xref: /openbmc/linux/drivers/mmc/host/au1xmmc.c (revision 6b45fbfa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/drivers/mmc/host/au1xmmc.c - AU1XX0 MMC driver
4  *
5  *  Copyright (c) 2005, Advanced Micro Devices, Inc.
6  *
7  *  Developed with help from the 2.4.30 MMC AU1XXX controller including
8  *  the following copyright notices:
9  *     Copyright (c) 2003-2004 Embedded Edge, LLC.
10  *     Portions Copyright (C) 2002 Embedix, Inc
11  *     Copyright 2002 Hewlett-Packard Company
12 
13  *  2.6 version of this driver inspired by:
14  *     (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman,
15  *     All Rights Reserved.
16  *     (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King,
17  *     All Rights Reserved.
18  *
19 
20  */
21 
22 /* Why don't we use the SD controllers' carddetect feature?
23  *
24  * From the AU1100 MMC application guide:
25  * If the Au1100-based design is intended to support both MultiMediaCards
26  * and 1- or 4-data bit SecureDigital cards, then the solution is to
27  * connect a weak (560KOhm) pull-up resistor to connector pin 1.
28  * In doing so, a MMC card never enters SPI-mode communications,
29  * but now the SecureDigital card-detect feature of CD/DAT3 is ineffective
30  * (the low to high transition will not occur).
31  */
32 
33 #include <linux/clk.h>
34 #include <linux/module.h>
35 #include <linux/init.h>
36 #include <linux/platform_device.h>
37 #include <linux/mm.h>
38 #include <linux/interrupt.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/scatterlist.h>
41 #include <linux/highmem.h>
42 #include <linux/leds.h>
43 #include <linux/mmc/host.h>
44 #include <linux/slab.h>
45 
46 #include <asm/io.h>
47 #include <asm/mach-au1x00/au1000.h>
48 #include <asm/mach-au1x00/au1xxx_dbdma.h>
49 #include <asm/mach-au1x00/au1100_mmc.h>
50 
51 #define DRIVER_NAME "au1xxx-mmc"
52 
53 /* Set this to enable special debugging macros */
54 /* #define DEBUG */
55 
56 #ifdef DEBUG
57 #define DBG(fmt, idx, args...)	\
58 	pr_debug("au1xmmc(%d): DEBUG: " fmt, idx, ##args)
59 #else
60 #define DBG(fmt, idx, args...) do {} while (0)
61 #endif
62 
63 /* Hardware definitions */
64 #define AU1XMMC_DESCRIPTOR_COUNT 1
65 
66 /* max DMA seg size: 64KB on Au1100, 4MB on Au1200 */
67 #define AU1100_MMC_DESCRIPTOR_SIZE 0x0000ffff
68 #define AU1200_MMC_DESCRIPTOR_SIZE 0x003fffff
69 
70 #define AU1XMMC_OCR (MMC_VDD_27_28 | MMC_VDD_28_29 | MMC_VDD_29_30 | \
71 		     MMC_VDD_30_31 | MMC_VDD_31_32 | MMC_VDD_32_33 | \
72 		     MMC_VDD_33_34 | MMC_VDD_34_35 | MMC_VDD_35_36)
73 
74 /* This gives us a hard value for the stop command that we can write directly
75  * to the command register.
76  */
77 #define STOP_CMD	\
78 	(SD_CMD_RT_1B | SD_CMD_CT_7 | (0xC << SD_CMD_CI_SHIFT) | SD_CMD_GO)
79 
80 /* This is the set of interrupts that we configure by default. */
81 #define AU1XMMC_INTERRUPTS 				\
82 	(SD_CONFIG_SC | SD_CONFIG_DT | SD_CONFIG_RAT |	\
83 	 SD_CONFIG_CR | SD_CONFIG_I)
84 
85 /* The poll event (looking for insert/remove events runs twice a second. */
86 #define AU1XMMC_DETECT_TIMEOUT (HZ/2)
87 
88 struct au1xmmc_host {
89 	struct mmc_host *mmc;
90 	struct mmc_request *mrq;
91 
92 	u32 flags;
93 	void __iomem *iobase;
94 	u32 clock;
95 	u32 bus_width;
96 	u32 power_mode;
97 
98 	int status;
99 
100 	struct {
101 		int len;
102 		int dir;
103 	} dma;
104 
105 	struct {
106 		int index;
107 		int offset;
108 		int len;
109 	} pio;
110 
111 	u32 tx_chan;
112 	u32 rx_chan;
113 
114 	int irq;
115 
116 	struct tasklet_struct finish_task;
117 	struct tasklet_struct data_task;
118 	struct au1xmmc_platform_data *platdata;
119 	struct platform_device *pdev;
120 	struct resource *ioarea;
121 	struct clk *clk;
122 };
123 
124 /* Status flags used by the host structure */
125 #define HOST_F_XMIT	0x0001
126 #define HOST_F_RECV	0x0002
127 #define HOST_F_DMA	0x0010
128 #define HOST_F_DBDMA	0x0020
129 #define HOST_F_ACTIVE	0x0100
130 #define HOST_F_STOP	0x1000
131 
132 #define HOST_S_IDLE	0x0001
133 #define HOST_S_CMD	0x0002
134 #define HOST_S_DATA	0x0003
135 #define HOST_S_STOP	0x0004
136 
137 /* Easy access macros */
138 #define HOST_STATUS(h)	((h)->iobase + SD_STATUS)
139 #define HOST_CONFIG(h)	((h)->iobase + SD_CONFIG)
140 #define HOST_ENABLE(h)	((h)->iobase + SD_ENABLE)
141 #define HOST_TXPORT(h)	((h)->iobase + SD_TXPORT)
