1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/sd.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/sizes.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 16 #include <linux/mmc/host.h> 17 #include <linux/mmc/card.h> 18 #include <linux/mmc/mmc.h> 19 #include <linux/mmc/sd.h> 20 21 #include "core.h" 22 #include "card.h" 23 #include "host.h" 24 #include "bus.h" 25 #include "mmc_ops.h" 26 #include "sd.h" 27 #include "sd_ops.h" 28 29 static const unsigned int tran_exp[] = { 30 10000, 100000, 1000000, 10000000, 31 0, 0, 0, 0 32 }; 33 34 static const unsigned char tran_mant[] = { 35 0, 10, 12, 13, 15, 20, 25, 30, 36 35, 40, 45, 50, 55, 60, 70, 80, 37 }; 38 39 static const unsigned int taac_exp[] = { 40 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 41 }; 42 43 static const unsigned int taac_mant[] = { 44 0, 10, 12, 13, 15, 20, 25, 30, 45 35, 40, 45, 50, 55, 60, 70, 80, 46 }; 47 48 static const unsigned int sd_au_size[] = { 49 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512, 50 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512, 51 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512, 52 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512, 53 }; 54 55 #define UNSTUFF_BITS(resp,start,size) \ 56 ({ \ 57 const int __size = size; \ 58 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 59 const int __off = 3 - ((start) / 32); \ 60 const int __shft = (start) & 31; \ 61 u32 __res; \ 62 \ 63 __res = resp[__off] >> __shft; \ 64 if (__size + __shft > 32) \ 65 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 66 __res & __mask; \ 67 }) 68 69 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 2000 70 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000 71 72 struct sd_busy_data { 73 struct mmc_card *card; 74 u8 *reg_buf; 75 }; 76 77 /* 78 * Given the decoded CSD structure, decode the raw CID to our CID structure. 79 */ 80 void mmc_decode_cid(struct mmc_card *card) 81 { 82 u32 *resp = card->raw_cid; 83 84 /* 85 * SD doesn't currently have a version field so we will 86 * have to assume we can parse this. 87 */ 88 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 89 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 90 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 91 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 92 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 93 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 94 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 95 card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4); 96 card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4); 97 card->cid.serial = UNSTUFF_BITS(resp, 24, 32); 98 card->cid.year = UNSTUFF_BITS(resp, 12, 8); 99 card->cid.month = UNSTUFF_BITS(resp, 8, 4); 100 101 card->cid.year += 2000; /* SD cards year offset */ 102 } 103 104 /* 105 * Given a 128-bit response, decode to our card CSD structure. 106 */ 107 static int mmc_decode_csd(struct mmc_card *card) 108 { 109 struct mmc_csd *csd = &card->csd; 110 unsigned int e, m, csd_struct; 111 u32 *resp = card->raw_csd; 112 113 csd_struct = UNSTUFF_BITS(resp, 126, 2); 114 115 switch (csd_struct) { 116 case 0: 117 m = UNSTUFF_BITS(resp, 115, 4); 118 e = UNSTUFF_BITS(resp, 112, 3); 119 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 120 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 121 122 m = UNSTUFF_BITS(resp, 99, 4); 123 e = UNSTUFF_BITS(resp, 96, 3); 124 csd->max_dtr = tran_exp[e] * tran_mant[m]; 125 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 126 127 e = UNSTUFF_BITS(resp, 47, 3); 128 m = UNSTUFF_BITS(resp, 62, 12); 129 csd->capacity = (1 + m) << (e + 2); 130 131 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 132 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 133 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 134 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 135 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 136 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 137 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 138 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 139 140 if (UNSTUFF_BITS(resp, 46, 1)) { 141 csd->erase_size = 1; 142 } else if (csd->write_blkbits >= 9) { 143 csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1; 144 csd->erase_size <<= csd->write_blkbits - 9; 145 } 146 147 if (UNSTUFF_BITS(resp, 13, 1)) 148 mmc_card_set_readonly(card); 149 break; 150 case 1: 151 /* 152 * This is a block-addressed SDHC or SDXC card. Most 153 * interesting fields are unused and have fixed 154 * values. To avoid getting tripped by buggy cards, 155 * we assume those fixed values ourselves. 