2(host)); 201 au_writel(config2 | SD_CONFIG2_DF, HOST_CONFIG2(host)); 202 au_sync(); 203 204 /* Send the stop command */ 205 au_writel(STOP_CMD, HOST_CMD(host)); 206 } 207 208 static void au1xmmc_set_power(struct au1xmmc_host *host, int state) 209 { 210 if (host->platdata && host->platdata->set_power) 211 host->platdata->set_power(host->mmc, state); 212 } 213 214 static int au1xmmc_card_inserted(struct mmc_host *mmc) 215 { 216 struct au1xmmc_host *host = mmc_priv(mmc); 217 218 if (host->platdata && host->platdata->card_inserted) 219 return !!host->platdata->card_inserted(host->mmc); 220 221 return -ENOSYS; 222 } 223 224 static int au1xmmc_card_readonly(struct mmc_host *mmc) 225 { 226 struct au1xmmc_host *host = mmc_priv(mmc); 227 228 if (host->platdata && host->platdata->card_readonly) 229 return !!host->platdata->card_readonly(mmc); 230 231 return -ENOSYS; 232 } 233 234 static void au1xmmc_finish_request(struct au1xmmc_host *host) 235 { 236 struct mmc_request *mrq = host->mrq; 237 238 host->mrq = NULL; 239 host->flags &= HOST_F_ACTIVE | HOST_F_DMA; 240 241 host->dma.len = 0; 242 host->dma.dir = 0; 243 244 host->pio.index = 0; 245 host->pio.offset = 0; 246 host->pio.len = 0; 247 248 host->status = HOST_S_IDLE; 249 250 mmc_request_done(host->mmc, mrq); 251 } 252 253 static void au1xmmc_tasklet_finish(unsigned long param) 254 { 255 struct au1xmmc_host *host = (struct au1xmmc_host *) param; 256 au1xmmc_finish_request(host); 257 } 258 259 static int au1xmmc_send_command(struct au1xmmc_host *host, int wait, 260 struct mmc_command *cmd, struct mmc_data *data) 261 { 262 u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT); 263 264 switch (mmc_resp_type(cmd)) { 265 case MMC_RSP_NONE: 266 break; 267 case MMC_RSP_R1: 268 mmccmd |= SD_CMD_RT_1; 269 break; 270 case MMC_RSP_R1B: 271 mmccmd |= SD_CMD_RT_1B; 272 break; 273 case MMC_RSP_R2: 274 mmccmd |= SD_CMD_RT_2; 275 break; 276 case MMC_RSP_R3: 277 mmccmd |= SD_CMD_RT_3; 278 break; 279 default: 280 pr_info("au1xmmc: unhandled response type %02x\n", 281 mmc_resp_type(cmd)); 282 return -EINVAL; 283 } 284 285 if (data) { 286 if (data->flags & MMC_DATA_READ) { 287 if (data->blocks > 1) 288 mmccmd |= SD_CMD_CT_4; 289 else 290 mmccmd |= SD_CMD_CT_2; 291 } else if (data->flags & MMC_DATA_WRITE) { 292 if (data->blocks > 1) 293 mmccmd |= SD_CMD_CT_3; 294 else 295 mmccmd |= SD_CMD_CT_1; 296 } 297 } 298 299 au_writel(cmd->arg, HOST_CMDARG(host)); 300 au_sync(); 301 302 if (wait) 303 IRQ_OFF(host, SD_CONFIG_CR); 304 305 au_writel((mmccmd | SD_CMD_GO), HOST_CMD(host)); 306 au_sync(); 307 308 /* Wait for the command to go on the line */ 309 while (au_readl(HOST_CMD(host)) & SD_CMD_GO) 310 /* nop */; 311 312 /* Wait for the command to come back */ 313 if (wait) { 314 u32 status = au_readl(HOST_STATUS(host)); 315 316 while (!(status & SD_STATUS_CR)) 317 status = au_readl(HOST_STATUS(host)); 318 319 /* Clear the CR status */ 320 au_writel(SD_STATUS_CR, HOST_STATUS(host)); 321 322 IRQ_ON(host, SD_CONFIG_CR); 323 } 324 325 return 0; 326 } 327 328 static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status) 329 { 330 struct mmc_request *mrq = host->mrq; 331 struct mmc_data *data; 332 u32 crc; 333 334 WARN_ON((host->status != HOST_S_DATA) && (host->status != HOST_S_STOP)); 335 336 if (host->mrq == NULL) 337 return; 338 339 data = mrq->cmd->data; 