142 #define HOST_RXPORT(h)	((h)->iobase + SD_RXPORT)
143 #define HOST_CMDARG(h)	((h)->iobase + SD_CMDARG)
144 #define HOST_BLKSIZE(h)	((h)->iobase + SD_BLKSIZE)
145 #define HOST_CMD(h)	((h)->iobase + SD_CMD)
146 #define HOST_CONFIG2(h)	((h)->iobase + SD_CONFIG2)
147 #define HOST_TIMEOUT(h)	((h)->iobase + SD_TIMEOUT)
148 #define HOST_DEBUG(h)	((h)->iobase + SD_DEBUG)
149 
150 #define DMA_CHANNEL(h)	\
151 	(((h)->flags & HOST_F_XMIT) ? (h)->tx_chan : (h)->rx_chan)
152 
153 static inline int has_dbdma(void)
154 {
155 	switch (alchemy_get_cputype()) {
156 	case ALCHEMY_CPU_AU1200:
157 	case ALCHEMY_CPU_AU1300:
158 		return 1;
159 	default:
160 		return 0;
161 	}
162 }
163 
164 static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask)
165 {
166 	u32 val = __raw_readl(HOST_CONFIG(host));
167 	val |= mask;
168 	__raw_writel(val, HOST_CONFIG(host));
169 	wmb(); /* drain writebuffer */
170 }
171 
172 static inline void FLUSH_FIFO(struct au1xmmc_host *host)
173 {
174 	u32 val = __raw_readl(HOST_CONFIG2(host));
175 
176 	__raw_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host));
177 	wmb(); /* drain writebuffer */
178 	mdelay(1);
179 
180 	/* SEND_STOP will turn off clock control - this re-enables it */
181 	val &= ~SD_CONFIG2_DF;
182 
183 	__raw_writel(val, HOST_CONFIG2(host));
184 	wmb(); /* drain writebuffer */
185 }
186 
187 static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask)
188 {
189 	u32 val = __raw_readl(HOST_CONFIG(host));
190 	val &= ~mask;
191 	__raw_writel(val, HOST_CONFIG(host));
192 	wmb(); /* drain writebuffer */
193 }
194 
195 static inline void SEND_STOP(struct au1xmmc_host *host)
196 {
197 	u32 config2;
198 
199 	WARN_ON(host->status != HOST_S_DATA);
200 	host->status = HOST_S_STOP;
201 
202 	config2 = __raw_readl(HOST_CONFIG2(host));
203 	__raw_writel(config2 | SD_CONFIG2_DF, HOST_CONFIG2(host));
204 	wmb(); /* drain writebuffer */
205 
206 	/* Send the stop command */
207 	__raw_writel(STOP_CMD, HOST_CMD(host));
208 	wmb(); /* drain writebuffer */
209 }
210 
211 static void au1xmmc_set_power(struct au1xmmc_host *host, int state)
212 {
213 	if (host->platdata && host->platdata->set_power)
214 		host->platdata->set_power(host->mmc, state);
215 }
216 
217 static int au1xmmc_card_inserted(struct mmc_host *mmc)
218 {
219 	struct au1xmmc_host *host = mmc_priv(mmc);
220 
221 	if (host->platdata && host->platdata->card_inserted)
222 		return !!host->platdata->card_inserted(host->mmc);
223 
224 	return -ENOSYS;
225 }
226 
227 static int au1xmmc_card_readonly(struct mmc_host *mmc)
228 {
229 	struct au1xmmc_host *host = mmc_priv(mmc);
230 
231 	if (host->platdata && host->platdata->card_readonly)
232 		return !!host->platdata->card_readonly(mmc);
233 
234 	return -ENOSYS;
235 }
236 
237 static void au1xmmc_finish_request(struct au1xmmc_host *host)
238 {
239 	struct mmc_request *mrq = host->mrq;
240 
241 	host->mrq = NULL;
242 	host->flags &= HOST_F_ACTIVE | HOST_F_DMA;
243 
244 	host->dma.len = 0;
245 	host->dma.dir = 0;
246 
247 	host->pio.index  = 0;
248 	host->pio.offset = 0;
249 	host->pio.len = 0;
250 
251 	host->status = HOST_S_IDLE;
252 
253 	mmc_request_done(host->mmc, mrq);
254 }
255 
256 static void au1xmmc_tasklet_finish(struct tasklet_struct *t)
257 {
258 	struct au1xmmc_host *host = from_tasklet(host, t, finish_task);
259 	au1xmmc_finish_request(host);
260 }
261 
262 static int au1xmmc_send_command(struct au1xmmc_host *host,
263 				struct mmc_command *cmd, struct mmc_data *data)
264 {
265 	u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT);
266 
267 	switch (mmc_resp_type(cmd)) {
268 	case MMC_RSP_NONE:
269 		break;
270 	case MMC_RSP_R1:
271 		mmccmd |= SD_CMD_RT_1;
272 		break;
273 	case MMC_RSP_R1B:
274 		mmccmd |= SD_CMD_RT_1B;
275 		break;
276 	case MMC_RSP_R2:
277 		mmccmd |= SD_CMD_RT_2;
278 		break;
279 	case MMC_RSP_R3:
280 		mmccmd |= SD_CMD_RT_3;
281 		break;
282 	default:
283 		pr_info("au1xmmc: unhandled response type %02x\n",
284 			mmc_resp_type(cmd));
285 		return -EINVAL;
286 	}
287 
288 	if (data) {
289 		if (data->flags & MMC_DATA_READ) {
290 			if (data->blocks > 1)
291 				mmccmd |= SD_CMD_CT_4;
292 			else
293 				mmccmd |= SD_CMD_CT_2;
294 		} else if (data->flags & MMC_DATA_WRITE) {
295 			if (data->blocks > 1)
296 				mmccmd |= SD_CMD_CT_3;
297 			else
298 				mmccmd |= SD_CMD_CT_1;
