1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/sd.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/sizes.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/scatterlist.h> 16 #include <linux/sysfs.h> 17 18 #include <linux/mmc/host.h> 19 #include <linux/mmc/card.h> 20 #include <linux/mmc/mmc.h> 21 #include <linux/mmc/sd.h> 22 23 #include "core.h" 24 #include "card.h" 25 #include "host.h" 26 #include "bus.h" 27 #include "mmc_ops.h" 28 #include "sd.h" 29 #include "sd_ops.h" 30 31 static const unsigned int tran_exp[] = { 32 10000, 100000, 1000000, 10000000, 33 0, 0, 0, 0 34 }; 35 36 static const unsigned char tran_mant[] = { 37 0, 10, 12, 13, 15, 20, 25, 30, 38 35, 40, 45, 50, 55, 60, 70, 80, 39 }; 40 41 static const unsigned int taac_exp[] = { 42 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 43 }; 44 45 static const unsigned int taac_mant[] = { 46 0, 10, 12, 13, 15, 20, 25, 30, 47 35, 40, 45, 50, 55, 60, 70, 80, 48 }; 49 50 static const unsigned int sd_au_size[] = { 51 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512, 52 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512, 53 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512, 54 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512, 55 }; 56 57 #define UNSTUFF_BITS(resp,start,size) \ 58 ({ \ 59 const int __size = size; \ 60 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 61 const int __off = 3 - ((start) / 32); \ 62 const int __shft = (start) & 31; \ 63 u32 __res; \ 64 \ 65 __res = resp[__off] >> __shft; \ 66 if (__size + __shft > 32) \ 67 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 68 __res & __mask; \ 69 }) 70 71 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000 72 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000 73 74 struct sd_busy_data { 75 struct mmc_card *card; 76 u8 *reg_buf; 77 }; 78 79 /* 80 * Given the decoded CSD structure, decode the raw CID to our CID structure. 81 */ 82 void mmc_decode_cid(struct mmc_card *card) 83 { 84 u32 *resp = card->raw_cid; 85 86 /* 87 * SD doesn't currently have a version field so we will 88 * have to assume we can parse this. 89 */ 90 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 91 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 92 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 93 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 94 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 95 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 96 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 97 card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4); 98 card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4); 99 card->cid.serial = UNSTUFF_BITS(resp, 24, 32); 100 card->cid.year = UNSTUFF_BITS(resp, 12, 8); 101 card->cid.month = UNSTUFF_BITS(resp, 8, 4); 102 103 card->cid.year += 2000; /* SD cards year offset */ 104 } 105 106 /* 107 * Given a 128-bit response, decode to our card CSD structure. 108 */ 109 static int mmc_decode_csd(struct mmc_card *card) 110 { 111 struct mmc_csd *csd = &card->csd; 112 unsigned int e, m, csd_struct; 113 u32 *resp = card->raw_csd; 114 115 csd_struct = UNSTUFF_BITS(resp, 126, 2); 116 117 switch (csd_struct) { 118 case 0: 119 m = UNSTUFF_BITS(resp, 115, 4); 120 e = UNSTUFF_BITS(resp, 112, 3); 121 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 122 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 123 124 m = UNSTUFF_BITS(resp, 99, 4); 125 e = UNSTUFF_BITS(resp, 96, 3); 126 csd->max_dtr = tran_exp[e] * tran_mant[m]; 127 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 128 129 e = UNSTUFF_BITS(resp, 47, 3); 130 m = UNSTUFF_BITS(resp, 62, 12); 131 csd->capacity = (1 + m) << (e + 2); 132 133 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 134 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 135 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 136 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 137 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 138 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 139 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 140 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 141 142 if (UNSTUFF_BITS(resp, 46, 1)) { 143 csd->erase_size = 1; 144 } else if (csd->write_blkbits >= 9) { 145 csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1; 146 csd->erase_size <<= csd->write_blkbits - 9; 147 } 148 149 if (UNSTUFF_BITS(resp, 13, 1)) 150 mmc_card_set_readonly(card); 151 break; 152 case 1: 153 /* 154 * This is a block-addressed SDHC or SDXC card. Most 155 * interesting fields are unused and have fixed 156 * values. To avoid getting tripped by buggy cards, 157 * we assume those fixed values ourselves. 158 */ 159 mmc_card_set_blockaddr(card); 160 161 csd->taac_ns = 0; /* Unused */ 162 csd->taac_clks = 0; /* Unused */ 163 164 m = UNSTUFF_BITS(resp, 99, 4); 165 e = UNSTUFF_BITS(resp, 96, 3); 166 csd->max_dtr = tran_exp[e] * tran_mant[m]; 167 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 168 csd->c_size = UNSTUFF_BITS(resp, 48, 22); 169 170 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */ 171 if (csd->c_size >= 0xFFFF) 172 mmc_card_set_ext_capacity(card); 173 174 m = UNSTUFF_BITS(resp, 48, 22); 175 csd->capacity = (1 + m) << 10; 176 177 csd->read_blkbits = 9; 178 csd->read_partial = 0; 179 csd->write_misalign = 0; 180 csd->read_misalign = 0; 181 csd->r2w_factor = 4; /* Unused */ 182 csd->write_blkbits = 9; 183 csd->write_partial = 0; 184 csd->erase_size = 1; 185 186 if (UNSTUFF_BITS(resp, 13, 1)) 187 mmc_card_set_readonly(card); 188 break; 189 default: 190 pr_err("%s: unrecognised CSD structure version %d\n", 191 mmc_hostname(card->host), csd_struct); 192 return -EINVAL; 193 } 194 195 card->erase_size = csd->erase_size; 196 197 return 0; 198 } 199 200 /* 201 * Given a 64-bit response, decode to our card SCR structure. 