340 341 if (status == 0) 342 status = au_readl(HOST_STATUS(host)); 343 344 /* The transaction is really over when the SD_STATUS_DB bit is clear */ 345 while ((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB)) 346 status = au_readl(HOST_STATUS(host)); 347 348 data->error = 0; 349 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir); 350 351 /* Process any errors */ 352 crc = (status & (SD_STATUS_WC | SD_STATUS_RC)); 353 if (host->flags & HOST_F_XMIT) 354 crc |= ((status & 0x07) == 0x02) ? 0 : 1; 355 356 if (crc) 357 data->error = -EILSEQ; 358 359 /* Clear the CRC bits */ 360 au_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host)); 361 362 data->bytes_xfered = 0; 363 364 if (!data->error) { 365 if (host->flags & (HOST_F_DMA | HOST_F_DBDMA)) { 366 u32 chan = DMA_CHANNEL(host); 367 368 chan_tab_t *c = *((chan_tab_t **)chan); 369 au1x_dma_chan_t *cp = c->chan_ptr; 370 data->bytes_xfered = cp->ddma_bytecnt; 371 } else 372 data->bytes_xfered = 373 (data->blocks * data->blksz) - host->pio.len; 374 } 375 376 au1xmmc_finish_request(host); 377 } 378 379 static void au1xmmc_tasklet_data(unsigned long param) 380 { 381 struct au1xmmc_host *host = (struct au1xmmc_host *)param; 382 383 u32 status = au_readl(HOST_STATUS(host)); 384 au1xmmc_data_complete(host, status); 385 } 386 387 #define AU1XMMC_MAX_TRANSFER 8 388 389 static void au1xmmc_send_pio(struct au1xmmc_host *host) 390 { 391 struct mmc_data *data; 392 int sg_len, max, count; 393 unsigned char *sg_ptr, val; 394 u32 status; 395 struct scatterlist *sg; 396 397 data = host->mrq->data; 398 399 if (!(host->flags & HOST_F_XMIT)) 400 return; 401 402 /* This is the pointer to the data buffer */ 403 sg = &data->sg[host->pio.index]; 404 sg_ptr = sg_virt(sg) + host->pio.offset; 405 406 /* This is the space left inside the buffer */ 407 sg_len = data->sg[host->pio.index].length - host->pio.offset; 408 409 /* Check if we need less than the size of the sg_buffer */ 410 max = (sg_len > host->pio.len) ? host->pio.len : sg_len; 411 if (max > AU1XMMC_MAX_TRANSFER) 412 max = AU1XMMC_MAX_TRANSFER; 413 414 for (count = 0; count < max; count++) { 415 status = au_readl(HOST_STATUS(host)); 416 417 if (!(status & SD_STATUS_TH)) 418 break; 419 420 val = *sg_ptr++; 421 422 au_writel((unsigned long)val, HOST_TXPORT(host)); 423 au_sync(); 424 } 425 426 host->pio.len -= count; 427 host->pio.offset += count; 428 429 if (count == sg_len) { 430 host->pio.index++; 431 host->pio.offset = 0; 432 } 433 434 if (host->pio.len == 0) { 435 IRQ_OFF(host, SD_CONFIG_TH); 436 437 if (host->flags & HOST_F_STOP) 438 SEND_STOP(host); 439 440 tasklet_schedule(&host->data_task); 441 } 442 } 443 444 static void au1xmmc_receive_pio(struct au1xmmc_host *host) 445 { 446 struct mmc_data *data; 447 int max, count, sg_len = 0; 448 unsigned char *sg_ptr = NULL; 449 u32 status, val; 450 struct scatterlist *sg; 451 452 data = host->mrq->data; 453 454 if (!(host->flags & HOST_F_RECV)) 455 return; 456 457 max = host->pio.len; 458 459 if (host->pio.index < host->dma.len) { 460 sg = &data->sg[host->pio.index]; 461 sg_ptr = sg_virt(sg) + host->pio.offset; 462 463 /* This is the space left inside the buffer */ 464 sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset; 465 466 /* Check if we need less than the size of the sg_buffer */ 467 if (sg_len < max) 468 max = sg_len; 469 } 470 471 if (max > AU1XMMC_MAX_TRANSFER) 472 max = AU1XMMC_MAX_TRANSFER; 473 474 for (count = 0; count < max; count++) { 475 status = au_readl(HOST_STATUS(host)); 476 477 if (!