1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/sd.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/sizes.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/scatterlist.h> 16 17 #include <linux/mmc/host.h> 18 #include <linux/mmc/card.h> 19 #include <linux/mmc/mmc.h> 20 #include <linux/mmc/sd.h> 21 22 #include "core.h" 23 #include "card.h" 24 #include "host.h" 25 #include "bus.h" 26 #include "mmc_ops.h" 27 #include "sd.h" 28 #include "sd_ops.h" 29 30 static const unsigned int tran_exp[] = { 31 10000, 100000, 1000000, 10000000, 32 0, 0, 0, 0 33 }; 34 35 static const unsigned char tran_mant[] = { 36 0, 10, 12, 13, 15, 20, 25, 30, 37 35, 40, 45, 50, 55, 60, 70, 80, 38 }; 39 40 static const unsigned int taac_exp[] = { 41 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 42 }; 43 44 static const unsigned int taac_mant[] = { 45 0, 10, 12, 13, 15, 20, 25, 30, 46 35, 40, 45, 50, 55, 60, 70, 80, 47 }; 48 49 static const unsigned int sd_au_size[] = { 50 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512, 51 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512, 52 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512, 53 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512, 54 }; 55 56 #define UNSTUFF_BITS(resp,start,size) \ 57 ({ \ 58 const int __size = size; \ 59 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 60 const int __off = 3 - ((start) / 32); \ 61 const int __shft = (start) & 31; \ 62 u32 __res; \ 63 \ 64 __res = resp[__off] >> __shft; \ 65 if (__size + __shft > 32) \ 66 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 67 __res & __mask; \ 68 }) 69 70 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000 71 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000 72 73 struct sd_busy_data { 74 struct mmc_card *card; 75 u8 *reg_buf; 76 }; 77 78 /* 79 * Given the decoded CSD structure, decode the raw CID to our CID structure. 80 */ 81 void mmc_decode_cid(struct mmc_card *card) 82 { 83 u32 *resp = card->raw_cid; 84 85 /* 86 * SD doesn't currently have a version field so we will 87 * have to assume we can parse this. 88 */ 89 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 90 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 91 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 92 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 93 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 94 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 95 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 96 card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4); 97 card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4); 98 card->cid.serial = UNSTUFF_BITS(resp, 24, 32); 99 card->cid.year = UNSTUFF_BITS(resp, 12, 8); 100 card->cid.month = UNSTUFF_BITS(resp, 8, 4); 101 102 card->cid.year += 2000; /* SD cards year offset */ 103 } 104 105 /* 106 * Given a 128-bit response, decode to our card CSD structure. 107 */ 108 static int mmc_decode_csd(struct mmc_card *card) 109 { 110 struct mmc_csd *csd = &card->csd; 111 unsigned int e, m, csd_struct; 112 u32 *resp = card->raw_csd; 113 114 csd_struct = UNSTUFF_BITS(resp, 126, 2); 115 116 switch (csd_struct) { 117 case 0: 118 m = UNSTUFF_BITS(resp, 115, 4); 119 e = UNSTUFF_BITS(resp, 112, 3); 120 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 121 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 122 123 m = UNSTUFF_BITS(resp, 99, 4); 124 e = UNSTUFF_BITS(resp, 96, 3); 125 csd->max_dtr = tran_exp[e] * tran_mant[m]; 126 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 127 128 e = UNSTUFF_BITS(resp, 47, 3); 129 m = UNSTUFF_BITS(resp, 62, 12); 130 csd->capacity = (1 + m) << (e + 2); 131 132 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 133 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 134 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 135 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 136 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 137 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 138 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 139 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 140 141 if (UNSTUFF_BITS(resp, 46, 1)) { 142 csd->erase_size = 1; 143 } else if (csd->write_blkbits >= 9) { 144 csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1; 145 csd->erase_size <<= csd->write_blkbits - 9; 146 } 147 148 if (UNSTUFF_BITS(resp, 13, 1)) 149 mmc_card_set_readonly(card); 150 break; 151 case 1: 152 /* 153 * This is a block-addressed SDHC or SDXC card. Most 154 * interesting fields are unused and have fixed 155 * values. To avoid getting tripped by buggy cards, 156 * we assume those fixed values ourselves. 157 */ 158 mmc_card_set_blockaddr(card); 159 160 csd->taac_ns = 0; /* Unused */ 161 csd->taac_clks = 0; /* Unused */ 162 163 m = UNSTUFF_BITS(resp, 99, 4); 164 e = UNSTUFF_BITS(resp, 96, 3); 165 csd->max_dtr = tran_exp[e] * tran_mant[m]; 166 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 167 csd->c_size = UNSTUFF_BITS(resp, 48, 22); 168 169 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */ 170 if (csd->c_size >= 0xFFFF) 171 mmc_card_set_ext_capacity(card); 172 173 m = UNSTUFF_BITS(resp, 48, 22); 174 csd->capacity = (1 + m) << 10; 175 176 csd->read_blkbits = 9; 177 csd->read_partial = 0; 178 csd->write_misalign = 0; 179 csd->read_misalign = 0; 180 csd->r2w_factor = 4; /* Unused */ 181 csd->write_blkbits = 9; 182 csd->write_partial = 0; 183 csd->erase_size = 1; 184 185 if (UNSTUFF_BITS(resp, 13, 1)) 186 mmc_card_set_readonly(card); 187 break; 188 default: 189 pr_err("%s: unrecognised CSD structure version %d\n", 190 mmc_hostname(card->host), csd_struct); 191 return -EINVAL; 192 } 193 194 card->erase_size = csd->erase_size; 195 196 return 0; 197 } 198 199 /* 200 * Given a 64-bit response, decode to our card SCR structure. 