1 /* 2 * linux/drivers/mmc/core/sd.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/err.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 #include <linux/stat.h> 17 #include <linux/pm_runtime.h> 18 19 #include <linux/mmc/host.h> 20 #include <linux/mmc/card.h> 21 #include <linux/mmc/mmc.h> 22 #include <linux/mmc/sd.h> 23 24 #include "core.h" 25 #include "card.h" 26 #include "host.h" 27 #include "bus.h" 28 #include "mmc_ops.h" 29 #include "sd.h" 30 #include "sd_ops.h" 31 32 static const unsigned int tran_exp[] = { 33 10000, 100000, 1000000, 10000000, 34 0, 0, 0, 0 35 }; 36 37 static const unsigned char tran_mant[] = { 38 0, 10, 12, 13, 15, 20, 25, 30, 39 35, 40, 45, 50, 55, 60, 70, 80, 40 }; 41 42 static const unsigned int taac_exp[] = { 43 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 44 }; 45 46 static const unsigned int taac_mant[] = { 47 0, 10, 12, 13, 15, 20, 25, 30, 48 35, 40, 45, 50, 55, 60, 70, 80, 49 }; 50 51 static const unsigned int sd_au_size[] = { 52 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512, 53 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512, 54 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512, 55 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512, 56 }; 57 58 #define UNSTUFF_BITS(resp,start,size) \ 59 ({ \ 60 const int __size = size; \ 61 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 62 const int __off = 3 - ((start) / 32); \ 63 const int __shft = (start) & 31; \ 64 u32 __res; \ 65 \ 66 __res = resp[__off] >> __shft; \ 67 if (__size + __shft > 32) \ 68 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 69 __res & __mask; \ 70 }) 71 72 /* 73 * Given the decoded CSD structure, decode the raw CID to our CID structure. 74 */ 75 void mmc_decode_cid(struct mmc_card *card) 76 { 77 u32 *resp = card->raw_cid; 78 79 /* 80 * SD doesn't currently have a version field so we will 81 * have to assume we can parse this. 82 */ 83 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 84 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 85 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 86 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 87 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 88 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 89 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 90 card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4); 91 card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4); 92 card->cid.serial = UNSTUFF_BITS(resp, 24, 32); 93 card->cid.year = UNSTUFF_BITS(resp, 12, 8); 94 card->cid.month = UNSTUFF_BITS(resp, 8, 4); 95 96 card->cid.year += 2000; /* SD cards year offset */ 97 } 98 99 /* 100 * Given a 128-bit response, decode to our card CSD structure. 101 */ 102 static int mmc_decode_csd(struct mmc_card *card) 103 { 104 struct mmc_csd *csd = &card->csd; 105 unsigned int e, m, csd_struct; 106 u32 *resp = card->raw_csd; 107 108 csd_struct = UNSTUFF_BITS(resp, 126, 2); 109 110 switch (csd_struct) { 111 case 0: 112 m = UNSTUFF_BITS(resp, 115, 4); 113 e = UNSTUFF_BITS(resp, 112, 3); 114 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 115 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 116 117 m = UNSTUFF_BITS(resp, 99, 4); 118 e = UNSTUFF_BITS(resp, 96, 3); 119 csd->max_dtr = tran_exp[e] * tran_mant[m]; 120 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 121 122 e = UNSTUFF_BITS(resp, 47, 3); 123 m = UNSTUFF_BITS(resp, 62, 12); 124 csd->capacity = (1 + m) << (e + 2); 125 126 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 127 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 128 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 129 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 130 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 131 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 132 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 133 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 134 135 if (UNSTUFF_BITS(resp, 46, 1)) { 136 csd->erase_size = 1; 137 } else if (csd->write_blkbits >= 9) { 138 csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1; 139 csd->erase_size <<= csd->write_blkbits - 9; 140 } 141 break; 142 case 1: 143 /* 144 * This is a block-addressed SDHC or SDXC card. Most 145 * interesting fields are unused and have fixed 146 * values. To avoid getting tripped by buggy cards, 147 * we assume those fixed values ourselves. 