(status & SD_STATUS_NE)) 478 break; 479 480 if (status & SD_STATUS_RC) { 481 DBG("RX CRC Error [%d + %d].\n", host->pdev->id, 482 host->pio.len, count); 483 break; 484 } 485 486 if (status & SD_STATUS_RO) { 487 DBG("RX Overrun [%d + %d]\n", host->pdev->id, 488 host->pio.len, count); 489 break; 490 } 491 else if (status & SD_STATUS_RU) { 492 DBG("RX Underrun [%d + %d]\n", host->pdev->id, 493 host->pio.len, count); 494 break; 495 } 496 497 val = au_readl(HOST_RXPORT(host)); 498 499 if (sg_ptr) 500 *sg_ptr++ = (unsigned char)(val & 0xFF); 501 } 502 503 host->pio.len -= count; 504 host->pio.offset += count; 505 506 if (sg_len && count == sg_len) { 507 host->pio.index++; 508 host->pio.offset = 0; 509 } 510 511 if (host->pio.len == 0) { 512 /* IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF); */ 513 IRQ_OFF(host, SD_CONFIG_NE); 514 515 if (host->flags & HOST_F_STOP) 516 SEND_STOP(host); 517 518 tasklet_schedule(&host->data_task); 519 } 520 } 521 522 /* This is called when a command has been completed - grab the response 523 * and check for errors. Then start the data transfer if it is indicated. 524 */ 525 static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status) 526 { 527 struct mmc_request *mrq = host->mrq; 528 struct mmc_command *cmd; 529 u32 r[4]; 530 int i, trans; 531 532 if (!host->mrq) 533 return; 534 535 cmd = mrq->cmd; 536 cmd->error = 0; 537 538 if (cmd->flags & MMC_RSP_PRESENT) { 539 if (cmd->flags & MMC_RSP_136) { 540 r[0] = au_readl(host->iobase + SD_RESP3); 541 r[1] = au_readl(host->iobase + SD_RESP2); 542 r[2] = au_readl(host->iobase + SD_RESP1); 543 r[3] = au_readl(host->iobase + SD_RESP0); 544 545 /* The CRC is omitted from the response, so really 546 * we only got 120 bytes, but the engine expects 547 * 128 bits, so we have to shift things up. 548 */ 549 for (i = 0; i < 4; i++) { 550 cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8; 551 if (i != 3) 552 cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24; 553 } 554 } else { 555 /* Techincally, we should be getting all 48 bits of 556 * the response (SD_RESP1 + SD_RESP2), but because 557 * our response omits the CRC, our data ends up 558 * being shifted 8 bits to the right. In this case, 559 * that means that the OSR data starts at bit 31, 560 * so we can just read RESP0 and return that. 561 */ 562 cmd->resp[0] = au_readl(host->iobase + SD_RESP0); 563 } 564 } 565 566 /* Figure out errors */ 567 if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC)) 568 cmd->error = -EILSEQ; 569 570 trans = host->flags & (HOST_F_XMIT | HOST_F_RECV); 571 572 if (!trans || cmd->error) { 573 IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF); 574 tasklet_schedule(&host->finish_task); 575 return; 576 } 577 578 host->status = HOST_S_DATA; 579 580 if ((host->flags & (HOST_F_DMA | HOST_F_DBDMA))) { 581 u32 channel = DMA_CHANNEL(host); 582 583 /* Start the DBDMA as soon as the buffer gets something in it */ 584 585 if (host->flags & HOST_F_RECV) { 586 u32 mask = SD_STATUS_DB | SD_STATUS_NE; 587 588 while((status & mask) != mask) 589 status = au_readl(HOST_STATUS(host)); 590 } 591 592 au1xxx_dbdma_start(channel); 