202 */ 203 static int mmc_decode_scr(struct mmc_card *card) 204 { 205 struct sd_scr *scr = &card->scr; 206 unsigned int scr_struct; 207 u32 resp[4]; 208 209 resp[3] = card->raw_scr[1]; 210 resp[2] = card->raw_scr[0]; 211 212 scr_struct = UNSTUFF_BITS(resp, 60, 4); 213 if (scr_struct != 0) { 214 pr_err("%s: unrecognised SCR structure version %d\n", 215 mmc_hostname(card->host), scr_struct); 216 return -EINVAL; 217 } 218 219 scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4); 220 scr->bus_widths = UNSTUFF_BITS(resp, 48, 4); 221 if (scr->sda_vsn == SCR_SPEC_VER_2) 222 /* Check if Physical Layer Spec v3.0 is supported */ 223 scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1); 224 225 if (scr->sda_spec3) { 226 scr->sda_spec4 = UNSTUFF_BITS(resp, 42, 1); 227 scr->sda_specx = UNSTUFF_BITS(resp, 38, 4); 228 } 229 230 if (UNSTUFF_BITS(resp, 55, 1)) 231 card->erased_byte = 0xFF; 232 else 233 card->erased_byte = 0x0; 234 235 if (scr->sda_spec4) 236 scr->cmds = UNSTUFF_BITS(resp, 32, 4); 237 else if (scr->sda_spec3) 238 scr->cmds = UNSTUFF_BITS(resp, 32, 2); 239 240 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */ 241 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) || 242 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) { 243 pr_err("%s: invalid bus width\n", mmc_hostname(card->host)); 244 return -EINVAL; 245 } 246 247 return 0; 248 } 249 250 /* 251 * Fetch and process SD Status register. 252 */ 253 static int mmc_read_ssr(struct mmc_card *card) 254 { 255 unsigned int au, es, et, eo; 256 __be32 *raw_ssr; 257 u32 resp[4] = {}; 258 u8 discard_support; 259 int i; 260 261 if (!(card->csd.cmdclass & CCC_APP_SPEC)) { 262 pr_warn("%s: card lacks mandatory SD Status function\n", 263 mmc_hostname(card->host)); 264 return 0; 265 } 266 267 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL); 268 if (!raw_ssr) 269 return -ENOMEM; 270 271 if (mmc_app_sd_status(card, raw_ssr)) { 272 pr_warn("%s: problem reading SD Status register\n", 273 mmc_hostname(card->host)); 274 kfree(raw_ssr); 275 return 0; 276 } 277 278 for (i = 0; i < 16; i++) 279 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]); 280 281 kfree(raw_ssr); 282 283 /* 284 * UNSTUFF_BITS only works with four u32s so we have to offset the 285 * bitfield positions accordingly. 286 */ 287 au = UNSTUFF_BITS(card->raw_ssr, 428 - 384, 4); 288 if (au) { 289 if (au <= 9 || card->scr.sda_spec3) { 290 card->ssr.au = sd_au_size[au]; 291 es = UNSTUFF_BITS(card->raw_ssr, 408 - 384, 16); 292 et = UNSTUFF_BITS(card->raw_ssr, 402 - 384, 6); 293 if (es && et) { 294 eo = UNSTUFF_BITS(card->raw_ssr, 400 - 384, 2); 295 card->ssr.erase_timeout = (et * 1000) / es; 296 card->ssr.erase_offset = eo * 1000; 297 } 298 } else { 299 pr_warn("%s: SD Status: Invalid Allocation Unit size\n", 300 mmc_hostname(card->host)); 301 } 302 } 303 304 /* 305 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set 306 */ 307 resp[3] = card->raw_ssr[6]; 308 discard_support = UNSTUFF_BITS(resp, 313 - 288, 1); 309 card->erase_arg = (card->scr.sda_specx && discard_support) ? 310 SD_DISCARD_ARG : SD_ERASE_ARG; 311 312 return 0; 313 } 314 315 /* 316 * Fetches and decodes switch information 317 */ 318 static int mmc_read_switch(struct mmc_card *card) 319 { 320 int err; 321 u8 *status; 322 323 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 324 return 0; 325 326 if (!(card->csd.cmdclass & CCC_SWITCH)) { 327 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n", 328 mmc_hostname(card->host)); 329 return 0; 330 } 331 332 status = kmalloc(64, GFP_KERNEL); 333 if (!status) 334 return -ENOMEM; 335 336 /* 337 * Find out the card's support bits with a mode 0 operation. 338 * The argument does not matter, as the support bits do not 339 * change with the arguments. 340 */ 341 err = mmc_sd_switch(card, 0, 0, 0, status); 342 if (err) { 343 /* 344 * If the host or the card can't do the switch, 345 * fail more gracefully. 346 */ 347 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT) 348 goto out; 349 350 pr_warn("%s: problem reading Bus Speed modes\n", 351 mmc_hostname(card->host)); 352 err = 0; 353 354 goto out; 355 } 356 357 if (status[13] & SD_MODE_HIGH_SPEED) 358 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR; 359 360 if (card->scr.sda_spec3) { 361 card->sw_caps.sd3_bus_mode = status[13]; 362 /* Driver Strengths supported by the card */ 363 card->sw_caps.sd3_drv_type = status[9]; 364 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8; 365 } 366 367 out: 368 kfree(status); 369 370 return err; 371 } 372 373 /* 374 * Test if the card supports high-speed mode and, if so, switch to it. 375 */ 376 int mmc_sd_switch_hs(struct mmc_card *card) 377 { 378 int err; 379 u8 *status; 380 381 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 382 return 0; 383 384 if (!(card->csd.cmdclass & CCC_SWITCH)) 385 return 0; 386 387 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED)) 388 return 0; 389 390 if (card->sw_caps.hs_max_dtr == 0) 391 return 0; 392 393 status = kmalloc(64, GFP_KERNEL); 394 if (!status) 395 return -ENOMEM; 396 397 err = mmc_sd_switch(card, 1, 0, HIGH_SPEED_BUS_SPEED, status); 398 if (err) 399 goto out; 400 401 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) { 402 pr_warn("%s: Problem switching card into high-speed mode!\n", 403 mmc_hostname(card->host)); 404 err = 0; 405 } else { 406 err = 1; 407 } 408 409 out: 410 kfree(status); 411 412 return err; 413 } 414 415 static int sd_select_driver_type(struct mmc_card *card, u8 *status) 416 { 417 int card_drv_type, drive_strength, drv_type; 418 int err; 419 420 card->drive_strength = 0; 421 422 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B; 423 424 drive_strength = mmc_select_drive_strength(card, 425 card->sw_caps.uhs_max_dtr, 426 card_drv_type, &drv_type); 427 428 if (drive_strength) { 429 err = mmc_sd_switch(card, 1, 2, drive_strength, status); 430 if (err) 431 return err; 432 if ((status[15] & 0xF) != drive_strength) { 433 pr_warn("%s: Problem setting drive strength!\n", 434 mmc_hostname(card->host)); 435 return 0; 436 } 437 card->drive_strength = drive_strength; 438 } 439 440 if (drv_type) 441 mmc_set_driver_type(card->host, drv_type); 442 443 return 0; 444 } 445 446 static void sd_update_bus_speed_mode(struct mmc_card *card) 447 { 448 /* 449 * If the host doesn't support any of the UHS-I modes, fallback on 450 * default speed. 