1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/sd.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/sizes.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/random.h> 16 #include <linux/scatterlist.h> 17 #include <linux/sysfs.h> 18 19 #include <linux/mmc/host.h> 20 #include <linux/mmc/card.h> 21 #include <linux/mmc/mmc.h> 22 #include <linux/mmc/sd.h> 23 24 #include "core.h" 25 #include "card.h" 26 #include "host.h" 27 #include "bus.h" 28 #include "mmc_ops.h" 29 #include "sd.h" 30 #include "sd_ops.h" 31 32 static const unsigned int tran_exp[] = { 33 10000, 100000, 1000000, 10000000, 34 0, 0, 0, 0 35 }; 36 37 static const unsigned char tran_mant[] = { 38 0, 10, 12, 13, 15, 20, 25, 30, 39 35, 40, 45, 50, 55, 60, 70, 80, 40 }; 41 42 static const unsigned int taac_exp[] = { 43 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 44 }; 45 46 static const unsigned int taac_mant[] = { 47 0, 10, 12, 13, 15, 20, 25, 30, 48 35, 40, 45, 50, 55, 60, 70, 80, 49 }; 50 51 static const unsigned int sd_au_size[] = { 52 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512, 53 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512, 54 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512, 55 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512, 56 }; 57 58 #define UNSTUFF_BITS(resp,start,size) \ 59 ({ \ 60 const int __size = size; \ 61 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 62 const int __off = 3 - ((start) / 32); \ 63 const int __shft = (start) & 31; \ 64 u32 __res; \ 65 \ 66 __res = resp[__off] >> __shft; \ 67 if (__size + __shft > 32) \ 68 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 69 __res & __mask; \ 70 }) 71 72 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000 73 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000 74 75 struct sd_busy_data { 76 struct mmc_card *card; 77 u8 *reg_buf; 78 }; 79 80 /* 81 * Given the decoded CSD structure, decode the raw CID to our CID structure. 82 */ 83 void mmc_decode_cid(struct mmc_card *card) 84 { 85 u32 *resp = card->raw_cid; 86 87 /* 88 * Add the raw card ID (cid) data to the entropy pool. It doesn't 89 * matter that not all of it is unique, it's just bonus entropy. 90 */ 91 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid)); 92 93 /* 94 * SD doesn't currently have a version field so we will 95 * have to assume we can parse this. 96 */ 97 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 98 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 99 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 100 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 101 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 102 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 103 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 104 card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4); 105 card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4); 106 card->cid.serial = UNSTUFF_BITS(resp, 24, 32); 107 card->cid.year = UNSTUFF_BITS(resp, 12, 8); 108 card->cid.month = UNSTUFF_BITS(resp, 8, 4); 109 110 card->cid.year += 2000; /* SD cards year offset */ 111 } 112 113 /* 114 * Given a 128-bit response, decode to our card CSD structure. 115 */ 116 static int mmc_decode_csd(struct mmc_card *card) 117 { 118 struct mmc_csd *csd = &card->csd; 119 unsigned int e, m, csd_struct; 120 u32 *resp = card->raw_csd; 121 122 csd_struct = UNSTUFF_BITS(resp, 126, 2); 123 124 switch (csd_struct) { 125 case 0: 126 m = UNSTUFF_BITS(resp, 115, 4); 127 e = UNSTUFF_BITS(resp, 112, 3); 128 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 129 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 130 131 m = UNSTUFF_BITS(resp, 99, 4); 132 e = UNSTUFF_BITS(resp, 96, 3); 133 csd->max_dtr = tran_exp[e] * tran_mant[m]; 134 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 135 136 e = UNSTUFF_BITS(resp, 47, 3); 137 m = UNSTUFF_BITS(resp, 62, 12); 138 csd->capacity = (1 + m) << (e + 2); 139 140 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 141 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 142 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 143 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 144 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 145 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 146 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 147 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 148 149 if (UNSTUFF_BITS(resp, 46, 1)) { 150 csd->erase_size = 1; 151 } else if (csd->write_blkbits >= 9) { 152 csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1; 153 csd->erase_size <<= csd->write_blkbits - 9; 154 } 155 156 if (UNSTUFF_BITS(resp, 13, 1)) 157 mmc_card_set_readonly(card); 158 break; 159 case 1: 160 /* 161 * This is a block-addressed SDHC or SDXC card. Most 162 * interesting fields are unused and have fixed 163 * values. To avoid getting tripped by buggy cards, 164 * we assume those fixed values ourselves. 165 */ 166 mmc_card_set_blockaddr(card); 167 168 csd->taac_ns = 0; /* Unused */ 169 csd->taac_clks = 0; /* Unused */ 170 171 m = UNSTUFF_BITS(resp, 99, 4); 172 e = UNSTUFF_BITS(resp, 96, 3); 173 csd->max_dtr = tran_exp[e] * tran_mant[m]; 174 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 175 csd->c_size = UNSTUFF_BITS(resp, 48, 22); 176 177 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */ 178 if (csd->c_size >= 0xFFFF) 179 mmc_card_set_ext_capacity(card); 180 181 m = UNSTUFF_BITS(resp, 48, 22); 182 csd->capacity = (1 + m) << 10; 183 184 csd->read_blkbits = 9; 185 csd->read_partial = 0; 186 csd->write_misalign = 0; 187 csd->read_misalign = 0; 188 csd->r2w_factor = 4; /* Unused */ 189 csd->write_blkbits = 9; 190 csd->write_partial = 0; 191 csd->erase_size = 1; 192 193 if (UNSTUFF_BITS(resp, 13, 1)) 194 mmc_card_set_readonly(card); 195 break; 196 default: 197 pr_err("%s: unrecognised CSD structure version %d\n", 198 mmc_hostname(card->host), csd_struct); 199 return -EINVAL; 200 } 201 202 card->erase_size = csd->erase_size; 203 204 return 0; 205 } 206 207 /* 208 * Given a 64-bit response, decode to our card SCR structure. 