1 /* 2 * linux/drivers/mmc/host/au1xmmc.c - AU1XX0 MMC driver 3 * 4 * Copyright (c) 2005, Advanced Micro Devices, Inc. 5 * 6 * Developed with help from the 2.4.30 MMC AU1XXX controller including 7 * the following copyright notices: 8 * Copyright (c) 2003-2004 Embedded Edge, LLC. 9 * Portions Copyright (C) 2002 Embedix, Inc 10 * Copyright 2002 Hewlett-Packard Company 11 12 * 2.6 version of this driver inspired by: 13 * (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman, 14 * All Rights Reserved. 15 * (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King, 16 * All Rights Reserved. 17 * 18 19 * This program is free software; you can redistribute it and/or modify 20 * it under the terms of the GNU General Public License version 2 as 21 * published by the Free Software Foundation. 22 */ 23 24 /* Why don't we use the SD controllers' carddetect feature? 25 * 26 * From the AU1100 MMC application guide: 27 * If the Au1100-based design is intended to support both MultiMediaCards 28 * and 1- or 4-data bit SecureDigital cards, then the solution is to 29 * connect a weak (560KOhm) pull-up resistor to connector pin 1. 30 * In doing so, a MMC card never enters SPI-mode communications, 31 * but now the SecureDigital card-detect feature of CD/DAT3 is ineffective 32 * (the low to high transition will not occur). 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/platform_device.h> 38 #include <linux/mm.h> 39 #include <linux/interrupt.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/scatterlist.h> 42 #include <linux/leds.h> 43 #include <linux/mmc/host.h> 44 #include <linux/slab.h> 45 46 #include <asm/io.h> 47 #include <asm/mach-au1x00/au1000.h> 48 #include <asm/mach-au1x00/au1xxx_dbdma.h> 49 #include <asm/mach-au1x00/au1100_mmc.h> 50 51 #define DRIVER_NAME "au1xxx-mmc" 52 53 /* Set this to enable special debugging macros */ 54 /* #define DEBUG */ 55 56 #ifdef DEBUG 57 #define DBG(fmt, idx, args...) \ 58 printk(KERN_DEBUG "au1xmmc(%d): DEBUG: " fmt, idx, ##args) 59 #else 60 #define DBG(fmt, idx, args...) do {} while (0) 61 #endif 62 63 /* Hardware definitions */ 64 #define AU1XMMC_DESCRIPTOR_COUNT 1 65 66 /* max DMA seg size: 64KB on Au1100, 4MB on Au1200 */ 67 #ifdef CONFIG_SOC_AU1100 68 #define AU1XMMC_DESCRIPTOR_SIZE 0x0000ffff 69 #else /* Au1200 */ 70 #define AU1XMMC_DESCRIPTOR_SIZE 0x003fffff 71 #endif 72 73 #define AU1XMMC_OCR (MMC_VDD_27_28 | MMC_VDD_28_29 | MMC_VDD_29_30 | \ 74 MMC_VDD_30_31 | MMC_VDD_31_32 | MMC_VDD_32_33 | \ 75 MMC_VDD_33_34 | MMC_VDD_34_35 | MMC_VDD_35_36) 76 77 /* This gives us a hard value for the stop command that we can write directly 78 * to the command register. 79 */ 80 #define STOP_CMD \ 81 (SD_CMD_RT_1B | SD_CMD_CT_7 | (0xC << SD_CMD_CI_SHIFT) | SD_CMD_GO) 82 83 /* This is the set of interrupts that we configure by default. */ 84 #define AU1XMMC_INTERRUPTS \ 85 (SD_CONFIG_SC | SD_CONFIG_DT | SD_CONFIG_RAT | \ 86 SD_CONFIG_CR | SD_CONFIG_I) 87 88 /* The poll event (looking for insert/remove events runs twice a second. */ 89 #define AU1XMMC_DETECT_TIMEOUT (HZ/2) 90 91 struct au1xmmc_host { 92 struct mmc_host *mmc; 93 struct mmc_request *mrq; 94 95 u32 flags; 96 u32 iobase; 97 u32 clock; 98 u32 bus_width; 99 u32 power_mode; 100 101 int status; 102 103 struct { 104 int len; 105 int dir; 106 } dma; 107 108 struct { 109 int index; 110 int offset; 111 int len; 112 } pio; 113 114 u32 tx_chan; 115 u32 rx_chan; 116 117 int irq; 118 119 struct tasklet_struct finish_task; 120 struct tasklet_struct data_task; 121 struct au1xmmc_platform_data *platdata; 122 struct platform_device *pdev; 123 struct resource *ioarea; 124 }; 125 126 /* Status flags used by the host structure */ 127 #define HOST_F_XMIT 0x0001 128 #define HOST_F_RECV 0x0002 129 #define HOST_F_DMA 0x0010 130 #define HOST_F_ACTIVE 0x0100 131 #define HOST_F_STOP 0x1000 132 133 #define HOST_S_IDLE 0x0001 134 #define HOST_S_CMD 0x0002 135 #define HOST_S_DATA 0x0003 136 #define HOST_S_STOP 0x0004 137 138 /* Easy access macros */ 139 #define