xref: /openbmc/linux/drivers/mmc/host/au1xmmc.c (revision 1eb4c977)
1 /*
2  * linux/drivers/mmc/host/au1xmmc.c - AU1XX0 MMC driver
3  *
4  *  Copyright (c) 2005, Advanced Micro Devices, Inc.
5  *
6  *  Developed with help from the 2.4.30 MMC AU1XXX controller including
7  *  the following copyright notices:
8  *     Copyright (c) 2003-2004 Embedded Edge, LLC.
9  *     Portions Copyright (C) 2002 Embedix, Inc
10  *     Copyright 2002 Hewlett-Packard Company
11 
12  *  2.6 version of this driver inspired by:
13  *     (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman,
14  *     All Rights Reserved.
15  *     (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King,
16  *     All Rights Reserved.
17  *
18 
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License version 2 as
21  * published by the Free Software Foundation.
22  */
23 
24 /* Why don't we use the SD controllers' carddetect feature?
25  *
26  * From the AU1100 MMC application guide:
27  * If the Au1100-based design is intended to support both MultiMediaCards
28  * and 1- or 4-data bit SecureDigital cards, then the solution is to
29  * connect a weak (560KOhm) pull-up resistor to connector pin 1.
30  * In doing so, a MMC card never enters SPI-mode communications,
31  * but now the SecureDigital card-detect feature of CD/DAT3 is ineffective
32  * (the low to high transition will not occur).
33  */
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/platform_device.h>
38 #include <linux/mm.h>
39 #include <linux/interrupt.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/leds.h>
43 #include <linux/mmc/host.h>
44 #include <linux/slab.h>
45 
46 #include <asm/io.h>
47 #include <asm/mach-au1x00/au1000.h>
48 #include <asm/mach-au1x00/au1xxx_dbdma.h>
49 #include <asm/mach-au1x00/au1100_mmc.h>
50 
51 #define DRIVER_NAME "au1xxx-mmc"
52 
53 /* Set this to enable special debugging macros */
54 /* #define DEBUG */
55 
56 #ifdef DEBUG
57 #define DBG(fmt, idx, args...)	\
58 	pr_debug("au1xmmc(%d): DEBUG: " fmt, idx, ##args)
59 #else
60 #define DBG(fmt, idx, args...) do {} while (0)
61 #endif
62 
63 /* Hardware definitions */
64 #define AU1XMMC_DESCRIPTOR_COUNT 1
65 
66 /* max DMA seg size: 64KB on Au1100, 4MB on Au1200 */
67 #define AU1100_MMC_DESCRIPTOR_SIZE 0x0000ffff
68 #define AU1200_MMC_DESCRIPTOR_SIZE 0x003fffff
69 
70 #define AU1XMMC_OCR (MMC_VDD_27_28 | MMC_VDD_28_29 | MMC_VDD_29_30 | \
71 		     MMC_VDD_30_31 | MMC_VDD_31_32 | MMC_VDD_32_33 | \
72 		     MMC_VDD_33_34 | MMC_VDD_34_35 | MMC_VDD_35_36)
73 
74 /* This gives us a hard value for the stop command that we can write directly
75  * to the command register.
76  */
77 #define STOP_CMD	\
78 	(SD_CMD_RT_1B | SD_CMD_CT_7 | (0xC << SD_CMD_CI_SHIFT) | SD_CMD_GO)
79 
80 /* This is the set of interrupts that we configure by default. */
81 #define AU1XMMC_INTERRUPTS 				\
82 	(SD_CONFIG_SC | SD_CONFIG_DT | SD_CONFIG_RAT |	\
83 	 SD_CONFIG_CR | SD_CONFIG_I)
84 
85 /* The poll event (looking for insert/remove events runs twice a second. */
86 #define AU1XMMC_DETECT_TIMEOUT (HZ/2)
87 
88 struct au1xmmc_host {
89 	struct mmc_host *mmc;
90 	struct mmc_request *mrq;
91 
92 	u32 flags;
93 	u32 iobase;
94 	u32 clock;
95 	u32 bus_width;
96 	u32 power_mode;
97 
98 	int status;
99 
100 	struct {
101 		int len;
102 		int dir;
103 	} dma;
104 
105 	struct {
106 		int index;
107 		int offset;
108 		int len;
109 	} pio;
110 
111 	u32 tx_chan;
112 	u32 rx_chan;
113 
114 	int irq;
115 
116 	struct tasklet_struct finish_task;
117 	struct tasklet_struct data_task;
118 	struct au1xmmc_platform_data *platdata;
119 	struct platform_device *pdev;
120 	struct resource *ioarea;
121 };
122 
123 /* Status flags used by the host structure */
124 #define HOST_F_XMIT	0x0001
125 #define HOST_F_RECV	0x0002
126 #define HOST_F_DMA	0x0010
127 #define HOST_F_DBDMA	0x0020
128 #define HOST_F_ACTIVE	0x0100
129 #define HOST_F_STOP	0x1000
130 
131 #define HOST_S_IDLE	0x0001
132 #define HOST_S_CMD	0x0002
133 #define HOST_S_DATA	0x0003
134 #define HOST_S_STOP	0x0004
135 
136 /* Easy access macros */
137 #define HOST_STATUS(h)	((h)->iobase + SD_STATUS)
138 #define HOST_CONFIG(h)	((h)->iobase + SD_CONFIG)
139 #define HOST_ENABLE(h)	((h)->iobase + SD_ENABLE)
140 #define HOST_TXPORT(h)	((h)->iobase + SD_TXPORT)