209 */ 210 static int mmc_decode_scr(struct mmc_card *card) 211 { 212 struct sd_scr *scr = &card->scr; 213 unsigned int scr_struct; 214 u32 resp[4]; 215 216 resp[3] = card->raw_scr[1]; 217 resp[2] = card->raw_scr[0]; 218 219 scr_struct = UNSTUFF_BITS(resp, 60, 4); 220 if (scr_struct != 0) { 221 pr_err("%s: unrecognised SCR structure version %d\n", 222 mmc_hostname(card->host), scr_struct); 223 return -EINVAL; 224 } 225 226 scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4); 227 scr->bus_widths = UNSTUFF_BITS(resp, 48, 4); 228 if (scr->sda_vsn == SCR_SPEC_VER_2) 229 /* Check if Physical Layer Spec v3.0 is supported */ 230 scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1); 231 232 if (scr->sda_spec3) { 233 scr->sda_spec4 = UNSTUFF_BITS(resp, 42, 1); 234 scr->sda_specx = UNSTUFF_BITS(resp, 38, 4); 235 } 236 237 if (UNSTUFF_BITS(resp, 55, 1)) 238 card->erased_byte = 0xFF; 239 else 240 card->erased_byte = 0x0; 241 242 if (scr->sda_spec4) 243 scr->cmds = UNSTUFF_BITS(resp, 32, 4); 244 else if (scr->sda_spec3) 245 scr->cmds = UNSTUFF_BITS(resp, 32, 2); 246 247 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */ 248 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) || 249 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) { 250 pr_err("%s: invalid bus width\n", mmc_hostname(card->host)); 251 return -EINVAL; 252 } 253 254 return 0; 255 } 256 257 /* 258 * Fetch and process SD Status register. 259 */ 260 static int mmc_read_ssr(struct mmc_card *card) 261 { 262 unsigned int au, es, et, eo; 263 __be32 *raw_ssr; 264 u32 resp[4] = {}; 265 u8 discard_support; 266 int i; 267 268 if (!(card->csd.cmdclass & CCC_APP_SPEC)) { 269 pr_warn("%s: card lacks mandatory SD Status function\n", 270 mmc_hostname(card->host)); 271 return 0; 272 } 273 274 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL); 275 if (!raw_ssr) 276 return -ENOMEM; 277 278 if (mmc_app_sd_status(card, raw_ssr)) { 279 pr_warn("%s: problem reading SD Status register\n", 280 mmc_hostname(card->host)); 281 kfree(raw_ssr); 282 return 0; 283 } 284 285 for (i = 0; i < 16; i++) 286 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]); 287 288 kfree(raw_ssr); 289 290 /* 291 * UNSTUFF_BITS only works with four u32s so we have to offset the 292 * bitfield positions accordingly. 293 */ 294 au = UNSTUFF_BITS(card->raw_ssr, 428 - 384, 4); 295 if (au) { 296 if (au <= 9 || card->scr.sda_spec3) { 297 card->ssr.au = sd_au_size[au]; 298 es = UNSTUFF_BITS(card->raw_ssr, 408 - 384, 16); 299 et = UNSTUFF_BITS(card->raw_ssr, 402 - 384, 6); 300 if (es && et) { 301 eo = UNSTUFF_BITS(card->raw_ssr, 400 - 384, 2); 302 card->ssr.erase_timeout = (et * 1000) / es; 303 card->ssr.erase_offset = eo * 1000; 304 } 305 } else { 306 pr_warn("%s: SD Status: Invalid Allocation Unit size\n", 307 mmc_hostname(card->host)); 308 } 309 } 310 311 /* 312 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set 313 */ 314 resp[3] = card->raw_ssr[6]; 315 discard_support = UNSTUFF_BITS(resp, 313 - 288, 1); 316 card->erase_arg = (card->scr.sda_specx && discard_support) ? 317 SD_DISCARD_ARG : SD_ERASE_ARG; 318 319 return 0; 320 } 321 322 /* 323 * Fetches and decodes switch information 324 */ 325 static int mmc_read_switch(struct mmc_card *card) 326 { 327 int err; 328 u8 *status; 329 330 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 331 return 0; 332 333 if (!(card->csd.cmdclass & CCC_SWITCH)) { 334 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n", 335 mmc_hostname(card->host)); 336 return 0; 337 } 338 339 status = kmalloc(64, GFP_KERNEL); 340 if (!status) 341 return -ENOMEM; 342 343 /* 344 * Find out the card's support bits with a mode 0 operation. 345 * The argument does not matter, as the support bits do not 346 * change with the arguments. 347 */ 348 err = mmc_sd_switch(card, 0, 0, 0, status); 349 if (err) { 350 /* 351 * If the host or the card can't do the switch, 352 * fail more gracefully. 353 */ 354 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT) 355 goto out; 356 357 pr_warn("%s: problem reading Bus Speed modes\n", 358 mmc_hostname(card->host)); 359 err = 0; 360 361 goto out; 362 } 363 364 if (status[13] & SD_MODE_HIGH_SPEED) 365 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR; 366 367 if (card->scr.sda_spec3) { 368 card->sw_caps.sd3_bus_mode = status[13]; 369 /* Driver Strengths supported by the card */ 370 card->sw_caps.sd3_drv_type = status[9]; 371 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8; 372 } 373 374 out: 375 kfree(status); 376 377 return err; 378 } 379 380 /* 381 * Test if the card supports high-speed mode and, if so, switch to it. 382 */ 383 int mmc_sd_switch_hs(struct mmc_card *card) 384 { 385 int err; 386 u8 *status; 387 388 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 389 return 0; 390 391 if (!(card->csd.cmdclass & CCC_SWITCH)) 392 return 0; 393 394 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED)) 395 return 0; 396 397 if (card->sw_caps.hs_max_dtr == 0) 398 return 0; 399 400 status = kmalloc(64, GFP_KERNEL); 401 if (!status) 402 return -ENOMEM; 403 404 err = mmc_sd_switch(card, 1, 0, HIGH_SPEED_BUS_SPEED, status); 405 if (err) 406 goto out; 407 408 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) { 409 pr_warn("%s: Problem switching card into high-speed mode!\n", 410 mmc_hostname(card->host)); 411 err = 0; 412 } else { 413 err = 1; 414 } 415 416 out: 417 kfree(status); 418 419 return err; 420 } 421 422 static int sd_select_driver_type(struct mmc_card *card, u8 *status) 423 { 424 int card_drv_type, drive_strength, drv_type; 425 int err; 426 427 card->drive_strength = 0; 428 429 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B; 430 431 drive_strength = mmc_select_drive_strength(card, 432 card->sw_caps.uhs_max_dtr, 433 card_drv_type, &drv_type); 434 435 if (drive_strength) { 436 err = mmc_sd_switch(card, 1, 2, drive_strength, status); 437 if (err) 438 return err; 439 if ((status[15] & 0xF) != drive_strength) { 440 pr_warn("%s: Problem setting drive strength!\n", 441 mmc_hostname(card->host)); 442 return 0; 443 } 444 card->drive_strength = drive_strength; 445 } 446 447 if (drv_type) 448 mmc_set_driver_type(card->host, drv_type); 449 450 return 0; 451 } 452 453 static void sd_update_bus_speed_mode(struct mmc_card *card) 454 { 455 /* 456 * If the host doesn't support any of the UHS-I modes, fallback on 457 * default speed. 