156 */ 157 mmc_card_set_blockaddr(card); 158 159 csd->taac_ns = 0; /* Unused */ 160 csd->taac_clks = 0; /* Unused */ 161 162 m = UNSTUFF_BITS(resp, 99, 4); 163 e = UNSTUFF_BITS(resp, 96, 3); 164 csd->max_dtr = tran_exp[e] * tran_mant[m]; 165 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 166 csd->c_size = UNSTUFF_BITS(resp, 48, 22); 167 168 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */ 169 if (csd->c_size >= 0xFFFF) 170 mmc_card_set_ext_capacity(card); 171 172 m = UNSTUFF_BITS(resp, 48, 22); 173 csd->capacity = (1 + m) << 10; 174 175 csd->read_blkbits = 9; 176 csd->read_partial = 0; 177 csd->write_misalign = 0; 178 csd->read_misalign = 0; 179 csd->r2w_factor = 4; /* Unused */ 180 csd->write_blkbits = 9; 181 csd->write_partial = 0; 182 csd->erase_size = 1; 183 184 if (UNSTUFF_BITS(resp, 13, 1)) 185 mmc_card_set_readonly(card); 186 break; 187 default: 188 pr_err("%s: unrecognised CSD structure version %d\n", 189 mmc_hostname(card->host), csd_struct); 190 return -EINVAL; 191 } 192 193 card->erase_size = csd->erase_size; 194 195 return 0; 196 } 197 198 /* 199 * Given a 64-bit response, decode to our card SCR structure. 200 */ 201 static int mmc_decode_scr(struct mmc_card *card) 202 { 203 struct sd_scr *scr = &card->scr; 204 unsigned int scr_struct; 205 u32 resp[4]; 206 207 resp[3] = card->raw_scr[1]; 208 resp[2] = card->raw_scr[0]; 209 210 scr_struct = UNSTUFF_BITS(resp, 60, 4); 211 if (scr_struct != 0) { 212 pr_err("%s: unrecognised SCR structure version %d\n", 213 mmc_hostname(card->host), scr_struct); 214 return -EINVAL; 215 } 216 217 scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4); 218 scr->bus_widths = UNSTUFF_BITS(resp, 48, 4); 219 if (scr->sda_vsn == SCR_SPEC_VER_2) 220 /* Check if Physical Layer Spec v3.0 is supported */ 221 scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1); 222 223 if (scr->sda_spec3) { 224 scr->sda_spec4 = UNSTUFF_BITS(resp, 42, 1); 225 scr->sda_specx = UNSTUFF_BITS(resp, 38, 4); 226 } 227 228 if (UNSTUFF_BITS(resp, 55, 1)) 229 card->erased_byte = 0xFF; 230 else 231 card->erased_byte = 0x0; 232 233 if (scr->sda_spec4) 234 scr->cmds = UNSTUFF_BITS(resp, 32, 4); 235 else if (scr->sda_spec3) 236 scr->cmds = UNSTUFF_BITS(resp, 32, 2); 237 238 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */ 239 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) || 240 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) { 241 pr_err("%s: invalid bus width\n", mmc_hostname(card->host)); 242 return -EINVAL; 243 } 244 245 return 0; 246 } 247 248 /* 249 * Fetch and process SD Status register. 250 */ 251 static int mmc_read_ssr(struct mmc_card *card) 252 { 253 unsigned int au, es, et, eo; 254 __be32 *raw_ssr; 255 u32 resp[4] = {}; 256 u8 discard_support; 257 int i; 258 259 if (!(card->csd.cmdclass & CCC_APP_SPEC)) { 260 pr_warn("%s: card lacks mandatory SD Status function\n", 261 mmc_hostname(card->host)); 262 return 0; 263 } 264 265 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL); 266 if (!raw_ssr) 267 return -ENOMEM; 268 269 if (mmc_app_sd_status(card, raw_ssr)) { 270 pr_warn("%s: problem reading SD Status register\n", 271 mmc_hostname(card->host)); 272 kfree(raw_ssr); 273 return 0; 274 } 275 276 for (i = 0; i < 16; i++) 277 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]); 278 279 kfree(raw_ssr); 280 281 /* 282 * UNSTUFF_BITS only works with four u32s so we have to offset the 283 * bitfield positions accordingly. 