201 */ 202 static int mmc_decode_scr(struct mmc_card *card) 203 { 204 struct sd_scr *scr = &card->scr; 205 unsigned int scr_struct; 206 u32 resp[4]; 207 208 resp[3] = card->raw_scr[1]; 209 resp[2] = card->raw_scr[0]; 210 211 scr_struct = UNSTUFF_BITS(resp, 60, 4); 212 if (scr_struct != 0) { 213 pr_err("%s: unrecognised SCR structure version %d\n", 214 mmc_hostname(card->host), scr_struct); 215 return -EINVAL; 216 } 217 218 scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4); 219 scr->bus_widths = UNSTUFF_BITS(resp, 48, 4); 220 if (scr->sda_vsn == SCR_SPEC_VER_2) 221 /* Check if Physical Layer Spec v3.0 is supported */ 222 scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1); 223 224 if (scr->sda_spec3) { 225 scr->sda_spec4 = UNSTUFF_BITS(resp, 42, 1); 226 scr->sda_specx = UNSTUFF_BITS(resp, 38, 4); 227 } 228 229 if (UNSTUFF_BITS(resp, 55, 1)) 230 card->erased_byte = 0xFF; 231 else 232 card->erased_byte = 0x0; 233 234 if (scr->sda_spec4) 235 scr->cmds = UNSTUFF_BITS(resp, 32, 4); 236 else if (scr->sda_spec3) 237 scr->cmds = UNSTUFF_BITS(resp, 32, 2); 238 239 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */ 240 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) || 241 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) { 242 pr_err("%s: invalid bus width\n", mmc_hostname(card->host)); 243 return -EINVAL; 244 } 245 246 return 0; 247 } 248 249 /* 250 * Fetch and process SD Status register. 251 */ 252 static int mmc_read_ssr(struct mmc_card *card) 253 { 254 unsigned int au, es, et, eo; 255 __be32 *raw_ssr; 256 u32 resp[4] = {}; 257 u8 discard_support; 258 int i; 259 260 if (!(card->csd.cmdclass & CCC_APP_SPEC)) { 261 pr_warn("%s: card lacks mandatory SD Status function\n", 262 mmc_hostname(card->host)); 263 return 0; 264 } 265 266 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL); 267 if (!raw_ssr) 268 return -ENOMEM; 269 270 if (mmc_app_sd_status(card, raw_ssr)) { 271 pr_warn("%s: problem reading SD Status register\n", 272 mmc_hostname(card->host)); 273 kfree(raw_ssr); 274 return 0; 275 } 276 277 for (i = 0; i < 16; i++) 278 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]); 279 280 kfree(raw_ssr); 281 282 /* 283 * UNSTUFF_BITS only works with four u32s so we have to offset the 284 * bitfield positions accordingly. 285 */ 286 au = UNSTUFF_BITS(card->raw_ssr, 428 - 384, 4); 287 if (au) { 288 if (au <= 9 || card->scr.sda_spec3) { 289 card->ssr.au = sd_au_size[au]; 290 es = UNSTUFF_BITS(card->raw_ssr, 408 - 384, 16); 291 et = UNSTUFF_BITS(card->raw_ssr, 402 - 384, 6); 292 if (es && et) { 293 eo = UNSTUFF_BITS(card->raw_ssr, 400 - 384, 2); 294 card->ssr.erase_timeout = (et * 1000) / es; 295 card->ssr.erase_offset = eo * 1000; 296 } 297 } else { 298 pr_warn("%s: SD Status: Invalid Allocation Unit size\n", 299 mmc_hostname(card->host)); 300 } 301 } 302 303 /* 304 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set 305 */ 306 resp[3] = card->raw_ssr[6]; 307 discard_support = UNSTUFF_BITS(resp, 313 - 288, 1); 308 card->erase_arg = (card->scr.sda_specx && discard_support) ? 309 SD_DISCARD_ARG : SD_ERASE_ARG; 310 311 return 0; 312 } 313 314 /* 315 * Fetches and decodes switch information 316 */ 317 static int mmc_read_switch(struct mmc_card *card) 318 { 319 int err; 320 u8 *status; 321 322 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 323 return 0; 324 325 if (!(card->csd.cmdclass & CCC_SWITCH)) { 326 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n", 327 mmc_hostname(card->host)); 328 return 0; 329 } 330 331 status = kmalloc(64, GFP_KERNEL); 332 if (!status) 333 return -ENOMEM; 334 335 /* 336 * Find out the card's support bits with a mode 0 operation. 337 * The argument does not matter, as the support bits do not 338 * change with the arguments. 339 */ 340 err = mmc_sd_switch(card, 0, 0, 0, status); 341 if (err) { 342 /* 343 * If the host or the card can't do the switch, 344 * fail more gracefully. 345 */ 346 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT) 347 goto out; 348 349 pr_warn("%s: problem reading Bus Speed modes\n", 350 mmc_hostname(card->host)); 351 err = 0; 352 353 goto out; 354 } 355 356 if (status[13] & SD_MODE_HIGH_SPEED) 357 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR; 358 359 if (card->scr.sda_spec3) { 360 card->sw_caps.sd3_bus_mode = status[13]; 361 /* Driver Strengths supported by the card */ 362 card->sw_caps.sd3_drv_type = status[9]; 363 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8; 364 } 365 366 out: 367 kfree(status); 368 369 return err; 370 } 371 372 /* 373 * Test if the card supports high-speed mode and, if so, switch to it. 374 */ 375 int mmc_sd_switch_hs(struct mmc_card *card) 376 { 377 int err; 378 u8 *status; 379 380 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 381 return 0; 382 383 if (!(card->csd.cmdclass & CCC_SWITCH)) 384 return 0; 385 386 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED)) 387 return 0; 388 389 if (card->sw_caps.hs_max_dtr == 0) 390 return 0; 391 392 status = kmalloc(64, GFP_KERNEL); 393 if (!status) 394 return -ENOMEM; 395 396 err = mmc_sd_switch(card, 1, 0, HIGH_SPEED_BUS_SPEED, status); 397 if (err) 398 goto out; 399 400 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) { 401 pr_warn("%s: Problem switching card into high-speed mode!\n", 402 mmc_hostname(card->host)); 403 err = 0; 404 } else { 405 err = 1; 406 } 407 408 out: 409 kfree(status); 410 411 return err; 412 } 413 414 static int sd_select_driver_type(struct mmc_card *card, u8 *status) 415 { 416 int card_drv_type, drive_strength, drv_type; 417 int err; 418 419 card->drive_strength = 0; 420 421 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B; 422 423 drive_strength = mmc_select_drive_strength(card, 424 card->sw_caps.uhs_max_dtr, 425 card_drv_type, &drv_type); 426 427 if (drive_strength) { 428 err = mmc_sd_switch(card, 1, 2, drive_strength, status); 429 if (err) 430 return err; 431 if ((status[15] & 0xF) != drive_strength) { 432 pr_warn("%s: Problem setting drive strength!\n", 433 mmc_hostname(card->host)); 434 return 0; 435 } 436 card->drive_strength = drive_strength; 437 } 438 439 if (drv_type) 440 mmc_set_driver_type(card->host, drv_type); 441 442 return 0; 443 } 444 445 static void sd_update_bus_speed_mode(struct mmc_card *card) 446 { 447 /* 448 * If the host doesn't support any of the UHS-I modes, fallback on 449 * default speed. 