451 */ 452 if (!mmc_host_uhs(card->host)) { 453 card->sd_bus_speed = 0; 454 return; 455 } 456 457 if ((card->host->caps & MMC_CAP_UHS_SDR104) && 458 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) { 459 card->sd_bus_speed = UHS_SDR104_BUS_SPEED; 460 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) && 461 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) { 462 card->sd_bus_speed = UHS_DDR50_BUS_SPEED; 463 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 464 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode & 465 SD_MODE_UHS_SDR50)) { 466 card->sd_bus_speed = UHS_SDR50_BUS_SPEED; 467 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 468 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) && 469 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) { 470 card->sd_bus_speed = UHS_SDR25_BUS_SPEED; 471 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 472 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 | 473 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode & 474 SD_MODE_UHS_SDR12)) { 475 card->sd_bus_speed = UHS_SDR12_BUS_SPEED; 476 } 477 } 478 479 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status) 480 { 481 int err; 482 unsigned int timing = 0; 483 484 switch (card->sd_bus_speed) { 485 case UHS_SDR104_BUS_SPEED: 486 timing = MMC_TIMING_UHS_SDR104; 487 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR; 488 break; 489 case UHS_DDR50_BUS_SPEED: 490 timing = MMC_TIMING_UHS_DDR50; 491 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR; 492 break; 493 case UHS_SDR50_BUS_SPEED: 494 timing = MMC_TIMING_UHS_SDR50; 495 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR; 496 break; 497 case UHS_SDR25_BUS_SPEED: 498 timing = MMC_TIMING_UHS_SDR25; 499 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR; 500 break; 501 case UHS_SDR12_BUS_SPEED: 502 timing = MMC_TIMING_UHS_SDR12; 503 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR; 504 break; 505 default: 506 return 0; 507 } 508 509 err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status); 510 if (err) 511 return err; 512 513 if ((status[16] & 0xF) != card->sd_bus_speed) 514 pr_warn("%s: Problem setting bus speed mode!\n", 515 mmc_hostname(card->host)); 516 else { 517 mmc_set_timing(card->host, timing); 518 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr); 519 } 520 521 return 0; 522 } 523 524 /* Get host's max current setting at its current voltage */ 525 static u32 sd_get_host_max_current(struct mmc_host *host) 526 { 527 u32 voltage, max_current; 528 529 voltage = 1 << host->ios.vdd; 530 switch (voltage) { 531 case MMC_VDD_165_195: 532 max_current = host->max_current_180; 533 break; 534 case MMC_VDD_29_30: 535 case MMC_VDD_30_31: 536 max_current = host->max_current_300; 537 break; 538 case MMC_VDD_32_33: 539 case MMC_VDD_33_34: 540 max_current = host->max_current_330; 541 break; 542 default: 543 max_current = 0; 544 } 545 546 return max_current; 547 } 548 549 static int sd_set_current_limit(struct mmc_card *card, u8 *status) 550 { 551 int current_limit = SD_SET_CURRENT_NO_CHANGE; 552 int err; 553 u32 max_current; 554 555 /* 556 * Current limit switch is only defined for SDR50, SDR104, and DDR50 557 * bus speed modes. For other bus speed modes, we do not change the 558 * current limit. 559 */ 560 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) && 561 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) && 562 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED)) 563 return 0; 564 565 /* 566 * Host has different current capabilities when operating at 567 * different voltages, so find out its max current first. 568 */ 569 max_current = sd_get_host_max_current(card->host); 570 571 /* 572 * We only check host's capability here, if we set a limit that is 573 * higher than the card's maximum current, the card will be using its 574 * maximum current, e.g. if the card's maximum current is 300ma, and 575 * when we set current limit to 200ma, the card will draw 200ma, and 576 * when we set current limit to 400/600/800ma, the card will draw its 577 * maximum 300ma from the host. 578 * 579 * The above is incorrect: if we try to set a current limit that is 580 * not supported by the card, the card can rightfully error out the 581 * attempt, and remain at the default current limit. This results 582 * in a 300mA card being limited to 200mA even though the host 583 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with 584 * an iMX6 host. --rmk 585 */ 586 if (max_current >= 800 && 587 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800) 588 current_limit = SD_SET_CURRENT_LIMIT_800; 589 else if (max_current >= 600 && 590 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600) 591 current_limit = SD_SET_CURRENT_LIMIT_600; 592 else if (max_current >= 400 && 593 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400) 594 current_limit = SD_SET_CURRENT_LIMIT_400; 595 else if (max_current >= 200 && 596 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200) 597 current_limit = SD_SET_CURRENT_LIMIT_200; 598 599 if (current_limit != SD_SET_CURRENT_NO_CHANGE) { 600 err = mmc_sd_switch(card, 1, 3, current_limit, status); 601 if (err) 602 return err; 603 604 if (((status[15] >> 4) & 0x0F) != current_limit) 605 pr_warn("%s: Problem setting current limit!\n", 606 mmc_hostname(card->host)); 607 608 } 609 610 return 0; 611 } 612 613 /* 614 * UHS-I specific initialization procedure 615 */ 616 static int mmc_sd_init_uhs_card(struct mmc_card *card) 617 { 618 int err; 619 u8 *status; 620 621 if (!(card->csd.cmdclass & CCC_SWITCH)) 622 return 0; 623 624 status = kmalloc(64, GFP_KERNEL); 625 if (!status) 626 return -ENOMEM; 627 628 /* Set 4-bit bus width */ 629 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 630 if (err) 631 goto out; 632 633 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4); 634 635 /* 636 * Select the bus speed mode depending on host 637 * and card capability. 638 */ 639 sd_update_bus_speed_mode(card); 640 641 /* Set the driver strength for the card */ 642 err = sd_select_driver_type(card, status); 643 if (err) 644 goto out; 645 646 /* Set current limit for the card */ 647 err = sd_set_current_limit(card, status); 648 if (err) 649 goto out; 650 651 /* Set bus speed mode of the card */ 652 err = sd_set_bus_speed_mode(card, status); 653 if (err) 654 goto out; 655 656 /* 657 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and 658 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104. 