299 		}
300 	}
301 
302 	__raw_writel(cmd->arg, HOST_CMDARG(host));
303 	wmb(); /* drain writebuffer */
304 
305 	__raw_writel((mmccmd | SD_CMD_GO), HOST_CMD(host));
306 	wmb(); /* drain writebuffer */
307 
308 	/* Wait for the command to go on the line */
309 	while (__raw_readl(HOST_CMD(host)) & SD_CMD_GO)
310 		/* nop */;
311 
312 	return 0;
313 }
314 
315 static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status)
316 {
317 	struct mmc_request *mrq = host->mrq;
318 	struct mmc_data *data;
319 	u32 crc;
320 
321 	WARN_ON((host->status != HOST_S_DATA) && (host->status != HOST_S_STOP));
322 
323 	if (host->mrq == NULL)
324 		return;
325 
326 	data = mrq->cmd->data;
327 
328 	if (status == 0)
329 		status = __raw_readl(HOST_STATUS(host));
330 
331 	/* The transaction is really over when the SD_STATUS_DB bit is clear */
332 	while ((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB))
333 		status = __raw_readl(HOST_STATUS(host));
334 
335 	data->error = 0;
336 	dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir);
337 
338         /* Process any errors */
339 	crc = (status & (SD_STATUS_WC | SD_STATUS_RC));
340 	if (host->flags & HOST_F_XMIT)
341 		crc |= ((status & 0x07) == 0x02) ? 0 : 1;
342 
343 	if (crc)
344 		data->error = -EILSEQ;
345 
346 	/* Clear the CRC bits */
347 	__raw_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host));
348 
349 	data->bytes_xfered = 0;
350 
351 	if (!data->error) {
352 		if (host->flags & (HOST_F_DMA | HOST_F_DBDMA)) {
353 			u32 chan = DMA_CHANNEL(host);
354 
355 			chan_tab_t *c = *((chan_tab_t **)chan);
356 			au1x_dma_chan_t *cp = c->chan_ptr;
357 			data->bytes_xfered = cp->ddma_bytecnt;
358 		} else
359 			data->bytes_xfered =
360 				(data->blocks * data->blksz) - host->pio.len;
361 	}
362 
363 	au1xmmc_finish_request(host);
364 }
365 
366 static void au1xmmc_tasklet_data(struct tasklet_struct *t)
367 {
368 	struct au1xmmc_host *host = from_tasklet(host, t, data_task);
369 
370 	u32 status = __raw_readl(HOST_STATUS(host));
371 	au1xmmc_data_complete(host, status);
372 }
373 
374 #define AU1XMMC_MAX_TRANSFER 8
375 
376 static void au1xmmc_send_pio(struct au1xmmc_host *host)
377 {
378 	struct mmc_data *data;
379 	int sg_len, max, count;
380 	unsigned char *sg_ptr, val;
381 	u32 status;
382 	struct scatterlist *sg;
383 
384 	data = host->mrq->data;
385 
386 	if (!(host->flags & HOST_F_XMIT))
387 		return;
388 
389 	/* This is the pointer to the data buffer */
390 	sg = &data->sg[host->pio.index];
391 	sg_ptr = kmap_atomic(sg_page(sg)) + sg->offset + host->pio.offset;
392 
393 	/* This is the space left inside the buffer */
394 	sg_len = data->sg[host->pio.index].length - host->pio.offset;
395 
396 	/* Check if we need less than the size of the sg_buffer */
397 	max = (sg_len > host->pio.len) ? host->pio.len : sg_len;
398 	if (max > AU1XMMC_MAX_TRANSFER)
399 		max = AU1XMMC_MAX_TRANSFER;
400 
401 	for (count = 0; count < max; count++) {
402 		status = __raw_readl(HOST_STATUS(host));
403 
404 		if (!(status & SD_STATUS_TH))
405 			break;
406 
407 		val = sg_ptr[count];
408 
409 		__raw_writel((unsigned long)val, HOST_TXPORT(host));
410 		wmb(); /* drain writebuffer */
411 	}
412 	kunmap_atomic(sg_ptr);
413 
414 	host->pio.len -= count;
415 	host->pio.offset += count;
416 
417 	if (count == sg_len) {
418 		host->pio.index++;
419 		host->pio.offset = 0;
420 	}
421 
422 	if (host->pio.len == 0) {
423 		IRQ_OFF(host, SD_CONFIG_TH);
424 
425 		if (host->flags & HOST_F_STOP)
426 			SEND_STOP(host);
427 
428 		tasklet_schedule(&host->data_task);
429 	}
430 }
431 
432 static void au1xmmc_receive_pio(struct au1xmmc_host *host)
433 {
434 	struct mmc_data *data;
435 	int max, count, sg_len = 0;
436 	unsigned char *sg_ptr = NULL;
437 	u32 status, val;
438 	struct scatterlist *sg;
439 
440 	data = host->mrq->data;
441 
442 	if (!(host->flags & HOST_F_RECV))
443 		return;
444 
445 	max = host->pio.len;
446 
447 	if (host->pio.index < host->dma.len) {
448 		sg = &data->sg[host->pio.index];
449 		sg_ptr = kmap_atomic(sg_page(sg)) + sg->offset + host->pio.offset;
450 
451 		/* This is the space left inside the buffer */
452 		sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset;
453 
454 		/* Check if we need less than the size of the sg_buffer */
455 		if (sg_len < max)
456 			max = sg_len;
457 	}
458 