141 #define HOST_RXPORT(h)	((h)->iobase + SD_RXPORT)
142 #define HOST_CMDARG(h)	((h)->iobase + SD_CMDARG)
143 #define HOST_BLKSIZE(h)	((h)->iobase + SD_BLKSIZE)
144 #define HOST_CMD(h)	((h)->iobase + SD_CMD)
145 #define HOST_CONFIG2(h)	((h)->iobase + SD_CONFIG2)
146 #define HOST_TIMEOUT(h)	((h)->iobase + SD_TIMEOUT)
147 #define HOST_DEBUG(h)	((h)->iobase + SD_DEBUG)
148 
149 #define DMA_CHANNEL(h)	\
150 	(((h)->flags & HOST_F_XMIT) ? (h)->tx_chan : (h)->rx_chan)
151 
152 static inline int has_dbdma(void)
153 {
154 	switch (alchemy_get_cputype()) {
155 	case ALCHEMY_CPU_AU1200:
156 	case ALCHEMY_CPU_AU1300:
157 		return 1;
158 	default:
159 		return 0;
160 	}
161 }
162 
163 static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask)
164 {
165 	u32 val = au_readl(HOST_CONFIG(host));
166 	val |= mask;
167 	au_writel(val, HOST_CONFIG(host));
168 	au_sync();
169 }
170 
171 static inline void FLUSH_FIFO(struct au1xmmc_host *host)
172 {
173 	u32 val = au_readl(HOST_CONFIG2(host));
174 
175 	au_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host));
176 	au_sync_delay(1);
177 
178 	/* SEND_STOP will turn off clock control - this re-enables it */
179 	val &= ~SD_CONFIG2_DF;
180 
181 	au_writel(val, HOST_CONFIG2(host));
182 	au_sync();
183 }
184 
185 static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask)
186 {
187 	u32 val = au_readl(HOST_CONFIG(host));
188 	val &= ~mask;
189 	au_writel(val, HOST_CONFIG(host));
190 	au_sync();
191 }
192 
193 static inline void SEND_STOP(struct au1xmmc_host *host)
194 {
195 	u32 config2;
196 
197 	WARN_ON(host->status != HOST_S_DATA);
198 	host->status = HOST_S_STOP;
199 
200 	config2 = au_readl(HOST_CONFIG2(host));
201 	au_writel(config2 | SD_CONFIG2_DF, HOST_CONFIG2(host));
202 	au_sync();
203 
204 	/* Send the stop command */
205 	au_writel(STOP_CMD, HOST_CMD(host));
206 }
207 
208 static void au1xmmc_set_power(struct au1xmmc_host *host, int state)
209 {
210 	if (host->platdata && host->platdata->set_power)
211 		host->platdata->set_power(host->mmc, state);
212 }
213 
214 static int au1xmmc_card_inserted(struct mmc_host *mmc)
215 {
216 	struct au1xmmc_host *host = mmc_priv(mmc);
217 
218 	if (host->platdata && host->platdata->card_inserted)
219 		return !!host->platdata->card_inserted(host->mmc);
220 
221 	return -ENOSYS;
222 }
223 
224 static int au1xmmc_card_readonly(struct mmc_host *mmc)
225 {
226 	struct au1xmmc_host *host = mmc_priv(mmc);
227 
228 	if (host->platdata && host->platdata->card_readonly)
229 		return !!host->platdata->card_readonly(mmc);
230 
231 	return -ENOSYS;
232 }
233 
234 static void au1xmmc_finish_request(struct au1xmmc_host *host)
235 {
236 	struct mmc_request *mrq = host->mrq;
237 
238 	host->mrq = NULL;
239 	host->flags &= HOST_F_ACTIVE | HOST_F_DMA;
240 
241 	host->dma.len = 0;
242 	host->dma.dir = 0;
243 
244 	host->pio.index  = 0;
245 	host->pio.offset = 0;
246 	host->pio.len = 0;
247 
248 	host->status = HOST_S_IDLE;
249 
250 	mmc_request_done(host->mmc, mrq);
251 }
252 
253 static void au1xmmc_tasklet_finish(unsigned long param)
254 {
255 	struct au1xmmc_host *host = (struct au1xmmc_host *) param;
256 	au1xmmc_finish_request(host);
257 }
258 
259 static int au1xmmc_send_command(struct au1xmmc_host *host, int wait,
260 				struct mmc_command *cmd, struct mmc_data *data)
261 {
262 	u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT);
263 
264 	switch (mmc_resp_type(cmd)) {
265 	case MMC_RSP_NONE:
266 		break;
267 	case MMC_RSP_R1:
268 		mmccmd |= SD_CMD_RT_1;
269 		break;
270 	case MMC_RSP_R1B:
271 		mmccmd |= SD_CMD_RT_1B;
272 		break;
273 	case MMC_RSP_R2:
274 		mmccmd |= SD_CMD_RT_2;
275 		break;
276 	case MMC_RSP_R3:
277 		mmccmd |= SD_CMD_RT_3;
278 		break;
279 	default:
280 		pr_info("au1xmmc: unhandled response type %02x\n",
281 			mmc_resp_type(cmd));
282 		return -EINVAL;
283 	}
284 
285 	if (data) {
286 		if (data->flags & MMC_DATA_READ) {
287 			if (data->blocks > 1)
288 				mmccmd |= SD_CMD_CT_4;
289 			else
290 				mmccmd |= SD_CMD_CT_2;
291 		} else if (data->flags & MMC_DATA_WRITE) {
292 			if (data->blocks > 1)
293 				mmccmd |= SD_CMD_CT_3;
294 			else
295 				mmccmd |= SD_CMD_CT_1;
296 		}
297 	}
298 
299 	au_writel(cmd->arg, HOST_CMDARG(host));
300 	au_sync();
301 
302 	if (wait)