HOST_STATUS(h) ((h)->iobase + SD_STATUS) 140 #define HOST_CONFIG(h) ((h)->iobase + SD_CONFIG) 141 #define HOST_ENABLE(h) ((h)->iobase + SD_ENABLE) 142 #define HOST_TXPORT(h) ((h)->iobase + SD_TXPORT) 143 #define HOST_RXPORT(h) ((h)->iobase + SD_RXPORT) 144 #define HOST_CMDARG(h) ((h)->iobase + SD_CMDARG) 145 #define HOST_BLKSIZE(h) ((h)->iobase + SD_BLKSIZE) 146 #define HOST_CMD(h) ((h)->iobase + SD_CMD) 147 #define HOST_CONFIG2(h) ((h)->iobase + SD_CONFIG2) 148 #define HOST_TIMEOUT(h) ((h)->iobase + SD_TIMEOUT) 149 #define HOST_DEBUG(h) ((h)->iobase + SD_DEBUG) 150 151 #define DMA_CHANNEL(h) \ 152 (((h)->flags & HOST_F_XMIT) ? (h)->tx_chan : (h)->rx_chan) 153 154 static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask) 155 { 156 u32 val = au_readl(HOST_CONFIG(host)); 157 val |= mask; 158 au_writel(val, HOST_CONFIG(host)); 159 au_sync(); 160 } 161 162 static inline void FLUSH_FIFO(struct au1xmmc_host *host) 163 { 164 u32 val = au_readl(HOST_CONFIG2(host)); 165 166 au_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host)); 167 au_sync_delay(1); 168 169 /* SEND_STOP will turn off clock control - this re-enables it */ 170 val &= ~SD_CONFIG2_DF; 171 172 au_writel(val, HOST_CONFIG2(host)); 173 au_sync(); 174 } 175 176 static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask) 177 { 178 u32 val = au_readl(HOST_CONFIG(host)); 179 val &= ~mask; 180 au_writel(val, HOST_CONFIG(host)); 181 au_sync(); 182 } 183 184 static inline void SEND_STOP(struct au1xmmc_host *host) 185 { 186 u32 config2; 187 188 WARN_ON(host->status != HOST_S_DATA); 189 host->status = HOST_S_STOP; 190 191 config2 = au_readl(HOST_CONFIG2(host)); 192 au_writel(config2 | SD_CONFIG2_DF, HOST_CONFIG2(host)); 193 au_sync(); 194 195 /* Send the stop command */ 196 au_writel(STOP_CMD, HOST_CMD(host)); 197 } 198 199 static void au1xmmc_set_power(struct au1xmmc_host *host, int state) 200 { 201 if (host->platdata && host->platdata->set_power) 202 host->platdata->set_power(host->mmc, state); 203 } 204 205 static int au1xmmc_card_inserted(struct mmc_host *mmc) 206 { 207 struct au1xmmc_host *host = mmc_priv(mmc); 208 209 if (host->platdata && host->platdata->card_inserted) 210 return !!host->platdata->card_inserted(host->mmc); 211 212 return -ENOSYS; 213 } 214 215 static int au1xmmc_card_readonly(struct mmc_host *mmc) 216 { 217 struct au1xmmc_host *host = mmc_priv(mmc); 218 219 if (host->platdata && host->platdata->card_readonly) 220 return !!host->platdata->card_readonly(mmc); 221 222 return -ENOSYS; 223 } 224 225 static void au1xmmc_finish_request(struct au1xmmc_host *host) 226 { 227 struct mmc_request *mrq = host->mrq; 228 229 host->mrq = NULL; 230 host->flags &= HOST_F_ACTIVE | HOST_F_DMA; 231 232 host->dma.len = 0; 233 host->dma.dir = 0; 234 235 host->pio.index = 0; 236 host->pio.offset = 0; 237 host->pio.len = 0; 238 239 host->status = HOST_S_IDLE; 240 241 mmc_request_done(host->mmc, mrq); 242 } 243 244 static void au1xmmc_tasklet_finish(unsigned long param) 245 { 246 struct au1xmmc_host *host = (struct au1xmmc_host *) param; 247 au1xmmc_finish_request(host); 248 } 249 250 static int au1xmmc_send_command(struct au1xmmc_host *host, int wait, 251 struct mmc_command *cmd, struct mmc_data *data) 252 { 253 u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT); 254 255 switch (mmc_resp_type(cmd)) { 256 case MMC_RSP_NONE: 257 break; 258 case MMC_RSP_R1: 259 mmccmd |= SD_CMD_RT_1; 260 break; 261 case MMC_RSP_R1B: 262 mmccmd |= SD_CMD_RT_1B; 263 break; 264 case MMC_RSP_R2: 265 mmccmd |= SD_CMD_RT_2; 266 break; 267 case MMC_RSP_R3: 268 mmccmd |= SD_CMD_RT_3; 269 break; 270 default: 271 printk(KERN_INFO "au1xmmc: unhandled response type %02x\n", 272 mmc_resp_type(cmd)); 273 return -EINVAL; 274 } 275 276 if (data) { 277 if (data->flags & MMC_DATA_READ) { 278 if (data->blocks > 1) 279 mmccmd |= SD_CMD_CT_4; 280 else 281 mmccmd |= SD_CMD_CT_2; 282 } else if (data->flags & MMC_DATA_WRITE) { 283 if (data->blocks > 1) 284 mmccmd |= SD_CMD_CT_3; 285 else 286 mmccmd |= SD_CMD_CT_1; 287 } 288 } 289 290 au_writel(cmd->arg, HOST_CMDARG(host)); 291 au_sync(); 292 293 if (wait) 294 IRQ_OFF(host, SD_CONFIG_CR); 295 296 au_writel((mmccmd | SD_CMD_GO), HOST_CMD(host)); 297 au_sync(); 298 299 /* Wait for the command to go on the line */ 300 while (au_readl(HOST_CMD(host)) & SD_CMD_GO) 301 /* nop */; 302 303 /* Wait for the command to come back */ 304 if (wait) { 305 u32 status = au_readl(HOST_STATUS(host)); 306 307 while (!