593 } 594 } 595 596 static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate) 597 { 598 unsigned int pbus = get_au1x00_speed(); 599 unsigned int divisor; 600 u32 config; 601 602 /* From databook: 603 * divisor = ((((cpuclock / sbus_divisor) / 2) / mmcclock) / 2) - 1 604 */ 605 pbus /= ((au_readl(SYS_POWERCTRL) & 0x3) + 2); 606 pbus /= 2; 607 divisor = ((pbus / rate) / 2) - 1; 608 609 config = au_readl(HOST_CONFIG(host)); 610 611 config &= ~(SD_CONFIG_DIV); 612 config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE; 613 614 au_writel(config, HOST_CONFIG(host)); 615 au_sync(); 616 } 617 618 static int au1xmmc_prepare_data(struct au1xmmc_host *host, 619 struct mmc_data *data) 620 { 621 int datalen = data->blocks * data->blksz; 622 623 if (data->flags & MMC_DATA_READ) 624 host->flags |= HOST_F_RECV; 625 else 626 host->flags |= HOST_F_XMIT; 627 628 if (host->mrq->stop) 629 host->flags |= HOST_F_STOP; 630 631 host->dma.dir = DMA_BIDIRECTIONAL; 632 633 host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg, 634 data->sg_len, host->dma.dir); 635 636 if (host->dma.len == 0) 637 return -ETIMEDOUT; 638 639 au_writel(data->blksz - 1, HOST_BLKSIZE(host)); 640 641 if (host->flags & (HOST_F_DMA | HOST_F_DBDMA)) { 642 int i; 643 u32 channel = DMA_CHANNEL(host); 644 645 au1xxx_dbdma_stop(channel); 646 647 for (i = 0; i < host->dma.len; i++) { 648 u32 ret = 0, flags = DDMA_FLAGS_NOIE; 649 struct scatterlist *sg = &data->sg[i]; 650 int sg_len = sg->length; 651 652 int len = (datalen > sg_len) ? sg_len : datalen; 653 654 if (i == host->dma.len - 1) 655 flags = DDMA_FLAGS_IE; 656 657 if (host->flags & HOST_F_XMIT) { 658 ret = au1xxx_dbdma_put_source(channel, 659 sg_phys(sg), len, flags); 660 } else { 661 ret = au1xxx_dbdma_put_dest(channel, 662 sg_phys(sg), len, flags); 663 } 664 665 if (!ret) 666 goto dataerr; 667 668 datalen -= len; 669 } 670 } else { 671 host->pio.index = 0; 672 host->pio.offset = 0; 673 host->pio.len = datalen; 674 675 if (host->flags & HOST_F_XMIT) 676 IRQ_ON(host, SD_CONFIG_TH); 677 else 678 IRQ_ON(host, SD_CONFIG_NE); 679 /* IRQ_ON(host, SD_CONFIG_RA | SD_CONFIG_RF); */ 680 } 681 682 return 0; 683 684 dataerr: 685 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, 686 host->dma.dir); 687 return -ETIMEDOUT; 688 } 689 690 /* This actually starts a command or data transaction */ 691 static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq) 692 { 693 struct au1xmmc_host *host = mmc_priv(mmc); 694 int ret = 0; 695 696 WARN_ON(irqs_disabled()); 697 WARN_ON(host->status != HOST_S_IDLE); 698 699 host->mrq = mrq; 700 host->status = HOST_S_CMD; 701 702 /* fail request immediately if no card is present */ 703 if (0 == au1xmmc_card_inserted(mmc)) { 704 mrq->cmd->error = -ENOMEDIUM; 705 au1xmmc_finish_request(host); 706 return; 707 } 708 709 if (mrq->data) { 710 FLUSH_FIFO(host); 711 ret = au1xmmc_prepare_data(host, mrq->data); 712 } 713 714 if (!ret) 715 ret = au1xmmc_send_command(host, 0, mrq->cmd, mrq->data); 716 717 if (ret) { 718 mrq->cmd->error = ret; 719 au1xmmc_finish_request(host); 720 } 721 } 722 723 static void au1xmmc_reset_controller(struct au1xmmc_host *host) 724 { 725 /* Apply the clock */ 726 au_writel(SD_ENABLE_CE, HOST_ENABLE(host)); 727 au_sync_delay(1); 728 729 au_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host)); 