303 		IRQ_OFF(host, SD_CONFIG_CR);
304 
305 	au_writel((mmccmd | SD_CMD_GO), HOST_CMD(host));
306 	au_sync();
307 
308 	/* Wait for the command to go on the line */
309 	while (au_readl(HOST_CMD(host)) & SD_CMD_GO)
310 		/* nop */;
311 
312 	/* Wait for the command to come back */
313 	if (wait) {
314 		u32 status = au_readl(HOST_STATUS(host));
315 
316 		while (!(status & SD_STATUS_CR))
317 			status = au_readl(HOST_STATUS(host));
318 
319 		/* Clear the CR status */
320 		au_writel(SD_STATUS_CR, HOST_STATUS(host));
321 
322 		IRQ_ON(host, SD_CONFIG_CR);
323 	}
324 
325 	return 0;
326 }
327 
328 static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status)
329 {
330 	struct mmc_request *mrq = host->mrq;
331 	struct mmc_data *data;
332 	u32 crc;
333 
334 	WARN_ON((host->status != HOST_S_DATA) && (host->status != HOST_S_STOP));
335 
336 	if (host->mrq == NULL)
337 		return;
338 
339 	data = mrq->cmd->data;
340 
341 	if (status == 0)
342 		status = au_readl(HOST_STATUS(host));
343 
344 	/* The transaction is really over when the SD_STATUS_DB bit is clear */
345 	while ((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB))
346 		status = au_readl(HOST_STATUS(host));
347 
348 	data->error = 0;
349 	dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir);
350 
351         /* Process any errors */
352 	crc = (status & (SD_STATUS_WC | SD_STATUS_RC));
353 	if (host->flags & HOST_F_XMIT)
354 		crc |= ((status & 0x07) == 0x02) ? 0 : 1;
355 
356 	if (crc)
357 		data->error = -EILSEQ;
358 
359 	/* Clear the CRC bits */
360 	au_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host));
361 
362 	data->bytes_xfered = 0;
363 
364 	if (!data->error) {
365 		if (host->flags & (HOST_F_DMA | HOST_F_DBDMA)) {
366 			u32 chan = DMA_CHANNEL(host);
367 
368 			chan_tab_t *c = *((chan_tab_t **)chan);
369 			au1x_dma_chan_t *cp = c->chan_ptr;
370 			data->bytes_xfered = cp->ddma_bytecnt;
371 		} else
372 			data->bytes_xfered =
373 				(data->blocks * data->blksz) - host->pio.len;
374 	}
375 
376 	au1xmmc_finish_request(host);
377 }
378 
379 static void au1xmmc_tasklet_data(unsigned long param)
380 {
381 	struct au1xmmc_host *host = (struct au1xmmc_host *)param;
382 
383 	u32 status = au_readl(HOST_STATUS(host));
384 	au1xmmc_data_complete(host, status);
385 }
386 
387 #define AU1XMMC_MAX_TRANSFER 8
388 
389 static void au1xmmc_send_pio(struct au1xmmc_host *host)
390 {
391 	struct mmc_data *data;
392 	int sg_len, max, count;
393 	unsigned char *sg_ptr, val;
394 	u32 status;
395 	struct scatterlist *sg;
396 
397 	data = host->mrq->data;
398 
399 	if (!(host->flags & HOST_F_XMIT))
400 		return;
401 
402 	/* This is the pointer to the data buffer */
403 	sg = &data->sg[host->pio.index];
404 	sg_ptr = sg_virt(sg) + host->pio.offset;
405 
406 	/* This is the space left inside the buffer */
407 	sg_len = data->sg[host->pio.index].length - host->pio.offset;
408 
409 	/* Check if we need less than the size of the sg_buffer */
410 	max = (sg_len > host->pio.len) ? host->pio.len : sg_len;
411 	if (max > AU1XMMC_MAX_TRANSFER)
412 		max = AU1XMMC_MAX_TRANSFER;
413 
414 	for (count = 0; count < max; count++) {
415 		status = au_readl(HOST_STATUS(host));
416 
417 		if (!(status & SD_STATUS_TH))
418 			break;
419 
420 		val = *sg_ptr++;
421 
422 		au_writel((unsigned long)val, HOST_TXPORT(host));
423 		au_sync();
424 	}
425 
426 	host->pio.len -= count;
427 	host->pio.offset += count;
428 
429 	if (count == sg_len) {
430 		host->pio.index++;
431 		host->pio.offset = 0;
432 	}
433 
434 	if (host->pio.len == 0) {
435 		IRQ_OFF(host, SD_CONFIG_TH);
436 
437 		if (host->flags & HOST_F_STOP)
438 			SEND_STOP(host);
439 
440 		tasklet_schedule(&host->data_task);
441 	}
442 }
443 
444 static void au1xmmc_receive_pio(struct au1xmmc_host *host)
445 {
446 	struct mmc_data *data;
447 	int max, count, sg_len = 0;
448 	unsigned char *sg_ptr = NULL;
449 	u32 status, val;
450 	struct scatterlist *sg;
451 
452 	data = host->mrq->data;
453 
454 	if (!(host->flags & HOST_F_RECV))
455 		return;
456 
457 	max = host->pio.len;
458 
459 	if (host->pio.index < host->dma.len) {
460 		sg = &data->sg[host->pio.index];
461 		sg_ptr = sg_virt(sg) + host->pio.offset;
462 
463 		/* This is the space left inside the buffer */
464 		sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset;