148 */ 149 mmc_card_set_blockaddr(card); 150 151 csd->taac_ns = 0; /* Unused */ 152 csd->taac_clks = 0; /* Unused */ 153 154 m = UNSTUFF_BITS(resp, 99, 4); 155 e = UNSTUFF_BITS(resp, 96, 3); 156 csd->max_dtr = tran_exp[e] * tran_mant[m]; 157 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 158 csd->c_size = UNSTUFF_BITS(resp, 48, 22); 159 160 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */ 161 if (csd->c_size >= 0xFFFF) 162 mmc_card_set_ext_capacity(card); 163 164 m = UNSTUFF_BITS(resp, 48, 22); 165 csd->capacity = (1 + m) << 10; 166 167 csd->read_blkbits = 9; 168 csd->read_partial = 0; 169 csd->write_misalign = 0; 170 csd->read_misalign = 0; 171 csd->r2w_factor = 4; /* Unused */ 172 csd->write_blkbits = 9; 173 csd->write_partial = 0; 174 csd->erase_size = 1; 175 break; 176 default: 177 pr_err("%s: unrecognised CSD structure version %d\n", 178 mmc_hostname(card->host), csd_struct); 179 return -EINVAL; 180 } 181 182 card->erase_size = csd->erase_size; 183 184 return 0; 185 } 186 187 /* 188 * Given a 64-bit response, decode to our card SCR structure. 189 */ 190 static int mmc_decode_scr(struct mmc_card *card) 191 { 192 struct sd_scr *scr = &card->scr; 193 unsigned int scr_struct; 194 u32 resp[4]; 195 196 resp[3] = card->raw_scr[1]; 197 resp[2] = card->raw_scr[0]; 198 199 scr_struct = UNSTUFF_BITS(resp, 60, 4); 200 if (scr_struct != 0) { 201 pr_err("%s: unrecognised SCR structure version %d\n", 202 mmc_hostname(card->host), scr_struct); 203 return -EINVAL; 204 } 205 206 scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4); 207 scr->bus_widths = UNSTUFF_BITS(resp, 48, 4); 208 if (scr->sda_vsn == SCR_SPEC_VER_2) 209 /* Check if Physical Layer Spec v3.0 is supported */ 210 scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1); 211 212 if (UNSTUFF_BITS(resp, 55, 1)) 213 card->erased_byte = 0xFF; 214 else 215 card->erased_byte = 0x0; 216 217 if (scr->sda_spec3) 218 scr->cmds = UNSTUFF_BITS(resp, 32, 2); 219 return 0; 220 } 221 222 /* 223 * Fetch and process SD Status register. 224 */ 225 static int mmc_read_ssr(struct mmc_card *card) 226 { 227 unsigned int au, es, et, eo; 228 __be32 *raw_ssr; 229 int i; 230 231 if (!(card->csd.cmdclass & CCC_APP_SPEC)) { 232 pr_warn("%s: card lacks mandatory SD Status function\n", 233 mmc_hostname(card->host)); 234 return 0; 235 } 236 237 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL); 238 if (!raw_ssr) 239 return -ENOMEM; 240 241 if (mmc_app_sd_status(card, raw_ssr)) { 242 pr_warn("%s: problem reading SD Status register\n", 243 mmc_hostname(card->host)); 244 kfree(raw_ssr); 245 return 0; 246 } 247 248 for (i = 0; i < 16; i++) 249 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]); 250 251 kfree(raw_ssr); 252 253 /* 254 * UNSTUFF_BITS only works with four u32s so we have to offset the 255 * bitfield positions accordingly. 256 */ 257 au = UNSTUFF_BITS(card->raw_ssr, 428 - 384, 4); 258 if (au) { 259 if (au <= 9 || card->scr.sda_spec3) { 260 card->ssr.au = sd_au_size[au]; 261 es = UNSTUFF_BITS(card->raw_ssr, 408 - 384, 16); 262 et = UNSTUFF_BITS(card->raw_ssr, 402 - 384, 6); 263 if (es && et) { 264 eo = UNSTUFF_BITS(card->raw_ssr, 400 - 384, 2); 265 card->ssr.erase_timeout = (et * 1000) / es; 266 card->ssr.erase_offset = eo * 1000; 267 } 268 } else { 269 pr_warn("%s: SD Status: Invalid Allocation Unit size\n", 270 mmc_hostname(card->host)); 271 } 272 } 273 274 return 0; 275 } 276 277 /* 278 * Fetches and decodes switch information 279 */ 280 static int mmc_read_switch(struct mmc_card *card) 281 { 282 int err; 283 u8 *status; 284 285 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 286 return 0; 287 288 if (!(card->csd.cmdclass & CCC_SWITCH)) { 289 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n", 290 mmc_hostname(card->host)); 291 return 0; 292 } 293 294 status = kmalloc(64, GFP_KERNEL); 295 if (!status) 296 return -ENOMEM; 297 298 /* 299 * Find out the card's support bits with a mode 0 operation. 300 * The argument does not matter, as the support bits do not 301 * change with the arguments. 302 */ 303 err = mmc_sd_switch(card, 0, 0, 0, status); 304 if (err) { 305 /* 306 * If the host or the card can't do the switch, 307 * fail more gracefully. 