730 au_sync_delay(5); 731 732 au_writel(~0, HOST_STATUS(host)); 733 au_sync(); 734 735 au_writel(0, HOST_BLKSIZE(host)); 736 au_writel(0x001fffff, HOST_TIMEOUT(host)); 737 au_sync(); 738 739 au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host)); 740 au_sync(); 741 742 au_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host)); 743 au_sync_delay(1); 744 745 au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host)); 746 au_sync(); 747 748 /* Configure interrupts */ 749 au_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host)); 750 au_sync(); 751 } 752 753 754 static void au1xmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 755 { 756 struct au1xmmc_host *host = mmc_priv(mmc); 757 u32 config2; 758 759 if (ios->power_mode == MMC_POWER_OFF) 760 au1xmmc_set_power(host, 0); 761 else if (ios->power_mode == MMC_POWER_ON) { 762 au1xmmc_set_power(host, 1); 763 } 764 765 if (ios->clock && ios->clock != host->clock) { 766 au1xmmc_set_clock(host, ios->clock); 767 host->clock = ios->clock; 768 } 769 770 config2 = au_readl(HOST_CONFIG2(host)); 771 switch (ios->bus_width) { 772 case MMC_BUS_WIDTH_8: 773 config2 |= SD_CONFIG2_BB; 774 break; 775 case MMC_BUS_WIDTH_4: 776 config2 &= ~SD_CONFIG2_BB; 777 config2 |= SD_CONFIG2_WB; 778 break; 779 case MMC_BUS_WIDTH_1: 780 config2 &= ~(SD_CONFIG2_WB | SD_CONFIG2_BB); 781 break; 782 } 783 au_writel(config2, HOST_CONFIG2(host)); 784 au_sync(); 785 } 786 787 #define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT) 788 #define STATUS_DATA_IN (SD_STATUS_NE) 789 #define STATUS_DATA_OUT (SD_STATUS_TH) 790 791 static irqreturn_t au1xmmc_irq(int irq, void *dev_id) 792 { 793 struct au1xmmc_host *host = dev_id; 794 u32 status; 795 796 status = au_readl(HOST_STATUS(host)); 797 798 if (!(status & SD_STATUS_I)) 799 return IRQ_NONE; /* not ours */ 800 801 if (status & SD_STATUS_SI) /* SDIO */ 802 mmc_signal_sdio_irq(host->mmc); 803 804 if (host->mrq && (status & STATUS_TIMEOUT)) { 805 if (status & SD_STATUS_RAT) 806 host->mrq->cmd->error = -ETIMEDOUT; 807 else if (status & SD_STATUS_DT) 808 host->mrq->data->error = -ETIMEDOUT; 809 810 /* In PIO mode, interrupts might still be enabled */ 811 IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH); 812 813 /* IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF); */ 814 tasklet_schedule(&host->finish_task); 815 } 816 #if 0 817 else if (status & SD_STATUS_DD) { 818 /* Sometimes we get a DD before a NE in PIO mode */ 819 if (!(host->flags & HOST_F_DMA) && (status & SD_STATUS_NE)) 820 au1xmmc_receive_pio(host); 821 else { 822 au1xmmc_data_complete(host, status); 823 /* tasklet_schedule(&host->data_task); */ 824 } 825 } 826 #endif 827 else if (status & SD_STATUS_CR) { 828 if (host->status == HOST_S_CMD) 829 au1xmmc_cmd_complete(host, status); 830 831 } else if (!(host->flags & HOST_F_DMA)) { 832 if ((host->flags & HOST_F_XMIT) && (status & STATUS_DATA_OUT)) 833 au1xmmc_send_pio(host); 834 else if ((host->flags & HOST_F_RECV) && (status & STATUS_DATA_IN)) 835 au1xmmc_receive_pio(host); 836 837 } else if (status & 0x203F3C70) { 838 DBG("Unhandled status %8.8x\n", host->pdev->id, 839 status); 840 } 841 842 au_writel(status, HOST_STATUS(host)); 843 au_sync(); 844 845 return IRQ_HANDLED; 846 } 847 848 /* 8bit memory DMA device */ 849 static dbdev_tab_t au1xmmc_mem_dbdev = { 