465 
466 		/* Check if we need less than the size of the sg_buffer */
467 		if (sg_len < max)
468 			max = sg_len;
469 	}
470 
471 	if (max > AU1XMMC_MAX_TRANSFER)
472 		max = AU1XMMC_MAX_TRANSFER;
473 
474 	for (count = 0; count < max; count++) {
475 		status = au_readl(HOST_STATUS(host));
476 
477 		if (!(status & SD_STATUS_NE))
478 			break;
479 
480 		if (status & SD_STATUS_RC) {
481 			DBG("RX CRC Error [%d + %d].\n", host->pdev->id,
482 					host->pio.len, count);
483 			break;
484 		}
485 
486 		if (status & SD_STATUS_RO) {
487 			DBG("RX Overrun [%d + %d]\n", host->pdev->id,
488 					host->pio.len, count);
489 			break;
490 		}
491 		else if (status & SD_STATUS_RU) {
492 			DBG("RX Underrun [%d + %d]\n", host->pdev->id,
493 					host->pio.len,	count);
494 			break;
495 		}
496 
497 		val = au_readl(HOST_RXPORT(host));
498 
499 		if (sg_ptr)
500 			*sg_ptr++ = (unsigned char)(val & 0xFF);
501 	}
502 
503 	host->pio.len -= count;
504 	host->pio.offset += count;
505 
506 	if (sg_len && count == sg_len) {
507 		host->pio.index++;
508 		host->pio.offset = 0;
509 	}
510 
511 	if (host->pio.len == 0) {
512 		/* IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF); */
513 		IRQ_OFF(host, SD_CONFIG_NE);
514 
515 		if (host->flags & HOST_F_STOP)
516 			SEND_STOP(host);
517 
518 		tasklet_schedule(&host->data_task);
519 	}
520 }
521 
522 /* This is called when a command has been completed - grab the response
523  * and check for errors.  Then start the data transfer if it is indicated.
524  */
525 static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status)
526 {
527 	struct mmc_request *mrq = host->mrq;
528 	struct mmc_command *cmd;
529 	u32 r[4];
530 	int i, trans;
531 
532 	if (!host->mrq)
533 		return;
534 
535 	cmd = mrq->cmd;
536 	cmd->error = 0;
537 
538 	if (cmd->flags & MMC_RSP_PRESENT) {
539 		if (cmd->flags & MMC_RSP_136) {
540 			r[0] = au_readl(host->iobase + SD_RESP3);
541 			r[1] = au_readl(host->iobase + SD_RESP2);
542 			r[2] = au_readl(host->iobase + SD_RESP1);
543 			r[3] = au_readl(host->iobase + SD_RESP0);
544 
545 			/* The CRC is omitted from the response, so really
546 			 * we only got 120 bytes, but the engine expects
547 			 * 128 bits, so we have to shift things up.
548 			 */
549 			for (i = 0; i < 4; i++) {
550 				cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8;
551 				if (i != 3)
552 					cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24;
553 			}
554 		} else {
555 			/* Techincally, we should be getting all 48 bits of
556 			 * the response (SD_RESP1 + SD_RESP2), but because
557 			 * our response omits the CRC, our data ends up
558 			 * being shifted 8 bits to the right.  In this case,
559 			 * that means that the OSR data starts at bit 31,
560 			 * so we can just read RESP0 and return that.
561 			 */
562 			cmd->resp[0] = au_readl(host->iobase + SD_RESP0);
563 		}
564 	}
565 
566         /* Figure out errors */
567 	if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC))
568 		cmd->error = -EILSEQ;
569 
570 	trans = host->flags & (HOST_F_XMIT | HOST_F_RECV);
571 
572 	if (!trans || cmd->error) {
573 		IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF);
574 		tasklet_schedule(&host->finish_task);
575 		return;
576 	}
577 
578 	host->status = HOST_S_DATA;
579 
580 	if ((host->flags & (HOST_F_DMA | HOST_F_DBDMA))) {
581 		u32 channel = DMA_CHANNEL(host);
582 
583 		/* Start the DBDMA as soon as the buffer gets something in it */
584 
585 		if (host->flags & HOST_F_RECV) {
586 			u32 mask = SD_STATUS_DB | SD_STATUS_NE;
587 
588 			while((status & mask) != mask)
589 				status = au_readl(HOST_STATUS(host));
590 		}
591 
592 		au1xxx_dbdma_start(channel);
593 	}
594 }
595 
596 static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate)
597 {
598 	unsigned int pbus = get_au1x00_speed();
599 	unsigned int divisor;
600 	u32 config;
601 
602 	/* From databook:
603 	 * divisor = ((((cpuclock / sbus_divisor) / 2) / mmcclock) / 2) - 1
604 	 */
605 	pbus /= ((au_readl(SYS_POWERCTRL) & 0x3) + 2);
606 	pbus /= 2;
607 	divisor = ((pbus / rate) / 2) - 1;
608 
609 	config = au_readl(HOST_CONFIG(host));
610 
611 	config &= ~(SD_CONFIG_DIV);
612 	config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE;
613 