659 */ 660 if (!mmc_host_is_spi(card->host) && 661 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 || 662 card->host->ios.timing == MMC_TIMING_UHS_DDR50 || 663 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) { 664 err = mmc_execute_tuning(card); 665 666 /* 667 * As SD Specifications Part1 Physical Layer Specification 668 * Version 3.01 says, CMD19 tuning is available for unlocked 669 * cards in transfer state of 1.8V signaling mode. The small 670 * difference between v3.00 and 3.01 spec means that CMD19 671 * tuning is also available for DDR50 mode. 672 */ 673 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) { 674 pr_warn("%s: ddr50 tuning failed\n", 675 mmc_hostname(card->host)); 676 err = 0; 677 } 678 } 679 680 out: 681 kfree(status); 682 683 return err; 684 } 685 686 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 687 card->raw_cid[2], card->raw_cid[3]); 688 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 689 card->raw_csd[2], card->raw_csd[3]); 690 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]); 691 MMC_DEV_ATTR(ssr, 692 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n", 693 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2], 694 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5], 695 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8], 696 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11], 697 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14], 698 card->raw_ssr[15]); 699 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 700 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 701 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 702 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev); 703 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 704 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 705 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 706 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 707 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 708 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 709 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 710 711 712 static ssize_t mmc_dsr_show(struct device *dev, struct device_attribute *attr, 713 char *buf) 714 { 715 struct mmc_card *card = mmc_dev_to_card(dev); 716 struct mmc_host *host = card->host; 717 718 if (card->csd.dsr_imp && host->dsr_req) 719 return sysfs_emit(buf, "0x%x\n", host->dsr); 720 /* return default DSR value */ 721 return sysfs_emit(buf, "0x%x\n", 0x404); 722 } 723 724 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 725 726 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor); 727 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device); 728 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev); 729 730 #define sdio_info_attr(num) \ 731 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \ 732 { \ 733 struct mmc_card *card = mmc_dev_to_card(dev); \ 734 \ 735 if (num > card->num_info) \ 736 return -ENODATA; \ 737 if (!card->info[num - 1][0]) \ 738 return 0; \ 739 return sysfs_emit(buf, "%s\n", card->info[num - 1]); \ 740 } \ 741 static DEVICE_ATTR_RO(info##num) 742 743 sdio_info_attr(1); 744 sdio_info_attr(2); 745 sdio_info_attr(3); 746 sdio_info_attr(4); 747 748 static struct attribute *sd_std_attrs[] = { 749 &dev_attr_vendor.attr, 750 &dev_attr_device.attr, 751 &dev_attr_revision.attr, 752 &dev_attr_info1.attr, 753 &dev_attr_info2.attr, 754 &dev_attr_info3.attr, 755 &dev_attr_info4.attr, 756 &dev_attr_cid.attr, 757 &dev_attr_csd.attr, 758 &dev_attr_scr.attr, 759 &dev_attr_ssr.attr, 760 &dev_attr_date.attr, 761 &dev_attr_erase_size.attr, 762 &dev_attr_preferred_erase_size.attr, 763 &dev_attr_fwrev.attr, 764 &dev_attr_hwrev.attr, 765 &dev_attr_manfid.attr, 766 &dev_attr_name.attr, 767 &dev_attr_oemid.attr, 768 &dev_attr_serial.attr, 769 &dev_attr_ocr.attr, 770 &dev_attr_rca.attr, 771 &dev_attr_dsr.attr, 772 NULL, 773 }; 774 775 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr, 776 int index) 777 { 778 struct device *dev = kobj_to_dev(kobj); 779 struct mmc_card *card = mmc_dev_to_card(dev); 780 781 /* CIS vendor and device ids, revision and info string are available only for Combo cards */ 782 if ((attr == &dev_attr_vendor.attr || 783 attr == &dev_attr_device.attr || 784 attr == &dev_attr_revision.attr || 785 attr == &dev_attr_info1.attr || 786 attr == &dev_attr_info2.attr || 787 attr == &dev_attr_info3.attr || 788 attr == &dev_attr_info4.attr 789 ) && card->type != MMC_TYPE_SD_COMBO) 790 return 0; 791 792 return attr->mode; 793 } 794 795 static const struct attribute_group sd_std_group = { 796 .attrs = sd_std_attrs, 797 .is_visible = sd_std_is_visible, 798 }; 799 __ATTRIBUTE_GROUPS(sd_std); 800 801 struct device_type sd_type = { 802 .groups = sd_std_groups, 803 }; 804 805 /* 806 * Fetch CID from card. 807 */ 808 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr) 809 { 810 int err; 811 u32 max_current; 812 int retries = 10; 813 u32 pocr = ocr; 814 815 try_again: 816 if (!retries) { 817 ocr &= ~SD_OCR_S18R; 818 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host)); 819 } 820 821 /* 822 * Since we're changing the OCR value, we seem to 823 * need to tell some cards to go back to the idle 824 * state. We wait 1ms to give cards time to 825 * respond. 826 */ 827 mmc_go_idle(host); 828 829 /* 830 * If SD_SEND_IF_COND indicates an SD 2.0 831 * compliant card and we should set bit 30 832 * of the ocr to indicate that we can handle 833 * block-addressed SDHC cards. 834 */ 835 err = mmc_send_if_cond(host, ocr); 836 if (!err) 837 ocr |= SD_OCR_CCS; 838 839 /* 840 * If the host supports one of UHS-I modes, request the card 841 * to switch to 1.8V signaling level. If the card has failed 842 * repeatedly to switch however, skip this. 843 */ 844 if (retries && mmc_host_uhs(host)) 845 ocr |= SD_OCR_S18R; 846 847 /* 848 * If the host can supply more than 150mA at current voltage, 849 * XPC should be set to 1. 850 */ 851 max_current = sd_get_host_max_current(host); 852 if (max_current > 150) 853 ocr |= SD_OCR_XPC; 854 855 err = mmc_send_app_op_cond(host, ocr, rocr); 856 if (err) 857 return err; 858 859 /* 860 * In case the S18A bit is set in the response, let's start the signal 861 * voltage switch procedure. SPI mode doesn't support CMD11. 862 * Note that, according to the spec, the S18A bit is not valid unless 863 * the CCS bit is set as well. We deliberately deviate from the spec in 864 * regards to this, which allows UHS-I to be supported for SDSC cards. 