850 .dev_id = DSCR_CMD0_ALWAYS, 851 .dev_flags = DEV_FLAGS_ANYUSE, 852 .dev_tsize = 0, 853 .dev_devwidth = 8, 854 .dev_physaddr = 0x00000000, 855 .dev_intlevel = 0, 856 .dev_intpolarity = 0, 857 }; 858 static int memid; 859 860 static void au1xmmc_dbdma_callback(int irq, void *dev_id) 861 { 862 struct au1xmmc_host *host = (struct au1xmmc_host *)dev_id; 863 864 /* Avoid spurious interrupts */ 865 if (!host->mrq) 866 return; 867 868 if (host->flags & HOST_F_STOP) 869 SEND_STOP(host); 870 871 tasklet_schedule(&host->data_task); 872 } 873 874 static int au1xmmc_dbdma_init(struct au1xmmc_host *host) 875 { 876 struct resource *res; 877 int txid, rxid; 878 879 res = platform_get_resource(host->pdev, IORESOURCE_DMA, 0); 880 if (!res) 881 return -ENODEV; 882 txid = res->start; 883 884 res = platform_get_resource(host->pdev, IORESOURCE_DMA, 1); 885 if (!res) 886 return -ENODEV; 887 rxid = res->start; 888 889 if (!memid) 890 return -ENODEV; 891 892 host->tx_chan = au1xxx_dbdma_chan_alloc(memid, txid, 893 au1xmmc_dbdma_callback, (void *)host); 894 if (!host->tx_chan) { 895 dev_err(&host->pdev->dev, "cannot allocate TX DMA\n"); 896 return -ENODEV; 897 } 898 899 host->rx_chan = au1xxx_dbdma_chan_alloc(rxid, memid, 900 au1xmmc_dbdma_callback, (void *)host); 901 if (!host->rx_chan) { 902 dev_err(&host->pdev->dev, "cannot allocate RX DMA\n"); 903 au1xxx_dbdma_chan_free(host->tx_chan); 904 return -ENODEV; 905 } 906 907 au1xxx_dbdma_set_devwidth(host->tx_chan, 8); 908 au1xxx_dbdma_set_devwidth(host->rx_chan, 8); 909 910 au1xxx_dbdma_ring_alloc(host->tx_chan, AU1XMMC_DESCRIPTOR_COUNT); 911 au1xxx_dbdma_ring_alloc(host->rx_chan, AU1XMMC_DESCRIPTOR_COUNT); 912 913 /* DBDMA is good to go */ 914 host->flags |= HOST_F_DMA | HOST_F_DBDMA; 915 916 return 0; 917 } 918 919 static void au1xmmc_dbdma_shutdown(struct au1xmmc_host *host) 920 { 921 if (host->flags & HOST_F_DMA) { 922 host->flags &= ~HOST_F_DMA; 923 au1xxx_dbdma_chan_free(host->tx_chan); 924 au1xxx_dbdma_chan_free(host->rx_chan); 925 } 926 } 927 928 static void au1xmmc_enable_sdio_irq(struct mmc_host *mmc, int en) 929 { 930 struct au1xmmc_host *host = mmc_priv(mmc); 931 932 if (en) 933 IRQ_ON(host, SD_CONFIG_SI); 934 else 935 IRQ_OFF(host, SD_CONFIG_SI); 936 } 937 938 static const struct mmc_host_ops au1xmmc_ops = { 939 .request = au1xmmc_request, 940 .set_ios = au1xmmc_set_ios, 941 .get_ro = au1xmmc_card_readonly, 942 .get_cd = au1xmmc_card_inserted, 943 .enable_sdio_irq = au1xmmc_enable_sdio_irq, 944 }; 945 946 static int au1xmmc_probe(struct platform_device *pdev) 947 { 948 struct mmc_host *mmc; 949 struct au1xmmc_host *host; 950 struct resource *r; 951 int ret, iflag; 952 953 mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev); 954 if (!mmc) { 955 dev_err(&pdev->dev, "no memory for mmc_host\n"); 956 ret = -ENOMEM; 957 goto out0; 958 } 959 960 host = mmc_priv(mmc); 961 host->mmc = mmc; 962 host->platdata = pdev->dev.platform_data; 963 host->pdev = pdev; 964 965 ret = -ENODEV; 966 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 967 if (!r) { 968 dev_err(&pdev->dev, "no mmio defined\n"); 969 goto out1; 970 } 971 972 host->ioarea = request_mem_region(r->start, resource_size(r), 973 pdev->name); 974 if (!host->ioarea) { 975 dev_err(&pdev->dev, "mmio already in use\n"); 976 goto out1; 977 } 978 979 host->iobase = (unsigned