459 	if (max > AU1XMMC_MAX_TRANSFER)
460 		max = AU1XMMC_MAX_TRANSFER;
461 
462 	for (count = 0; count < max; count++) {
463 		status = __raw_readl(HOST_STATUS(host));
464 
465 		if (!(status & SD_STATUS_NE))
466 			break;
467 
468 		if (status & SD_STATUS_RC) {
469 			DBG("RX CRC Error [%d + %d].\n", host->pdev->id,
470 					host->pio.len, count);
471 			break;
472 		}
473 
474 		if (status & SD_STATUS_RO) {
475 			DBG("RX Overrun [%d + %d]\n", host->pdev->id,
476 					host->pio.len, count);
477 			break;
478 		}
479 		else if (status & SD_STATUS_RU) {
480 			DBG("RX Underrun [%d + %d]\n", host->pdev->id,
481 					host->pio.len,	count);
482 			break;
483 		}
484 
485 		val = __raw_readl(HOST_RXPORT(host));
486 
487 		if (sg_ptr)
488 			sg_ptr[count] = (unsigned char)(val & 0xFF);
489 	}
490 	if (sg_ptr)
491 		kunmap_atomic(sg_ptr);
492 
493 	host->pio.len -= count;
494 	host->pio.offset += count;
495 
496 	if (sg_len && count == sg_len) {
497 		host->pio.index++;
498 		host->pio.offset = 0;
499 	}
500 
501 	if (host->pio.len == 0) {
502 		/* IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF); */
503 		IRQ_OFF(host, SD_CONFIG_NE);
504 
505 		if (host->flags & HOST_F_STOP)
506 			SEND_STOP(host);
507 
508 		tasklet_schedule(&host->data_task);
509 	}
510 }
511 
512 /* This is called when a command has been completed - grab the response
513  * and check for errors.  Then start the data transfer if it is indicated.
514  */
515 static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status)
516 {
517 	struct mmc_request *mrq = host->mrq;
518 	struct mmc_command *cmd;
519 	u32 r[4];
520 	int i, trans;
521 
522 	if (!host->mrq)
523 		return;
524 
525 	cmd = mrq->cmd;
526 	cmd->error = 0;
527 
528 	if (cmd->flags & MMC_RSP_PRESENT) {
529 		if (cmd->flags & MMC_RSP_136) {
530 			r[0] = __raw_readl(host->iobase + SD_RESP3);
531 			r[1] = __raw_readl(host->iobase + SD_RESP2);
532 			r[2] = __raw_readl(host->iobase + SD_RESP1);
533 			r[3] = __raw_readl(host->iobase + SD_RESP0);
534 
535 			/* The CRC is omitted from the response, so really
536 			 * we only got 120 bytes, but the engine expects
537 			 * 128 bits, so we have to shift things up.
538 			 */
539 			for (i = 0; i < 4; i++) {
540 				cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8;
541 				if (i != 3)
542 					cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24;
543 			}
544 		} else {
545 			/* Techincally, we should be getting all 48 bits of
546 			 * the response (SD_RESP1 + SD_RESP2), but because
547 			 * our response omits the CRC, our data ends up
548 			 * being shifted 8 bits to the right.  In this case,
549 			 * that means that the OSR data starts at bit 31,
550 			 * so we can just read RESP0 and return that.
551 			 */
552 			cmd->resp[0] = __raw_readl(host->iobase + SD_RESP0);
553 		}
554 	}
555 
556         /* Figure out errors */
557 	if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC))
558 		cmd->error = -EILSEQ;
559 
560 	trans = host->flags & (HOST_F_XMIT | HOST_F_RECV);
561 
562 	if (!trans || cmd->error) {
563 		IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF);
564 		tasklet_schedule(&host->finish_task);
565 		return;
566 	}
567 
568 	host->status = HOST_S_DATA;
569 
570 	if ((host->flags & (HOST_F_DMA | HOST_F_DBDMA))) {
571 		u32 channel = DMA_CHANNEL(host);
572 
573 		/* Start the DBDMA as soon as the buffer gets something in it */
574 
575 		if (host->flags & HOST_F_RECV) {
576 			u32 mask = SD_STATUS_DB | SD_STATUS_NE;
577 
578 			while((status & mask) != mask)
579 				status = __raw_readl(HOST_STATUS(host));
580 		}
581 
582 		au1xxx_dbdma_start(channel);
583 	}
584 }
585 
586 static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate)
587 {
588 	unsigned int pbus = clk_get_rate(host->clk);
589 	unsigned int divisor = ((pbus / rate) / 2) - 1;
590 	u32 config;
591 
592 	config = __raw_readl(HOST_CONFIG(host));
593 
594 	config &= ~(SD_CONFIG_DIV);
595 	config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE;
596 
597 	__raw_writel(config, HOST_CONFIG(host));
598 	wmb(); /* drain writebuffer */
599 }
600 
601 static int au1xmmc_prepare_data(struct au1xmmc_host *host,
602 				struct mmc_data *data)
603 {
604 	int datalen = data->blocks * data->blksz;
605 
606 	if (data->flags & MMC_DATA_READ)
607 		host->flags |= HOST_F_RECV;