865 */ 866 if (!mmc_host_is_spi(host) && rocr && (*rocr & 0x01000000)) { 867 err = mmc_set_uhs_voltage(host, pocr); 868 if (err == -EAGAIN) { 869 retries--; 870 goto try_again; 871 } else if (err) { 872 retries = 0; 873 goto try_again; 874 } 875 } 876 877 err = mmc_send_cid(host, cid); 878 return err; 879 } 880 881 int mmc_sd_get_csd(struct mmc_card *card) 882 { 883 int err; 884 885 /* 886 * Fetch CSD from card. 887 */ 888 err = mmc_send_csd(card, card->raw_csd); 889 if (err) 890 return err; 891 892 err = mmc_decode_csd(card); 893 if (err) 894 return err; 895 896 return 0; 897 } 898 899 static int mmc_sd_get_ro(struct mmc_host *host) 900 { 901 int ro; 902 903 /* 904 * Some systems don't feature a write-protect pin and don't need one. 905 * E.g. because they only have micro-SD card slot. For those systems 906 * assume that the SD card is always read-write. 907 */ 908 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT) 909 return 0; 910 911 if (!host->ops->get_ro) 912 return -1; 913 914 ro = host->ops->get_ro(host); 915 916 return ro; 917 } 918 919 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card, 920 bool reinit) 921 { 922 int err; 923 924 if (!reinit) { 925 /* 926 * Fetch SCR from card. 927 */ 928 err = mmc_app_send_scr(card); 929 if (err) 930 return err; 931 932 err = mmc_decode_scr(card); 933 if (err) 934 return err; 935 936 /* 937 * Fetch and process SD Status register. 938 */ 939 err = mmc_read_ssr(card); 940 if (err) 941 return err; 942 943 /* Erase init depends on CSD and SSR */ 944 mmc_init_erase(card); 945 946 /* 947 * Fetch switch information from card. 948 */ 949 err = mmc_read_switch(card); 950 if (err) 951 return err; 952 } 953 954 /* 955 * For SPI, enable CRC as appropriate. 956 * This CRC enable is located AFTER the reading of the 957 * card registers because some SDHC cards are not able 958 * to provide valid CRCs for non-512-byte blocks. 959 */ 960 if (mmc_host_is_spi(host)) { 961 err = mmc_spi_set_crc(host, use_spi_crc); 962 if (err) 963 return err; 964 } 965 966 /* 967 * Check if read-only switch is active. 968 */ 969 if (!reinit) { 970 int ro = mmc_sd_get_ro(host); 971 972 if (ro < 0) { 973 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n", 974 mmc_hostname(host)); 975 } else if (ro > 0) { 976 mmc_card_set_readonly(card); 977 } 978 } 979 980 return 0; 981 } 982 983 unsigned mmc_sd_get_max_clock(struct mmc_card *card) 984 { 985 unsigned max_dtr = (unsigned int)-1; 986 987 if (mmc_card_hs(card)) { 988 if (max_dtr > card->sw_caps.hs_max_dtr) 989 max_dtr = card->sw_caps.hs_max_dtr; 990 } else if (max_dtr > card->csd.max_dtr) { 991 max_dtr = card->csd.max_dtr; 992 } 993 994 return max_dtr; 995 } 996 997 static bool mmc_sd_card_using_v18(struct mmc_card *card) 998 { 999 /* 1000 * According to the SD spec., the Bus Speed Mode (function group 1) bits 1001 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus 1002 * they can be used to determine if the card has already switched to 1003 * 1.8V signaling. 1004 */ 1005 return card->sw_caps.sd3_bus_mode & 1006 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50); 1007 } 1008 1009 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset, 1010 u8 reg_data) 1011 { 1012 struct mmc_host *host = card->host; 1013 struct mmc_request mrq = {}; 1014 struct mmc_command cmd = {}; 1015 struct mmc_data data = {}; 1016 struct scatterlist sg; 1017 u8 *reg_buf; 1018 1019 reg_buf = kzalloc(512, GFP_KERNEL); 1020 if (!reg_buf) 1021 return -ENOMEM; 1022 1023 mrq.cmd = &cmd; 1024 mrq.data = &data; 1025 1026 /* 1027 * Arguments of CMD49: 1028 * [31:31] MIO (0 = memory). 1029 * [30:27] FNO (function number). 1030 * [26:26] MW - mask write mode (0 = disable). 1031 * [25:18] page number. 1032 * [17:9] offset address. 1033 * [8:0] length (0 = 1 byte). 1034 */ 1035 cmd.arg = fno << 27 | page << 18 | offset << 9; 1036 1037 /* The first byte in the buffer is the data to be written. */ 1038 reg_buf[0] = reg_data; 1039 1040 data.flags = MMC_DATA_WRITE; 1041 data.blksz = 512; 1042 data.blocks = 1; 1043 data.sg = &sg; 1044 data.sg_len = 1; 1045 sg_init_one(&sg, reg_buf, 512); 1046 1047 cmd.opcode = SD_WRITE_EXTR_SINGLE; 1048 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; 1049 1050 mmc_set_data_timeout(&data, card); 1051 mmc_wait_for_req(host, &mrq); 1052 1053 kfree(reg_buf); 1054 1055 /* 1056 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s 1057 * after the CMD49. Although, let's leave this to be managed by the 1058 * caller. 1059 */ 1060 1061 if (cmd.error) 1062 return cmd.error; 1063 if (data.error) 1064 return data.error; 1065 1066 return 0; 1067 } 1068 1069 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page, 1070 u16 offset, u16 len, u8 *reg_buf) 1071 { 1072 u32 cmd_args; 1073 1074 /* 1075 * Command arguments of CMD48: 1076 * [31:31] MIO (0 = memory). 1077 * [30:27] FNO (function number). 1078 * [26:26] reserved (0). 1079 * [25:18] page number. 1080 * [17:9] offset address. 1081 * [8:0] length (0 = 1 byte, 1ff = 512 bytes). 1082 */ 1083 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1); 1084 1085 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE, 1086 cmd_args, reg_buf, 512); 1087 } 1088 1089 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page, 1090 u16 offset) 1091 { 1092 int err; 1093 u8 *reg_buf; 1094 1095 reg_buf = kzalloc(512, GFP_KERNEL); 1096 if (!reg_buf) 1097 return -ENOMEM; 1098 1099 /* Read the extension register for power management function. */ 1100 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); 1101 if (err) { 1102 pr_warn("%s: error %d reading PM func of ext reg\n", 1103 mmc_hostname(card->host), err); 1104 goto out; 1105 } 1106 1107 /* PM revision consists of 4 bits. */ 1108 card->ext_power.rev = reg_buf[0] & 0xf; 1109 1110 /* Power Off Notification support at bit 4. */ 1111 if (reg_buf[1] & BIT(4)) 1112 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY; 1113 1114 /* Power Sustenance support at bit 5. */ 1115 if (reg_buf[1] & BIT(5)) 1116 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE; 1117 1118 /* Power Down Mode support at bit 6. */ 1119 if (reg_buf[1] & BIT(6)) 1120 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE; 1121 1122 card->ext_power.fno = fno; 1123 