458 */ 459 if (!mmc_host_uhs(card->host)) { 460 card->sd_bus_speed = 0; 461 return; 462 } 463 464 if ((card->host->caps & MMC_CAP_UHS_SDR104) && 465 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) { 466 card->sd_bus_speed = UHS_SDR104_BUS_SPEED; 467 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) && 468 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) { 469 card->sd_bus_speed = UHS_DDR50_BUS_SPEED; 470 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 471 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode & 472 SD_MODE_UHS_SDR50)) { 473 card->sd_bus_speed = UHS_SDR50_BUS_SPEED; 474 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 475 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) && 476 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) { 477 card->sd_bus_speed = UHS_SDR25_BUS_SPEED; 478 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 479 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 | 480 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode & 481 SD_MODE_UHS_SDR12)) { 482 card->sd_bus_speed = UHS_SDR12_BUS_SPEED; 483 } 484 } 485 486 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status) 487 { 488 int err; 489 unsigned int timing = 0; 490 491 switch (card->sd_bus_speed) { 492 case UHS_SDR104_BUS_SPEED: 493 timing = MMC_TIMING_UHS_SDR104; 494 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR; 495 break; 496 case UHS_DDR50_BUS_SPEED: 497 timing = MMC_TIMING_UHS_DDR50; 498 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR; 499 break; 500 case UHS_SDR50_BUS_SPEED: 501 timing = MMC_TIMING_UHS_SDR50; 502 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR; 503 break; 504 case UHS_SDR25_BUS_SPEED: 505 timing = MMC_TIMING_UHS_SDR25; 506 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR; 507 break; 508 case UHS_SDR12_BUS_SPEED: 509 timing = MMC_TIMING_UHS_SDR12; 510 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR; 511 break; 512 default: 513 return 0; 514 } 515 516 err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status); 517 if (err) 518 return err; 519 520 if ((status[16] & 0xF) != card->sd_bus_speed) 521 pr_warn("%s: Problem setting bus speed mode!\n", 522 mmc_hostname(card->host)); 523 else { 524 mmc_set_timing(card->host, timing); 525 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr); 526 } 527 528 return 0; 529 } 530 531 /* Get host's max current setting at its current voltage */ 532 static u32 sd_get_host_max_current(struct mmc_host *host) 533 { 534 u32 voltage, max_current; 535 536 voltage = 1 << host->ios.vdd; 537 switch (voltage) { 538 case MMC_VDD_165_195: 539 max_current = host->max_current_180; 540 break; 541 case MMC_VDD_29_30: 542 case MMC_VDD_30_31: 543 max_current = host->max_current_300; 544 break; 545 case MMC_VDD_32_33: 546 case MMC_VDD_33_34: 547 max_current = host->max_current_330; 548 break; 549 default: 550 max_current = 0; 551 } 552 553 return max_current; 554 } 555 556 static int sd_set_current_limit(struct mmc_card *card, u8 *status) 557 { 558 int current_limit = SD_SET_CURRENT_NO_CHANGE; 559 int err; 560 u32 max_current; 561 562 /* 563 * Current limit switch is only defined for SDR50, SDR104, and DDR50 564 * bus speed modes. For other bus speed modes, we do not change the 565 * current limit. 566 */ 567 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) && 568 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) && 569 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED)) 570 return 0; 571 572 /* 573 * Host has different current capabilities when operating at 574 * different voltages, so find out its max current first. 575 */ 576 max_current = sd_get_host_max_current(card->host); 577 578 /* 579 * We only check host's capability here, if we set a limit that is 580 * higher than the card's maximum current, the card will be using its 581 * maximum current, e.g. if the card's maximum current is 300ma, and 582 * when we set current limit to 200ma, the card will draw 200ma, and 583 * when we set current limit to 400/600/800ma, the card will draw its 584 * maximum 300ma from the host. 585 * 586 * The above is incorrect: if we try to set a current limit that is 587 * not supported by the card, the card can rightfully error out the 588 * attempt, and remain at the default current limit. This results 589 * in a 300mA card being limited to 200mA even though the host 590 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with 591 * an iMX6 host. --rmk 592 */ 593 if (max_current >= 800 && 594 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800) 595 current_limit = SD_SET_CURRENT_LIMIT_800; 596 else if (max_current >= 600 && 597 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600) 598 current_limit = SD_SET_CURRENT_LIMIT_600; 599 else if (max_current >= 400 && 600 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400) 601 current_limit = SD_SET_CURRENT_LIMIT_400; 602 else if (max_current >= 200 && 603 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200) 604 current_limit = SD_SET_CURRENT_LIMIT_200; 605 606 if (current_limit != SD_SET_CURRENT_NO_CHANGE) { 607 err = mmc_sd_switch(card, 1, 3, current_limit, status); 608 if (err) 609 return err; 610 611 if (((status[15] >> 4) & 0x0F) != current_limit) 612 pr_warn("%s: Problem setting current limit!\n", 613 mmc_hostname(card->host)); 614 615 } 616 617 return 0; 618 } 619 620 /* 621 * UHS-I specific initialization procedure 622 */ 623 static int mmc_sd_init_uhs_card(struct mmc_card *card) 624 { 625 int err; 626 u8 *status; 627 628 if (!(card->csd.cmdclass & CCC_SWITCH)) 629 return 0; 630 631 status = kmalloc(64, GFP_KERNEL); 632 if (!status) 633 return -ENOMEM; 634 635 /* Set 4-bit bus width */ 636 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 637 if (err) 638 goto out; 639 640 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4); 641 642 /* 643 * Select the bus speed mode depending on host 644 * and card capability. 645 */ 646 sd_update_bus_speed_mode(card); 647 648 /* Set the driver strength for the card */ 649 err = sd_select_driver_type(card, status); 650 if (err) 651 goto out; 652 653 /* Set current limit for the card */ 654 err = sd_set_current_limit(card, status); 655 if (err) 656 goto out; 657 658 /* Set bus speed mode of the card */ 659 err = sd_set_bus_speed_mode(card, status); 660 if (err) 661 goto out; 662 663 /* 664 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and 665 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104. 