(status & SD_STATUS_CR)) 308 status = au_readl(HOST_STATUS(host)); 309 310 /* Clear the CR status */ 311 au_writel(SD_STATUS_CR, HOST_STATUS(host)); 312 313 IRQ_ON(host, SD_CONFIG_CR); 314 } 315 316 return 0; 317 } 318 319 static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status) 320 { 321 struct mmc_request *mrq = host->mrq; 322 struct mmc_data *data; 323 u32 crc; 324 325 WARN_ON((host->status != HOST_S_DATA) && (host->status != HOST_S_STOP)); 326 327 if (host->mrq == NULL) 328 return; 329 330 data = mrq->cmd->data; 331 332 if (status == 0) 333 status = au_readl(HOST_STATUS(host)); 334 335 /* The transaction is really over when the SD_STATUS_DB bit is clear */ 336 while ((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB)) 337 status = au_readl(HOST_STATUS(host)); 338 339 data->error = 0; 340 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir); 341 342 /* Process any errors */ 343 crc = (status & (SD_STATUS_WC | SD_STATUS_RC)); 344 if (host->flags & HOST_F_XMIT) 345 crc |= ((status & 0x07) == 0x02) ? 0 : 1; 346 347 if (crc) 348 data->error = -EILSEQ; 349 350 /* Clear the CRC bits */ 351 au_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host)); 352 353 data->bytes_xfered = 0; 354 355 if (!data->error) { 356 if (host->flags & HOST_F_DMA) { 357 #ifdef CONFIG_SOC_AU1200 /* DBDMA */ 358 u32 chan = DMA_CHANNEL(host); 359 360 chan_tab_t *c = *((chan_tab_t **)chan); 361 au1x_dma_chan_t *cp = c->chan_ptr; 362 data->bytes_xfered = cp->ddma_bytecnt; 363 #endif 364 } else 365 data->bytes_xfered = 366 (data->blocks * data->blksz) - host->pio.len; 367 } 368 369 au1xmmc_finish_request(host); 370 } 371 372 static void au1xmmc_tasklet_data(unsigned long param) 373 { 374 struct au1xmmc_host *host = (struct au1xmmc_host *)param; 375 376 u32 status = au_readl(HOST_STATUS(host)); 377 au1xmmc_data_complete(host, status); 378 } 379 380 #define AU1XMMC_MAX_TRANSFER 8 381 382 static void au1xmmc_send_pio(struct au1xmmc_host *host) 383 { 384 struct mmc_data *data; 385 int sg_len, max, count; 386 unsigned char *sg_ptr, val; 387 u32 status; 388 struct scatterlist *sg; 389 390 data = host->mrq->data; 391 392 if (!(host->flags & HOST_F_XMIT)) 393 return; 394 395 /* This is the pointer to the data buffer */ 396 sg = &data->sg[host->pio.index]; 397 sg_ptr = sg_virt(sg) + host->pio.offset; 398 399 /* This is the space left inside the buffer */ 400 sg_len = data->sg[host->pio.index].length - host->pio.offset; 401 402 /* Check if we need less than the size of the sg_buffer */ 403 max = (sg_len > host->pio.len) ? host->pio.len : sg_len; 404 if (max > AU1XMMC_MAX_TRANSFER) 405 max = AU1XMMC_MAX_TRANSFER; 406 407 for (count = 0; count < max; count++) { 408 status = au_readl(HOST_STATUS(host)); 409 410 if (!(status & SD_STATUS_TH)) 411 break; 412 413 val = *sg_ptr++; 414 415 au_writel((unsigned long)val, HOST_TXPORT(host)); 416 au_sync(); 417 } 418 419 host->pio.len -= count; 420 host->pio.offset += count; 421 422 if (count == sg_len) { 423 host->pio.index++; 424 host->pio.offset = 0; 425 } 426 427 if (host->pio.len == 0) { 428 IRQ_OFF(host, SD_CONFIG_TH); 429 430 if (host->flags & HOST_F_STOP) 431 SEND_STOP(host); 432 433 tasklet_schedule(&host->data_task); 434 } 435 } 436 437 static void au1xmmc_receive_pio(struct au1xmmc_host *host) 438 { 439 struct mmc_data *data; 440 int max, count, sg_len = 0; 441 unsigned char *sg_ptr = NULL; 442 u32 status, val; 443 struct scatterlist *sg; 444 445 data = host->mrq->data; 446 447 if (!