614 	au_writel(config, HOST_CONFIG(host));
615 	au_sync();
616 }
617 
618 static int au1xmmc_prepare_data(struct au1xmmc_host *host,
619 				struct mmc_data *data)
620 {
621 	int datalen = data->blocks * data->blksz;
622 
623 	if (data->flags & MMC_DATA_READ)
624 		host->flags |= HOST_F_RECV;
625 	else
626 		host->flags |= HOST_F_XMIT;
627 
628 	if (host->mrq->stop)
629 		host->flags |= HOST_F_STOP;
630 
631 	host->dma.dir = DMA_BIDIRECTIONAL;
632 
633 	host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg,
634 				   data->sg_len, host->dma.dir);
635 
636 	if (host->dma.len == 0)
637 		return -ETIMEDOUT;
638 
639 	au_writel(data->blksz - 1, HOST_BLKSIZE(host));
640 
641 	if (host->flags & (HOST_F_DMA | HOST_F_DBDMA)) {
642 		int i;
643 		u32 channel = DMA_CHANNEL(host);
644 
645 		au1xxx_dbdma_stop(channel);
646 
647 		for (i = 0; i < host->dma.len; i++) {
648 			u32 ret = 0, flags = DDMA_FLAGS_NOIE;
649 			struct scatterlist *sg = &data->sg[i];
650 			int sg_len = sg->length;
651 
652 			int len = (datalen > sg_len) ? sg_len : datalen;
653 
654 			if (i == host->dma.len - 1)
655 				flags = DDMA_FLAGS_IE;
656 
657 			if (host->flags & HOST_F_XMIT) {
658 				ret = au1xxx_dbdma_put_source(channel,
659 					sg_phys(sg), len, flags);
660 			} else {
661 				ret = au1xxx_dbdma_put_dest(channel,
662 					sg_phys(sg), len, flags);
663 			}
664 
665 			if (!ret)
666 				goto dataerr;
667 
668 			datalen -= len;
669 		}
670 	} else {
671 		host->pio.index = 0;
672 		host->pio.offset = 0;
673 		host->pio.len = datalen;
674 
675 		if (host->flags & HOST_F_XMIT)
676 			IRQ_ON(host, SD_CONFIG_TH);
677 		else
678 			IRQ_ON(host, SD_CONFIG_NE);
679 			/* IRQ_ON(host, SD_CONFIG_RA | SD_CONFIG_RF); */
680 	}
681 
682 	return 0;
683 
684 dataerr:
685 	dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
686 			host->dma.dir);
687 	return -ETIMEDOUT;
688 }
689 
690 /* This actually starts a command or data transaction */
691 static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq)
692 {
693 	struct au1xmmc_host *host = mmc_priv(mmc);
694 	int ret = 0;
695 
696 	WARN_ON(irqs_disabled());
697 	WARN_ON(host->status != HOST_S_IDLE);
698 
699 	host->mrq = mrq;
700 	host->status = HOST_S_CMD;
701 
702 	/* fail request immediately if no card is present */
703 	if (0 == au1xmmc_card_inserted(mmc)) {
704 		mrq->cmd->error = -ENOMEDIUM;
705 		au1xmmc_finish_request(host);
706 		return;
707 	}
708 
709 	if (mrq->data) {
710 		FLUSH_FIFO(host);
711 		ret = au1xmmc_prepare_data(host, mrq->data);
712 	}
713 
714 	if (!ret)
715 		ret = au1xmmc_send_command(host, 0, mrq->cmd, mrq->data);
716 
717 	if (ret) {
718 		mrq->cmd->error = ret;
719 		au1xmmc_finish_request(host);
720 	}
721 }
722 
723 static void au1xmmc_reset_controller(struct au1xmmc_host *host)
724 {
725 	/* Apply the clock */
726 	au_writel(SD_ENABLE_CE, HOST_ENABLE(host));
727         au_sync_delay(1);
728 
729 	au_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host));
730 	au_sync_delay(5);
731 
732 	au_writel(~0, HOST_STATUS(host));
733 	au_sync();
734 
735 	au_writel(0, HOST_BLKSIZE(host));
736 	au_writel(0x001fffff, HOST_TIMEOUT(host));
737 	au_sync();
738 
739 	au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
740         au_sync();
741 
742 	au_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host));
743 	au_sync_delay(1);
744 
745 	au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
746 	au_sync();
747 
748 	/* Configure interrupts */
749 	au_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host));
750 	au_sync();
751 }
752 
753 
754 static void au1xmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
755 {
756 	struct au1xmmc_host *host = mmc_priv(mmc);
757 	u32 config2;
758 
759 	if (ios->power_mode == MMC_POWER_OFF)
760 		au1xmmc_set_power(host, 0);
761 	else if (ios->power_mode == MMC_POWER_ON) {
762 		au1xmmc_set_power(host, 1);
763 	}
764 
765 	if (ios->clock && ios->clock != host->clock) {
766 		au1xmmc_set_clock(host, ios->clock);
767 		host->clock = ios->clock;
768 	}
769 
770 	config2 = au_readl(HOST_CONFIG2(host));
771 	switch (ios->bus_width) {
772 	case MMC_BUS_WIDTH_8:
773 		config2 |= SD_CONFIG2_BB;
774 		break;
775 	case MMC_BUS_WIDTH_4:
776 		config2 &= ~SD_CONFIG2_BB;
777 		config2 |= SD_CONFIG2_WB;