450 */ 451 if (!mmc_host_uhs(card->host)) { 452 card->sd_bus_speed = 0; 453 return; 454 } 455 456 if ((card->host->caps & MMC_CAP_UHS_SDR104) && 457 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) { 458 card->sd_bus_speed = UHS_SDR104_BUS_SPEED; 459 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) && 460 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) { 461 card->sd_bus_speed = UHS_DDR50_BUS_SPEED; 462 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 463 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode & 464 SD_MODE_UHS_SDR50)) { 465 card->sd_bus_speed = UHS_SDR50_BUS_SPEED; 466 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 467 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) && 468 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) { 469 card->sd_bus_speed = UHS_SDR25_BUS_SPEED; 470 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 471 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 | 472 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode & 473 SD_MODE_UHS_SDR12)) { 474 card->sd_bus_speed = UHS_SDR12_BUS_SPEED; 475 } 476 } 477 478 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status) 479 { 480 int err; 481 unsigned int timing = 0; 482 483 switch (card->sd_bus_speed) { 484 case UHS_SDR104_BUS_SPEED: 485 timing = MMC_TIMING_UHS_SDR104; 486 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR; 487 break; 488 case UHS_DDR50_BUS_SPEED: 489 timing = MMC_TIMING_UHS_DDR50; 490 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR; 491 break; 492 case UHS_SDR50_BUS_SPEED: 493 timing = MMC_TIMING_UHS_SDR50; 494 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR; 495 break; 496 case UHS_SDR25_BUS_SPEED: 497 timing = MMC_TIMING_UHS_SDR25; 498 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR; 499 break; 500 case UHS_SDR12_BUS_SPEED: 501 timing = MMC_TIMING_UHS_SDR12; 502 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR; 503 break; 504 default: 505 return 0; 506 } 507 508 err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status); 509 if (err) 510 return err; 511 512 if ((status[16] & 0xF) != card->sd_bus_speed) 513 pr_warn("%s: Problem setting bus speed mode!\n", 514 mmc_hostname(card->host)); 515 else { 516 mmc_set_timing(card->host, timing); 517 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr); 518 } 519 520 return 0; 521 } 522 523 /* Get host's max current setting at its current voltage */ 524 static u32 sd_get_host_max_current(struct mmc_host *host) 525 { 526 u32 voltage, max_current; 527 528 voltage = 1 << host->ios.vdd; 529 switch (voltage) { 530 case MMC_VDD_165_195: 531 max_current = host->max_current_180; 532 break; 533 case MMC_VDD_29_30: 534 case MMC_VDD_30_31: 535 max_current = host->max_current_300; 536 break; 537 case MMC_VDD_32_33: 538 case MMC_VDD_33_34: 539 max_current = host->max_current_330; 540 break; 541 default: 542 max_current = 0; 543 } 544 545 return max_current; 546 } 547 548 static int sd_set_current_limit(struct mmc_card *card, u8 *status) 549 { 550 int current_limit = SD_SET_CURRENT_NO_CHANGE; 551 int err; 552 u32 max_current; 553 554 /* 555 * Current limit switch is only defined for SDR50, SDR104, and DDR50 556 * bus speed modes. For other bus speed modes, we do not change the 557 * current limit. 558 */ 559 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) && 560 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) && 561 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED)) 562 return 0; 563 564 /* 565 * Host has different current capabilities when operating at 566 * different voltages, so find out its max current first. 567 */ 568 max_current = sd_get_host_max_current(card->host); 569 570 /* 571 * We only check host's capability here, if we set a limit that is 572 * higher than the card's maximum current, the card will be using its 573 * maximum current, e.g. if the card's maximum current is 300ma, and 574 * when we set current limit to 200ma, the card will draw 200ma, and 575 * when we set current limit to 400/600/800ma, the card will draw its 576 * maximum 300ma from the host. 577 * 578 * The above is incorrect: if we try to set a current limit that is 579 * not supported by the card, the card can rightfully error out the 580 * attempt, and remain at the default current limit. This results 581 * in a 300mA card being limited to 200mA even though the host 582 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with 583 * an iMX6 host. --rmk 584 */ 585 if (max_current >= 800 && 586 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800) 587 current_limit = SD_SET_CURRENT_LIMIT_800; 588 else if (max_current >= 600 && 589 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600) 590 current_limit = SD_SET_CURRENT_LIMIT_600; 591 else if (max_current >= 400 && 592 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400) 593 current_limit = SD_SET_CURRENT_LIMIT_400; 594 else if (max_current >= 200 && 595 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200) 596 current_limit = SD_SET_CURRENT_LIMIT_200; 597 598 if (current_limit != SD_SET_CURRENT_NO_CHANGE) { 599 err = mmc_sd_switch(card, 1, 3, current_limit, status); 600 if (err) 601 return err; 602 603 if (((status[15] >> 4) & 0x0F) != current_limit) 604 pr_warn("%s: Problem setting current limit!\n", 605 mmc_hostname(card->host)); 606 607 } 608 609 return 0; 610 } 611 612 /* 613 * UHS-I specific initialization procedure 614 */ 615 static int mmc_sd_init_uhs_card(struct mmc_card *card) 616 { 617 int err; 618 u8 *status; 619 620 if (!(card->csd.cmdclass & CCC_SWITCH)) 621 return 0; 622 623 status = kmalloc(64, GFP_KERNEL); 624 if (!status) 625 return -ENOMEM; 626 627 /* Set 4-bit bus width */ 628 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 629 if (err) 630 goto out; 631 632 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4); 633 634 /* 635 * Select the bus speed mode depending on host 636 * and card capability. 637 */ 638 sd_update_bus_speed_mode(card); 639 640 /* Set the driver strength for the card */ 641 err = sd_select_driver_type(card, status); 642 if (err) 643 goto out; 644 645 /* Set current limit for the card */ 646 err = sd_set_current_limit(card, status); 647 if (err) 648 goto out; 649 650 /* Set bus speed mode of the card */ 651 err = sd_set_bus_speed_mode(card, status); 652 if (err) 653 goto out; 654 655 /* 656 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and 657 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104. 