608 	else
609 		host->flags |= HOST_F_XMIT;
610 
611 	if (host->mrq->stop)
612 		host->flags |= HOST_F_STOP;
613 
614 	host->dma.dir = DMA_BIDIRECTIONAL;
615 
616 	host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg,
617 				   data->sg_len, host->dma.dir);
618 
619 	if (host->dma.len == 0)
620 		return -ETIMEDOUT;
621 
622 	__raw_writel(data->blksz - 1, HOST_BLKSIZE(host));
623 
624 	if (host->flags & (HOST_F_DMA | HOST_F_DBDMA)) {
625 		int i;
626 		u32 channel = DMA_CHANNEL(host);
627 
628 		au1xxx_dbdma_stop(channel);
629 
630 		for (i = 0; i < host->dma.len; i++) {
631 			u32 ret = 0, flags = DDMA_FLAGS_NOIE;
632 			struct scatterlist *sg = &data->sg[i];
633 			int sg_len = sg->length;
634 
635 			int len = (datalen > sg_len) ? sg_len : datalen;
636 
637 			if (i == host->dma.len - 1)
638 				flags = DDMA_FLAGS_IE;
639 
640 			if (host->flags & HOST_F_XMIT) {
641 				ret = au1xxx_dbdma_put_source(channel,
642 					sg_phys(sg), len, flags);
643 			} else {
644 				ret = au1xxx_dbdma_put_dest(channel,
645 					sg_phys(sg), len, flags);
646 			}
647 
648 			if (!ret)
649 				goto dataerr;
650 
651 			datalen -= len;
652 		}
653 	} else {
654 		host->pio.index = 0;
655 		host->pio.offset = 0;
656 		host->pio.len = datalen;
657 
658 		if (host->flags & HOST_F_XMIT)
659 			IRQ_ON(host, SD_CONFIG_TH);
660 		else
661 			IRQ_ON(host, SD_CONFIG_NE);
662 			/* IRQ_ON(host, SD_CONFIG_RA | SD_CONFIG_RF); */
663 	}
664 
665 	return 0;
666 
667 dataerr:
668 	dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
669 			host->dma.dir);
670 	return -ETIMEDOUT;
671 }
672 
673 /* This actually starts a command or data transaction */
674 static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq)
675 {
676 	struct au1xmmc_host *host = mmc_priv(mmc);
677 	int ret = 0;
678 
679 	WARN_ON(irqs_disabled());
680 	WARN_ON(host->status != HOST_S_IDLE);
681 
682 	host->mrq = mrq;
683 	host->status = HOST_S_CMD;
684 
685 	/* fail request immediately if no card is present */
686 	if (0 == au1xmmc_card_inserted(mmc)) {
687 		mrq->cmd->error = -ENOMEDIUM;
688 		au1xmmc_finish_request(host);
689 		return;
690 	}
691 
692 	if (mrq->data) {
693 		FLUSH_FIFO(host);
694 		ret = au1xmmc_prepare_data(host, mrq->data);
695 	}
696 
697 	if (!ret)
698 		ret = au1xmmc_send_command(host, mrq->cmd, mrq->data);
699 
700 	if (ret) {
701 		mrq->cmd->error = ret;
702 		au1xmmc_finish_request(host);
703 	}
704 }
705 
706 static void au1xmmc_reset_controller(struct au1xmmc_host *host)
707 {
708 	/* Apply the clock */
709 	__raw_writel(SD_ENABLE_CE, HOST_ENABLE(host));
710 	wmb(); /* drain writebuffer */
711 	mdelay(1);
712 
713 	__raw_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host));
714 	wmb(); /* drain writebuffer */
715 	mdelay(5);
716 
717 	__raw_writel(~0, HOST_STATUS(host));
718 	wmb(); /* drain writebuffer */
719 
720 	__raw_writel(0, HOST_BLKSIZE(host));
721 	__raw_writel(0x001fffff, HOST_TIMEOUT(host));
722 	wmb(); /* drain writebuffer */
723 
724 	__raw_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
725 	wmb(); /* drain writebuffer */
726 
727 	__raw_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host));
728 	wmb(); /* drain writebuffer */
729 	mdelay(1);
730 
731 	__raw_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
732 	wmb(); /* drain writebuffer */
733 
734 	/* Configure interrupts */
735 	__raw_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host));
736 	wmb(); /* drain writebuffer */
737 }
738 
739 
740 static void au1xmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
741 {
742 	struct au1xmmc_host *host = mmc_priv(mmc);
743 	u32 config2;
744 
745 	if (ios->power_mode == MMC_POWER_OFF)
746 		au1xmmc_set_power(host, 0);
747 	else if (ios->power_mode == MMC_POWER_ON) {
748 		au1xmmc_set_power(host, 1);
749 	}
750 
751 	if (ios->clock && ios->clock != host->clock) {
752 		au1xmmc_set_clock(host, ios->clock);
753 		host->clock = ios->clock;
754 	}
755 
756 	config2 = __raw_readl(HOST_CONFIG2(host));
757 	switch (ios->bus_width) {
758 	case MMC_BUS_WIDTH_8:
759 		config2 |= SD_CONFIG2_BB;
760 		break;
761 	case MMC_BUS_WIDTH_4:
762 		config2 &= ~SD_CONFIG2_BB;
763 		config2 |= SD_CONFIG2_WB;
764 		break;
765 	case MMC_BUS_WIDTH_1:
766 		config2 &= ~(SD_CONFIG2_WB | SD_CONFIG2_BB);
767 		break;
768 	}
769 	__raw_writel(config2, HOST_CONFIG2(host));