666 */ 667 if (!mmc_host_is_spi(card->host) && 668 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 || 669 card->host->ios.timing == MMC_TIMING_UHS_DDR50 || 670 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) { 671 err = mmc_execute_tuning(card); 672 673 /* 674 * As SD Specifications Part1 Physical Layer Specification 675 * Version 3.01 says, CMD19 tuning is available for unlocked 676 * cards in transfer state of 1.8V signaling mode. The small 677 * difference between v3.00 and 3.01 spec means that CMD19 678 * tuning is also available for DDR50 mode. 679 */ 680 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) { 681 pr_warn("%s: ddr50 tuning failed\n", 682 mmc_hostname(card->host)); 683 err = 0; 684 } 685 } 686 687 out: 688 kfree(status); 689 690 return err; 691 } 692 693 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 694 card->raw_cid[2], card->raw_cid[3]); 695 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 696 card->raw_csd[2], card->raw_csd[3]); 697 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]); 698 MMC_DEV_ATTR(ssr, 699 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n", 700 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2], 701 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5], 702 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8], 703 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11], 704 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14], 705 card->raw_ssr[15]); 706 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 707 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 708 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 709 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev); 710 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 711 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 712 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 713 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 714 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 715 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 716 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 717 718 719 static ssize_t mmc_dsr_show(struct device *dev, struct device_attribute *attr, 720 char *buf) 721 { 722 struct mmc_card *card = mmc_dev_to_card(dev); 723 struct mmc_host *host = card->host; 724 725 if (card->csd.dsr_imp && host->dsr_req) 726 return sysfs_emit(buf, "0x%x\n", host->dsr); 727 /* return default DSR value */ 728 return sysfs_emit(buf, "0x%x\n", 0x404); 729 } 730 731 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 732 733 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor); 734 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device); 735 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev); 736 737 #define sdio_info_attr(num) \ 738 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \ 739 { \ 740 struct mmc_card *card = mmc_dev_to_card(dev); \ 741 \ 742 if (num > card->num_info) \ 743 return -ENODATA; \ 744 if (!card->info[num - 1][0]) \ 745 return 0; \ 746 return sysfs_emit(buf, "%s\n", card->info[num - 1]); \ 747 } \ 748 static DEVICE_ATTR_RO(info##num) 749 750 sdio_info_attr(1); 751 sdio_info_attr(2); 752 sdio_info_attr(3); 753 sdio_info_attr(4); 754 755 static struct attribute *sd_std_attrs[] = { 756 &dev_attr_vendor.attr, 757 &dev_attr_device.attr, 758 &dev_attr_revision.attr, 759 &dev_attr_info1.attr, 760 &dev_attr_info2.attr, 761 &dev_attr_info3.attr, 762 &dev_attr_info4.attr, 763 &dev_attr_cid.attr, 764 &dev_attr_csd.attr, 765 &dev_attr_scr.attr, 766 &dev_attr_ssr.attr, 767 &dev_attr_date.attr, 768 &dev_attr_erase_size.attr, 769 &dev_attr_preferred_erase_size.attr, 770 &dev_attr_fwrev.attr, 771 &dev_attr_hwrev.attr, 772 &dev_attr_manfid.attr, 773 &dev_attr_name.attr, 774 &dev_attr_oemid.attr, 775 &dev_attr_serial.attr, 776 &dev_attr_ocr.attr, 777 &dev_attr_rca.attr, 778 &dev_attr_dsr.attr, 779 NULL, 780 }; 781 782 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr, 783 int index) 784 { 785 struct device *dev = kobj_to_dev(kobj); 786 struct mmc_card *card = mmc_dev_to_card(dev); 787 788 /* CIS vendor and device ids, revision and info string are available only for Combo cards */ 789 if ((attr == &dev_attr_vendor.attr || 790 attr == &dev_attr_device.attr || 791 attr == &dev_attr_revision.attr || 792 attr == &dev_attr_info1.attr || 793 attr == &dev_attr_info2.attr || 794 attr == &dev_attr_info3.attr || 795 attr == &dev_attr_info4.attr 796 ) &&!mmc_card_sd_combo(card)) 797 return 0; 798 799 return attr->mode; 800 } 801 802 static const struct attribute_group sd_std_group = { 803 .attrs = sd_std_attrs, 804 .is_visible = sd_std_is_visible, 805 }; 806 __ATTRIBUTE_GROUPS(sd_std); 807 808 struct device_type sd_type = { 809 .groups = sd_std_groups, 810 }; 811 812 /* 813 * Fetch CID from card. 814 */ 815 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr) 816 { 817 int err; 818 u32 max_current; 819 int retries = 10; 820 u32 pocr = ocr; 821 822 try_again: 823 if (!retries) { 824 ocr &= ~SD_OCR_S18R; 825 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host)); 826 } 827 828 /* 829 * Since we're changing the OCR value, we seem to 830 * need to tell some cards to go back to the idle 831 * state. We wait 1ms to give cards time to 832 * respond. 833 */ 834 mmc_go_idle(host); 835 836 /* 837 * If SD_SEND_IF_COND indicates an SD 2.0 838 * compliant card and we should set bit 30 839 * of the ocr to indicate that we can handle 840 * block-addressed SDHC cards. 841 */ 842 err = mmc_send_if_cond(host, ocr); 843 if (!err) 844 ocr |= SD_OCR_CCS; 845 846 /* 847 * If the host supports one of UHS-I modes, request the card 848 * to switch to 1.8V signaling level. If the card has failed 849 * repeatedly to switch however, skip this. 850 */ 851 if (retries && mmc_host_uhs(host)) 852 ocr |= SD_OCR_S18R; 853 854 /* 855 * If the host can supply more than 150mA at current voltage, 856 * XPC should be set to 1. 857 */ 858 max_current = sd_get_host_max_current(host); 859 if (max_current > 150) 860 ocr |= SD_OCR_XPC; 861 862 err = mmc_send_app_op_cond(host, ocr, rocr); 863 if (err) 864 return err; 865 866 /* 867 * In case the S18A bit is set in the response, let's start the signal 868 * voltage switch procedure. SPI mode doesn't support CMD11. 