778 		break;
779 	case MMC_BUS_WIDTH_1:
780 		config2 &= ~(SD_CONFIG2_WB | SD_CONFIG2_BB);
781 		break;
782 	}
783 	au_writel(config2, HOST_CONFIG2(host));
784 	au_sync();
785 }
786 
787 #define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT)
788 #define STATUS_DATA_IN  (SD_STATUS_NE)
789 #define STATUS_DATA_OUT (SD_STATUS_TH)
790 
791 static irqreturn_t au1xmmc_irq(int irq, void *dev_id)
792 {
793 	struct au1xmmc_host *host = dev_id;
794 	u32 status;
795 
796 	status = au_readl(HOST_STATUS(host));
797 
798 	if (!(status & SD_STATUS_I))
799 		return IRQ_NONE;	/* not ours */
800 
801 	if (status & SD_STATUS_SI)	/* SDIO */
802 		mmc_signal_sdio_irq(host->mmc);
803 
804 	if (host->mrq && (status & STATUS_TIMEOUT)) {
805 		if (status & SD_STATUS_RAT)
806 			host->mrq->cmd->error = -ETIMEDOUT;
807 		else if (status & SD_STATUS_DT)
808 			host->mrq->data->error = -ETIMEDOUT;
809 
810 		/* In PIO mode, interrupts might still be enabled */
811 		IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH);
812 
813 		/* IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF); */
814 		tasklet_schedule(&host->finish_task);
815 	}
816 #if 0
817 	else if (status & SD_STATUS_DD) {
818 		/* Sometimes we get a DD before a NE in PIO mode */
819 		if (!(host->flags & HOST_F_DMA) && (status & SD_STATUS_NE))
820 			au1xmmc_receive_pio(host);
821 		else {
822 			au1xmmc_data_complete(host, status);
823 			/* tasklet_schedule(&host->data_task); */
824 		}
825 	}
826 #endif
827 	else if (status & SD_STATUS_CR) {
828 		if (host->status == HOST_S_CMD)
829 			au1xmmc_cmd_complete(host, status);
830 
831 	} else if (!(host->flags & HOST_F_DMA)) {
832 		if ((host->flags & HOST_F_XMIT) && (status & STATUS_DATA_OUT))
833 			au1xmmc_send_pio(host);
834 		else if ((host->flags & HOST_F_RECV) && (status & STATUS_DATA_IN))
835 			au1xmmc_receive_pio(host);
836 
837 	} else if (status & 0x203F3C70) {
838 			DBG("Unhandled status %8.8x\n", host->pdev->id,
839 				status);
840 	}
841 
842 	au_writel(status, HOST_STATUS(host));
843 	au_sync();
844 
845 	return IRQ_HANDLED;
846 }
847 
848 /* 8bit memory DMA device */
849 static dbdev_tab_t au1xmmc_mem_dbdev = {
850 	.dev_id		= DSCR_CMD0_ALWAYS,
851 	.dev_flags	= DEV_FLAGS_ANYUSE,
852 	.dev_tsize	= 0,
853 	.dev_devwidth	= 8,
854 	.dev_physaddr	= 0x00000000,
855 	.dev_intlevel	= 0,
856 	.dev_intpolarity = 0,
857 };
858 static int memid;
859 
860 static void au1xmmc_dbdma_callback(int irq, void *dev_id)
861 {
862 	struct au1xmmc_host *host = (struct au1xmmc_host *)dev_id;
863 
864 	/* Avoid spurious interrupts */
865 	if (!host->mrq)
866 		return;
867 
868 	if (host->flags & HOST_F_STOP)
869 		SEND_STOP(host);
870 
871 	tasklet_schedule(&host->data_task);
872 }
873 
874 static int au1xmmc_dbdma_init(struct au1xmmc_host *host)
875 {
876 	struct resource *res;
877 	int txid, rxid;
878 
879 	res = platform_get_resource(host->pdev, IORESOURCE_DMA, 0);
880 	if (!res)
881 		return -ENODEV;
882 	txid = res->start;
883 
884 	res = platform_get_resource(host->pdev, IORESOURCE_DMA, 1);
885 	if (!res)
886 		return -ENODEV;
887 	rxid = res->start;
888 
889 	if (!memid)
890 		return -ENODEV;
891 
892 	host->tx_chan = au1xxx_dbdma_chan_alloc(memid, txid,
893 				au1xmmc_dbdma_callback, (void *)host);
894 	if (!host->tx_chan) {
895 		dev_err(&host->pdev->dev, "cannot allocate TX DMA\n");
896 		return -ENODEV;
897 	}
898 
899 	host->rx_chan = au1xxx_dbdma_chan_alloc(rxid, memid,
900 				au1xmmc_dbdma_callback, (void *)host);
901 	if (!host->rx_chan) {
902 		dev_err(&host->pdev->dev, "cannot allocate RX DMA\n");
903 		au1xxx_dbdma_chan_free(host->tx_chan);
904 		return -ENODEV;
905 	}
906 
907 	au1xxx_dbdma_set_devwidth(host->tx_chan, 8);
908 	au1xxx_dbdma_set_devwidth(host->rx_chan, 8);
909 
910 	au1xxx_dbdma_ring_alloc(host->tx_chan, AU1XMMC_DESCRIPTOR_COUNT);
911 	au1xxx_dbdma_ring_alloc(host->rx_chan, AU1XMMC_DESCRIPTOR_COUNT);
912 
913 	/* DBDMA is good to go */
914 	host->flags |= HOST_F_DMA | HOST_F_DBDMA;
915 
916 	return 0;
917 }
918 
919 static void au1xmmc_dbdma_shutdown(struct au1xmmc_host *host)
920 {
921 	if (host->flags & HOST_F_DMA) {
922 		host->flags &= ~HOST_F_DMA;
923 		au1xxx_dbdma_chan_free(host->tx_chan);
924 		au1xxx_dbdma_chan_free(host->rx_chan);
925 	}
926 }