770 	wmb(); /* drain writebuffer */
771 }
772 
773 #define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT)
774 #define STATUS_DATA_IN  (SD_STATUS_NE)
775 #define STATUS_DATA_OUT (SD_STATUS_TH)
776 
777 static irqreturn_t au1xmmc_irq(int irq, void *dev_id)
778 {
779 	struct au1xmmc_host *host = dev_id;
780 	u32 status;
781 
782 	status = __raw_readl(HOST_STATUS(host));
783 
784 	if (!(status & SD_STATUS_I))
785 		return IRQ_NONE;	/* not ours */
786 
787 	if (status & SD_STATUS_SI)	/* SDIO */
788 		mmc_signal_sdio_irq(host->mmc);
789 
790 	if (host->mrq && (status & STATUS_TIMEOUT)) {
791 		if (status & SD_STATUS_RAT)
792 			host->mrq->cmd->error = -ETIMEDOUT;
793 		else if (status & SD_STATUS_DT)
794 			host->mrq->data->error = -ETIMEDOUT;
795 
796 		/* In PIO mode, interrupts might still be enabled */
797 		IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH);
798 
799 		/* IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF); */
800 		tasklet_schedule(&host->finish_task);
801 	}
802 #if 0
803 	else if (status & SD_STATUS_DD) {
804 		/* Sometimes we get a DD before a NE in PIO mode */
805 		if (!(host->flags & HOST_F_DMA) && (status & SD_STATUS_NE))
806 			au1xmmc_receive_pio(host);
807 		else {
808 			au1xmmc_data_complete(host, status);
809 			/* tasklet_schedule(&host->data_task); */
810 		}
811 	}
812 #endif
813 	else if (status & SD_STATUS_CR) {
814 		if (host->status == HOST_S_CMD)
815 			au1xmmc_cmd_complete(host, status);
816 
817 	} else if (!(host->flags & HOST_F_DMA)) {
818 		if ((host->flags & HOST_F_XMIT) && (status & STATUS_DATA_OUT))
819 			au1xmmc_send_pio(host);
820 		else if ((host->flags & HOST_F_RECV) && (status & STATUS_DATA_IN))
821 			au1xmmc_receive_pio(host);
822 
823 	} else if (status & 0x203F3C70) {
824 			DBG("Unhandled status %8.8x\n", host->pdev->id,
825 				status);
826 	}
827 
828 	__raw_writel(status, HOST_STATUS(host));
829 	wmb(); /* drain writebuffer */
830 
831 	return IRQ_HANDLED;
832 }
833 
834 /* 8bit memory DMA device */
835 static dbdev_tab_t au1xmmc_mem_dbdev = {
836 	.dev_id		= DSCR_CMD0_ALWAYS,
837 	.dev_flags	= DEV_FLAGS_ANYUSE,
838 	.dev_tsize	= 0,
839 	.dev_devwidth	= 8,
840 	.dev_physaddr	= 0x00000000,
841 	.dev_intlevel	= 0,
842 	.dev_intpolarity = 0,
843 };
844 static int memid;
845 
846 static void au1xmmc_dbdma_callback(int irq, void *dev_id)
847 {
848 	struct au1xmmc_host *host = (struct au1xmmc_host *)dev_id;
849 
850 	/* Avoid spurious interrupts */
851 	if (!host->mrq)
852 		return;
853 
854 	if (host->flags & HOST_F_STOP)
855 		SEND_STOP(host);
856 
857 	tasklet_schedule(&host->data_task);
858 }
859 
860 static int au1xmmc_dbdma_init(struct au1xmmc_host *host)
861 {
862 	struct resource *res;
863 	int txid, rxid;
864 
865 	res = platform_get_resource(host->pdev, IORESOURCE_DMA, 0);
866 	if (!res)
867 		return -ENODEV;
868 	txid = res->start;
869 
870 	res = platform_get_resource(host->pdev, IORESOURCE_DMA, 1);
871 	if (!res)
872 		return -ENODEV;
873 	rxid = res->start;
874 
875 	if (!memid)
876 		return -ENODEV;
877 
878 	host->tx_chan = au1xxx_dbdma_chan_alloc(memid, txid,
879 				au1xmmc_dbdma_callback, (void *)host);
880 	if (!host->tx_chan) {
881 		dev_err(&host->pdev->dev, "cannot allocate TX DMA\n");
882 		return -ENODEV;
883 	}
884 
885 	host->rx_chan = au1xxx_dbdma_chan_alloc(rxid, memid,
886 				au1xmmc_dbdma_callback, (void *)host);
887 	if (!host->rx_chan) {
888 		dev_err(&host->pdev->dev, "cannot allocate RX DMA\n");
889 		au1xxx_dbdma_chan_free(host->tx_chan);
890 		return -ENODEV;
891 	}
892 
893 	au1xxx_dbdma_set_devwidth(host->tx_chan, 8);
894 	au1xxx_dbdma_set_devwidth(host->rx_chan, 8);
895 
896 	au1xxx_dbdma_ring_alloc(host->tx_chan, AU1XMMC_DESCRIPTOR_COUNT);
897 	au1xxx_dbdma_ring_alloc(host->rx_chan, AU1XMMC_DESCRIPTOR_COUNT);
898 
899 	/* DBDMA is good to go */
900 	host->flags |= HOST_F_DMA | HOST_F_DBDMA;
901 
902 	return 0;
903 }
904 
905 static void au1xmmc_dbdma_shutdown(struct au1xmmc_host *host)
906 {
907 	if (host->flags & HOST_F_DMA) {
908 		host->flags &= ~HOST_F_DMA;
909 		au1xxx_dbdma_chan_free(host->tx_chan);
910 		au1xxx_dbdma_chan_free(host->rx_chan);
911 	}
912 }
913 
914 static void au1xmmc_enable_sdio_irq(struct mmc_host *mmc, int en)
915 {
916 	struct au1xmmc_host *host = mmc_priv(mmc);
917 
918 	if (en)