card->ext_power.page = page; 1124 card->ext_power.offset = offset; 1125 1126 out: 1127 kfree(reg_buf); 1128 return err; 1129 } 1130 1131 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page, 1132 u16 offset) 1133 { 1134 int err; 1135 u8 *reg_buf; 1136 1137 reg_buf = kzalloc(512, GFP_KERNEL); 1138 if (!reg_buf) 1139 return -ENOMEM; 1140 1141 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); 1142 if (err) { 1143 pr_warn("%s: error %d reading PERF func of ext reg\n", 1144 mmc_hostname(card->host), err); 1145 goto out; 1146 } 1147 1148 /* PERF revision. */ 1149 card->ext_perf.rev = reg_buf[0]; 1150 1151 /* FX_EVENT support at bit 0. */ 1152 if (reg_buf[1] & BIT(0)) 1153 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT; 1154 1155 /* Card initiated self-maintenance support at bit 0. */ 1156 if (reg_buf[2] & BIT(0)) 1157 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT; 1158 1159 /* Host initiated self-maintenance support at bit 1. */ 1160 if (reg_buf[2] & BIT(1)) 1161 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT; 1162 1163 /* Cache support at bit 0. */ 1164 if (reg_buf[4] & BIT(0)) 1165 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE; 1166 1167 /* Command queue support indicated via queue depth bits (0 to 4). */ 1168 if (reg_buf[6] & 0x1f) 1169 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE; 1170 1171 card->ext_perf.fno = fno; 1172 card->ext_perf.page = page; 1173 card->ext_perf.offset = offset; 1174 1175 out: 1176 kfree(reg_buf); 1177 return err; 1178 } 1179 1180 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf, 1181 u16 *next_ext_addr) 1182 { 1183 u8 num_regs, fno, page; 1184 u16 sfc, offset, ext = *next_ext_addr; 1185 u32 reg_addr; 1186 1187 /* 1188 * Parse only one register set per extension, as that is sufficient to 1189 * support the standard functions. This means another 48 bytes in the 1190 * buffer must be available. 1191 */ 1192 if (ext + 48 > 512) 1193 return -EFAULT; 1194 1195 /* Standard Function Code */ 1196 memcpy(&sfc, &gen_info_buf[ext], 2); 1197 1198 /* Address to the next extension. */ 1199 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2); 1200 1201 /* Number of registers for this extension. */ 1202 num_regs = gen_info_buf[ext + 42]; 1203 1204 /* We support only one register per extension. */ 1205 if (num_regs != 1) 1206 return 0; 1207 1208 /* Extension register address. */ 1209 memcpy(®_addr, &gen_info_buf[ext + 44], 4); 1210 1211 /* 9 bits (0 to 8) contains the offset address. */ 1212 offset = reg_addr & 0x1ff; 1213 1214 /* 8 bits (9 to 16) contains the page number. */ 1215 page = reg_addr >> 9 & 0xff ; 1216 1217 /* 4 bits (18 to 21) contains the function number. */ 1218 fno = reg_addr >> 18 & 0xf; 1219 1220 /* Standard Function Code for power management. */ 1221 if (sfc == 0x1) 1222 return sd_parse_ext_reg_power(card, fno, page, offset); 1223 1224 /* Standard Function Code for performance enhancement. */ 1225 if (sfc == 0x2) 1226 return sd_parse_ext_reg_perf(card, fno, page, offset); 1227 1228 return 0; 1229 } 1230 1231 static int sd_read_ext_regs(struct mmc_card *card) 1232 { 1233 int err, i; 1234 u8 num_ext, *gen_info_buf; 1235 u16 rev, len, next_ext_addr; 1236 1237 if (mmc_host_is_spi(card->host)) 1238 return 0; 1239 1240 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT)) 1241 return 0; 1242 1243 gen_info_buf = kzalloc(512, GFP_KERNEL); 1244 if (!gen_info_buf) 1245 return -ENOMEM; 1246 1247 /* 1248 * Read 512 bytes of general info, which is found at function number 0, 1249 * at page 0 and with no offset. 1250 */ 1251 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf); 1252 if (err) { 1253 pr_warn("%s: error %d reading general info of SD ext reg\n", 1254 mmc_hostname(card->host), err); 1255 goto out; 1256 } 1257 1258 /* General info structure revision. */ 1259 memcpy(&rev, &gen_info_buf[0], 2); 1260 1261 /* Length of general info in bytes. */ 1262 memcpy(&len, &gen_info_buf[2], 2); 1263 1264 /* Number of extensions to be find. */ 1265 num_ext = gen_info_buf[4]; 1266 1267 /* We support revision 0, but limit it to 512 bytes for simplicity. */ 1268 if (rev != 0 || len > 512) { 1269 pr_warn("%s: non-supported SD ext reg layout\n", 1270 mmc_hostname(card->host)); 1271 goto out; 1272 } 1273 1274 /* 1275 * Parse the extension registers. The first extension should start 1276 * immediately after the general info header (16 bytes). 1277 */ 1278 next_ext_addr = 16; 1279 for (i = 0; i < num_ext; i++) { 1280 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr); 1281 if (err) { 1282 pr_warn("%s: error %d parsing SD ext reg\n", 1283 mmc_hostname(card->host), err); 1284 goto out; 1285 } 1286 } 1287 1288 out: 1289 kfree(gen_info_buf); 1290 return err; 1291 } 1292 1293 static bool sd_cache_enabled(struct mmc_host *host) 1294 { 1295 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE; 1296 } 1297 1298 static int sd_flush_cache(struct mmc_host *host) 1299 { 1300 struct mmc_card *card = host->card; 1301 u8 *reg_buf, fno, page; 1302 u16 offset; 1303 int err; 1304 1305 if (!sd_cache_enabled(host)) 1306 return 0; 1307 1308 reg_buf = kzalloc(512, GFP_KERNEL); 1309 if (!reg_buf) 1310 return -ENOMEM; 1311 1312 /* 1313 * Set Flush Cache at bit 0 in the performance enhancement register at 1314 * 261 bytes offset. 1315 */ 1316 fno = card->ext_perf.fno; 1317 page = card->ext_perf.page; 1318 offset = card->ext_perf.offset + 261; 1319 1320 err = sd_write_ext_reg(card, fno, page, offset, BIT(0)); 1321 if (err) { 1322 pr_warn("%s: error %d writing Cache Flush bit\n", 1323 mmc_hostname(host), err); 1324 goto out; 1325 } 1326 1327 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1328 MMC_BUSY_EXTR_SINGLE); 1329 if (err) 1330 goto out; 1331 1332 /* 1333 * Read the Flush Cache bit. The card shall reset it, to confirm that 1334 * it's has completed the flushing of the cache. 1335 */ 1336 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf); 1337 if (err) { 1338 pr_warn("%s: error %d reading Cache Flush bit\n", 1339 mmc_hostname(host), err); 1340 goto out; 1341 } 1342 1343 if (reg_buf[0] & BIT(0)) 1344 err = -ETIMEDOUT; 1345 out: 1346 kfree(reg_buf); 1347 return err; 1348 } 1349 1350 static int sd_enable_cache(struct mmc_card *card) 1351 { 1352 u8 *reg_buf; 1353 int err; 1354 1355 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE; 1356 1357 reg_buf = kzalloc(512, GFP_KERNEL); 1358 if (!reg_buf) 1359 return -ENOMEM; 1360 1361 /* 1362 * Set Cache Enable at bit 0 in the performance enhancement register at 1363 * 260 bytes offset. 