869 * Note that, according to the spec, the S18A bit is not valid unless 870 * the CCS bit is set as well. We deliberately deviate from the spec in 871 * regards to this, which allows UHS-I to be supported for SDSC cards. 872 */ 873 if (!mmc_host_is_spi(host) && rocr && (*rocr & SD_ROCR_S18A)) { 874 err = mmc_set_uhs_voltage(host, pocr); 875 if (err == -EAGAIN) { 876 retries--; 877 goto try_again; 878 } else if (err) { 879 retries = 0; 880 goto try_again; 881 } 882 } 883 884 err = mmc_send_cid(host, cid); 885 return err; 886 } 887 888 int mmc_sd_get_csd(struct mmc_card *card) 889 { 890 int err; 891 892 /* 893 * Fetch CSD from card. 894 */ 895 err = mmc_send_csd(card, card->raw_csd); 896 if (err) 897 return err; 898 899 err = mmc_decode_csd(card); 900 if (err) 901 return err; 902 903 return 0; 904 } 905 906 static int mmc_sd_get_ro(struct mmc_host *host) 907 { 908 int ro; 909 910 /* 911 * Some systems don't feature a write-protect pin and don't need one. 912 * E.g. because they only have micro-SD card slot. For those systems 913 * assume that the SD card is always read-write. 914 */ 915 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT) 916 return 0; 917 918 if (!host->ops->get_ro) 919 return -1; 920 921 ro = host->ops->get_ro(host); 922 923 return ro; 924 } 925 926 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card, 927 bool reinit) 928 { 929 int err; 930 931 if (!reinit) { 932 /* 933 * Fetch SCR from card. 934 */ 935 err = mmc_app_send_scr(card); 936 if (err) 937 return err; 938 939 err = mmc_decode_scr(card); 940 if (err) 941 return err; 942 943 /* 944 * Fetch and process SD Status register. 945 */ 946 err = mmc_read_ssr(card); 947 if (err) 948 return err; 949 950 /* Erase init depends on CSD and SSR */ 951 mmc_init_erase(card); 952 953 /* 954 * Fetch switch information from card. 955 */ 956 err = mmc_read_switch(card); 957 if (err) 958 return err; 959 } 960 961 /* 962 * For SPI, enable CRC as appropriate. 963 * This CRC enable is located AFTER the reading of the 964 * card registers because some SDHC cards are not able 965 * to provide valid CRCs for non-512-byte blocks. 966 */ 967 if (mmc_host_is_spi(host)) { 968 err = mmc_spi_set_crc(host, use_spi_crc); 969 if (err) 970 return err; 971 } 972 973 /* 974 * Check if read-only switch is active. 975 */ 976 if (!reinit) { 977 int ro = mmc_sd_get_ro(host); 978 979 if (ro < 0) { 980 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n", 981 mmc_hostname(host)); 982 } else if (ro > 0) { 983 mmc_card_set_readonly(card); 984 } 985 } 986 987 return 0; 988 } 989 990 unsigned mmc_sd_get_max_clock(struct mmc_card *card) 991 { 992 unsigned max_dtr = (unsigned int)-1; 993 994 if (mmc_card_hs(card)) { 995 if (max_dtr > card->sw_caps.hs_max_dtr) 996 max_dtr = card->sw_caps.hs_max_dtr; 997 } else if (max_dtr > card->csd.max_dtr) { 998 max_dtr = card->csd.max_dtr; 999 } 1000 1001 return max_dtr; 1002 } 1003 1004 static bool mmc_sd_card_using_v18(struct mmc_card *card) 1005 { 1006 /* 1007 * According to the SD spec., the Bus Speed Mode (function group 1) bits 1008 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus 1009 * they can be used to determine if the card has already switched to 1010 * 1.8V signaling. 1011 */ 1012 return card->sw_caps.sd3_bus_mode & 1013 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50); 1014 } 1015 1016 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset, 1017 u8 reg_data) 1018 { 1019 struct mmc_host *host = card->host; 1020 struct mmc_request mrq = {}; 1021 struct mmc_command cmd = {}; 1022 struct mmc_data data = {}; 1023 struct scatterlist sg; 1024 u8 *reg_buf; 1025 1026 reg_buf = kzalloc(512, GFP_KERNEL); 1027 if (!reg_buf) 1028 return -ENOMEM; 1029 1030 mrq.cmd = &cmd; 1031 mrq.data = &data; 1032 1033 /* 1034 * Arguments of CMD49: 1035 * [31:31] MIO (0 = memory). 1036 * [30:27] FNO (function number). 1037 * [26:26] MW - mask write mode (0 = disable). 1038 * [25:18] page number. 1039 * [17:9] offset address. 1040 * [8:0] length (0 = 1 byte). 1041 */ 1042 cmd.arg = fno << 27 | page << 18 | offset << 9; 1043 1044 /* The first byte in the buffer is the data to be written. */ 1045 reg_buf[0] = reg_data; 1046 1047 data.flags = MMC_DATA_WRITE; 1048 data.blksz = 512; 1049 data.blocks = 1; 1050 data.sg = &sg; 1051 data.sg_len = 1; 1052 sg_init_one(&sg, reg_buf, 512); 1053 1054 cmd.opcode = SD_WRITE_EXTR_SINGLE; 1055 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; 1056 1057 mmc_set_data_timeout(&data, card); 1058 mmc_wait_for_req(host, &mrq); 1059 1060 kfree(reg_buf); 1061 1062 /* 1063 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s 1064 * after the CMD49. Although, let's leave this to be managed by the 1065 * caller. 1066 */ 1067 1068 if (cmd.error) 1069 return cmd.error; 1070 if (data.error) 1071 return data.error; 1072 1073 return 0; 1074 } 1075 1076 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page, 1077 u16 offset, u16 len, u8 *reg_buf) 1078 { 1079 u32 cmd_args; 1080 1081 /* 1082 * Command arguments of CMD48: 1083 * [31:31] MIO (0 = memory). 1084 * [30:27] FNO (function number). 1085 * [26:26] reserved (0). 1086 * [25:18] page number. 1087 * [17:9] offset address. 1088 * [8:0] length (0 = 1 byte, 1ff = 512 bytes). 1089 */ 1090 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1); 1091 1092 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE, 1093 cmd_args, reg_buf, 512); 1094 } 1095 1096 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page, 1097 u16 offset) 1098 { 1099 int err; 1100 u8 *reg_buf; 1101 1102 reg_buf = kzalloc(512, GFP_KERNEL); 1103 if (!reg_buf) 1104 return -ENOMEM; 1105 1106 /* Read the extension register for power management function. */ 1107 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); 1108 if (err) { 1109 pr_warn("%s: error %d reading PM func of ext reg\n", 1110 mmc_hostname(card->host), err); 1111 goto out; 1112 } 1113 1114 /* PM revision consists of 4 bits. */ 1115 card->ext_power.rev = reg_buf[0] & 0xf; 1116 1117 /* Power Off Notification support at bit 4. */ 1118 if (reg_buf[1] & BIT(4)) 1119 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY; 1120 1121 /* Power Sustenance support at bit 5. */ 1122 if (reg_buf[1] & BIT(5)) 1123 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE; 1124 1125 /* Power Down Mode support at bit 6. */ 1126 if (reg_buf[1] & BIT(6)) 1127 