919 		IRQ_ON(host, SD_CONFIG_SI);
920 	else
921 		IRQ_OFF(host, SD_CONFIG_SI);
922 }
923 
924 static const struct mmc_host_ops au1xmmc_ops = {
925 	.request	= au1xmmc_request,
926 	.set_ios	= au1xmmc_set_ios,
927 	.get_ro		= au1xmmc_card_readonly,
928 	.get_cd		= au1xmmc_card_inserted,
929 	.enable_sdio_irq = au1xmmc_enable_sdio_irq,
930 };
931 
932 static int au1xmmc_probe(struct platform_device *pdev)
933 {
934 	struct mmc_host *mmc;
935 	struct au1xmmc_host *host;
936 	struct resource *r;
937 	int ret, iflag;
938 
939 	mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev);
940 	if (!mmc) {
941 		dev_err(&pdev->dev, "no memory for mmc_host\n");
942 		ret = -ENOMEM;
943 		goto out0;
944 	}
945 
946 	host = mmc_priv(mmc);
947 	host->mmc = mmc;
948 	host->platdata = pdev->dev.platform_data;
949 	host->pdev = pdev;
950 
951 	ret = -ENODEV;
952 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
953 	if (!r) {
954 		dev_err(&pdev->dev, "no mmio defined\n");
955 		goto out1;
956 	}
957 
958 	host->ioarea = request_mem_region(r->start, resource_size(r),
959 					   pdev->name);
960 	if (!host->ioarea) {
961 		dev_err(&pdev->dev, "mmio already in use\n");
962 		goto out1;
963 	}
964 
965 	host->iobase = ioremap(r->start, 0x3c);
966 	if (!host->iobase) {
967 		dev_err(&pdev->dev, "cannot remap mmio\n");
968 		goto out2;
969 	}
970 
971 	host->irq = platform_get_irq(pdev, 0);
972 	if (host->irq < 0)
973 		goto out3;
974 
975 	mmc->ops = &au1xmmc_ops;
976 
977 	mmc->f_min =   450000;
978 	mmc->f_max = 24000000;
979 
980 	mmc->max_blk_size = 2048;
981 	mmc->max_blk_count = 512;
982 
983 	mmc->ocr_avail = AU1XMMC_OCR;
984 	mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_SDIO_IRQ;
985 	mmc->max_segs = AU1XMMC_DESCRIPTOR_COUNT;
986 
987 	iflag = IRQF_SHARED;	/* Au1100/Au1200: one int for both ctrls */
988 
989 	switch (alchemy_get_cputype()) {
990 	case ALCHEMY_CPU_AU1100:
991 		mmc->max_seg_size = AU1100_MMC_DESCRIPTOR_SIZE;
992 		break;
993 	case ALCHEMY_CPU_AU1200:
994 		mmc->max_seg_size = AU1200_MMC_DESCRIPTOR_SIZE;
995 		break;
996 	case ALCHEMY_CPU_AU1300:
997 		iflag = 0;	/* nothing is shared */
998 		mmc->max_seg_size = AU1200_MMC_DESCRIPTOR_SIZE;
999 		mmc->f_max = 52000000;
1000 		if (host->ioarea->start == AU1100_SD0_PHYS_ADDR)
1001 			mmc->caps |= MMC_CAP_8_BIT_DATA;
1002 		break;
1003 	}
1004 
1005 	ret = request_irq(host->irq, au1xmmc_irq, iflag, DRIVER_NAME, host);
1006 	if (ret) {
1007 		dev_err(&pdev->dev, "cannot grab IRQ\n");
1008 		goto out3;
1009 	}
1010 
1011 	host->clk = clk_get(&pdev->dev, ALCHEMY_PERIPH_CLK);
1012 	if (IS_ERR(host->clk)) {
1013 		dev_err(&pdev->dev, "cannot find clock\n");
1014 		ret = PTR_ERR(host->clk);
1015 		goto out_irq;
1016 	}
1017 
1018 	ret = clk_prepare_enable(host->clk);
1019 	if (ret) {
1020 		dev_err(&pdev->dev, "cannot enable clock\n");
1021 		goto out_clk;
1022 	}
1023 
1024 	host->status = HOST_S_IDLE;
1025 
1026 	/* board-specific carddetect setup, if any */
1027 	if (host->platdata && host->platdata->cd_setup) {
1028 		ret = host->platdata->cd_setup(mmc, 1);
1029 		if (ret) {
1030 			dev_warn(&pdev->dev, "board CD setup failed\n");
1031 			mmc->caps |= MMC_CAP_NEEDS_POLL;
1032 		}
1033 	} else
1034 		mmc->caps |= MMC_CAP_NEEDS_POLL;
1035 
1036 	/* platform may not be able to use all advertised caps */
1037 	if (host->platdata)
1038 		mmc->caps &= ~(host->platdata->mask_host_caps);
1039 
1040 	tasklet_setup(&host->data_task, au1xmmc_tasklet_data);
1041 
1042 	tasklet_setup(&host->finish_task, au1xmmc_tasklet_finish);
1043 
1044 	if (has_dbdma()) {
1045 		ret = au1xmmc_dbdma_init(host);
1046 		if (ret)
1047 			pr_info(DRIVER_NAME ": DBDMA init failed; using PIO\n");
1048 	}
1049 
1050 #ifdef CONFIG_LEDS_CLASS
1051 	if (host->platdata && host->platdata->led) {
1052 		struct led_classdev *led = host->platdata->led;
1053 		led->name = mmc_hostname(mmc);
1054 		led->brightness = LED_OFF;
1055 		led->default_trigger = mmc_hostname(mmc);
1056 		ret = led_classdev_register(mmc_dev(mmc), led);
1057 		if (ret)
1058 			goto out5;
1059 	}
1060 #endif
1061 
1062 	au1xmmc_reset_controller(host);
1063 
1064 	ret = mmc_add_host(mmc);
1065 	if (ret) {
1066 		dev_err(&pdev->dev, "cannot add mmc host\n");
1067 		goto out6;
1068 	}
1069 
1070 	platform_set_drvdata(pdev, host);
1071 
1072 	pr_info(DRIVER_NAME ": MMC Controller %d set up at %p"