1364 */ 1365 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page, 1366 card->ext_perf.offset + 260, BIT(0)); 1367 if (err) { 1368 pr_warn("%s: error %d writing Cache Enable bit\n", 1369 mmc_hostname(card->host), err); 1370 goto out; 1371 } 1372 1373 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1374 MMC_BUSY_EXTR_SINGLE); 1375 if (!err) 1376 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE; 1377 1378 out: 1379 kfree(reg_buf); 1380 return err; 1381 } 1382 1383 /* 1384 * Handle the detection and initialisation of a card. 1385 * 1386 * In the case of a resume, "oldcard" will contain the card 1387 * we're trying to reinitialise. 1388 */ 1389 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr, 1390 struct mmc_card *oldcard) 1391 { 1392 struct mmc_card *card; 1393 int err; 1394 u32 cid[4]; 1395 u32 rocr = 0; 1396 bool v18_fixup_failed = false; 1397 1398 WARN_ON(!host->claimed); 1399 retry: 1400 err = mmc_sd_get_cid(host, ocr, cid, &rocr); 1401 if (err) 1402 return err; 1403 1404 if (oldcard) { 1405 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1406 pr_debug("%s: Perhaps the card was replaced\n", 1407 mmc_hostname(host)); 1408 return -ENOENT; 1409 } 1410 1411 card = oldcard; 1412 } else { 1413 /* 1414 * Allocate card structure. 1415 */ 1416 card = mmc_alloc_card(host, &sd_type); 1417 if (IS_ERR(card)) 1418 return PTR_ERR(card); 1419 1420 card->ocr = ocr; 1421 card->type = MMC_TYPE_SD; 1422 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1423 } 1424 1425 /* 1426 * Call the optional HC's init_card function to handle quirks. 1427 */ 1428 if (host->ops->init_card) 1429 host->ops->init_card(host, card); 1430 1431 /* 1432 * For native busses: get card RCA and quit open drain mode. 1433 */ 1434 if (!mmc_host_is_spi(host)) { 1435 err = mmc_send_relative_addr(host, &card->rca); 1436 if (err) 1437 goto free_card; 1438 } 1439 1440 if (!oldcard) { 1441 err = mmc_sd_get_csd(card); 1442 if (err) 1443 goto free_card; 1444 1445 mmc_decode_cid(card); 1446 } 1447 1448 /* 1449 * handling only for cards supporting DSR and hosts requesting 1450 * DSR configuration 1451 */ 1452 if (card->csd.dsr_imp && host->dsr_req) 1453 mmc_set_dsr(host); 1454 1455 /* 1456 * Select card, as all following commands rely on that. 1457 */ 1458 if (!mmc_host_is_spi(host)) { 1459 err = mmc_select_card(card); 1460 if (err) 1461 goto free_card; 1462 } 1463 1464 err = mmc_sd_setup_card(host, card, oldcard != NULL); 1465 if (err) 1466 goto free_card; 1467 1468 /* 1469 * If the card has not been power cycled, it may still be using 1.8V 1470 * signaling. Detect that situation and try to initialize a UHS-I (1.8V) 1471 * transfer mode. 1472 */ 1473 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) && 1474 mmc_sd_card_using_v18(card) && 1475 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) { 1476 /* 1477 * Re-read switch information in case it has changed since 1478 * oldcard was initialized. 1479 */ 1480 if (oldcard) { 1481 err = mmc_read_switch(card); 1482 if (err) 1483 goto free_card; 1484 } 1485 if (mmc_sd_card_using_v18(card)) { 1486 if (mmc_host_set_uhs_voltage(host) || 1487 mmc_sd_init_uhs_card(card)) { 1488 v18_fixup_failed = true; 1489 mmc_power_cycle(host, ocr); 1490 if (!oldcard) 1491 mmc_remove_card(card); 1492 goto retry; 1493 } 1494 goto done; 1495 } 1496 } 1497 1498 /* Initialization sequence for UHS-I cards */ 1499 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) { 1500 err = mmc_sd_init_uhs_card(card); 1501 if (err) 1502 goto free_card; 1503 } else { 1504 /* 1505 * Attempt to change to high-speed (if supported) 1506 */ 1507 err = mmc_sd_switch_hs(card); 1508 if (err > 0) 1509 mmc_set_timing(card->host, MMC_TIMING_SD_HS); 1510 else if (err) 1511 goto free_card; 1512 1513 /* 1514 * Set bus speed. 1515 */ 1516 mmc_set_clock(host, mmc_sd_get_max_clock(card)); 1517 1518 /* 1519 * Switch to wider bus (if supported). 1520 */ 1521 if ((host->caps & MMC_CAP_4_BIT_DATA) && 1522 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { 1523 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 1524 if (err) 1525 goto free_card; 1526 1527 mmc_set_bus_width(host, MMC_BUS_WIDTH_4); 1528 } 1529 } 1530 1531 if (!oldcard) { 1532 /* Read/parse the extension registers. */ 1533 err = sd_read_ext_regs(card); 1534 if (err) 1535 goto free_card; 1536 } 1537 1538 /* Enable internal SD cache if supported. */ 1539 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) { 1540 err = sd_enable_cache(card); 1541 if (err) 1542 goto free_card; 1543 } 1544 1545 if (host->cqe_ops && !host->cqe_enabled) { 1546 err = host->cqe_ops->cqe_enable(host, card); 1547 if (!err) { 1548 host->cqe_enabled = true; 1549 host->hsq_enabled = true; 1550 pr_info("%s: Host Software Queue enabled\n", 1551 mmc_hostname(host)); 1552 } 1553 } 1554 1555 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1556 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1557 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1558 mmc_hostname(host)); 1559 err = -EINVAL; 1560 goto free_card; 1561 } 1562 done: 1563 host->card = card; 1564 return 0; 1565 1566 free_card: 1567 if (!oldcard) 1568 mmc_remove_card(card); 1569 1570 return err; 1571 } 1572 1573 /* 1574 * Host is being removed. Free up the current card. 1575 */ 1576 static void mmc_sd_remove(struct mmc_host *host) 1577 { 1578 mmc_remove_card(host->card); 1579 host->card = NULL; 1580 } 1581 1582 /* 1583 * Card detection - card is alive. 1584 */ 1585 static int mmc_sd_alive(struct mmc_host *host) 1586 { 1587 return mmc_send_status(host->card, NULL); 1588 } 1589 1590 /* 1591 * Card detection callback from host. 1592 */ 1593 static void mmc_sd_detect(struct mmc_host *host) 1594 { 1595 int err; 1596 1597 mmc_get_card(host->card, NULL); 1598 1599 /* 1600 * Just check if our card has been removed. 