658 */ 659 if (!mmc_host_is_spi(card->host) && 660 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 || 661 card->host->ios.timing == MMC_TIMING_UHS_DDR50 || 662 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) { 663 err = mmc_execute_tuning(card); 664 665 /* 666 * As SD Specifications Part1 Physical Layer Specification 667 * Version 3.01 says, CMD19 tuning is available for unlocked 668 * cards in transfer state of 1.8V signaling mode. The small 669 * difference between v3.00 and 3.01 spec means that CMD19 670 * tuning is also available for DDR50 mode. 671 */ 672 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) { 673 pr_warn("%s: ddr50 tuning failed\n", 674 mmc_hostname(card->host)); 675 err = 0; 676 } 677 } 678 679 out: 680 kfree(status); 681 682 return err; 683 } 684 685 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 686 card->raw_cid[2], card->raw_cid[3]); 687 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 688 card->raw_csd[2], card->raw_csd[3]); 689 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]); 690 MMC_DEV_ATTR(ssr, 691 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n", 692 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2], 693 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5], 694 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8], 695 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11], 696 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14], 697 card->raw_ssr[15]); 698 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 699 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 700 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 701 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev); 702 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 703 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 704 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 705 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 706 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 707 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 708 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 709 710 711 static ssize_t mmc_dsr_show(struct device *dev, 712 struct device_attribute *attr, 713 char *buf) 714 { 715 struct mmc_card *card = mmc_dev_to_card(dev); 716 struct mmc_host *host = card->host; 717 718 if (card->csd.dsr_imp && host->dsr_req) 719 return sprintf(buf, "0x%x\n", host->dsr); 720 else 721 /* return default DSR value */ 722 return sprintf(buf, "0x%x\n", 0x404); 723 } 724 725 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 726 727 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor); 728 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device); 729 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev); 730 731 #define sdio_info_attr(num) \ 732 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \ 733 { \ 734 struct mmc_card *card = mmc_dev_to_card(dev); \ 735 \ 736 if (num > card->num_info) \ 737 return -ENODATA; \ 738 if (!card->info[num-1][0]) \ 739 return 0; \ 740 return sprintf(buf, "%s\n", card->info[num-1]); \ 741 } \ 742 static DEVICE_ATTR_RO(info##num) 743 744 sdio_info_attr(1); 745 sdio_info_attr(2); 746 sdio_info_attr(3); 747 sdio_info_attr(4); 748 749 static struct attribute *sd_std_attrs[] = { 750 &dev_attr_vendor.attr, 751 &dev_attr_device.attr, 752 &dev_attr_revision.attr, 753 &dev_attr_info1.attr, 754 &dev_attr_info2.attr, 755 &dev_attr_info3.attr, 756 &dev_attr_info4.attr, 757 &dev_attr_cid.attr, 758 &dev_attr_csd.attr, 759 &dev_attr_scr.attr, 760 &dev_attr_ssr.attr, 761 &dev_attr_date.attr, 762 &dev_attr_erase_size.attr, 763 &dev_attr_preferred_erase_size.attr, 764 &dev_attr_fwrev.attr, 765 &dev_attr_hwrev.attr, 766 &dev_attr_manfid.attr, 767 &dev_attr_name.attr, 768 &dev_attr_oemid.attr, 769 &dev_attr_serial.attr, 770 &dev_attr_ocr.attr, 771 &dev_attr_rca.attr, 772 &dev_attr_dsr.attr, 773 NULL, 774 }; 775 776 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr, 777 int index) 778 { 779 struct device *dev = kobj_to_dev(kobj); 780 struct mmc_card *card = mmc_dev_to_card(dev); 781 782 /* CIS vendor and device ids, revision and info string are available only for Combo cards */ 783 if ((attr == &dev_attr_vendor.attr || 784 attr == &dev_attr_device.attr || 785 attr == &dev_attr_revision.attr || 786 attr == &dev_attr_info1.attr || 787 attr == &dev_attr_info2.attr || 788 attr == &dev_attr_info3.attr || 789 attr == &dev_attr_info4.attr 790 ) && card->type != MMC_TYPE_SD_COMBO) 791 return 0; 792 793 return attr->mode; 794 } 795 796 static const struct attribute_group sd_std_group = { 797 .attrs = sd_std_attrs, 798 .is_visible = sd_std_is_visible, 799 }; 800 __ATTRIBUTE_GROUPS(sd_std); 801 802 struct device_type sd_type = { 803 .groups = sd_std_groups, 804 }; 805 806 /* 807 * Fetch CID from card. 808 */ 809 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr) 810 { 811 int err; 812 u32 max_current; 813 int retries = 10; 814 u32 pocr = ocr; 815 816 try_again: 817 if (!retries) { 818 ocr &= ~SD_OCR_S18R; 819 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host)); 820 } 821 822 /* 823 * Since we're changing the OCR value, we seem to 824 * need to tell some cards to go back to the idle 825 * state. We wait 1ms to give cards time to 826 * respond. 827 */ 828 mmc_go_idle(host); 829 830 /* 831 * If SD_SEND_IF_COND indicates an SD 2.0 832 * compliant card and we should set bit 30 833 * of the ocr to indicate that we can handle 834 * block-addressed SDHC cards. 835 */ 836 err = mmc_send_if_cond(host, ocr); 837 if (!err) 838 ocr |= SD_OCR_CCS; 839 840 /* 841 * If the host supports one of UHS-I modes, request the card 842 * to switch to 1.8V signaling level. If the card has failed 843 * repeatedly to switch however, skip this. 844 */ 845 if (retries && mmc_host_uhs(host)) 846 ocr |= SD_OCR_S18R; 847 848 /* 849 * If the host can supply more than 150mA at current voltage, 850 * XPC should be set to 1. 851 */ 852 max_current = sd_get_host_max_current(host); 853 if (max_current > 150) 854 ocr |= SD_OCR_XPC; 855 856 err = mmc_send_app_op_cond(host, ocr, rocr); 857 if (err) 858 return err; 859 860 /* 861 * In case the S18A bit is set in the response, let's start the signal 862 * voltage switch procedure. SPI mode doesn't support CMD11. 863 * Note that, according to the spec, the S18A bit is not valid unless 864 * the CCS bit is set as well. We deliberately deviate from the spec in 865 * regards to this, which allows UHS-I to be supported for SDSC cards. 