284 */ 285 au = UNSTUFF_BITS(card->raw_ssr, 428 - 384, 4); 286 if (au) { 287 if (au <= 9 || card->scr.sda_spec3) { 288 card->ssr.au = sd_au_size[au]; 289 es = UNSTUFF_BITS(card->raw_ssr, 408 - 384, 16); 290 et = UNSTUFF_BITS(card->raw_ssr, 402 - 384, 6); 291 if (es && et) { 292 eo = UNSTUFF_BITS(card->raw_ssr, 400 - 384, 2); 293 card->ssr.erase_timeout = (et * 1000) / es; 294 card->ssr.erase_offset = eo * 1000; 295 } 296 } else { 297 pr_warn("%s: SD Status: Invalid Allocation Unit size\n", 298 mmc_hostname(card->host)); 299 } 300 } 301 302 /* 303 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set 304 */ 305 resp[3] = card->raw_ssr[6]; 306 discard_support = UNSTUFF_BITS(resp, 313 - 288, 1); 307 card->erase_arg = (card->scr.sda_specx && discard_support) ? 308 SD_DISCARD_ARG : SD_ERASE_ARG; 309 310 return 0; 311 } 312 313 /* 314 * Fetches and decodes switch information 315 */ 316 static int mmc_read_switch(struct mmc_card *card) 317 { 318 int err; 319 u8 *status; 320 321 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 322 return 0; 323 324 if (!(card->csd.cmdclass & CCC_SWITCH)) { 325 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n", 326 mmc_hostname(card->host)); 327 return 0; 328 } 329 330 status = kmalloc(64, GFP_KERNEL); 331 if (!status) 332 return -ENOMEM; 333 334 /* 335 * Find out the card's support bits with a mode 0 operation. 336 * The argument does not matter, as the support bits do not 337 * change with the arguments. 338 */ 339 err = mmc_sd_switch(card, 0, 0, 0, status); 340 if (err) { 341 /* 342 * If the host or the card can't do the switch, 343 * fail more gracefully. 344 */ 345 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT) 346 goto out; 347 348 pr_warn("%s: problem reading Bus Speed modes\n", 349 mmc_hostname(card->host)); 350 err = 0; 351 352 goto out; 353 } 354 355 if (status[13] & SD_MODE_HIGH_SPEED) 356 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR; 357 358 if (card->scr.sda_spec3) { 359 card->sw_caps.sd3_bus_mode = status[13]; 360 /* Driver Strengths supported by the card */ 361 card->sw_caps.sd3_drv_type = status[9]; 362 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8; 363 } 364 365 out: 366 kfree(status); 367 368 return err; 369 } 370 371 /* 372 * Test if the card supports high-speed mode and, if so, switch to it. 373 */ 374 int mmc_sd_switch_hs(struct mmc_card *card) 375 { 376 int err; 377 u8 *status; 378 379 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 380 return 0; 381 382 if (!(card->csd.cmdclass & CCC_SWITCH)) 383 return 0; 384 385 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED)) 386 return 0; 387 388 if (card->sw_caps.hs_max_dtr == 0) 389 return 0; 390 391 status = kmalloc(64, GFP_KERNEL); 392 if (!status) 393 return -ENOMEM; 394 395 err = mmc_sd_switch(card, 1, 0, HIGH_SPEED_BUS_SPEED, status); 396 if (err) 397 goto out; 398 399 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) { 400 pr_warn("%s: Problem switching card into high-speed mode!\n", 401 mmc_hostname(card->host)); 402 err = 0; 403 } else { 404 err = 1; 405 } 406 407 out: 408 kfree(status); 409 410 return err; 411 } 412 413 static int sd_select_driver_type(struct mmc_card *card, u8 *status) 414 { 415 int card_drv_type, drive_strength, drv_type; 416 int err; 417 418 card->drive_strength = 0; 419 420 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B; 421 422 drive_strength = mmc_select_drive_strength(card, 423 card->sw_caps.uhs_max_dtr, 424 card_drv_type, &drv_type); 425 426 if (drive_strength) { 427 err = mmc_sd_switch(card, 1, 2, drive_strength, status); 428 if (err) 429 return err; 430 if ((status[15] & 0xF) != drive_strength) { 431 pr_warn("%s: Problem setting drive strength!\n", 432 mmc_hostname(card->host)); 433 return 0; 434 } 435 card->drive_strength = drive_strength; 436 } 437 438 if (drv_type) 439 mmc_set_driver_type(card->host, drv_type); 440 441 return 0; 442 } 443 444 static void sd_update_bus_speed_mode(struct mmc_card *card) 445 { 446 /* 447 * If the host doesn't support any of the UHS-I modes, fallback on 448 * default speed. 