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE; 1128 1129 card->ext_power.fno = fno; 1130 card->ext_power.page = page; 1131 card->ext_power.offset = offset; 1132 1133 out: 1134 kfree(reg_buf); 1135 return err; 1136 } 1137 1138 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page, 1139 u16 offset) 1140 { 1141 int err; 1142 u8 *reg_buf; 1143 1144 reg_buf = kzalloc(512, GFP_KERNEL); 1145 if (!reg_buf) 1146 return -ENOMEM; 1147 1148 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); 1149 if (err) { 1150 pr_warn("%s: error %d reading PERF func of ext reg\n", 1151 mmc_hostname(card->host), err); 1152 goto out; 1153 } 1154 1155 /* PERF revision. */ 1156 card->ext_perf.rev = reg_buf[0]; 1157 1158 /* FX_EVENT support at bit 0. */ 1159 if (reg_buf[1] & BIT(0)) 1160 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT; 1161 1162 /* Card initiated self-maintenance support at bit 0. */ 1163 if (reg_buf[2] & BIT(0)) 1164 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT; 1165 1166 /* Host initiated self-maintenance support at bit 1. */ 1167 if (reg_buf[2] & BIT(1)) 1168 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT; 1169 1170 /* Cache support at bit 0. */ 1171 if (reg_buf[4] & BIT(0)) 1172 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE; 1173 1174 /* Command queue support indicated via queue depth bits (0 to 4). */ 1175 if (reg_buf[6] & 0x1f) 1176 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE; 1177 1178 card->ext_perf.fno = fno; 1179 card->ext_perf.page = page; 1180 card->ext_perf.offset = offset; 1181 1182 out: 1183 kfree(reg_buf); 1184 return err; 1185 } 1186 1187 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf, 1188 u16 *next_ext_addr) 1189 { 1190 u8 num_regs, fno, page; 1191 u16 sfc, offset, ext = *next_ext_addr; 1192 u32 reg_addr; 1193 1194 /* 1195 * Parse only one register set per extension, as that is sufficient to 1196 * support the standard functions. This means another 48 bytes in the 1197 * buffer must be available. 1198 */ 1199 if (ext + 48 > 512) 1200 return -EFAULT; 1201 1202 /* Standard Function Code */ 1203 memcpy(&sfc, &gen_info_buf[ext], 2); 1204 1205 /* Address to the next extension. */ 1206 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2); 1207 1208 /* Number of registers for this extension. */ 1209 num_regs = gen_info_buf[ext + 42]; 1210 1211 /* We support only one register per extension. */ 1212 if (num_regs != 1) 1213 return 0; 1214 1215 /* Extension register address. */ 1216 memcpy(®_addr, &gen_info_buf[ext + 44], 4); 1217 1218 /* 9 bits (0 to 8) contains the offset address. */ 1219 offset = reg_addr & 0x1ff; 1220 1221 /* 8 bits (9 to 16) contains the page number. */ 1222 page = reg_addr >> 9 & 0xff ; 1223 1224 /* 4 bits (18 to 21) contains the function number. */ 1225 fno = reg_addr >> 18 & 0xf; 1226 1227 /* Standard Function Code for power management. */ 1228 if (sfc == 0x1) 1229 return sd_parse_ext_reg_power(card, fno, page, offset); 1230 1231 /* Standard Function Code for performance enhancement. */ 1232 if (sfc == 0x2) 1233 return sd_parse_ext_reg_perf(card, fno, page, offset); 1234 1235 return 0; 1236 } 1237 1238 static int sd_read_ext_regs(struct mmc_card *card) 1239 { 1240 int err, i; 1241 u8 num_ext, *gen_info_buf; 1242 u16 rev, len, next_ext_addr; 1243 1244 if (mmc_host_is_spi(card->host)) 1245 return 0; 1246 1247 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT)) 1248 return 0; 1249 1250 gen_info_buf = kzalloc(512, GFP_KERNEL); 1251 if (!gen_info_buf) 1252 return -ENOMEM; 1253 1254 /* 1255 * Read 512 bytes of general info, which is found at function number 0, 1256 * at page 0 and with no offset. 1257 */ 1258 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf); 1259 if (err) { 1260 pr_warn("%s: error %d reading general info of SD ext reg\n", 1261 mmc_hostname(card->host), err); 1262 goto out; 1263 } 1264 1265 /* General info structure revision. */ 1266 memcpy(&rev, &gen_info_buf[0], 2); 1267 1268 /* Length of general info in bytes. */ 1269 memcpy(&len, &gen_info_buf[2], 2); 1270 1271 /* Number of extensions to be find. */ 1272 num_ext = gen_info_buf[4]; 1273 1274 /* We support revision 0, but limit it to 512 bytes for simplicity. */ 1275 if (rev != 0 || len > 512) { 1276 pr_warn("%s: non-supported SD ext reg layout\n", 1277 mmc_hostname(card->host)); 1278 goto out; 1279 } 1280 1281 /* 1282 * Parse the extension registers. The first extension should start 1283 * immediately after the general info header (16 bytes). 1284 */ 1285 next_ext_addr = 16; 1286 for (i = 0; i < num_ext; i++) { 1287 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr); 1288 if (err) { 1289 pr_warn("%s: error %d parsing SD ext reg\n", 1290 mmc_hostname(card->host), err); 1291 goto out; 1292 } 1293 } 1294 1295 out: 1296 kfree(gen_info_buf); 1297 return err; 1298 } 1299 1300 static bool sd_cache_enabled(struct mmc_host *host) 1301 { 1302 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE; 1303 } 1304 1305 static int sd_flush_cache(struct mmc_host *host) 1306 { 1307 struct mmc_card *card = host->card; 1308 u8 *reg_buf, fno, page; 1309 u16 offset; 1310 int err; 1311 1312 if (!sd_cache_enabled(host)) 1313 return 0; 1314 1315 reg_buf = kzalloc(512, GFP_KERNEL); 1316 if (!reg_buf) 1317 return -ENOMEM; 1318 1319 /* 1320 * Set Flush Cache at bit 0 in the performance enhancement register at 1321 * 261 bytes offset. 1322 */ 1323 fno = card->ext_perf.fno; 1324 page = card->ext_perf.page; 1325 offset = card->ext_perf.offset + 261; 1326 1327 err = sd_write_ext_reg(card, fno, page, offset, BIT(0)); 1328 if (err) { 1329 pr_warn("%s: error %d writing Cache Flush bit\n", 1330 mmc_hostname(host), err); 1331 goto out; 1332 } 1333 1334 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1335 MMC_BUSY_EXTR_SINGLE); 1336 if (err) 1337 goto out; 1338 1339 /* 1340 * Read the Flush Cache bit. The card shall reset it, to confirm that 1341 * it's has completed the flushing of the cache. 1342 */ 1343 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf); 1344 if (err) { 1345 pr_warn("%s: error %d reading Cache Flush bit\n", 1346 mmc_hostname(host), err); 1347 goto out; 1348 } 1349 1350 if (reg_buf[0] & BIT(0)) 1351 err = -ETIMEDOUT; 1352 out: 1353 kfree(reg_buf); 1354 return err; 1355 } 1356 1357 static int sd_enable_cache(struct mmc_card *card) 1358 { 1359 u8 *reg_buf; 1360 int err; 1361 1362 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE; 1363 1364 reg_buf = kzalloc(512, GFP_KERNEL); 1365 if (!reg_buf) 1366 return -ENOMEM; 1367 1368 /* 1369 * Set Cache Enable at bit 0 in the performance enhancement register at 1370 * 260 bytes offset. 