866 */ 867 if (!mmc_host_is_spi(host) && rocr && (*rocr & 0x01000000)) { 868 err = mmc_set_uhs_voltage(host, pocr); 869 if (err == -EAGAIN) { 870 retries--; 871 goto try_again; 872 } else if (err) { 873 retries = 0; 874 goto try_again; 875 } 876 } 877 878 err = mmc_send_cid(host, cid); 879 return err; 880 } 881 882 int mmc_sd_get_csd(struct mmc_card *card) 883 { 884 int err; 885 886 /* 887 * Fetch CSD from card. 888 */ 889 err = mmc_send_csd(card, card->raw_csd); 890 if (err) 891 return err; 892 893 err = mmc_decode_csd(card); 894 if (err) 895 return err; 896 897 return 0; 898 } 899 900 static int mmc_sd_get_ro(struct mmc_host *host) 901 { 902 int ro; 903 904 /* 905 * Some systems don't feature a write-protect pin and don't need one. 906 * E.g. because they only have micro-SD card slot. For those systems 907 * assume that the SD card is always read-write. 908 */ 909 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT) 910 return 0; 911 912 if (!host->ops->get_ro) 913 return -1; 914 915 ro = host->ops->get_ro(host); 916 917 return ro; 918 } 919 920 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card, 921 bool reinit) 922 { 923 int err; 924 925 if (!reinit) { 926 /* 927 * Fetch SCR from card. 928 */ 929 err = mmc_app_send_scr(card); 930 if (err) 931 return err; 932 933 err = mmc_decode_scr(card); 934 if (err) 935 return err; 936 937 /* 938 * Fetch and process SD Status register. 939 */ 940 err = mmc_read_ssr(card); 941 if (err) 942 return err; 943 944 /* Erase init depends on CSD and SSR */ 945 mmc_init_erase(card); 946 947 /* 948 * Fetch switch information from card. 949 */ 950 err = mmc_read_switch(card); 951 if (err) 952 return err; 953 } 954 955 /* 956 * For SPI, enable CRC as appropriate. 957 * This CRC enable is located AFTER the reading of the 958 * card registers because some SDHC cards are not able 959 * to provide valid CRCs for non-512-byte blocks. 960 */ 961 if (mmc_host_is_spi(host)) { 962 err = mmc_spi_set_crc(host, use_spi_crc); 963 if (err) 964 return err; 965 } 966 967 /* 968 * Check if read-only switch is active. 969 */ 970 if (!reinit) { 971 int ro = mmc_sd_get_ro(host); 972 973 if (ro < 0) { 974 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n", 975 mmc_hostname(host)); 976 } else if (ro > 0) { 977 mmc_card_set_readonly(card); 978 } 979 } 980 981 return 0; 982 } 983 984 unsigned mmc_sd_get_max_clock(struct mmc_card *card) 985 { 986 unsigned max_dtr = (unsigned int)-1; 987 988 if (mmc_card_hs(card)) { 989 if (max_dtr > card->sw_caps.hs_max_dtr) 990 max_dtr = card->sw_caps.hs_max_dtr; 991 } else if (max_dtr > card->csd.max_dtr) { 992 max_dtr = card->csd.max_dtr; 993 } 994 995 return max_dtr; 996 } 997 998 static bool mmc_sd_card_using_v18(struct mmc_card *card) 999 { 1000 /* 1001 * According to the SD spec., the Bus Speed Mode (function group 1) bits 1002 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus 1003 * they can be used to determine if the card has already switched to 1004 * 1.8V signaling. 1005 */ 1006 return card->sw_caps.sd3_bus_mode & 1007 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50); 1008 } 1009 1010 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset, 1011 u8 reg_data) 1012 { 1013 struct mmc_host *host = card->host; 1014 struct mmc_request mrq = {}; 1015 struct mmc_command cmd = {}; 1016 struct mmc_data data = {}; 1017 struct scatterlist sg; 1018 u8 *reg_buf; 1019 1020 reg_buf = kzalloc(512, GFP_KERNEL); 1021 if (!reg_buf) 1022 return -ENOMEM; 1023 1024 mrq.cmd = &cmd; 1025 mrq.data = &data; 1026 1027 /* 1028 * Arguments of CMD49: 1029 * [31:31] MIO (0 = memory). 1030 * [30:27] FNO (function number). 1031 * [26:26] MW - mask write mode (0 = disable). 1032 * [25:18] page number. 1033 * [17:9] offset address. 1034 * [8:0] length (0 = 1 byte). 1035 */ 1036 cmd.arg = fno << 27 | page << 18 | offset << 9; 1037 1038 /* The first byte in the buffer is the data to be written. */ 1039 reg_buf[0] = reg_data; 1040 1041 data.flags = MMC_DATA_WRITE; 1042 data.blksz = 512; 1043 data.blocks = 1; 1044 data.sg = &sg; 1045 data.sg_len = 1; 1046 sg_init_one(&sg, reg_buf, 512); 1047 1048 cmd.opcode = SD_WRITE_EXTR_SINGLE; 1049 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; 1050 1051 mmc_set_data_timeout(&data, card); 1052 mmc_wait_for_req(host, &mrq); 1053 1054 kfree(reg_buf); 1055 1056 /* 1057 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s 1058 * after the CMD49. Although, let's leave this to be managed by the 1059 * caller. 1060 */ 1061 1062 if (cmd.error) 1063 return cmd.error; 1064 if (data.error) 1065 return data.error; 1066 1067 return 0; 1068 } 1069 1070 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page, 1071 u16 offset, u16 len, u8 *reg_buf) 1072 { 1073 u32 cmd_args; 1074 1075 /* 1076 * Command arguments of CMD48: 1077 * [31:31] MIO (0 = memory). 1078 * [30:27] FNO (function number). 1079 * [26:26] reserved (0). 1080 * [25:18] page number. 1081 * [17:9] offset address. 1082 * [8:0] length (0 = 1 byte, 1ff = 512 bytes). 1083 */ 1084 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1); 1085 1086 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE, 1087 cmd_args, reg_buf, 512); 1088 } 1089 1090 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page, 1091 u16 offset) 1092 { 1093 int err; 1094 u8 *reg_buf; 1095 1096 reg_buf = kzalloc(512, GFP_KERNEL); 1097 if (!reg_buf) 1098 return -ENOMEM; 1099 1100 /* Read the extension register for power management function. */ 1101 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); 1102 if (err) { 1103 pr_warn("%s: error %d reading PM func of ext reg\n", 1104 mmc_hostname(card->host), err); 1105 goto out; 1106 } 1107 1108 /* PM revision consists of 4 bits. */ 1109 card->ext_power.rev = reg_buf[0] & 0xf; 1110 1111 /* Power Off Notification support at bit 4. */ 1112 if (reg_buf[1] & BIT(4)) 1113 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY; 1114 1115 /* Power Sustenance support at bit 5. */ 1116 if (reg_buf[1] & BIT(5)) 1117 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE; 1118 1119 /* Power Down Mode support at bit 6. */ 1120 if (reg_buf[1] & BIT(6)) 1121 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE; 1122 1123 card->ext_power.fno = fno; 1124 card->ext_power.page = page; 1125 card->ext_power.offset = offset; 1126 1127 out: 1128 kfree(reg_buf); 1129 return err; 1130 } 1131 1132 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page, 1133 u16 offset) 1134 { 1135 int err; 1136 u8 *reg_buf; 1137 1138 reg_buf = kzalloc(512, GFP_KERNEL); 1139 if (!reg_buf) 1140 return -ENOMEM; 1141 1142 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); 1143 if (err) { 1144 pr_warn("%s: error %d reading PERF func of ext reg\n", 1145 mmc_hostname(card->host), err); 1146 goto out; 1147 } 1148 1149 /* PERF revision. */ 1150 card->ext_perf.rev = reg_buf[0]; 1151 1152 /* FX_EVENT support at bit 0. */ 1153 if (reg_buf[1] & BIT(0)) 1154 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT; 1155 1156 /* Card initiated self-maintenance support at bit 0. */ 1157 if (reg_buf[2] & BIT(0)) 1158 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT; 1159 1160 /* Host initiated self-maintenance support at bit 1. */ 1161 if (reg_buf[2] & BIT(1)) 1162 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT; 1163 1164 /* Cache support at bit 0. */ 1165 if (reg_buf[4] & BIT(0)) 1166 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE; 1167 1168 /* Command queue support indicated via queue depth bits (0 to 4). */ 1169 if (reg_buf[6] & 0x1f) 1170 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE; 1171 1172 card->ext_perf.fno = fno; 1173 card->ext_perf.page = page; 1174 card->ext_perf.offset = offset; 1175 1176 out: 1177 kfree(reg_buf); 1178 return err; 1179 } 1180 1181 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf, 1182 u16 *next_ext_addr) 1183 { 1184 u8 num_regs, fno, page; 1185 u16 sfc, offset, ext = *next_ext_addr; 1186 u32 reg_addr; 1187 1188 /* 1189 * Parse only one register set per extension, as that is sufficient to 1190 * support the standard functions. This means another 48 bytes in the 1191 * buffer must be available. 1192 */ 1193 if (ext + 48 > 512) 1194 return -EFAULT; 1195 1196 /* Standard Function Code */ 1197 memcpy(&sfc, &gen_info_buf[ext], 2); 1198 1199 /* Address to the next extension. */ 1200 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2); 1201 1202 /* Number of registers for this extension. */ 1203 num_regs = gen_info_buf[ext + 42]; 1204 1205 /* We support only one register per extension. */ 1206 if (num_regs != 1) 1207 return 0; 1208 1209 /* Extension register address. */ 1210 memcpy(®_addr, &gen_info_buf[ext + 44], 4); 1211 1212 /* 9 bits (0 to 8) contains the offset address. */ 1213 offset = reg_addr & 0x1ff; 1214 1215 /* 8 bits (9 to 16) contains the page number. */ 1216 page = reg_addr >> 9 & 0xff ; 1217 1218 /* 4 bits (18 to 21) contains the function number. */ 1219 fno = reg_addr >> 18 & 0xf; 1220 1221 /* Standard Function Code for power management. */ 1222 if (sfc == 0x1) 1223 return sd_parse_ext_reg_power(card, fno, page, offset); 1224 1225 /* Standard Function Code for performance enhancement. */ 1226 if (sfc == 0x2) 1227 return sd_parse_ext_reg_perf(card, fno, page, offset); 1228 1229 return 0; 1230 } 1231 1232 static int sd_read_ext_regs(struct mmc_card *card) 1233 { 1234 int err, i; 1235 u8 num_ext, *gen_info_buf; 1236 u16 rev, len, next_ext_addr; 1237 1238 if (mmc_host_is_spi(card->host)) 1239 return 0; 1240 1241 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT)) 1242 return 0; 1243 1244 gen_info_buf = kzalloc(512, GFP_KERNEL); 1245 if (!gen_info_buf) 1246 return -ENOMEM; 1247 1248 /* 1249 * Read 512 bytes of general info, which is found at function number 0, 1250 * at page 0 and with no offset. 1251 */ 1252 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf); 1253 if (err) { 1254 pr_warn("%s: error %d reading general info of SD ext reg\n", 1255 mmc_hostname(card->host), err); 1256 goto out; 1257 } 1258 1259 /* General info structure revision. */ 1260 memcpy(&rev, &gen_info_buf[0], 2); 1261 1262 /* Length of general info in bytes. */ 1263 memcpy(&len, &gen_info_buf[2], 2); 1264 1265 /* Number of extensions to be find. */ 1266 num_ext = gen_info_buf[4]; 1267 1268 /* We support revision 0, but limit it to 512 bytes for simplicity. */ 1269 if (rev != 0 || len > 512) { 1270 pr_warn("%s: non-supported SD ext reg layout\n", 1271 mmc_hostname(card->host)); 1272 goto out; 1273 } 1274 1275 /* 1276 * Parse the extension registers. The first extension should start 1277 * immediately after the general info header (16 bytes). 1278 */ 1279 next_ext_addr = 16; 1280 for (i = 0; i < num_ext; i++) { 1281 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr); 1282 if (err) { 1283 pr_warn("%s: error %d parsing SD ext reg\n", 1284 mmc_hostname(card->host), err); 1285 goto out; 1286 } 1287 } 1288 1289 out: 1290 kfree(gen_info_buf); 1291 return err; 1292 } 1293 1294 static bool sd_cache_enabled(struct mmc_host *host) 1295 { 1296 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE; 1297 } 1298 1299 static int sd_flush_cache(struct mmc_host *host) 1300 { 1301 struct mmc_card *card = host->card; 1302 u8 *reg_buf, fno, page; 1303 u16 offset; 1304 int err; 1305 1306 if (!sd_cache_enabled(host)) 1307 return 0; 1308 1309 reg_buf = kzalloc(512, GFP_KERNEL); 1310 if (!reg_buf) 1311 return -ENOMEM; 1312 1313 /* 1314 * Set Flush Cache at bit 0 in the performance enhancement register at 1315 * 261 bytes offset. 1316 */ 1317 fno = card->ext_perf.fno; 1318 page = card->ext_perf.page; 1319 offset = card->ext_perf.offset + 261; 1320 1321 err = sd_write_ext_reg(card, fno, page, offset, BIT(0)); 1322 if (err) { 1323 pr_warn("%s: error %d writing Cache Flush bit\n", 1324 mmc_hostname(host), err); 1325 goto out; 1326 } 1327 1328 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1329 MMC_BUSY_EXTR_SINGLE); 1330 if (err) 1331 goto out; 1332 1333 /* 1334 * Read the Flush Cache bit. The card shall reset it, to confirm that 1335 * it's has completed the flushing of the cache. 1336 */ 1337 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf); 1338 if (err) { 1339 pr_warn("%s: error %d reading Cache Flush bit\n", 1340 mmc_hostname(host), err); 1341 goto out; 1342 } 1343 1344 if (reg_buf[0] & BIT(0)) 1345 err = -ETIMEDOUT; 1346 out: 1347 kfree(reg_buf); 1348 return err; 1349 } 1350 1351 static int sd_enable_cache(struct mmc_card *card) 1352 { 1353 u8 *reg_buf; 1354 int err; 1355 1356 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE; 1357 1358 reg_buf = kzalloc(512, GFP_KERNEL); 1359 if (!reg_buf) 1360 return -ENOMEM; 1361 1362 /* 1363 * Set Cache Enable at bit 0 in the performance enhancement register at 1364 * 260 bytes offset. 