(host->flags & HOST_F_RECV)) 448 return; 449 450 max = host->pio.len; 451 452 if (host->pio.index < host->dma.len) { 453 sg = &data->sg[host->pio.index]; 454 sg_ptr = sg_virt(sg) + host->pio.offset; 455 456 /* This is the space left inside the buffer */ 457 sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset; 458 459 /* Check if we need less than the size of the sg_buffer */ 460 if (sg_len < max) 461 max = sg_len; 462 } 463 464 if (max > AU1XMMC_MAX_TRANSFER) 465 max = AU1XMMC_MAX_TRANSFER; 466 467 for (count = 0; count < max; count++) { 468 status = au_readl(HOST_STATUS(host)); 469 470 if (!(status & SD_STATUS_NE)) 471 break; 472 473 if (status & SD_STATUS_RC) { 474 DBG("RX CRC Error [%d + %d].\n", host->pdev->id, 475 host->pio.len, count); 476 break; 477 } 478 479 if (status & SD_STATUS_RO) { 480 DBG("RX Overrun [%d + %d]\n", host->pdev->id, 481 host->pio.len, count); 482 break; 483 } 484 else if (status & SD_STATUS_RU) { 485 DBG("RX Underrun [%d + %d]\n", host->pdev->id, 486 host->pio.len, count); 487 break; 488 } 489 490 val = au_readl(HOST_RXPORT(host)); 491 492 if (sg_ptr) 493 *sg_ptr++ = (unsigned char)(val & 0xFF); 494 } 495 496 host->pio.len -= count; 497 host->pio.offset += count; 498 499 if (sg_len && count == sg_len) { 500 host->pio.index++; 501 host->pio.offset = 0; 502 } 503 504 if (host->pio.len == 0) { 505 /* IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF); */ 506 IRQ_OFF(host, SD_CONFIG_NE); 507 508 if (host->flags & HOST_F_STOP) 509 SEND_STOP(host); 510 511 tasklet_schedule(&host->data_task); 512 } 513 } 514 515 /* This is called when a command has been completed - grab the response 516 * and check for errors. Then start the data transfer if it is indicated. 517 */ 518 static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status) 519 { 520 struct mmc_request *mrq = host->mrq; 521 struct mmc_command *cmd; 522 u32 r[4]; 523 int i, trans; 524 525 if (!host->mrq) 526 return; 527 528 cmd = mrq->cmd; 529 cmd->error = 0; 530 531 if (cmd->flags & MMC_RSP_PRESENT) { 532 if (cmd->flags & MMC_RSP_136) { 533 r[0] = au_readl(host->iobase + SD_RESP3); 534 r[1] = au_readl(host->iobase + SD_RESP2); 535 r[2] = au_readl(host->iobase + SD_RESP1); 536 r[3] = au_readl(host->iobase + SD_RESP0); 537 538 /* The CRC is omitted from the response, so really 539 * we only got 120 bytes, but the engine expects 540 * 128 bits, so we have to shift things up. 541 */ 542 for (i = 0; i < 4; i++) { 543 cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8; 544 if (i != 3) 545 cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24; 546 } 547 } else { 548 /* Techincally, we should be getting all 48 bits of 549 * the response (SD_RESP1 + SD_RESP2), but because 550 * our response omits the CRC, our data ends up 551 * being shifted 8 bits to the right. In this case, 552 * that means that the OSR data starts at bit 31, 553 * so we can just read RESP0 and return that. 554 */ 555 cmd->resp[0] = au_readl(host->iobase + SD_RESP0); 556 } 557 } 558 559 /* Figure out errors */ 560 if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC)) 561 cmd->error = -EILSEQ; 562 563 trans = host->flags & (HOST_F_XMIT | HOST_F_RECV); 564 565 if (!trans || cmd->error) { 566 IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF); 567 tasklet_schedule(&host->finish_task); 568 return; 569 } 570 571 host->status = HOST_S_DATA; 572 573 if (host->flags & HOST_F_DMA) { 574 #ifdef CONFIG_SOC_AU1200 /* DBDMA */ 575 u32 channel = DMA_CHANNEL(host); 576 577 /* Start the DMA as soon as the buffer gets something in it */ 578 579 if (host->flags & HOST_F_RECV) { 580 u32 mask = SD_STATUS_DB | SD_STATUS_NE; 581 582 while((status & mask) != mask) 583 status = au_readl(HOST_STATUS(host)); 584 } 585 586 au1xxx_dbdma_start(channel); 587 #endif 588 } 589 } 590 591 static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate) 592 { 593 unsigned int pbus = get_au1x00_speed(); 594 unsigned int divisor; 595 u32 config; 596 597 /* From databook: 598 * divisor = ((((cpuclock / sbus_divisor) / 2) / mmcclock) / 2) - 1 599 */ 600 pbus /= ((au_readl(SYS_POWERCTRL) & 0x3) + 