1601 */ 1602 err = _mmc_detect_card_removed(host); 1603 1604 mmc_put_card(host->card, NULL); 1605 1606 if (err) { 1607 mmc_sd_remove(host); 1608 1609 mmc_claim_host(host); 1610 mmc_detach_bus(host); 1611 mmc_power_off(host); 1612 mmc_release_host(host); 1613 } 1614 } 1615 1616 static int sd_can_poweroff_notify(struct mmc_card *card) 1617 { 1618 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY; 1619 } 1620 1621 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy) 1622 { 1623 struct sd_busy_data *data = cb_data; 1624 struct mmc_card *card = data->card; 1625 int err; 1626 1627 /* 1628 * Read the status register for the power management function. It's at 1629 * one byte offset and is one byte long. The Power Off Notification 1630 * Ready is bit 0. 1631 */ 1632 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page, 1633 card->ext_power.offset + 1, 1, data->reg_buf); 1634 if (err) { 1635 pr_warn("%s: error %d reading status reg of PM func\n", 1636 mmc_hostname(card->host), err); 1637 return err; 1638 } 1639 1640 *busy = !(data->reg_buf[0] & BIT(0)); 1641 return 0; 1642 } 1643 1644 static int sd_poweroff_notify(struct mmc_card *card) 1645 { 1646 struct sd_busy_data cb_data; 1647 u8 *reg_buf; 1648 int err; 1649 1650 reg_buf = kzalloc(512, GFP_KERNEL); 1651 if (!reg_buf) 1652 return -ENOMEM; 1653 1654 /* 1655 * Set the Power Off Notification bit in the power management settings 1656 * register at 2 bytes offset. 1657 */ 1658 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page, 1659 card->ext_power.offset + 2, BIT(0)); 1660 if (err) { 1661 pr_warn("%s: error %d writing Power Off Notify bit\n", 1662 mmc_hostname(card->host), err); 1663 goto out; 1664 } 1665 1666 /* Find out when the command is completed. */ 1667 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1668 MMC_BUSY_EXTR_SINGLE); 1669 if (err) 1670 goto out; 1671 1672 cb_data.card = card; 1673 cb_data.reg_buf = reg_buf; 1674 err = __mmc_poll_for_busy(card->host, 0, SD_POWEROFF_NOTIFY_TIMEOUT_MS, 1675 &sd_busy_poweroff_notify_cb, &cb_data); 1676 1677 out: 1678 kfree(reg_buf); 1679 return err; 1680 } 1681 1682 static int _mmc_sd_suspend(struct mmc_host *host) 1683 { 1684 struct mmc_card *card = host->card; 1685 int err = 0; 1686 1687 mmc_claim_host(host); 1688 1689 if (mmc_card_suspended(card)) 1690 goto out; 1691 1692 if (sd_can_poweroff_notify(card)) 1693 err = sd_poweroff_notify(card); 1694 else if (!mmc_host_is_spi(host)) 1695 err = mmc_deselect_cards(host); 1696 1697 if (!err) { 1698 mmc_power_off(host); 1699 mmc_card_set_suspended(card); 1700 } 1701 1702 out: 1703 mmc_release_host(host); 1704 return err; 1705 } 1706 1707 /* 1708 * Callback for suspend 1709 */ 1710 static int mmc_sd_suspend(struct mmc_host *host) 1711 { 1712 int err; 1713 1714 err = _mmc_sd_suspend(host); 1715 if (!err) { 1716 pm_runtime_disable(&host->card->dev); 1717 pm_runtime_set_suspended(&host->card->dev); 1718 } 1719 1720 return err; 1721 } 1722 1723 /* 1724 * This function tries to determine if the same card is still present 1725 * and, if so, restore all state to it. 1726 */ 1727 static int _mmc_sd_resume(struct mmc_host *host) 1728 { 1729 int err = 0; 1730 1731 mmc_claim_host(host); 1732 1733 if (!mmc_card_suspended(host->card)) 1734 goto out; 1735 1736 mmc_power_up(host, host->card->ocr); 1737 err = mmc_sd_init_card(host, host->card->ocr, host->card); 1738 mmc_card_clr_suspended(host->card); 1739 1740 out: 1741 mmc_release_host(host); 1742 return err; 1743 } 1744 1745 /* 1746 * Callback for resume 1747 */ 1748 static int mmc_sd_resume(struct mmc_host *host) 1749 { 1750 pm_runtime_enable(&host->card->dev); 1751 return 0; 1752 } 1753 1754 /* 1755 * Callback for runtime_suspend. 1756 */ 1757 static int mmc_sd_runtime_suspend(struct mmc_host *host) 1758 { 1759 int err; 1760 1761 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 1762 return 0; 1763 1764 err = _mmc_sd_suspend(host); 1765 if (err) 1766 pr_err("%s: error %d doing aggressive suspend\n", 1767 mmc_hostname(host), err); 1768 1769 return err; 1770 } 1771 1772 /* 1773 * Callback for runtime_resume. 1774 */ 1775 static int mmc_sd_runtime_resume(struct mmc_host *host) 1776 { 1777 int err; 1778 1779 err = _mmc_sd_resume(host); 1780 if (err && err != -ENOMEDIUM) 1781 pr_err("%s: error %d doing runtime resume\n", 1782 mmc_hostname(host), err); 1783 1784 return 0; 1785 } 1786 1787 static int mmc_sd_hw_reset(struct mmc_host *host) 1788 { 1789 mmc_power_cycle(host, host->card->ocr); 1790 return mmc_sd_init_card(host, host->card->ocr, host->card); 1791 } 1792 1793 static const struct mmc_bus_ops mmc_sd_ops = { 1794 .remove = mmc_sd_remove, 1795 .detect = mmc_sd_detect, 1796 .runtime_suspend = mmc_sd_runtime_suspend, 1797 .runtime_resume = mmc_sd_runtime_resume, 1798 .suspend = mmc_sd_suspend, 1799 .resume = mmc_sd_resume, 1800 .alive = mmc_sd_alive, 1801 .shutdown = mmc_sd_suspend, 1802 .hw_reset = mmc_sd_hw_reset, 1803 .cache_enabled = sd_cache_enabled, 1804 .flush_cache = sd_flush_cache, 1805 }; 1806 1807 /* 1808 * Starting point for SD card init. 1809 */ 1810 int mmc_attach_sd(struct mmc_host *host) 1811 { 1812 int err; 1813 u32 ocr, rocr; 1814 1815 WARN_ON(!host->claimed); 1816 1817 err = mmc_send_app_op_cond(host, 0, &ocr); 1818 if (err) 1819 return err; 1820 1821 mmc_attach_bus(host, &mmc_sd_ops); 1822 if (host->ocr_avail_sd) 1823 host->ocr_avail = host->ocr_avail_sd; 1824 1825 /* 1826 * We need to get OCR a different way for SPI. 1827 */ 1828 if (mmc_host_is_spi(host)) { 1829 mmc_go_idle(host); 1830 1831 err = mmc_spi_read_ocr(host, 0, &ocr); 1832 if (err) 1833 goto err; 1834 } 1835 1836 /* 1837 * Some SD cards claims an out of spec VDD voltage range. Let's treat 1838 * these bits as being in-valid and especially also bit7. 1839 */ 1840 ocr &= ~0x7FFF; 1841 1842 rocr = mmc_select_voltage(host, ocr); 1843 1844 /* 1845 * Can we support the voltage(s) of the card(s)? 1846 */ 1847 if (!rocr) { 1848 err = -EINVAL; 1849 goto err; 1850 } 1851 1852 /* 1853 * Detect and init the card. 1854 */ 1855 err = mmc_sd_init_card(host, rocr, NULL); 1856 if (err) 1857 goto err; 1858 1859 mmc_release_host(host); 1860 err = mmc_add_card(host->card); 1861 if (err) 1862 goto remove_card; 1863 1864 mmc_claim_host(host); 1865 return 0; 1866 1867 remove_card: 1868 mmc_remove_card(host->card); 1869 host->card = NULL; 1870 mmc_claim_host(host); 1871 err: 1872 mmc_detach_bus(host); 1873 1874 pr_err("%s: error %d whilst initialising SD card\n", 1875 mmc_hostname(host), err); 1876 1877 return err; 1878 } 1879