1073 		" (mode=%s)\n", pdev->id, host->iobase,
1074 		host->flags & HOST_F_DMA ? "dma" : "pio");
1075 
1076 	return 0;	/* all ok */
1077 
1078 out6:
1079 #ifdef CONFIG_LEDS_CLASS
1080 	if (host->platdata && host->platdata->led)
1081 		led_classdev_unregister(host->platdata->led);
1082 out5:
1083 #endif
1084 	__raw_writel(0, HOST_ENABLE(host));
1085 	__raw_writel(0, HOST_CONFIG(host));
1086 	__raw_writel(0, HOST_CONFIG2(host));
1087 	wmb(); /* drain writebuffer */
1088 
1089 	if (host->flags & HOST_F_DBDMA)
1090 		au1xmmc_dbdma_shutdown(host);
1091 
1092 	tasklet_kill(&host->data_task);
1093 	tasklet_kill(&host->finish_task);
1094 
1095 	if (host->platdata && host->platdata->cd_setup &&
1096 	    !(mmc->caps & MMC_CAP_NEEDS_POLL))
1097 		host->platdata->cd_setup(mmc, 0);
1098 out_clk:
1099 	clk_disable_unprepare(host->clk);
1100 	clk_put(host->clk);
1101 out_irq:
1102 	free_irq(host->irq, host);
1103 out3:
1104 	iounmap((void *)host->iobase);
1105 out2:
1106 	release_resource(host->ioarea);
1107 	kfree(host->ioarea);
1108 out1:
1109 	mmc_free_host(mmc);
1110 out0:
1111 	return ret;
1112 }
1113 
1114 static int au1xmmc_remove(struct platform_device *pdev)
1115 {
1116 	struct au1xmmc_host *host = platform_get_drvdata(pdev);
1117 
1118 	if (host) {
1119 		mmc_remove_host(host->mmc);
1120 
1121 #ifdef CONFIG_LEDS_CLASS
1122 		if (host->platdata && host->platdata->led)
1123 			led_classdev_unregister(host->platdata->led);
1124 #endif
1125 
1126 		if (host->platdata && host->platdata->cd_setup &&
1127 		    !(host->mmc->caps & MMC_CAP_NEEDS_POLL))
1128 			host->platdata->cd_setup(host->mmc, 0);
1129 
1130 		__raw_writel(0, HOST_ENABLE(host));
1131 		__raw_writel(0, HOST_CONFIG(host));
1132 		__raw_writel(0, HOST_CONFIG2(host));
1133 		wmb(); /* drain writebuffer */
1134 
1135 		tasklet_kill(&host->data_task);
1136 		tasklet_kill(&host->finish_task);
1137 
1138 		if (host->flags & HOST_F_DBDMA)
1139 			au1xmmc_dbdma_shutdown(host);
1140 
1141 		au1xmmc_set_power(host, 0);
1142 
1143 		clk_disable_unprepare(host->clk);
1144 		clk_put(host->clk);
1145 
1146 		free_irq(host->irq, host);
1147 		iounmap((void *)host->iobase);
1148 		release_resource(host->ioarea);
1149 		kfree(host->ioarea);
1150 
1151 		mmc_free_host(host->mmc);
1152 	}
1153 	return 0;
1154 }
1155 
1156 #ifdef CONFIG_PM
1157 static int au1xmmc_suspend(struct platform_device *pdev, pm_message_t state)
1158 {
1159 	struct au1xmmc_host *host = platform_get_drvdata(pdev);
1160 
1161 	__raw_writel(0, HOST_CONFIG2(host));
1162 	__raw_writel(0, HOST_CONFIG(host));
1163 	__raw_writel(0xffffffff, HOST_STATUS(host));
1164 	__raw_writel(0, HOST_ENABLE(host));
1165 	wmb(); /* drain writebuffer */
1166 
1167 	return 0;
1168 }
1169 
1170 static int au1xmmc_resume(struct platform_device *pdev)
1171 {
1172 	struct au1xmmc_host *host = platform_get_drvdata(pdev);
1173 
1174 	au1xmmc_reset_controller(host);
1175 
1176 	return 0;
1177 }
1178 #else
1179 #define au1xmmc_suspend NULL
1180 #define au1xmmc_resume NULL
1181 #endif
1182 
1183 static struct platform_driver au1xmmc_driver = {
1184 	.probe         = au1xmmc_probe,
1185 	.remove        = au1xmmc_remove,
1186 	.suspend       = au1xmmc_suspend,
1187 	.resume        = au1xmmc_resume,
1188 	.driver        = {
1189 		.name  = DRIVER_NAME,
1190 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1191 	},
1192 };
1193 
1194 static int __init au1xmmc_init(void)
1195 {
1196 	if (has_dbdma()) {
1197 		/* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride
1198 		* of 8 bits.  And since devices are shared, we need to create
1199 		* our own to avoid freaking out other devices.
1200 		*/
1201 		memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev);
1202 		if (!memid)
1203 			pr_err("au1xmmc: cannot add memory dbdma\n");
1204 	}
1205 	return platform_driver_register(&au1xmmc_driver);
1206 }
1207 
1208 static void __exit au1xmmc_exit(void)
1209 {
1210 	if (has_dbdma() && memid)
1211 		au1xxx_ddma_del_device(memid);
1212 
1213 	platform_driver_unregister(&au1xmmc_driver);
1214 }
1215 
1216 module_init(au1xmmc_init);
1217 module_exit(au1xmmc_exit);
1218 
1219 MODULE_AUTHOR("Advanced Micro Devices, Inc");
1220 MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX");
1221 MODULE_LICENSE("GPL");
1222 MODULE_ALIAS("platform:au1xxx-mmc");
1223