2); 601 pbus /= 2; 602 divisor = ((pbus / rate) / 2) - 1; 603 604 config = au_readl(HOST_CONFIG(host)); 605 606 config &= ~(SD_CONFIG_DIV); 607 config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE; 608 609 au_writel(config, HOST_CONFIG(host)); 610 au_sync(); 611 } 612 613 static int au1xmmc_prepare_data(struct au1xmmc_host *host, 614 struct mmc_data *data) 615 { 616 int datalen = data->blocks * data->blksz; 617 618 if (data->flags & MMC_DATA_READ) 619 host->flags |= HOST_F_RECV; 620 else 621 host->flags |= HOST_F_XMIT; 622 623 if (host->mrq->stop) 624 host->flags |= HOST_F_STOP; 625 626 host->dma.dir = DMA_BIDIRECTIONAL; 627 628 host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg, 629 data->sg_len, host->dma.dir); 630 631 if (host->dma.len == 0) 632 return -ETIMEDOUT; 633 634 au_writel(data->blksz - 1, HOST_BLKSIZE(host)); 635 636 if (host->flags & HOST_F_DMA) { 637 #ifdef CONFIG_SOC_AU1200 /* DBDMA */ 638 int i; 639 u32 channel = DMA_CHANNEL(host); 640 641 au1xxx_dbdma_stop(channel); 642 643 for (i = 0; i < host->dma.len; i++) { 644 u32 ret = 0, flags = DDMA_FLAGS_NOIE; 645 struct scatterlist *sg = &data->sg[i]; 646 int sg_len = sg->length; 647 648 int len = (datalen > sg_len) ? sg_len : datalen; 649 650 if (i == host->dma.len - 1) 651 flags = DDMA_FLAGS_IE; 652 653 if (host->flags & HOST_F_XMIT) { 654 ret = au1xxx_dbdma_put_source(channel, 655 sg_phys(sg), len, flags); 656 } else { 657 ret = au1xxx_dbdma_put_dest(channel, 658 sg_phys(sg), len, flags); 659 } 660 661 if (!ret) 662 goto dataerr; 663 664 datalen -= len; 665 } 666 #endif 667 } else { 668 host->pio.index = 0; 669 host->pio.offset = 0; 670 host->pio.len = datalen; 671 672 if (host->flags & HOST_F_XMIT) 673 IRQ_ON(host, SD_CONFIG_TH); 674 else 675 IRQ_ON(host, SD_CONFIG_NE); 676 /* IRQ_ON(host, SD_CONFIG_RA | SD_CONFIG_RF); */ 677 } 678 679 return 0; 680 681 dataerr: 682 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, 683 host->dma.dir); 684 return -ETIMEDOUT; 685 } 686 687 /* This actually starts a command or data transaction */ 688 static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq) 689 { 690 struct au1xmmc_host *host = mmc_priv(mmc); 691 int ret = 0; 692 693 WARN_ON(irqs_disabled()); 694 WARN_ON(host->status != HOST_S_IDLE); 695 696 host->mrq = mrq; 697 host->status = HOST_S_CMD; 698 699 /* fail request immediately if no card is present */ 700 if (0 == au1xmmc_card_inserted(mmc)) { 701 mrq->cmd->error = -ENOMEDIUM; 702 au1xmmc_finish_request(host); 703 return; 704 } 705 706 if (mrq->data) { 707 FLUSH_FIFO(host); 708 ret = au1xmmc_prepare_data(host, mrq->data); 709 } 710 711 if (!ret) 712 ret = au1xmmc_send_command(host, 0, mrq->cmd, mrq->data); 713 714 if (ret) { 715 mrq->cmd->error = ret; 716 au1xmmc_finish_request(host); 717 } 718 } 719 720 static void au1xmmc_reset_controller(struct au1xmmc_host *host) 721 { 722 /* Apply the clock */ 723 au_writel(SD_ENABLE_CE, HOST_ENABLE(host)); 724 au_sync_delay(1); 725 726 au_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host)); 727 au_sync_delay(5); 728 729 au_writel(~0, HOST_STATUS(host)); 730 au_sync(); 731 732 au_writel(0, HOST_BLKSIZE(host)); 733 au_writel(0x001fffff, HOST_TIMEOUT(host)); 734 au_sync(); 735 736 au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host)); 737 au_sync(); 738 739 au_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host)); 740 au_sync_delay(1); 741 742 au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host)); 743 au_sync(); 744 745 /* Configure interrupts */ 746 au_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host)); 747 au_sync(); 748 } 749 750 751 static void au1xmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 752 { 753 struct au1xmmc_host *host = mmc_priv(mmc); 754 u32 config2; 755 756 if (ios->power_mode == MMC_POWER_OFF) 757 au1xmmc_set_power(host, 0); 758 else if (ios->power_mode == MMC_POWER_ON) { 759 au1xmmc_set_power(host, 1); 760 } 761 762 if (ios->clock && ios->clock != host->clock) { 763 au1xmmc_set_clock(host, ios->clock); 