308 */ 309 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT) 310 goto out; 311 312 pr_warn("%s: problem reading Bus Speed modes\n", 313 mmc_hostname(card->host)); 314 err = 0; 315 316 goto out; 317 } 318 319 if (status[13] & SD_MODE_HIGH_SPEED) 320 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR; 321 322 if (card->scr.sda_spec3) { 323 card->sw_caps.sd3_bus_mode = status[13]; 324 /* Driver Strengths supported by the card */ 325 card->sw_caps.sd3_drv_type = status[9]; 326 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8; 327 } 328 329 out: 330 kfree(status); 331 332 return err; 333 } 334 335 /* 336 * Test if the card supports high-speed mode and, if so, switch to it. 337 */ 338 int mmc_sd_switch_hs(struct mmc_card *card) 339 { 340 int err; 341 u8 *status; 342 343 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 344 return 0; 345 346 if (!(card->csd.cmdclass & CCC_SWITCH)) 347 return 0; 348 349 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED)) 350 return 0; 351 352 if (card->sw_caps.hs_max_dtr == 0) 353 return 0; 354 355 status = kmalloc(64, GFP_KERNEL); 356 if (!status) 357 return -ENOMEM; 358 359 err = mmc_sd_switch(card, 1, 0, 1, status); 360 if (err) 361 goto out; 362 363 if ((status[16] & 0xF) != 1) { 364 pr_warn("%s: Problem switching card into high-speed mode!\n", 365 mmc_hostname(card->host)); 366 err = 0; 367 } else { 368 err = 1; 369 } 370 371 out: 372 kfree(status); 373 374 return err; 375 } 376 377 static int sd_select_driver_type(struct mmc_card *card, u8 *status) 378 { 379 int card_drv_type, drive_strength, drv_type; 380 int err; 381 382 card->drive_strength = 0; 383 384 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B; 385 386 drive_strength = mmc_select_drive_strength(card, 387 card->sw_caps.uhs_max_dtr, 388 card_drv_type, &drv_type); 389 390 if (drive_strength) { 391 err = mmc_sd_switch(card, 1, 2, drive_strength, status); 392 if (err) 393 return err; 394 if ((status[15] & 0xF) != drive_strength) { 395 pr_warn("%s: Problem setting drive strength!\n", 396 mmc_hostname(card->host)); 397 return 0; 398 } 399 card->drive_strength = drive_strength; 400 } 401 402 if (drv_type) 403 mmc_set_driver_type(card->host, drv_type); 404 405 return 0; 406 } 407 408 static void sd_update_bus_speed_mode(struct mmc_card *card) 409 { 410 /* 411 * If the host doesn't support any of the UHS-I modes, fallback on 412 * default speed. 413 */ 414 if (!mmc_host_uhs(card->host)) { 415 card->sd_bus_speed = 0; 416 return; 417 } 418 419 if ((card->host->caps & MMC_CAP_UHS_SDR104) && 420 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) { 421 card->sd_bus_speed = UHS_SDR104_BUS_SPEED; 422 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) && 423 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) { 424 card->sd_bus_speed = UHS_DDR50_BUS_SPEED; 425 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 426 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode & 427 SD_MODE_UHS_SDR50)) { 428 card->sd_bus_speed = UHS_SDR50_BUS_SPEED; 429 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 430 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) && 431 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) { 432 card->sd_bus_speed = UHS_SDR25_BUS_SPEED; 433 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 434 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 | 435 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode & 436 SD_MODE_UHS_SDR12)) { 437 card->sd_bus_speed = UHS_SDR12_BUS_SPEED; 438 } 439 } 440 441 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status) 442 { 443 int err; 444 unsigned int timing = 0; 445 446 switch (card->sd_bus_speed) { 447 case UHS_SDR104_BUS_SPEED: 448 timing = MMC_TIMING_UHS_SDR104; 449 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR; 450 break; 451 case UHS_DDR50_BUS_SPEED: 452 timing = MMC_TIMING_UHS_DDR50; 453 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR; 454 break; 455 case UHS_SDR50_BUS_SPEED: 456 timing = MMC_TIMING_UHS_SDR50; 457 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR; 458 break; 459 case UHS_SDR25_BUS_SPEED: 460 timing = MMC_TIMING_UHS_SDR25; 461 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR; 462 break; 463 case UHS_SDR12_BUS_SPEED: 464 timing = MMC_TIMING_UHS_SDR12; 465 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR; 466 break; 467 default: 468 return 0; 469 } 470 471 err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status); 472 if (err) 473 return err; 474 475 if ((status[16] & 0xF) != card->sd_bus_speed) 476 pr_warn("%s: Problem setting bus speed mode!