long)ioremap(r->start, 0x3c); 980 if (!host->iobase) { 981 dev_err(&pdev->dev, "cannot remap mmio\n"); 982 goto out2; 983 } 984 985 r = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 986 if (!r) { 987 dev_err(&pdev->dev, "no IRQ defined\n"); 988 goto out3; 989 } 990 host->irq = r->start; 991 992 mmc->ops = &au1xmmc_ops; 993 994 mmc->f_min = 450000; 995 mmc->f_max = 24000000; 996 997 mmc->max_blk_size = 2048; 998 mmc->max_blk_count = 512; 999 1000 mmc->ocr_avail = AU1XMMC_OCR; 1001 mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_SDIO_IRQ; 1002 mmc->max_segs = AU1XMMC_DESCRIPTOR_COUNT; 1003 1004 iflag = IRQF_SHARED; /* Au1100/Au1200: one int for both ctrls */ 1005 1006 switch (alchemy_get_cputype()) { 1007 case ALCHEMY_CPU_AU1100: 1008 mmc->max_seg_size = AU1100_MMC_DESCRIPTOR_SIZE; 1009 break; 1010 case ALCHEMY_CPU_AU1200: 1011 mmc->max_seg_size = AU1200_MMC_DESCRIPTOR_SIZE; 1012 break; 1013 case ALCHEMY_CPU_AU1300: 1014 iflag = 0; /* nothing is shared */ 1015 mmc->max_seg_size = AU1200_MMC_DESCRIPTOR_SIZE; 1016 mmc->f_max = 52000000; 1017 if (host->ioarea->start == AU1100_SD0_PHYS_ADDR) 1018 mmc->caps |= MMC_CAP_8_BIT_DATA; 1019 break; 1020 } 1021 1022 ret = request_irq(host->irq, au1xmmc_irq, iflag, DRIVER_NAME, host); 1023 if (ret) { 1024 dev_err(&pdev->dev, "cannot grab IRQ\n"); 1025 goto out3; 1026 } 1027 1028 host->status = HOST_S_IDLE; 1029 1030 /* board-specific carddetect setup, if any */ 1031 if (host->platdata && host->platdata->cd_setup) { 1032 ret = host->platdata->cd_setup(mmc, 1); 1033 if (ret) { 1034 dev_warn(&pdev->dev, "board CD setup failed\n"); 1035 mmc->caps |= MMC_CAP_NEEDS_POLL; 1036 } 1037 } else 1038 mmc->caps |= MMC_CAP_NEEDS_POLL; 1039 1040 /* platform may not be able to use all advertised caps */ 1041 if (host->platdata) 1042 mmc->caps &= ~(host->platdata->mask_host_caps); 1043 1044 tasklet_init(&host->data_task, au1xmmc_tasklet_data, 1045 (unsigned long)host); 1046 1047 tasklet_init(&host->finish_task, au1xmmc_tasklet_finish, 1048 (unsigned long)host); 1049 1050 if (has_dbdma()) { 1051 ret = au1xmmc_dbdma_init(host); 1052 if (ret) 1053 pr_info(DRIVER_NAME ": DBDMA init failed; using PIO\n"); 1054 } 1055 1056 #ifdef CONFIG_LEDS_CLASS 1057 if (host->platdata && host->platdata->led) { 1058 struct led_classdev *led = host->platdata->led; 1059 led->name = mmc_hostname(mmc); 1060 led->brightness = LED_OFF; 1061 led->default_trigger = mmc_hostname(mmc); 1062 ret = led_classdev_register(mmc_dev(mmc), led); 1063 if (ret) 1064 goto out5; 1065 } 1066 #endif 1067 1068 au1xmmc_reset_controller(host); 1069 1070 ret = mmc_add_host(mmc); 1071 if (ret) { 1072 dev_err(&pdev->dev, "cannot add mmc host\n"); 1073 goto out6; 1074 } 1075 1076 platform_set_drvdata(pdev, host); 1077 1078 pr_info(DRIVER_NAME ": MMC Controller %d set up at %8.8X" 1079 " (mode=%s)\n", pdev->id, host->iobase, 1080 host->flags & HOST_F_DMA ? "dma" : "pio"); 1081 1082 return 0; /* all ok */ 1083 1084 out6: 1085 #ifdef CONFIG_LEDS_CLASS 1086 if (host->platdata && host->platdata->led) 1087 led_classdev_unregister(host->platdata->led); 1088 out5: 1089 #endif 1090 au_writel(0, HOST_ENABLE(host)); 1091 au_writel(0, HOST_CONFIG(host)); 1092 au_writel(0, HOST_CONFIG2(host)); 1093 au_sync(); 1094 1095 if (host->flags & HOST_F_DBDMA) 1096 au1xmmc_dbdma_shutdown(host); 1097 1098 tasklet_kill(&host->data_task); 1099 tasklet_kill(&host->finish_task); 1100 1101 if (host->platdata && host->platdata->cd_setup && 1102 !