764 host->clock = ios->clock; 765 } 766 767 config2 = au_readl(HOST_CONFIG2(host)); 768 switch (ios->bus_width) { 769 case MMC_BUS_WIDTH_4: 770 config2 |= SD_CONFIG2_WB; 771 break; 772 case MMC_BUS_WIDTH_1: 773 config2 &= ~SD_CONFIG2_WB; 774 break; 775 } 776 au_writel(config2, HOST_CONFIG2(host)); 777 au_sync(); 778 } 779 780 #define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT) 781 #define STATUS_DATA_IN (SD_STATUS_NE) 782 #define STATUS_DATA_OUT (SD_STATUS_TH) 783 784 static irqreturn_t au1xmmc_irq(int irq, void *dev_id) 785 { 786 struct au1xmmc_host *host = dev_id; 787 u32 status; 788 789 status = au_readl(HOST_STATUS(host)); 790 791 if (!(status & SD_STATUS_I)) 792 return IRQ_NONE; /* not ours */ 793 794 if (status & SD_STATUS_SI) /* SDIO */ 795 mmc_signal_sdio_irq(host->mmc); 796 797 if (host->mrq && (status & STATUS_TIMEOUT)) { 798 if (status & SD_STATUS_RAT) 799 host->mrq->cmd->error = -ETIMEDOUT; 800 else if (status & SD_STATUS_DT) 801 host->mrq->data->error = -ETIMEDOUT; 802 803 /* In PIO mode, interrupts might still be enabled */ 804 IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH); 805 806 /* IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF); */ 807 tasklet_schedule(&host->finish_task); 808 } 809 #if 0 810 else if (status & SD_STATUS_DD) { 811 /* Sometimes we get a DD before a NE in PIO mode */ 812 if (!(host->flags & HOST_F_DMA) && (status & SD_STATUS_NE)) 813 au1xmmc_receive_pio(host); 814 else { 815 au1xmmc_data_complete(host, status); 816 /* tasklet_schedule(&host->data_task); */ 817 } 818 } 819 #endif 820 else if (status & SD_STATUS_CR) { 821 if (host->status == HOST_S_CMD) 822 au1xmmc_cmd_complete(host, status); 823 824 } else if (!(host->flags & HOST_F_DMA)) { 825 if ((host->flags & HOST_F_XMIT) && (status & STATUS_DATA_OUT)) 826 au1xmmc_send_pio(host); 827 else if ((host->flags & HOST_F_RECV) && (status & STATUS_DATA_IN)) 828 au1xmmc_receive_pio(host); 829 830 } else if (status & 0x203F3C70) { 831 DBG("Unhandled status %8.8x\n", host->pdev->id, 832 status); 833 } 834 835 au_writel(status, HOST_STATUS(host)); 836 au_sync(); 837 838 return IRQ_HANDLED; 839 } 840 841 #ifdef CONFIG_SOC_AU1200 842 /* 8bit memory DMA device */ 843 static dbdev_tab_t au1xmmc_mem_dbdev = { 844 .dev_id = DSCR_CMD0_ALWAYS, 845 .dev_flags = DEV_FLAGS_ANYUSE, 846 .dev_tsize = 0, 847 .dev_devwidth = 8, 848 .dev_physaddr = 0x00000000, 849 .dev_intlevel = 0, 850 .dev_intpolarity = 0, 851 }; 852 static int memid; 853 854 static void au1xmmc_dbdma_callback(int irq, void *dev_id) 855 { 856 struct au1xmmc_host *host = (struct au1xmmc_host *)dev_id; 857 858 /* Avoid spurious interrupts */ 859 if (!host->mrq) 860 return; 861 862 if (host->flags & HOST_F_STOP) 863 SEND_STOP(host); 864 865 tasklet_schedule(&host->data_task); 866 } 867 868 static int au1xmmc_dbdma_init(struct au1xmmc_host *host) 869 { 870 struct resource *res; 871 int txid, rxid; 872 873 res = platform_get_resource(host->pdev, IORESOURCE_DMA, 0); 874 if (!res) 875 return -ENODEV; 876 txid = res->start; 877 878 res = platform_get_resource(host->pdev, IORESOURCE_DMA, 1); 879 if (!res) 880 return -ENODEV; 881 rxid = res->start; 882 883 if (!memid) 884 return -ENODEV; 885 886 host->tx_chan = au1xxx_dbdma_chan_alloc(memid, txid, 887 au1xmmc_dbdma_callback, (void *)host); 888 if (!host->tx_chan) { 889 dev_err(&host->pdev->dev, "cannot allocate TX DMA\n"); 890 return -ENODEV; 891 } 892 893 host->rx_chan = au1xxx_dbdma_chan_alloc(rxid, memid, 894 au1xmmc_dbdma_callback, (void *)host); 895 if (!host->rx_chan) { 896 dev_err(&host->pdev->dev, "cannot allocate RX DMA\n"); 897 au1xxx_dbdma_chan_free(host->tx_chan); 898 return -ENODEV; 899 } 900 901 au1xxx_dbdma_set_devwidth(host->tx_chan, 8); 902 au1xxx_dbdma_set_devwidth(host->rx_chan, 8); 903 904 au1xxx_dbdma_ring_alloc(host->tx_chan, AU1XMMC_DESCRIPTOR_COUNT); 905 au1xxx_dbdma_ring_alloc(host->rx_chan, AU1XMMC_DESCRIPTOR_COUNT); 906 907 /* DBDMA is good to go */ 908 host->flags |= HOST_F_DMA; 909 910 return 0; 911 } 912 913 static void au1xmmc_dbdma_shutdown(struct au1xmmc_host *host) 914 { 915 if (host->flags & HOST_F_DMA) { 916 host->flags &= ~HOST_F_DMA; 917 au1xxx_dbdma_chan_free(host->tx_chan); 918 au1xxx_dbdma_chan_free(host->rx_chan); 919 } 920 } 921 #endif 922 923 static void au1xmmc_enable_sdio_irq(struct mmc_host *mmc, int en) 924 { 925 struct au1xmmc_host *host = mmc_priv(mmc); 926 927 if (en) 928 IRQ_ON(host, SD_CONFIG_SI); 929 else 930 IRQ_OFF(host, SD_CONFIG_SI); 931 } 932 933 static const struct mmc_host_ops au1xmmc_ops = { 934 .request = au1xmmc_request, 935 .set_ios = au1xmmc_set_ios, 936 .get_ro = au1xmmc_card_readonly, 937 .get_cd = au1xmmc_card_inserted, 938 .enable_sdio_irq = au1xmmc_enable_sdio_irq, 939 }; 940 941 static int __devinit au1xmmc_probe(struct platform_device *pdev) 942 { 943 struct mmc_host *mmc; 944 struct au1xmmc_host *host; 945 struct resource *r; 946 int ret; 947 948 mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev); 949 if (!mmc) { 950 dev_err(&pdev->dev, "no memory for mmc_host\n"); 951 ret = -ENOMEM; 952 goto out0; 953 } 954 955 host = mmc_priv(mmc); 956 host->mmc = mmc; 957 host->platdata = pdev->dev.platform_data; 958 host->pdev = pdev; 959 960 ret = -ENODEV; 961 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 962 if (!r) { 963 dev_err(&pdev->dev, "no mmio defined\n"); 964 goto out1; 965 } 966 967 host->ioarea = request_mem_region(r->start, resource_size(r), 968 pdev->name); 969 if (!host->ioarea) { 970 dev_err(&pdev->dev, "mmio already in use\n"); 971 goto out1; 972 } 973 974 host->iobase = (unsigned long)ioremap(r->start, 0x3c); 975 if (!host->iobase) { 976 dev_err(&pdev->dev, "cannot remap mmio\n"); 977 goto out2; 978 } 979 980 r = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 981 if (!r) { 982 dev_err(&pdev->dev, "no IRQ defined\n"); 983 goto out3; 984 } 985 986 host->irq = r->start; 987 /* IRQ is shared among both SD controllers */ 988 ret = request_irq(host->irq, au1xmmc_irq, IRQF_SHARED, 989 DRIVER_NAME, host); 990 if (ret) { 991 dev_err(&pdev->dev, "cannot grab IRQ\n"); 992 goto out3; 993 } 994 995 mmc->ops = &au1xmmc_ops; 996 997 mmc->f_min = 450000; 998 mmc->f_max = 24000000; 999 1000 mmc->max_seg_size = AU1XMMC_DESCRIPTOR_SIZE; 1001 mmc->max_segs = AU1XMMC_DESCRIPTOR_COUNT; 1002 1003 mmc->max_blk_size = 2048; 1004 mmc->max_blk_count = 512; 1005 1006 mmc->ocr_avail = AU1XMMC_OCR; 1007 mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_SDIO_IRQ; 1008 1009 host->status = HOST_S_IDLE; 1010 1011 /* board-specific carddetect setup, if any */ 1012 if (host->platdata && host->platdata->cd_setup) { 1013 ret = host->platdata->cd_setup(mmc, 1); 1014 if (ret) { 1015 dev_warn(&pdev->dev, "board CD setup failed\n"); 1016 mmc->caps |= MMC_CAP_NEEDS_POLL; 1017 } 1018 } else 1019 mmc->caps |= MMC_CAP_NEEDS_POLL; 1020 1021 /* platform may not be able to use all advertised caps */ 1022 if (host->platdata) 1023 mmc->caps &= ~(host->platdata->mask_host_caps); 1024 1025 tasklet_init(&host->data_task, au1xmmc_tasklet_data, 1026 (unsigned long)host); 1027 1028 tasklet_init(&host->finish_task, au1xmmc_tasklet_finish, 1029 (unsigned long)host); 1030 1031 #ifdef CONFIG_SOC_AU1200 1032 ret = au1xmmc_dbdma_init(host); 1033 if (ret) 1034 printk(KERN_INFO DRIVER_NAME ": DBDMA init failed; using PIO\n"); 1035 #endif 1036 1037 #ifdef CONFIG_LEDS_CLASS 1038 if (host->platdata && host->platdata->led) { 1039 struct led_classdev *led = host->platdata->led; 1040 led->name = mmc_hostname(mmc); 1041 led->brightness = LED_OFF; 1042 led->default_trigger = mmc_hostname(mmc); 1043 ret = led_classdev_register(mmc_dev(mmc), led); 1044 if (ret) 1045 goto out5; 1046 } 1047 #endif 1048 1049 au1xmmc_reset_controller(host); 1050 1051 ret = mmc_add_host(mmc); 1052 if (ret) { 1053 dev_err(&pdev->dev, "cannot add mmc host\n"); 1054 goto out6; 1055 } 1056 1057 platform_set_drvdata(pdev, host); 1058 1059 printk(KERN_INFO DRIVER_NAME ": MMC Controller %d set up at %8.8X" 1060 " (mode=%s)\n", pdev->id, host->iobase, 1061 