\n", 477 mmc_hostname(card->host)); 478 else { 479 mmc_set_timing(card->host, timing); 480 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr); 481 } 482 483 return 0; 484 } 485 486 /* Get host's max current setting at its current voltage */ 487 static u32 sd_get_host_max_current(struct mmc_host *host) 488 { 489 u32 voltage, max_current; 490 491 voltage = 1 << host->ios.vdd; 492 switch (voltage) { 493 case MMC_VDD_165_195: 494 max_current = host->max_current_180; 495 break; 496 case MMC_VDD_29_30: 497 case MMC_VDD_30_31: 498 max_current = host->max_current_300; 499 break; 500 case MMC_VDD_32_33: 501 case MMC_VDD_33_34: 502 max_current = host->max_current_330; 503 break; 504 default: 505 max_current = 0; 506 } 507 508 return max_current; 509 } 510 511 static int sd_set_current_limit(struct mmc_card *card, u8 *status) 512 { 513 int current_limit = SD_SET_CURRENT_NO_CHANGE; 514 int err; 515 u32 max_current; 516 517 /* 518 * Current limit switch is only defined for SDR50, SDR104, and DDR50 519 * bus speed modes. For other bus speed modes, we do not change the 520 * current limit. 521 */ 522 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) && 523 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) && 524 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED)) 525 return 0; 526 527 /* 528 * Host has different current capabilities when operating at 529 * different voltages, so find out its max current first. 530 */ 531 max_current = sd_get_host_max_current(card->host); 532 533 /* 534 * We only check host's capability here, if we set a limit that is 535 * higher than the card's maximum current, the card will be using its 536 * maximum current, e.g. if the card's maximum current is 300ma, and 537 * when we set current limit to 200ma, the card will draw 200ma, and 538 * when we set current limit to 400/600/800ma, the card will draw its 539 * maximum 300ma from the host. 540 * 541 * The above is incorrect: if we try to set a current limit that is 542 * not supported by the card, the card can rightfully error out the 543 * attempt, and remain at the default current limit. This results 544 * in a 300mA card being limited to 200mA even though the host 545 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with 546 * an iMX6 host. --rmk 547 */ 548 if (max_current >= 800 && 549 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800) 550 current_limit = SD_SET_CURRENT_LIMIT_800; 551 else if (max_current >= 600 && 552 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600) 553 current_limit = SD_SET_CURRENT_LIMIT_600; 554 else if (max_current >= 400 && 555 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400) 556 current_limit = SD_SET_CURRENT_LIMIT_400; 557 else if (max_current >= 200 && 558 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200) 559 current_limit = SD_SET_CURRENT_LIMIT_200; 560 561 if (current_limit != SD_SET_CURRENT_NO_CHANGE) { 562 err = mmc_sd_switch(card, 1, 3, current_limit, status); 563 if (err) 564 return err; 565 566 if (((status[15] >> 4) & 0x0F) != current_limit) 567 pr_warn("%s: Problem setting current limit!\n", 568 mmc_hostname(card->host)); 569 570 } 571 572 return 0; 573 } 574 575 /* 576 * UHS-I specific initialization procedure 577 */ 578 static int mmc_sd_init_uhs_card(struct mmc_card *card) 579 { 580 int err; 581 u8 *status; 582 583 if (!(card->csd.cmdclass & CCC_SWITCH)) 584 return 0; 585 586 status = kmalloc(64, GFP_KERNEL); 587 if (!status) 588 return -ENOMEM; 589 590 /* Set 4-bit bus width */ 591 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 592 if (err) 593 goto out; 594 595 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4); 596 597 /* 598 * Select the bus speed mode depending on host 599 * and card capability. 