1371 */ 1372 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page, 1373 card->ext_perf.offset + 260, BIT(0)); 1374 if (err) { 1375 pr_warn("%s: error %d writing Cache Enable bit\n", 1376 mmc_hostname(card->host), err); 1377 goto out; 1378 } 1379 1380 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1381 MMC_BUSY_EXTR_SINGLE); 1382 if (!err) 1383 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE; 1384 1385 out: 1386 kfree(reg_buf); 1387 return err; 1388 } 1389 1390 /* 1391 * Handle the detection and initialisation of a card. 1392 * 1393 * In the case of a resume, "oldcard" will contain the card 1394 * we're trying to reinitialise. 1395 */ 1396 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr, 1397 struct mmc_card *oldcard) 1398 { 1399 struct mmc_card *card; 1400 int err; 1401 u32 cid[4]; 1402 u32 rocr = 0; 1403 bool v18_fixup_failed = false; 1404 1405 WARN_ON(!host->claimed); 1406 retry: 1407 err = mmc_sd_get_cid(host, ocr, cid, &rocr); 1408 if (err) 1409 return err; 1410 1411 if (oldcard) { 1412 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1413 pr_debug("%s: Perhaps the card was replaced\n", 1414 mmc_hostname(host)); 1415 return -ENOENT; 1416 } 1417 1418 card = oldcard; 1419 } else { 1420 /* 1421 * Allocate card structure. 1422 */ 1423 card = mmc_alloc_card(host, &sd_type); 1424 if (IS_ERR(card)) 1425 return PTR_ERR(card); 1426 1427 card->ocr = ocr; 1428 card->type = MMC_TYPE_SD; 1429 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1430 } 1431 1432 /* 1433 * Call the optional HC's init_card function to handle quirks. 1434 */ 1435 if (host->ops->init_card) 1436 host->ops->init_card(host, card); 1437 1438 /* 1439 * For native busses: get card RCA and quit open drain mode. 1440 */ 1441 if (!mmc_host_is_spi(host)) { 1442 err = mmc_send_relative_addr(host, &card->rca); 1443 if (err) 1444 goto free_card; 1445 } 1446 1447 if (!oldcard) { 1448 err = mmc_sd_get_csd(card); 1449 if (err) 1450 goto free_card; 1451 1452 mmc_decode_cid(card); 1453 } 1454 1455 /* 1456 * handling only for cards supporting DSR and hosts requesting 1457 * DSR configuration 1458 */ 1459 if (card->csd.dsr_imp && host->dsr_req) 1460 mmc_set_dsr(host); 1461 1462 /* 1463 * Select card, as all following commands rely on that. 1464 */ 1465 if (!mmc_host_is_spi(host)) { 1466 err = mmc_select_card(card); 1467 if (err) 1468 goto free_card; 1469 } 1470 1471 err = mmc_sd_setup_card(host, card, oldcard != NULL); 1472 if (err) 1473 goto free_card; 1474 1475 /* 1476 * If the card has not been power cycled, it may still be using 1.8V 1477 * signaling. Detect that situation and try to initialize a UHS-I (1.8V) 1478 * transfer mode. 1479 */ 1480 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) && 1481 mmc_sd_card_using_v18(card) && 1482 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) { 1483 /* 1484 * Re-read switch information in case it has changed since 1485 * oldcard was initialized. 1486 */ 1487 if (oldcard) { 1488 err = mmc_read_switch(card); 1489 if (err) 1490 goto free_card; 1491 } 1492 if (mmc_sd_card_using_v18(card)) { 1493 if (mmc_host_set_uhs_voltage(host) || 1494 mmc_sd_init_uhs_card(card)) { 1495 v18_fixup_failed = true; 1496 mmc_power_cycle(host, ocr); 1497 if (!oldcard) 1498 mmc_remove_card(card); 1499 goto retry; 1500 } 1501 goto done; 1502 } 1503 } 1504 1505 /* Initialization sequence for UHS-I cards */ 1506 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) { 1507 err = mmc_sd_init_uhs_card(card); 1508 if (err) 1509 goto free_card; 1510 } else { 1511 /* 1512 * Attempt to change to high-speed (if supported) 1513 */ 1514 err = mmc_sd_switch_hs(card); 1515 if (err > 0) 1516 mmc_set_timing(card->host, MMC_TIMING_SD_HS); 1517 else if (err) 1518 goto free_card; 1519 1520 /* 1521 * Set bus speed. 1522 */ 1523 mmc_set_clock(host, mmc_sd_get_max_clock(card)); 1524 1525 /* 1526 * Switch to wider bus (if supported). 1527 */ 1528 if ((host->caps & MMC_CAP_4_BIT_DATA) && 1529 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { 1530 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 1531 if (err) 1532 goto free_card; 1533 1534 mmc_set_bus_width(host, MMC_BUS_WIDTH_4); 1535 } 1536 } 1537 1538 if (!oldcard) { 1539 /* Read/parse the extension registers. */ 1540 err = sd_read_ext_regs(card); 1541 if (err) 1542 goto free_card; 1543 } 1544 1545 /* Enable internal SD cache if supported. */ 1546 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) { 1547 err = sd_enable_cache(card); 1548 if (err) 1549 goto free_card; 1550 } 1551 1552 if (host->cqe_ops && !host->cqe_enabled) { 1553 err = host->cqe_ops->cqe_enable(host, card); 1554 if (!err) { 1555 host->cqe_enabled = true; 1556 host->hsq_enabled = true; 1557 pr_info("%s: Host Software Queue enabled\n", 1558 mmc_hostname(host)); 1559 } 1560 } 1561 1562 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1563 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1564 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1565 mmc_hostname(host)); 1566 err = -EINVAL; 1567 goto free_card; 1568 } 1569 done: 1570 host->card = card; 1571 return 0; 1572 1573 free_card: 1574 if (!oldcard) 1575 mmc_remove_card(card); 1576 1577 return err; 1578 } 1579 1580 /* 1581 * Host is being removed. Free up the current card. 1582 */ 1583 static void mmc_sd_remove(struct mmc_host *host) 1584 { 1585 mmc_remove_card(host->card); 1586 host->card = NULL; 1587 } 1588 1589 /* 1590 * Card detection - card is alive. 1591 */ 1592 static int mmc_sd_alive(struct mmc_host *host) 1593 { 1594 return mmc_send_status(host->card, NULL); 1595 } 1596 1597 /* 1598 * Card detection callback from host. 1599 */ 1600 static void mmc_sd_detect(struct mmc_host *host) 1601 { 1602 int err; 1603 1604 mmc_get_card(host->card, NULL); 1605 1606 /* 1607 * Just check if our card has been removed. 