927 
928 static void au1xmmc_enable_sdio_irq(struct mmc_host *mmc, int en)
929 {
930 	struct au1xmmc_host *host = mmc_priv(mmc);
931 
932 	if (en)
933 		IRQ_ON(host, SD_CONFIG_SI);
934 	else
935 		IRQ_OFF(host, SD_CONFIG_SI);
936 }
937 
938 static const struct mmc_host_ops au1xmmc_ops = {
939 	.request	= au1xmmc_request,
940 	.set_ios	= au1xmmc_set_ios,
941 	.get_ro		= au1xmmc_card_readonly,
942 	.get_cd		= au1xmmc_card_inserted,
943 	.enable_sdio_irq = au1xmmc_enable_sdio_irq,
944 };
945 
946 static int __devinit au1xmmc_probe(struct platform_device *pdev)
947 {
948 	struct mmc_host *mmc;
949 	struct au1xmmc_host *host;
950 	struct resource *r;
951 	int ret, iflag;
952 
953 	mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev);
954 	if (!mmc) {
955 		dev_err(&pdev->dev, "no memory for mmc_host\n");
956 		ret = -ENOMEM;
957 		goto out0;
958 	}
959 
960 	host = mmc_priv(mmc);
961 	host->mmc = mmc;
962 	host->platdata = pdev->dev.platform_data;
963 	host->pdev = pdev;
964 
965 	ret = -ENODEV;
966 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
967 	if (!r) {
968 		dev_err(&pdev->dev, "no mmio defined\n");
969 		goto out1;
970 	}
971 
972 	host->ioarea = request_mem_region(r->start, resource_size(r),
973 					   pdev->name);
974 	if (!host->ioarea) {
975 		dev_err(&pdev->dev, "mmio already in use\n");
976 		goto out1;
977 	}
978 
979 	host->iobase = (unsigned long)ioremap(r->start, 0x3c);
980 	if (!host->iobase) {
981 		dev_err(&pdev->dev, "cannot remap mmio\n");
982 		goto out2;
983 	}
984 
985 	r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
986 	if (!r) {
987 		dev_err(&pdev->dev, "no IRQ defined\n");
988 		goto out3;
989 	}
990 	host->irq = r->start;
991 
992 	mmc->ops = &au1xmmc_ops;
993 
994 	mmc->f_min =   450000;
995 	mmc->f_max = 24000000;
996 
997 	mmc->max_blk_size = 2048;
998 	mmc->max_blk_count = 512;
999 
1000 	mmc->ocr_avail = AU1XMMC_OCR;
1001 	mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_SDIO_IRQ;
1002 	mmc->max_segs = AU1XMMC_DESCRIPTOR_COUNT;
1003 
1004 	iflag = IRQF_SHARED;	/* Au1100/Au1200: one int for both ctrls */
1005 
1006 	switch (alchemy_get_cputype()) {
1007 	case ALCHEMY_CPU_AU1100:
1008 		mmc->max_seg_size = AU1100_MMC_DESCRIPTOR_SIZE;
1009 		break;
1010 	case ALCHEMY_CPU_AU1200:
1011 		mmc->max_seg_size = AU1200_MMC_DESCRIPTOR_SIZE;
1012 		break;
1013 	case ALCHEMY_CPU_AU1300:
1014 		iflag = 0;	/* nothing is shared */
1015 		mmc->max_seg_size = AU1200_MMC_DESCRIPTOR_SIZE;
1016 		mmc->f_max = 52000000;
1017 		if (host->ioarea->start == AU1100_SD0_PHYS_ADDR)
1018 			mmc->caps |= MMC_CAP_8_BIT_DATA;
1019 		break;
1020 	}
1021 
1022 	ret = request_irq(host->irq, au1xmmc_irq, iflag, DRIVER_NAME, host);
1023 	if (ret) {
1024 		dev_err(&pdev->dev, "cannot grab IRQ\n");
1025 		goto out3;
1026 	}
1027 
1028 	host->status = HOST_S_IDLE;
1029 
1030 	/* board-specific carddetect setup, if any */
1031 	if (host->platdata && host->platdata->cd_setup) {
1032 		ret = host->platdata->cd_setup(mmc, 1);
1033 		if (ret) {
1034 			dev_warn(&pdev->dev, "board CD setup failed\n");
1035 			mmc->caps |= MMC_CAP_NEEDS_POLL;
1036 		}
1037 	} else
1038 		mmc->caps |= MMC_CAP_NEEDS_POLL;
1039 
1040 	/* platform may not be able to use all advertised caps */
1041 	if (host->platdata)
1042 		mmc->caps &= ~(host->platdata->mask_host_caps);
1043 
1044 	tasklet_init(&host->data_task, au1xmmc_tasklet_data,
1045 			(unsigned long)host);
1046 
1047 	tasklet_init(&host->finish_task, au1xmmc_tasklet_finish,
1048 			(unsigned long)host);
1049 
1050 	if (has_dbdma()) {
1051 		ret = au1xmmc_dbdma_init(host);
1052 		if (ret)
1053 			pr_info(DRIVER_NAME ": DBDMA init failed; using PIO\n");
1054 	}
1055 
1056 #ifdef CONFIG_LEDS_CLASS
1057 	if (host->platdata && host->platdata->led) {
1058 		struct led_classdev *led = host->platdata->led;
1059 		led->name = mmc_hostname(mmc);
1060 		led->brightness = LED_OFF;
1061 		led->default_trigger = mmc_hostname(mmc);
1062 		ret = led_classdev_register(mmc_dev(mmc), led);
1063 		if (ret)
1064 			goto out5;
1065 	}
1066 #endif
1067 
1068 	au1xmmc_reset_controller(host);
1069 
1070 	ret = mmc_add_host(mmc);
1071 	if (ret) {
1072 		dev_err(&pdev->dev, "cannot add mmc host\n");
1073 		goto out6;
1074 	}
1075 
1076 	platform_set_drvdata(pdev, host);