600 */ 601 sd_update_bus_speed_mode(card); 602 603 /* Set the driver strength for the card */ 604 err = sd_select_driver_type(card, status); 605 if (err) 606 goto out; 607 608 /* Set current limit for the card */ 609 err = sd_set_current_limit(card, status); 610 if (err) 611 goto out; 612 613 /* Set bus speed mode of the card */ 614 err = sd_set_bus_speed_mode(card, status); 615 if (err) 616 goto out; 617 618 /* 619 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and 620 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104. 621 */ 622 if (!mmc_host_is_spi(card->host) && 623 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 || 624 card->host->ios.timing == MMC_TIMING_UHS_DDR50 || 625 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) { 626 err = mmc_execute_tuning(card); 627 628 /* 629 * As SD Specifications Part1 Physical Layer Specification 630 * Version 3.01 says, CMD19 tuning is available for unlocked 631 * cards in transfer state of 1.8V signaling mode. The small 632 * difference between v3.00 and 3.01 spec means that CMD19 633 * tuning is also available for DDR50 mode. 634 */ 635 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) { 636 pr_warn("%s: ddr50 tuning failed\n", 637 mmc_hostname(card->host)); 638 err = 0; 639 } 640 } 641 642 out: 643 kfree(status); 644 645 return err; 646 } 647 648 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 649 card->raw_cid[2], card->raw_cid[3]); 650 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 651 card->raw_csd[2], card->raw_csd[3]); 652 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]); 653 MMC_DEV_ATTR(ssr, 654 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n", 655 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2], 656 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5], 657 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8], 658 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11], 659 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14], 660 card->raw_ssr[15]); 661 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 662 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 663 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 664 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev); 665 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 666 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 667 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 668 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 669 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 670 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 671 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 672 673 674 static ssize_t mmc_dsr_show(struct device *dev, 675 struct device_attribute *attr, 676 char *buf) 677 { 678 struct mmc_card *card = mmc_dev_to_card(dev); 679 struct mmc_host *host = card->host; 680 681 if (card->csd.dsr_imp && host->dsr_req) 682 return sprintf(buf, "0x%x\n", host->dsr); 683 else 684 /* return default DSR value */ 685 return sprintf(buf, "0x%x\n", 0x404); 686 } 687 688 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 689 690 static struct attribute *sd_std_attrs[] = { 691 &dev_attr_cid.attr, 692 &dev_attr_csd.attr, 693 &dev_attr_scr.attr, 694 &dev_attr_ssr.attr, 695 &dev_attr_date.attr, 696 &dev_attr_erase_size.attr, 697 &dev_attr_preferred_erase_size.attr, 698 &dev_attr_fwrev.attr, 699 &dev_attr_hwrev.attr, 700 &dev_attr_manfid.attr, 701 &dev_attr_name.attr, 702 &dev_attr_oemid.attr, 703 &dev_attr_serial.attr, 704 &dev_attr_ocr.attr, 705 &dev_attr_rca.attr, 706 &dev_attr_dsr.attr, 707 NULL, 708 }; 709 ATTRIBUTE_GROUPS(sd_std); 710 711 struct device_type sd_type = { 712 .groups = sd_std_groups, 713 }; 714 715 /* 716 * Fetch CID from card. 717 */ 718 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr) 719 { 720 int err; 721 u32 max_current; 722 int retries = 10; 723 u32 pocr = ocr; 724 725 try_again: 726 if (!retries) { 727 ocr &= ~SD_OCR_S18R; 728 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host)); 729 } 730 731 /* 732 * Since we're changing the OCR value, we seem to 733 * need to tell some cards to go back to the idle 734 * state. We wait 1ms to give cards time to 735 * respond. 736 */ 737 mmc_go_idle(host); 738 739 /* 740 * If SD_SEND_IF_COND indicates an SD 2.0 741 * compliant card and we should set bit 30 742 * of the ocr to indicate that we can handle 743 * block-addressed SDHC cards. 