1365 */ 1366 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page, 1367 card->ext_perf.offset + 260, BIT(0)); 1368 if (err) { 1369 pr_warn("%s: error %d writing Cache Enable bit\n", 1370 mmc_hostname(card->host), err); 1371 goto out; 1372 } 1373 1374 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1375 MMC_BUSY_EXTR_SINGLE); 1376 if (!err) 1377 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE; 1378 1379 out: 1380 kfree(reg_buf); 1381 return err; 1382 } 1383 1384 /* 1385 * Handle the detection and initialisation of a card. 1386 * 1387 * In the case of a resume, "oldcard" will contain the card 1388 * we're trying to reinitialise. 1389 */ 1390 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr, 1391 struct mmc_card *oldcard) 1392 { 1393 struct mmc_card *card; 1394 int err; 1395 u32 cid[4]; 1396 u32 rocr = 0; 1397 bool v18_fixup_failed = false; 1398 1399 WARN_ON(!host->claimed); 1400 retry: 1401 err = mmc_sd_get_cid(host, ocr, cid, &rocr); 1402 if (err) 1403 return err; 1404 1405 if (oldcard) { 1406 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1407 pr_debug("%s: Perhaps the card was replaced\n", 1408 mmc_hostname(host)); 1409 return -ENOENT; 1410 } 1411 1412 card = oldcard; 1413 } else { 1414 /* 1415 * Allocate card structure. 1416 */ 1417 card = mmc_alloc_card(host, &sd_type); 1418 if (IS_ERR(card)) 1419 return PTR_ERR(card); 1420 1421 card->ocr = ocr; 1422 card->type = MMC_TYPE_SD; 1423 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1424 } 1425 1426 /* 1427 * Call the optional HC's init_card function to handle quirks. 1428 */ 1429 if (host->ops->init_card) 1430 host->ops->init_card(host, card); 1431 1432 /* 1433 * For native busses: get card RCA and quit open drain mode. 1434 */ 1435 if (!mmc_host_is_spi(host)) { 1436 err = mmc_send_relative_addr(host, &card->rca); 1437 if (err) 1438 goto free_card; 1439 } 1440 1441 if (!oldcard) { 1442 err = mmc_sd_get_csd(card); 1443 if (err) 1444 goto free_card; 1445 1446 mmc_decode_cid(card); 1447 } 1448 1449 /* 1450 * handling only for cards supporting DSR and hosts requesting 1451 * DSR configuration 1452 */ 1453 if (card->csd.dsr_imp && host->dsr_req) 1454 mmc_set_dsr(host); 1455 1456 /* 1457 * Select card, as all following commands rely on that. 1458 */ 1459 if (!mmc_host_is_spi(host)) { 1460 err = mmc_select_card(card); 1461 if (err) 1462 goto free_card; 1463 } 1464 1465 err = mmc_sd_setup_card(host, card, oldcard != NULL); 1466 if (err) 1467 goto free_card; 1468 1469 /* 1470 * If the card has not been power cycled, it may still be using 1.8V 1471 * signaling. Detect that situation and try to initialize a UHS-I (1.8V) 1472 * transfer mode. 1473 */ 1474 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) && 1475 mmc_sd_card_using_v18(card) && 1476 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) { 1477 /* 1478 * Re-read switch information in case it has changed since 1479 * oldcard was initialized. 1480 */ 1481 if (oldcard) { 1482 err = mmc_read_switch(card); 1483 if (err) 1484 goto free_card; 1485 } 1486 if (mmc_sd_card_using_v18(card)) { 1487 if (mmc_host_set_uhs_voltage(host) || 1488 mmc_sd_init_uhs_card(card)) { 1489 v18_fixup_failed = true; 1490 mmc_power_cycle(host, ocr); 1491 if (!oldcard) 1492 mmc_remove_card(card); 1493 goto retry; 1494 } 1495 goto done; 1496 } 1497 } 1498 1499 /* Initialization sequence for UHS-I cards */ 1500 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) { 1501 err = mmc_sd_init_uhs_card(card); 1502 if (err) 1503 goto free_card; 1504 } else { 1505 /* 1506 * Attempt to change to high-speed (if supported) 1507 */ 1508 err = mmc_sd_switch_hs(card); 1509 if (err > 0) 1510 mmc_set_timing(card->host, MMC_TIMING_SD_HS); 1511 else if (err) 1512 goto free_card; 1513 1514 /* 1515 * Set bus speed. 1516 */ 1517 mmc_set_clock(host, mmc_sd_get_max_clock(card)); 1518 1519 /* 1520 * Switch to wider bus (if supported). 1521 */ 1522 if ((host->caps & MMC_CAP_4_BIT_DATA) && 1523 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { 1524 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 1525 if (err) 1526 goto free_card; 1527 1528 mmc_set_bus_width(host, MMC_BUS_WIDTH_4); 1529 } 1530 } 1531 1532 if (!oldcard) { 1533 /* Read/parse the extension registers. */ 1534 err = sd_read_ext_regs(card); 1535 if (err) 1536 goto free_card; 1537 } 1538 1539 /* Enable internal SD cache if supported. */ 1540 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) { 1541 err = sd_enable_cache(card); 1542 if (err) 1543 goto free_card; 1544 } 1545 1546 if (host->cqe_ops && !host->cqe_enabled) { 1547 err = host->cqe_ops->cqe_enable(host, card); 1548 if (!err) { 1549 host->cqe_enabled = true; 1550 host->hsq_enabled = true; 1551 pr_info("%s: Host Software Queue enabled\n", 1552 mmc_hostname(host)); 1553 } 1554 } 1555 1556 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1557 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1558 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1559 mmc_hostname(host)); 1560 err = -EINVAL; 1561 goto free_card; 1562 } 1563 done: 1564 host->card = card; 1565 return 0; 1566 1567 free_card: 1568 if (!oldcard) 1569 mmc_remove_card(card); 1570 1571 return err; 1572 } 1573 1574 /* 1575 * Host is being removed. Free up the current card. 1576 */ 1577 static void mmc_sd_remove(struct mmc_host *host) 1578 { 1579 mmc_remove_card(host->card); 1580 host->card = NULL; 1581 } 1582 1583 /* 1584 * Card detection - card is alive. 1585 */ 1586 static int mmc_sd_alive(struct mmc_host *host) 1587 { 1588 return mmc_send_status(host->card, NULL); 1589 } 1590 1591 /* 1592 * Card detection callback from host. 1593 */ 1594 static void mmc_sd_detect(struct mmc_host *host) 1595 { 1596 int err; 1597 1598 mmc_get_card(host->card, NULL); 1599 1600 /* 1601 * Just check if our card has been removed. 