449 */ 450 if (!mmc_host_uhs(card->host)) { 451 card->sd_bus_speed = 0; 452 return; 453 } 454 455 if ((card->host->caps & MMC_CAP_UHS_SDR104) && 456 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) { 457 card->sd_bus_speed = UHS_SDR104_BUS_SPEED; 458 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) && 459 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) { 460 card->sd_bus_speed = UHS_DDR50_BUS_SPEED; 461 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 462 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode & 463 SD_MODE_UHS_SDR50)) { 464 card->sd_bus_speed = UHS_SDR50_BUS_SPEED; 465 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 466 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) && 467 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) { 468 card->sd_bus_speed = UHS_SDR25_BUS_SPEED; 469 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 470 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 | 471 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode & 472 SD_MODE_UHS_SDR12)) { 473 card->sd_bus_speed = UHS_SDR12_BUS_SPEED; 474 } 475 } 476 477 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status) 478 { 479 int err; 480 unsigned int timing = 0; 481 482 switch (card->sd_bus_speed) { 483 case UHS_SDR104_BUS_SPEED: 484 timing = MMC_TIMING_UHS_SDR104; 485 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR; 486 break; 487 case UHS_DDR50_BUS_SPEED: 488 timing = MMC_TIMING_UHS_DDR50; 489 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR; 490 break; 491 case UHS_SDR50_BUS_SPEED: 492 timing = MMC_TIMING_UHS_SDR50; 493 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR; 494 break; 495 case UHS_SDR25_BUS_SPEED: 496 timing = MMC_TIMING_UHS_SDR25; 497 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR; 498 break; 499 case UHS_SDR12_BUS_SPEED: 500 timing = MMC_TIMING_UHS_SDR12; 501 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR; 502 break; 503 default: 504 return 0; 505 } 506 507 err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status); 508 if (err) 509 return err; 510 511 if ((status[16] & 0xF) != card->sd_bus_speed) 512 pr_warn("%s: Problem setting bus speed mode!\n", 513 mmc_hostname(card->host)); 514 else { 515 mmc_set_timing(card->host, timing); 516 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr); 517 } 518 519 return 0; 520 } 521 522 /* Get host's max current setting at its current voltage */ 523 static u32 sd_get_host_max_current(struct mmc_host *host) 524 { 525 u32 voltage, max_current; 526 527 voltage = 1 << host->ios.vdd; 528 switch (voltage) { 529 case MMC_VDD_165_195: 530 max_current = host->max_current_180; 531 break; 532 case MMC_VDD_29_30: 533 case MMC_VDD_30_31: 534 max_current = host->max_current_300; 535 break; 536 case MMC_VDD_32_33: 537 case MMC_VDD_33_34: 538 max_current = host->max_current_330; 539 break; 540 default: 541 max_current = 0; 542 } 543 544 return max_current; 545 } 546 547 static int sd_set_current_limit(struct mmc_card *card, u8 *status) 548 { 549 int current_limit = SD_SET_CURRENT_NO_CHANGE; 550 int err; 551 u32 max_current; 552 553 /* 554 * Current limit switch is only defined for SDR50, SDR104, and DDR50 555 * bus speed modes. For other bus speed modes, we do not change the 556 * current limit. 557 */ 558 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) && 559 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) && 560 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED)) 561 return 0; 562 563 /* 564 * Host has different current capabilities when operating at 565 * different voltages, so find out its max current first. 566 */ 567 max_current = sd_get_host_max_current(card->host); 568 569 /* 570 * We only check host's capability here, if we set a limit that is 571 * higher than the card's maximum current, the card will be using its 572 * maximum current, e.g. if the card's maximum current is 300ma, and 573 * when we set current limit to 200ma, the card will draw 200ma, and 574 * when we set current limit to 400/600/800ma, the card will draw its 575 * maximum 300ma from the host. 576 * 577 * The above is incorrect: if we try to set a current limit that is 578 * not supported by the card, the card can rightfully error out the 579 * attempt, and remain at the default current limit. This results 580 * in a 300mA card being limited to 200mA