744 */ 745 err = mmc_send_if_cond(host, ocr); 746 if (!err) 747 ocr |= SD_OCR_CCS; 748 749 /* 750 * If the host supports one of UHS-I modes, request the card 751 * to switch to 1.8V signaling level. If the card has failed 752 * repeatedly to switch however, skip this. 753 */ 754 if (retries && mmc_host_uhs(host)) 755 ocr |= SD_OCR_S18R; 756 757 /* 758 * If the host can supply more than 150mA at current voltage, 759 * XPC should be set to 1. 760 */ 761 max_current = sd_get_host_max_current(host); 762 if (max_current > 150) 763 ocr |= SD_OCR_XPC; 764 765 err = mmc_send_app_op_cond(host, ocr, rocr); 766 if (err) 767 return err; 768 769 /* 770 * In case CCS and S18A in the response is set, start Signal Voltage 771 * Switch procedure. SPI mode doesn't support CMD11. 772 */ 773 if (!mmc_host_is_spi(host) && rocr && 774 ((*rocr & 0x41000000) == 0x41000000)) { 775 err = mmc_set_uhs_voltage(host, pocr); 776 if (err == -EAGAIN) { 777 retries--; 778 goto try_again; 779 } else if (err) { 780 retries = 0; 781 goto try_again; 782 } 783 } 784 785 err = mmc_send_cid(host, cid); 786 return err; 787 } 788 789 int mmc_sd_get_csd(struct mmc_host *host, struct mmc_card *card) 790 { 791 int err; 792 793 /* 794 * Fetch CSD from card. 795 */ 796 err = mmc_send_csd(card, card->raw_csd); 797 if (err) 798 return err; 799 800 err = mmc_decode_csd(card); 801 if (err) 802 return err; 803 804 return 0; 805 } 806 807 static int mmc_sd_get_ro(struct mmc_host *host) 808 { 809 int ro; 810 811 /* 812 * Some systems don't feature a write-protect pin and don't need one. 813 * E.g. because they only have micro-SD card slot. For those systems 814 * assume that the SD card is always read-write. 815 */ 816 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT) 817 return 0; 818 819 if (!host->ops->get_ro) 820 return -1; 821 822 ro = host->ops->get_ro(host); 823 824 return ro; 825 } 826 827 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card, 828 bool reinit) 829 { 830 int err; 831 832 if (!reinit) { 833 /* 834 * Fetch SCR from card. 835 */ 836 err = mmc_app_send_scr(card); 837 if (err) 838 return err; 839 840 err = mmc_decode_scr(card); 841 if (err) 842 return err; 843 844 /* 845 * Fetch and process SD Status register. 846 */ 847 err = mmc_read_ssr(card); 848 if (err) 849 return err; 850 851 /* Erase init depends on CSD and SSR */ 852 mmc_init_erase(card); 853 854 /* 855 * Fetch switch information from card. 856 */ 857 err = mmc_read_switch(card); 858 if (err) 859 return err; 860 } 861 862 /* 863 * For SPI, enable CRC as appropriate. 864 * This CRC enable is located AFTER the reading of the 865 * card registers because some SDHC cards are not able 866 * to provide valid CRCs for non-512-byte blocks. 867 */ 868 if (mmc_host_is_spi(host)) { 869 err = mmc_spi_set_crc(host, use_spi_crc); 870 if (err) 871 return err; 872 } 873 874 /* 875 * Check if read-only switch is active. 876 */ 877 if (!reinit) { 878 int ro = mmc_sd_get_ro(host); 879 880 if (ro < 0) { 881 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n", 882 mmc_hostname(host)); 883 } else if (ro > 0) { 884 mmc_card_set_readonly(card); 885 } 886 } 887 888 return 0; 889 } 890 891 unsigned mmc_sd_get_max_clock(struct mmc_card *card) 892 { 893 unsigned max_dtr = (unsigned int)-1; 894 895 if (mmc_card_hs(card)) { 896 if (max_dtr > card->sw_caps.hs_max_dtr) 897 max_dtr = card->sw_caps.hs_max_dtr; 898 } else if (max_dtr > card->csd.max_dtr) { 899 max_dtr = card->csd.max_dtr; 900 } 901 902 return max_dtr; 903 } 904 905 static bool mmc_sd_card_using_v18(struct mmc_card *card) 906 { 907 /* 908 * According to the SD spec., the Bus Speed Mode (function group 1) bits 909 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus 910 * they can be used to determine if the card has already switched to 911 * 1.8V signaling. 912 */ 913 return card->sw_caps.sd3_bus_mode & 914 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50); 915 } 916 917 /* 918 * Handle the detection and initialisation of a card. 919 * 920 * In the case of a resume, "oldcard" will contain the card 921 * we're trying to reinitialise. 