1602 */ 1603 err = _mmc_detect_card_removed(host); 1604 1605 mmc_put_card(host->card, NULL); 1606 1607 if (err) { 1608 mmc_sd_remove(host); 1609 1610 mmc_claim_host(host); 1611 mmc_detach_bus(host); 1612 mmc_power_off(host); 1613 mmc_release_host(host); 1614 } 1615 } 1616 1617 static int sd_can_poweroff_notify(struct mmc_card *card) 1618 { 1619 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY; 1620 } 1621 1622 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy) 1623 { 1624 struct sd_busy_data *data = cb_data; 1625 struct mmc_card *card = data->card; 1626 int err; 1627 1628 /* 1629 * Read the status register for the power management function. It's at 1630 * one byte offset and is one byte long. The Power Off Notification 1631 * Ready is bit 0. 1632 */ 1633 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page, 1634 card->ext_power.offset + 1, 1, data->reg_buf); 1635 if (err) { 1636 pr_warn("%s: error %d reading status reg of PM func\n", 1637 mmc_hostname(card->host), err); 1638 return err; 1639 } 1640 1641 *busy = !(data->reg_buf[0] & BIT(0)); 1642 return 0; 1643 } 1644 1645 static int sd_poweroff_notify(struct mmc_card *card) 1646 { 1647 struct sd_busy_data cb_data; 1648 u8 *reg_buf; 1649 int err; 1650 1651 reg_buf = kzalloc(512, GFP_KERNEL); 1652 if (!reg_buf) 1653 return -ENOMEM; 1654 1655 /* 1656 * Set the Power Off Notification bit in the power management settings 1657 * register at 2 bytes offset. 1658 */ 1659 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page, 1660 card->ext_power.offset + 2, BIT(0)); 1661 if (err) { 1662 pr_warn("%s: error %d writing Power Off Notify bit\n", 1663 mmc_hostname(card->host), err); 1664 goto out; 1665 } 1666 1667 /* Find out when the command is completed. */ 1668 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1669 MMC_BUSY_EXTR_SINGLE); 1670 if (err) 1671 goto out; 1672 1673 cb_data.card = card; 1674 cb_data.reg_buf = reg_buf; 1675 err = __mmc_poll_for_busy(card->host, SD_POWEROFF_NOTIFY_TIMEOUT_MS, 1676 &sd_busy_poweroff_notify_cb, &cb_data); 1677 1678 out: 1679 kfree(reg_buf); 1680 return err; 1681 } 1682 1683 static int _mmc_sd_suspend(struct mmc_host *host) 1684 { 1685 struct mmc_card *card = host->card; 1686 int err = 0; 1687 1688 mmc_claim_host(host); 1689 1690 if (mmc_card_suspended(card)) 1691 goto out; 1692 1693 if (sd_can_poweroff_notify(card)) 1694 err = sd_poweroff_notify(card); 1695 else if (!mmc_host_is_spi(host)) 1696 err = mmc_deselect_cards(host); 1697 1698 if (!err) { 1699 mmc_power_off(host); 1700 mmc_card_set_suspended(card); 1701 } 1702 1703 out: 1704 mmc_release_host(host); 1705 return err; 1706 } 1707 1708 /* 1709 * Callback for suspend 1710 */ 1711 static int mmc_sd_suspend(struct mmc_host *host) 1712 { 1713 int err; 1714 1715 err = _mmc_sd_suspend(host); 1716 if (!err) { 1717 pm_runtime_disable(&host->card->dev); 1718 pm_runtime_set_suspended(&host->card->dev); 1719 } 1720 1721 return err; 1722 } 1723 1724 /* 1725 * This function tries to determine if the same card is still present 1726 * and, if so, restore all state to it. 1727 */ 1728 static int _mmc_sd_resume(struct mmc_host *host) 1729 { 1730 int err = 0; 1731 1732 mmc_claim_host(host); 1733 1734 if (!mmc_card_suspended(host->card)) 1735 goto out; 1736 1737 mmc_power_up(host, host->card->ocr); 1738 err = mmc_sd_init_card(host, host->card->ocr, host->card); 1739 mmc_card_clr_suspended(host->card); 1740 1741 out: 1742 mmc_release_host(host); 1743 return err; 1744 } 1745 1746 /* 1747 * Callback for resume 1748 */ 1749 static int mmc_sd_resume(struct mmc_host *host) 1750 { 1751 pm_runtime_enable(&host->card->dev); 1752 return 0; 1753 } 1754 1755 /* 1756 * Callback for runtime_suspend. 1757 */ 1758 static int mmc_sd_runtime_suspend(struct mmc_host *host) 1759 { 1760 int err; 1761 1762 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 1763 return 0; 1764 1765 err = _mmc_sd_suspend(host); 1766 if (err) 1767 pr_err("%s: error %d doing aggressive suspend\n", 1768 mmc_hostname(host), err); 1769 1770 return err; 1771 } 1772 1773 /* 1774 * Callback for runtime_resume. 1775 */ 1776 static int mmc_sd_runtime_resume(struct mmc_host *host) 1777 { 1778 int err; 1779 1780 err = _mmc_sd_resume(host); 1781 if (err && err != -ENOMEDIUM) 1782 pr_err("%s: error %d doing runtime resume\n", 1783 mmc_hostname(host), err); 1784 1785 return 0; 1786 } 1787 1788 static int mmc_sd_hw_reset(struct mmc_host *host) 1789 { 1790 mmc_power_cycle(host, host->card->ocr); 1791 return mmc_sd_init_card(host, host->card->ocr, host->card); 1792 } 1793 1794 static const struct mmc_bus_ops mmc_sd_ops = { 1795 .remove = mmc_sd_remove, 1796 .detect = mmc_sd_detect, 1797 .runtime_suspend = mmc_sd_runtime_suspend, 1798 .runtime_resume = mmc_sd_runtime_resume, 1799 .suspend = mmc_sd_suspend, 1800 .resume = mmc_sd_resume, 1801 .alive = mmc_sd_alive, 1802 .shutdown = mmc_sd_suspend, 1803 .hw_reset = mmc_sd_hw_reset, 1804 .cache_enabled = sd_cache_enabled, 1805 .flush_cache = sd_flush_cache, 1806 }; 1807 1808 /* 1809 * Starting point for SD card init. 1810 */ 1811 int mmc_attach_sd(struct mmc_host *host) 1812 { 1813 int err; 1814 u32 ocr, rocr; 1815 1816 WARN_ON(!host->claimed); 1817 1818 err = mmc_send_app_op_cond(host, 0, &ocr); 1819 if (err) 1820 return err; 1821 1822 mmc_attach_bus(host, &mmc_sd_ops); 1823 if (host->ocr_avail_sd) 1824 host->ocr_avail = host->ocr_avail_sd; 1825 1826 /* 1827 * We need to get OCR a different way for SPI. 1828 */ 1829 if (mmc_host_is_spi(host)) { 1830 mmc_go_idle(host); 1831 1832 err = mmc_spi_read_ocr(host, 0, &ocr); 1833 if (err) 1834 goto err; 1835 } 1836 1837 /* 1838 * Some SD cards claims an out of spec VDD voltage range. Let's treat 1839 * these bits as being in-valid and especially also bit7. 1840 */ 1841 ocr &= ~0x7FFF; 1842 1843 rocr = mmc_select_voltage(host, ocr); 1844 1845 /* 1846 * Can we support the voltage(s) of the card(s)? 1847 */ 1848 if (!rocr) { 1849 err = -EINVAL; 1850 goto err; 1851 } 1852 1853 /* 1854 * Detect and init the card. 1855 */ 1856 err = mmc_sd_init_card(host, rocr, NULL); 1857 if (err) 1858 goto err; 1859 1860 mmc_release_host(host); 1861 err = mmc_add_card(host->card); 1862 if (err) 1863 goto remove_card; 1864 1865 mmc_claim_host(host); 1866 return 0; 1867 1868 remove_card: 1869 mmc_remove_card(host->card); 1870 host->card = NULL; 1871 mmc_claim_host(host); 1872 err: 1873 mmc_detach_bus(host); 1874 1875 pr_err("%s: error %d whilst initialising SD card\n", 1876 mmc_hostname(host), err); 1877 1878 return err; 1879 } 1880