host->flags & HOST_F_DMA ? "dma" : "pio"); 1062 1063 return 0; /* all ok */ 1064 1065 out6: 1066 #ifdef CONFIG_LEDS_CLASS 1067 if (host->platdata && host->platdata->led) 1068 led_classdev_unregister(host->platdata->led); 1069 out5: 1070 #endif 1071 au_writel(0, HOST_ENABLE(host)); 1072 au_writel(0, HOST_CONFIG(host)); 1073 au_writel(0, HOST_CONFIG2(host)); 1074 au_sync(); 1075 1076 #ifdef CONFIG_SOC_AU1200 1077 au1xmmc_dbdma_shutdown(host); 1078 #endif 1079 1080 tasklet_kill(&host->data_task); 1081 tasklet_kill(&host->finish_task); 1082 1083 if (host->platdata && host->platdata->cd_setup && 1084 !(mmc->caps & MMC_CAP_NEEDS_POLL)) 1085 host->platdata->cd_setup(mmc, 0); 1086 1087 free_irq(host->irq, host); 1088 out3: 1089 iounmap((void *)host->iobase); 1090 out2: 1091 release_resource(host->ioarea); 1092 kfree(host->ioarea); 1093 out1: 1094 mmc_free_host(mmc); 1095 out0: 1096 return ret; 1097 } 1098 1099 static int __devexit au1xmmc_remove(struct platform_device *pdev) 1100 { 1101 struct au1xmmc_host *host = platform_get_drvdata(pdev); 1102 1103 if (host) { 1104 mmc_remove_host(host->mmc); 1105 1106 #ifdef CONFIG_LEDS_CLASS 1107 if (host->platdata && host->platdata->led) 1108 led_classdev_unregister(host->platdata->led); 1109 #endif 1110 1111 if (host->platdata && host->platdata->cd_setup && 1112 !(host->mmc->caps & MMC_CAP_NEEDS_POLL)) 1113 host->platdata->cd_setup(host->mmc, 0); 1114 1115 au_writel(0, HOST_ENABLE(host)); 1116 au_writel(0, HOST_CONFIG(host)); 1117 au_writel(0, HOST_CONFIG2(host)); 1118 au_sync(); 1119 1120 tasklet_kill(&host->data_task); 1121 tasklet_kill(&host->finish_task); 1122 1123 #ifdef CONFIG_SOC_AU1200 1124 au1xmmc_dbdma_shutdown(host); 1125 #endif 1126 au1xmmc_set_power(host, 0); 1127 1128 free_irq(host->irq, host); 1129 iounmap((void *)host->iobase); 1130 release_resource(host->ioarea); 1131 kfree(host->ioarea); 1132 1133 mmc_free_host(host->mmc); 1134 platform_set_drvdata(pdev, NULL); 1135 } 1136 return 0; 1137 } 1138 1139 #ifdef CONFIG_PM 1140 static int au1xmmc_suspend(struct platform_device *pdev, pm_message_t state) 1141 { 1142 struct au1xmmc_host *host = platform_get_drvdata(pdev); 1143 int ret; 1144 1145 ret = mmc_suspend_host(host->mmc); 1146 if (ret) 1147 return ret; 1148 1149 au_writel(0, HOST_CONFIG2(host)); 1150 au_writel(0, HOST_CONFIG(host)); 1151 au_writel(0xffffffff, HOST_STATUS(host)); 1152 au_writel(0, HOST_ENABLE(host)); 1153 au_sync(); 1154 1155 return 0; 1156 } 1157 1158 static int au1xmmc_resume(struct platform_device *pdev) 1159 { 1160 struct au1xmmc_host *host = platform_get_drvdata(pdev); 1161 1162 au1xmmc_reset_controller(host); 1163 1164 return mmc_resume_host(host->mmc); 1165 } 1166 #else 1167 #define au1xmmc_suspend NULL 1168 #define au1xmmc_resume NULL 1169 #endif 1170 1171 static struct platform_driver au1xmmc_driver = { 1172 .probe = au1xmmc_probe, 1173 .remove = au1xmmc_remove, 1174 .suspend = au1xmmc_suspend, 1175 .resume = au1xmmc_resume, 1176 .driver = { 1177 .name = DRIVER_NAME, 1178 .owner = THIS_MODULE, 1179 }, 1180 }; 1181 1182 static int __init au1xmmc_init(void) 1183 { 1184 #ifdef CONFIG_SOC_AU1200 1185 /* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride 1186 * of 8 bits. And since devices are shared, we need to create 1187 * our own to avoid freaking out other devices. 1188 */ 1189 memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev); 1190 if (!memid) 1191 printk(KERN_ERR "au1xmmc: cannot add memory dbdma dev\n"); 1192 #endif 1193 return platform_driver_register(&au1xmmc_driver); 1194 } 1195 1196 static void __exit au1xmmc_exit(void) 1197 { 1198 #ifdef CONFIG_SOC_AU1200 1199 if (memid) 1200 au1xxx_ddma_del_device(memid); 1201 #endif 1202 platform_driver_unregister(&au1xmmc_driver); 1203 } 1204 1205 module_init(au1xmmc_init); 1206 module_exit(au1xmmc_exit); 1207 1208 MODULE_AUTHOR("Advanced Micro Devices, Inc"); 1209 MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX"); 1210 MODULE_LICENSE("GPL"); 1211 MODULE_ALIAS("platform:au1xxx-mmc"); 1212