922 */ 923 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr, 924 struct mmc_card *oldcard) 925 { 926 struct mmc_card *card; 927 int err; 928 u32 cid[4]; 929 u32 rocr = 0; 930 bool v18_fixup_failed = false; 931 932 WARN_ON(!host->claimed); 933 retry: 934 err = mmc_sd_get_cid(host, ocr, cid, &rocr); 935 if (err) 936 return err; 937 938 if (oldcard) { 939 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) 940 return -ENOENT; 941 942 card = oldcard; 943 } else { 944 /* 945 * Allocate card structure. 946 */ 947 card = mmc_alloc_card(host, &sd_type); 948 if (IS_ERR(card)) 949 return PTR_ERR(card); 950 951 card->ocr = ocr; 952 card->type = MMC_TYPE_SD; 953 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 954 } 955 956 /* 957 * Call the optional HC's init_card function to handle quirks. 958 */ 959 if (host->ops->init_card) 960 host->ops->init_card(host, card); 961 962 /* 963 * For native busses: get card RCA and quit open drain mode. 964 */ 965 if (!mmc_host_is_spi(host)) { 966 err = mmc_send_relative_addr(host, &card->rca); 967 if (err) 968 goto free_card; 969 } 970 971 if (!oldcard) { 972 err = mmc_sd_get_csd(host, card); 973 if (err) 974 goto free_card; 975 976 mmc_decode_cid(card); 977 } 978 979 /* 980 * handling only for cards supporting DSR and hosts requesting 981 * DSR configuration 982 */ 983 if (card->csd.dsr_imp && host->dsr_req) 984 mmc_set_dsr(host); 985 986 /* 987 * Select card, as all following commands rely on that. 988 */ 989 if (!mmc_host_is_spi(host)) { 990 err = mmc_select_card(card); 991 if (err) 992 goto free_card; 993 } 994 995 err = mmc_sd_setup_card(host, card, oldcard != NULL); 996 if (err) 997 goto free_card; 998 999 /* 1000 * If the card has not been power cycled, it may still be using 1.8V 1001 * signaling. Detect that situation and try to initialize a UHS-I (1.8V) 1002 * transfer mode. 1003 */ 1004 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) && 1005 mmc_sd_card_using_v18(card) && 1006 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) { 1007 /* 1008 * Re-read switch information in case it has changed since 1009 * oldcard was initialized. 1010 */ 1011 if (oldcard) { 1012 err = mmc_read_switch(card); 1013 if (err) 1014 goto free_card; 1015 } 1016 if (mmc_sd_card_using_v18(card)) { 1017 if (mmc_host_set_uhs_voltage(host) || 1018 mmc_sd_init_uhs_card(card)) { 1019 v18_fixup_failed = true; 1020 mmc_power_cycle(host, ocr); 1021 if (!oldcard) 1022 mmc_remove_card(card); 1023 goto retry; 1024 } 1025 goto done; 1026 } 1027 } 1028 1029 /* Initialization sequence for UHS-I cards */ 1030 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) { 1031 err = mmc_sd_init_uhs_card(card); 1032 if (err) 1033 goto free_card; 1034 } else { 1035 /* 1036 * Attempt to change to high-speed (if supported) 1037 */ 1038 err = mmc_sd_switch_hs(card); 1039 if (err > 0) 1040 mmc_set_timing(card->host, MMC_TIMING_SD_HS); 1041 else if (err) 1042 goto free_card; 1043 1044 /* 1045 * Set bus speed. 1046 */ 1047 mmc_set_clock(host, mmc_sd_get_max_clock(card)); 1048 1049 /* 1050 * Switch to wider bus (if supported). 1051 */ 1052 if ((host->caps & MMC_CAP_4_BIT_DATA) && 1053 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { 1054 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 1055 if (err) 1056 goto free_card; 1057 1058 mmc_set_bus_width(host, MMC_BUS_WIDTH_4); 1059 } 1060 } 1061 1062 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1063 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1064 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1065 mmc_hostname(host)); 1066 err = -EINVAL; 1067 goto free_card; 1068 } 1069 done: 1070 host->card = card; 1071 return 0; 1072 1073 free_card: 1074 if (!oldcard) 1075 mmc_remove_card(card); 1076 1077 return err; 1078 } 1079 1080 /* 1081 * Host is being removed. Free up the current card. 1082 */ 1083 static void mmc_sd_remove(struct mmc_host *host) 1084 { 1085 mmc_remove_card(host->card); 1086 host->card = NULL; 1087 } 1088 1089 /* 1090 * Card detection - card is alive. 1091 */ 1092 static int mmc_sd_alive(struct mmc_host *host) 1093 { 1094 return mmc_send_status(host->card, NULL); 1095 } 1096 1097 /* 1098 * Card detection callback from host. 1099 */ 1100 static void mmc_sd_detect(struct mmc_host *host) 1101 { 1102 int err; 1103 1104 mmc_get_card(host->card, NULL); 1105 1106 /* 1107 * Just check if our card has been removed. 