even though the host 581 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with 582 * an iMX6 host. --rmk 583 */ 584 if (max_current >= 800 && 585 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800) 586 current_limit = SD_SET_CURRENT_LIMIT_800; 587 else if (max_current >= 600 && 588 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600) 589 current_limit = SD_SET_CURRENT_LIMIT_600; 590 else if (max_current >= 400 && 591 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400) 592 current_limit = SD_SET_CURRENT_LIMIT_400; 593 else if (max_current >= 200 && 594 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200) 595 current_limit = SD_SET_CURRENT_LIMIT_200; 596 597 if (current_limit != SD_SET_CURRENT_NO_CHANGE) { 598 err = mmc_sd_switch(card, 1, 3, current_limit, status); 599 if (err) 600 return err; 601 602 if (((status[15] >> 4) & 0x0F) != current_limit) 603 pr_warn("%s: Problem setting current limit!\n", 604 mmc_hostname(card->host)); 605 606 } 607 608 return 0; 609 } 610 611 /* 612 * UHS-I specific initialization procedure 613 */ 614 static int mmc_sd_init_uhs_card(struct mmc_card *card) 615 { 616 int err; 617 u8 *status; 618 619 if (!(card->csd.cmdclass & CCC_SWITCH)) 620 return 0; 621 622 status = kmalloc(64, GFP_KERNEL); 623 if (!status) 624 return -ENOMEM; 625 626 /* Set 4-bit bus width */ 627 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 628 if (err) 629 goto out; 630 631 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4); 632 633 /* 634 * Select the bus speed mode depending on host 635 * and card capability. 636 */ 637 sd_update_bus_speed_mode(card); 638 639 /* Set the driver strength for the card */ 640 err = sd_select_driver_type(card, status); 641 if (err) 642 goto out; 643 644 /* Set current limit for the card */ 645 err = sd_set_current_limit(card, status); 646 if (err) 647 goto out; 648 649 /* Set bus speed mode of the card */ 650 err = sd_set_bus_speed_mode(card, status); 651 if (err) 652 goto out; 653 654 /* 655 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and 656 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104. 657 */ 658 if (!mmc_host_is_spi(card->host) && 659 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 || 660 card->host->ios.timing == MMC_TIMING_UHS_DDR50 || 661 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) { 662 err = mmc_execute_tuning(card); 663 664 /* 665 * As SD Specifications Part1 Physical Layer Specification 666 * Version 3.01 says, CMD19 tuning is available for unlocked 667 * cards in transfer state of 1.8V signaling mode. The small 668 * difference between v3.00 and 3.01 spec means that CMD19 669 * tuning is also available for DDR50 mode. 670 */ 671 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) { 672 pr_warn("%s: ddr50 tuning failed\n", 673 mmc_hostname(card->host)); 674 err = 0; 675 } 676 } 677 678 out: 679 kfree(status); 680 681 return err; 682 } 683 684 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 685 card->raw_cid[2], card->raw_cid[3]); 686 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 687 card->raw_csd[2], card->raw_csd[3]); 688 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]); 689 MMC_DEV_ATTR(ssr, 690 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n", 691 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2], 692 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5], 693 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8], 694 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11], 695 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14], 696 card->raw_ssr[15]); 697 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 698 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 699 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 700 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev); 701 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 702 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 703 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 704 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 705 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 706 