1077 
1078 	pr_info(DRIVER_NAME ": MMC Controller %d set up at %8.8X"
1079 		" (mode=%s)\n", pdev->id, host->iobase,
1080 		host->flags & HOST_F_DMA ? "dma" : "pio");
1081 
1082 	return 0;	/* all ok */
1083 
1084 out6:
1085 #ifdef CONFIG_LEDS_CLASS
1086 	if (host->platdata && host->platdata->led)
1087 		led_classdev_unregister(host->platdata->led);
1088 out5:
1089 #endif
1090 	au_writel(0, HOST_ENABLE(host));
1091 	au_writel(0, HOST_CONFIG(host));
1092 	au_writel(0, HOST_CONFIG2(host));
1093 	au_sync();
1094 
1095 	if (host->flags & HOST_F_DBDMA)
1096 		au1xmmc_dbdma_shutdown(host);
1097 
1098 	tasklet_kill(&host->data_task);
1099 	tasklet_kill(&host->finish_task);
1100 
1101 	if (host->platdata && host->platdata->cd_setup &&
1102 	    !(mmc->caps & MMC_CAP_NEEDS_POLL))
1103 		host->platdata->cd_setup(mmc, 0);
1104 
1105 	free_irq(host->irq, host);
1106 out3:
1107 	iounmap((void *)host->iobase);
1108 out2:
1109 	release_resource(host->ioarea);
1110 	kfree(host->ioarea);
1111 out1:
1112 	mmc_free_host(mmc);
1113 out0:
1114 	return ret;
1115 }
1116 
1117 static int __devexit au1xmmc_remove(struct platform_device *pdev)
1118 {
1119 	struct au1xmmc_host *host = platform_get_drvdata(pdev);
1120 
1121 	if (host) {
1122 		mmc_remove_host(host->mmc);
1123 
1124 #ifdef CONFIG_LEDS_CLASS
1125 		if (host->platdata && host->platdata->led)
1126 			led_classdev_unregister(host->platdata->led);
1127 #endif
1128 
1129 		if (host->platdata && host->platdata->cd_setup &&
1130 		    !(host->mmc->caps & MMC_CAP_NEEDS_POLL))
1131 			host->platdata->cd_setup(host->mmc, 0);
1132 
1133 		au_writel(0, HOST_ENABLE(host));
1134 		au_writel(0, HOST_CONFIG(host));
1135 		au_writel(0, HOST_CONFIG2(host));
1136 		au_sync();
1137 
1138 		tasklet_kill(&host->data_task);
1139 		tasklet_kill(&host->finish_task);
1140 
1141 		if (host->flags & HOST_F_DBDMA)
1142 			au1xmmc_dbdma_shutdown(host);
1143 
1144 		au1xmmc_set_power(host, 0);
1145 
1146 		free_irq(host->irq, host);
1147 		iounmap((void *)host->iobase);
1148 		release_resource(host->ioarea);
1149 		kfree(host->ioarea);
1150 
1151 		mmc_free_host(host->mmc);
1152 		platform_set_drvdata(pdev, NULL);
1153 	}
1154 	return 0;
1155 }
1156 
1157 #ifdef CONFIG_PM
1158 static int au1xmmc_suspend(struct platform_device *pdev, pm_message_t state)
1159 {
1160 	struct au1xmmc_host *host = platform_get_drvdata(pdev);
1161 	int ret;
1162 
1163 	ret = mmc_suspend_host(host->mmc);
1164 	if (ret)
1165 		return ret;
1166 
1167 	au_writel(0, HOST_CONFIG2(host));
1168 	au_writel(0, HOST_CONFIG(host));
1169 	au_writel(0xffffffff, HOST_STATUS(host));
1170 	au_writel(0, HOST_ENABLE(host));
1171 	au_sync();
1172 
1173 	return 0;
1174 }
1175 
1176 static int au1xmmc_resume(struct platform_device *pdev)
1177 {
1178 	struct au1xmmc_host *host = platform_get_drvdata(pdev);
1179 
1180 	au1xmmc_reset_controller(host);
1181 
1182 	return mmc_resume_host(host->mmc);
1183 }
1184 #else
1185 #define au1xmmc_suspend NULL
1186 #define au1xmmc_resume NULL
1187 #endif
1188 
1189 static struct platform_driver au1xmmc_driver = {
1190 	.probe         = au1xmmc_probe,
1191 	.remove        = au1xmmc_remove,
1192 	.suspend       = au1xmmc_suspend,
1193 	.resume        = au1xmmc_resume,
1194 	.driver        = {
1195 		.name  = DRIVER_NAME,
1196 		.owner = THIS_MODULE,
1197 	},
1198 };
1199 
1200 static int __init au1xmmc_init(void)
1201 {
1202 	if (has_dbdma()) {
1203 		/* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride
1204 		* of 8 bits.  And since devices are shared, we need to create
1205 		* our own to avoid freaking out other devices.
1206 		*/
1207 		memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev);
1208 		if (!memid)
1209 			pr_err("au1xmmc: cannot add memory dbdma\n");
1210 	}
1211 	return platform_driver_register(&au1xmmc_driver);
1212 }
1213 
1214 static void __exit au1xmmc_exit(void)
1215 {
1216 	if (has_dbdma() && memid)
1217 		au1xxx_ddma_del_device(memid);
1218 
1219 	platform_driver_unregister(&au1xmmc_driver);
1220 }
1221 
1222 module_init(au1xmmc_init);
1223 module_exit(au1xmmc_exit);
1224 
1225 MODULE_AUTHOR("Advanced Micro Devices, Inc");
1226 MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX");
1227 MODULE_LICENSE("GPL");
1228 MODULE_ALIAS("platform:au1xxx-mmc");
1229