(mmc->caps & MMC_CAP_NEEDS_POLL)) 1103 host->platdata->cd_setup(mmc, 0); 1104 1105 free_irq(host->irq, host); 1106 out3: 1107 iounmap((void *)host->iobase); 1108 out2: 1109 release_resource(host->ioarea); 1110 kfree(host->ioarea); 1111 out1: 1112 mmc_free_host(mmc); 1113 out0: 1114 return ret; 1115 } 1116 1117 static int au1xmmc_remove(struct platform_device *pdev) 1118 { 1119 struct au1xmmc_host *host = platform_get_drvdata(pdev); 1120 1121 if (host) { 1122 mmc_remove_host(host->mmc); 1123 1124 #ifdef CONFIG_LEDS_CLASS 1125 if (host->platdata && host->platdata->led) 1126 led_classdev_unregister(host->platdata->led); 1127 #endif 1128 1129 if (host->platdata && host->platdata->cd_setup && 1130 !(host->mmc->caps & MMC_CAP_NEEDS_POLL)) 1131 host->platdata->cd_setup(host->mmc, 0); 1132 1133 au_writel(0, HOST_ENABLE(host)); 1134 au_writel(0, HOST_CONFIG(host)); 1135 au_writel(0, HOST_CONFIG2(host)); 1136 au_sync(); 1137 1138 tasklet_kill(&host->data_task); 1139 tasklet_kill(&host->finish_task); 1140 1141 if (host->flags & HOST_F_DBDMA) 1142 au1xmmc_dbdma_shutdown(host); 1143 1144 au1xmmc_set_power(host, 0); 1145 1146 free_irq(host->irq, host); 1147 iounmap((void *)host->iobase); 1148 release_resource(host->ioarea); 1149 kfree(host->ioarea); 1150 1151 mmc_free_host(host->mmc); 1152 } 1153 return 0; 1154 } 1155 1156 #ifdef CONFIG_PM 1157 static int au1xmmc_suspend(struct platform_device *pdev, pm_message_t state) 1158 { 1159 struct au1xmmc_host *host = platform_get_drvdata(pdev); 1160 1161 au_writel(0, HOST_CONFIG2(host)); 1162 au_writel(0, HOST_CONFIG(host)); 1163 au_writel(0xffffffff, HOST_STATUS(host)); 1164 au_writel(0, HOST_ENABLE(host)); 1165 au_sync(); 1166 1167 return 0; 1168 } 1169 1170 static int au1xmmc_resume(struct platform_device *pdev) 1171 { 1172 struct au1xmmc_host *host = platform_get_drvdata(pdev); 1173 1174 au1xmmc_reset_controller(host); 1175 1176 return 0; 1177 } 1178 #else 1179 #define au1xmmc_suspend NULL 1180 #define au1xmmc_resume NULL 1181 #endif 1182 1183 static struct platform_driver au1xmmc_driver = { 1184 .probe = au1xmmc_probe, 1185 .remove = au1xmmc_remove, 1186 .suspend = au1xmmc_suspend, 1187 .resume = au1xmmc_resume, 1188 .driver = { 1189 .name = DRIVER_NAME, 1190 .owner = THIS_MODULE, 1191 }, 1192 }; 1193 1194 static int __init au1xmmc_init(void) 1195 { 1196 if (has_dbdma()) { 1197 /* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride 1198 * of 8 bits. And since devices are shared, we need to create 1199 * our own to avoid freaking out other devices. 1200 */ 1201 memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev); 1202 if (!memid) 1203 pr_err("au1xmmc: cannot add memory dbdma\n"); 1204 } 1205 return platform_driver_register(&au1xmmc_driver); 1206 } 1207 1208 static void __exit au1xmmc_exit(void) 1209 { 1210 if (has_dbdma() && memid) 1211 au1xxx_ddma_del_device(memid); 1212 1213 platform_driver_unregister(&au1xmmc_driver); 1214 } 1215 1216 module_init(au1xmmc_init); 1217 module_exit(au1xmmc_exit); 1218 1219 MODULE_AUTHOR("Advanced Micro Devices, Inc"); 1220 MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX"); 1221 MODULE_LICENSE("GPL"); 1222 MODULE_ALIAS("platform:au1xxx-mmc"); 1223