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 707 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 708 709 710 static ssize_t mmc_dsr_show(struct device *dev, 711 struct device_attribute *attr, 712 char *buf) 713 { 714 struct mmc_card *card = mmc_dev_to_card(dev); 715 struct mmc_host *host = card->host; 716 717 if (card->csd.dsr_imp && host->dsr_req) 718 return sprintf(buf, "0x%x\n", host->dsr); 719 else 720 /* return default DSR value */ 721 return sprintf(buf, "0x%x\n", 0x404); 722 } 723 724 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 725 726 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor); 727 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device); 728 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev); 729 730 #define sdio_info_attr(num) \ 731 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \ 732 { \ 733 struct mmc_card *card = mmc_dev_to_card(dev); \ 734 \ 735 if (num > card->num_info) \ 736 return -ENODATA; \ 737 if (!card->info[num-1][0]) \ 738 return 0; \ 739 return sprintf(buf, "%s\n", card->info[num-1]); \ 740 } \ 741 static DEVICE_ATTR_RO(info##num) 742 743 sdio_info_attr(1); 744 sdio_info_attr(2); 745 sdio_info_attr(3); 746 sdio_info_attr(4); 747 748 static struct attribute *sd_std_attrs[] = { 749 &dev_attr_vendor.attr, 750 &dev_attr_device.attr, 751 &dev_attr_revision.attr, 752 &dev_attr_info1.attr, 753 &dev_attr_info2.attr, 754 &dev_attr_info3.attr, 755 &dev_attr_info4.attr, 756 &dev_attr_cid.attr, 757 &dev_attr_csd.attr, 758 &dev_attr_scr.attr, 759 &dev_attr_ssr.attr, 760 &dev_attr_date.attr, 761 &dev_attr_erase_size.attr, 762 &dev_attr_preferred_erase_size.attr, 763 &dev_attr_fwrev.attr, 764 &dev_attr_hwrev.attr, 765 &dev_attr_manfid.attr, 766 &dev_attr_name.attr, 767 &dev_attr_oemid.attr, 768 &dev_attr_serial.attr, 769 &dev_attr_ocr.attr, 770 &dev_attr_rca.attr, 771 &dev_attr_dsr.attr, 772 NULL, 773 }; 774 775 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr, 776 int index) 777 { 778 struct device *dev = kobj_to_dev(kobj); 779 struct mmc_card *card = mmc_dev_to_card(dev); 780 781 /* CIS vendor and device ids, revision and info string are available only for Combo cards */ 782 if ((attr == &dev_attr_vendor.attr || 783 attr == &dev_attr_device.attr || 784 attr == &dev_attr_revision.attr || 785 attr == &dev_attr_info1.attr || 786 attr == &dev_attr_info2.attr || 787 attr == &dev_attr_info3.attr || 788 attr == &dev_attr_info4.attr 789 ) && card->type != MMC_TYPE_SD_COMBO) 790 return 0; 791 792 return attr->mode; 793 } 794 795 static const struct attribute_group sd_std_group = { 796 .attrs = sd_std_attrs, 797 .is_visible = sd_std_is_visible, 798 }; 799 __ATTRIBUTE_GROUPS(sd_std); 800 801 struct device_type sd_type = { 802 .groups = sd_std_groups, 803 }; 804 805 /* 806 * Fetch CID from card. 807 */ 808 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr) 809 { 810 int err; 811 u32 max_current; 812 int retries = 10; 813 u32 pocr = ocr; 814 815 try_again: 816 if (!retries) { 817 ocr &= ~SD_OCR_S18R; 818 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host)); 819 } 820 821 /* 822 * Since we're changing the OCR value, we seem to 823 * need to tell some cards to go back to the idle 824 * state. We wait 1ms to give cards time to 825 * respond. 826 */ 827 mmc_go_idle(host); 828 829 /* 830 * If SD_SEND_IF_COND indicates an SD 2.0 831 * compliant card and we should set bit 30 832 * of the ocr to indicate that we can handle 833 * block-addressed SDHC cards. 834 */ 835 err = mmc_send_if_cond(host, ocr); 836 if (!err) 837 ocr |= SD_OCR_CCS; 838 839 /* 840 * If the host supports one of UHS-I modes, request the card 841 * to switch to 1.8V signaling level. If the card has failed 842 * repeatedly to switch however, skip this. 843 */ 844 if (retries && mmc_host_uhs(host)) 845 ocr |= SD_OCR_S18R; 846 847 /* 848 * If the host can supply more than 150mA at current voltage, 849 * XPC should be set to 1. 850 */ 851 max_current = sd_get_host_max_current(host); 852 if (max_current > 150) 853 ocr |= SD_OCR_XPC; 854 855 err = mmc_send_app_op_cond(host, ocr, rocr); 856 if (err) 857 return err; 858 859 /* 860 * In case the S18A bit is set in the response, let's start the signal 861 * voltage switch procedure. SPI mode doesn't support CMD11. 