1608 */ 1609 err = _mmc_detect_card_removed(host); 1610 1611 mmc_put_card(host->card, NULL); 1612 1613 if (err) { 1614 mmc_sd_remove(host); 1615 1616 mmc_claim_host(host); 1617 mmc_detach_bus(host); 1618 mmc_power_off(host); 1619 mmc_release_host(host); 1620 } 1621 } 1622 1623 static int sd_can_poweroff_notify(struct mmc_card *card) 1624 { 1625 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY; 1626 } 1627 1628 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy) 1629 { 1630 struct sd_busy_data *data = cb_data; 1631 struct mmc_card *card = data->card; 1632 int err; 1633 1634 /* 1635 * Read the status register for the power management function. It's at 1636 * one byte offset and is one byte long. The Power Off Notification 1637 * Ready is bit 0. 1638 */ 1639 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page, 1640 card->ext_power.offset + 1, 1, data->reg_buf); 1641 if (err) { 1642 pr_warn("%s: error %d reading status reg of PM func\n", 1643 mmc_hostname(card->host), err); 1644 return err; 1645 } 1646 1647 *busy = !(data->reg_buf[0] & BIT(0)); 1648 return 0; 1649 } 1650 1651 static int sd_poweroff_notify(struct mmc_card *card) 1652 { 1653 struct sd_busy_data cb_data; 1654 u8 *reg_buf; 1655 int err; 1656 1657 reg_buf = kzalloc(512, GFP_KERNEL); 1658 if (!reg_buf) 1659 return -ENOMEM; 1660 1661 /* 1662 * Set the Power Off Notification bit in the power management settings 1663 * register at 2 bytes offset. 1664 */ 1665 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page, 1666 card->ext_power.offset + 2, BIT(0)); 1667 if (err) { 1668 pr_warn("%s: error %d writing Power Off Notify bit\n", 1669 mmc_hostname(card->host), err); 1670 goto out; 1671 } 1672 1673 /* Find out when the command is completed. */ 1674 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1675 MMC_BUSY_EXTR_SINGLE); 1676 if (err) 1677 goto out; 1678 1679 cb_data.card = card; 1680 cb_data.reg_buf = reg_buf; 1681 err = __mmc_poll_for_busy(card->host, 0, SD_POWEROFF_NOTIFY_TIMEOUT_MS, 1682 &sd_busy_poweroff_notify_cb, &cb_data); 1683 1684 out: 1685 kfree(reg_buf); 1686 return err; 1687 } 1688 1689 static int _mmc_sd_suspend(struct mmc_host *host) 1690 { 1691 struct mmc_card *card = host->card; 1692 int err = 0; 1693 1694 mmc_claim_host(host); 1695 1696 if (mmc_card_suspended(card)) 1697 goto out; 1698 1699 if (sd_can_poweroff_notify(card)) 1700 err = sd_poweroff_notify(card); 1701 else if (!mmc_host_is_spi(host)) 1702 err = mmc_deselect_cards(host); 1703 1704 if (!err) { 1705 mmc_power_off(host); 1706 mmc_card_set_suspended(card); 1707 } 1708 1709 out: 1710 mmc_release_host(host); 1711 return err; 1712 } 1713 1714 /* 1715 * Callback for suspend 1716 */ 1717 static int mmc_sd_suspend(struct mmc_host *host) 1718 { 1719 int err; 1720 1721 err = _mmc_sd_suspend(host); 1722 if (!err) { 1723 pm_runtime_disable(&host->card->dev); 1724 pm_runtime_set_suspended(&host->card->dev); 1725 } 1726 1727 return err; 1728 } 1729 1730 /* 1731 * This function tries to determine if the same card is still present 1732 * and, if so, restore all state to it. 1733 */ 1734 static int _mmc_sd_resume(struct mmc_host *host) 1735 { 1736 int err = 0; 1737 1738 mmc_claim_host(host); 1739 1740 if (!mmc_card_suspended(host->card)) 1741 goto out; 1742 1743 mmc_power_up(host, host->card->ocr); 1744 err = mmc_sd_init_card(host, host->card->ocr, host->card); 1745 mmc_card_clr_suspended(host->card); 1746 1747 out: 1748 mmc_release_host(host); 1749 return err; 1750 } 1751 1752 /* 1753 * Callback for resume 1754 */ 1755 static int mmc_sd_resume(struct mmc_host *host) 1756 { 1757 pm_runtime_enable(&host->card->dev); 1758 return 0; 1759 } 1760 1761 /* 1762 * Callback for runtime_suspend. 1763 */ 1764 static int mmc_sd_runtime_suspend(struct mmc_host *host) 1765 { 1766 int err; 1767 1768 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 1769 return 0; 1770 1771 err = _mmc_sd_suspend(host); 1772 if (err) 1773 pr_err("%s: error %d doing aggressive suspend\n", 1774 mmc_hostname(host), err); 1775 1776 return err; 1777 } 1778 1779 /* 1780 * Callback for runtime_resume. 1781 */ 1782 static int mmc_sd_runtime_resume(struct mmc_host *host) 1783 { 1784 int err; 1785 1786 err = _mmc_sd_resume(host); 1787 if (err && err != -ENOMEDIUM) 1788 pr_err("%s: error %d doing runtime resume\n", 1789 mmc_hostname(host), err); 1790 1791 return 0; 1792 } 1793 1794 static int mmc_sd_hw_reset(struct mmc_host *host) 1795 { 1796 mmc_power_cycle(host, host->card->ocr); 1797 return mmc_sd_init_card(host, host->card->ocr, host->card); 1798 } 1799 1800 static const struct mmc_bus_ops mmc_sd_ops = { 1801 .remove = mmc_sd_remove, 1802 .detect = mmc_sd_detect, 1803 .runtime_suspend = mmc_sd_runtime_suspend, 1804 .runtime_resume = mmc_sd_runtime_resume, 1805 .suspend = mmc_sd_suspend, 1806 .resume = mmc_sd_resume, 1807 .alive = mmc_sd_alive, 1808 .shutdown = mmc_sd_suspend, 1809 .hw_reset = mmc_sd_hw_reset, 1810 .cache_enabled = sd_cache_enabled, 1811 .flush_cache = sd_flush_cache, 1812 }; 1813 1814 /* 1815 * Starting point for SD card init. 1816 */ 1817 int mmc_attach_sd(struct mmc_host *host) 1818 { 1819 int err; 1820 u32 ocr, rocr; 1821 1822 WARN_ON(!host->claimed); 1823 1824 err = mmc_send_app_op_cond(host, 0, &ocr); 1825 if (err) 1826 return err; 1827 1828 mmc_attach_bus(host, &mmc_sd_ops); 1829 if (host->ocr_avail_sd) 1830 host->ocr_avail = host->ocr_avail_sd; 1831 1832 /* 1833 * We need to get OCR a different way for SPI. 1834 */ 1835 if (mmc_host_is_spi(host)) { 1836 mmc_go_idle(host); 1837 1838 err = mmc_spi_read_ocr(host, 0, &ocr); 1839 if (err) 1840 goto err; 1841 } 1842 1843 /* 1844 * Some SD cards claims an out of spec VDD voltage range. Let's treat 1845 * these bits as being in-valid and especially also bit7. 1846 */ 1847 ocr &= ~0x7FFF; 1848 1849 rocr = mmc_select_voltage(host, ocr); 1850 1851 /* 1852 * Can we support the voltage(s) of the card(s)? 1853 */ 1854 if (!rocr) { 1855 err = -EINVAL; 1856 goto err; 1857 } 1858 1859 /* 1860 * Detect and init the card. 1861 */ 1862 err = mmc_sd_init_card(host, rocr, NULL); 1863 if (err) 1864 goto err; 1865 1866 mmc_release_host(host); 1867 err = mmc_add_card(host->card); 1868 if (err) 1869 goto remove_card; 1870 1871 mmc_claim_host(host); 1872 return 0; 1873 1874 remove_card: 1875 mmc_remove_card(host->card); 1876 host->card = NULL; 1877 mmc_claim_host(host); 1878 err: 1879 mmc_detach_bus(host); 1880 1881 pr_err("%s: error %d whilst initialising SD card\n", 1882 mmc_hostname(host), err); 1883 1884 return err; 1885 } 1886