1108 */ 1109 err = _mmc_detect_card_removed(host); 1110 1111 mmc_put_card(host->card, NULL); 1112 1113 if (err) { 1114 mmc_sd_remove(host); 1115 1116 mmc_claim_host(host); 1117 mmc_detach_bus(host); 1118 mmc_power_off(host); 1119 mmc_release_host(host); 1120 } 1121 } 1122 1123 static int _mmc_sd_suspend(struct mmc_host *host) 1124 { 1125 int err = 0; 1126 1127 mmc_claim_host(host); 1128 1129 if (mmc_card_suspended(host->card)) 1130 goto out; 1131 1132 if (!mmc_host_is_spi(host)) 1133 err = mmc_deselect_cards(host); 1134 1135 if (!err) { 1136 mmc_power_off(host); 1137 mmc_card_set_suspended(host->card); 1138 } 1139 1140 out: 1141 mmc_release_host(host); 1142 return err; 1143 } 1144 1145 /* 1146 * Callback for suspend 1147 */ 1148 static int mmc_sd_suspend(struct mmc_host *host) 1149 { 1150 int err; 1151 1152 err = _mmc_sd_suspend(host); 1153 if (!err) { 1154 pm_runtime_disable(&host->card->dev); 1155 pm_runtime_set_suspended(&host->card->dev); 1156 } 1157 1158 return err; 1159 } 1160 1161 /* 1162 * This function tries to determine if the same card is still present 1163 * and, if so, restore all state to it. 1164 */ 1165 static int _mmc_sd_resume(struct mmc_host *host) 1166 { 1167 int err = 0; 1168 1169 mmc_claim_host(host); 1170 1171 if (!mmc_card_suspended(host->card)) 1172 goto out; 1173 1174 mmc_power_up(host, host->card->ocr); 1175 err = mmc_sd_init_card(host, host->card->ocr, host->card); 1176 mmc_card_clr_suspended(host->card); 1177 1178 out: 1179 mmc_release_host(host); 1180 return err; 1181 } 1182 1183 /* 1184 * Callback for resume 1185 */ 1186 static int mmc_sd_resume(struct mmc_host *host) 1187 { 1188 pm_runtime_enable(&host->card->dev); 1189 return 0; 1190 } 1191 1192 /* 1193 * Callback for runtime_suspend. 1194 */ 1195 static int mmc_sd_runtime_suspend(struct mmc_host *host) 1196 { 1197 int err; 1198 1199 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 1200 return 0; 1201 1202 err = _mmc_sd_suspend(host); 1203 if (err) 1204 pr_err("%s: error %d doing aggressive suspend\n", 1205 mmc_hostname(host), err); 1206 1207 return err; 1208 } 1209 1210 /* 1211 * Callback for runtime_resume. 1212 */ 1213 static int mmc_sd_runtime_resume(struct mmc_host *host) 1214 { 1215 int err; 1216 1217 err = _mmc_sd_resume(host); 1218 if (err && err != -ENOMEDIUM) 1219 pr_err("%s: error %d doing runtime resume\n", 1220 mmc_hostname(host), err); 1221 1222 return 0; 1223 } 1224 1225 static int mmc_sd_hw_reset(struct mmc_host *host) 1226 { 1227 mmc_power_cycle(host, host->card->ocr); 1228 return mmc_sd_init_card(host, host->card->ocr, host->card); 1229 } 1230 1231 static const struct mmc_bus_ops mmc_sd_ops = { 1232 .remove = mmc_sd_remove, 1233 .detect = mmc_sd_detect, 1234 .runtime_suspend = mmc_sd_runtime_suspend, 1235 .runtime_resume = mmc_sd_runtime_resume, 1236 .suspend = mmc_sd_suspend, 1237 .resume = mmc_sd_resume, 1238 .alive = mmc_sd_alive, 1239 .shutdown = mmc_sd_suspend, 1240 .hw_reset = mmc_sd_hw_reset, 1241 }; 1242 1243 /* 1244 * Starting point for SD card init. 1245 */ 1246 int mmc_attach_sd(struct mmc_host *host) 1247 { 1248 int err; 1249 u32 ocr, rocr; 1250 1251 WARN_ON(!host->claimed); 1252 1253 err = mmc_send_app_op_cond(host, 0, &ocr); 1254 if (err) 1255 return err; 1256 1257 mmc_attach_bus(host, &mmc_sd_ops); 1258 if (host->ocr_avail_sd) 1259 host->ocr_avail = host->ocr_avail_sd; 1260 1261 /* 1262 * We need to get OCR a different way for SPI. 1263 */ 1264 if (mmc_host_is_spi(host)) { 1265 mmc_go_idle(host); 1266 1267 err = mmc_spi_read_ocr(host, 0, &ocr); 1268 if (err) 1269 goto err; 1270 } 1271 1272 rocr = mmc_select_voltage(host, ocr); 1273 1274 /* 1275 * Can we support the voltage(s) of the card(s)? 1276 */ 1277 if (!rocr) { 1278 err = -EINVAL; 1279 goto err; 1280 } 1281 1282 /* 1283 * Detect and init the card. 1284 */ 1285 err = mmc_sd_init_card(host, rocr, NULL); 1286 if (err) 1287 goto err; 1288 1289 mmc_release_host(host); 1290 err = mmc_add_card(host->card); 1291 if (err) 1292 goto remove_card; 1293 1294 mmc_claim_host(host); 1295 return 0; 1296 1297 remove_card: 1298 mmc_remove_card(host->card); 1299 host->card = NULL; 1300 mmc_claim_host(host); 1301 err: 1302 mmc_detach_bus(host); 1303 1304 pr_err("%s: error %d whilst initialising SD card\n", 1305 mmc_hostname(host), err); 1306 1307 return err; 1308 } 1309