862 * Note that, according to the spec, the S18A bit is not valid unless 863 * the CCS bit is set as well. We deliberately deviate from the spec in 864 * regards to this, which allows UHS-I to be supported for SDSC cards. 865 */ 866 if (!mmc_host_is_spi(host) && rocr && (*rocr & 0x01000000)) { 867 err = mmc_set_uhs_voltage(host, pocr); 868 if (err == -EAGAIN) { 869 retries--; 870 goto try_again; 871 } else if (err) { 872 retries = 0; 873 goto try_again; 874 } 875 } 876 877 err = mmc_send_cid(host, cid); 878 return err; 879 } 880 881 int mmc_sd_get_csd(struct mmc_card *card) 882 { 883 int err; 884 885 /* 886 * Fetch CSD from card. 887 */ 888 err = mmc_send_csd(card, card->raw_csd); 889 if (err) 890 return err; 891 892 err = mmc_decode_csd(card); 893 if (err) 894 return err; 895 896 return 0; 897 } 898 899 static int mmc_sd_get_ro(struct mmc_host *host) 900 { 901 int ro; 902 903 /* 904 * Some systems don't feature a write-protect pin and don't need one. 905 * E.g. because they only have micro-SD card slot. For those systems 906 * assume that the SD card is always read-write. 907 */ 908 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT) 909 return 0; 910 911 if (!host->ops->get_ro) 912 return -1; 913 914 ro = host->ops->get_ro(host); 915 916 return ro; 917 } 918 919 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card, 920 bool reinit) 921 { 922 int err; 923 924 if (!reinit) { 925 /* 926 * Fetch SCR from card. 927 */ 928 err = mmc_app_send_scr(card); 929 if (err) 930 return err; 931 932 err = mmc_decode_scr(card); 933 if (err) 934 return err; 935 936 /* 937 * Fetch and process SD Status register. 938 */ 939 err = mmc_read_ssr(card); 940 if (err) 941 return err; 942 943 /* Erase init depends on CSD and SSR */ 944 mmc_init_erase(card); 945 946 /* 947 * Fetch switch information from card. 948 */ 949 err = mmc_read_switch(card); 950 if (err) 951 return err; 952 } 953 954 /* 955 * For SPI, enable CRC as appropriate. 956 * This CRC enable is located AFTER the reading of the 957 * card registers because some SDHC cards are not able 958 * to provide valid CRCs for non-512-byte blocks. 959 */ 960 if (mmc_host_is_spi(host)) { 961 err = mmc_spi_set_crc(host, use_spi_crc); 962 if (err) 963 return err; 964 } 965 966 /* 967 * Check if read-only switch is active. 968 */ 969 if (!reinit) { 970 int ro = mmc_sd_get_ro(host); 971 972 if (ro < 0) { 973 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n", 974 mmc_hostname(host)); 975 } else if (ro > 0) { 976 mmc_card_set_readonly(card); 977 } 978 } 979 980 return 0; 981 } 982 983 unsigned mmc_sd_get_max_clock(struct mmc_card *card) 984 { 985 unsigned max_dtr = (unsigned int)-1; 986 987 if (mmc_card_hs(card)) { 988 if (max_dtr > card->sw_caps.hs_max_dtr) 989 max_dtr = card->sw_caps.hs_max_dtr; 990 } else if (max_dtr > card->csd.max_dtr) { 991 max_dtr = card->csd.max_dtr; 992 } 993 994 return max_dtr; 995 } 996 997 static bool mmc_sd_card_using_v18(struct mmc_card *card) 998 { 999 /* 1000 * According to the SD spec., the Bus Speed Mode (function group 1) bits 1001 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus 1002 * they can be used to determine if the card has already switched to 1003 * 1.8V signaling. 1004 */ 1005 return card->sw_caps.sd3_bus_mode & 1006 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50); 1007 } 1008 1009 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset, 1010 u8 reg_data) 1011 { 1012 struct mmc_host *host = card->host; 1013 struct mmc_request mrq = {}; 1014 struct mmc_command cmd = {}; 1015 struct mmc_data data = {}; 1016 struct scatterlist sg; 1017 u8 *reg_buf; 1018 1019 reg_buf = kzalloc(512, GFP_KERNEL); 1020 if (!reg_buf) 1021 return -ENOMEM; 1022 1023 mrq.cmd = &cmd; 1024 mrq.data = &data; 1025 1026 /* 1027 * Arguments of CMD49: 1028 * [31:31] MIO (0 = memory). 1029 * [30:27] FNO (function number). 1030 * [26:26] MW - mask write mode (0 = disable). 1031 * [25:18] page number. 1032 * [17:9] offset address. 1033 * [8:0] length (0 = 1 byte). 1034 */ 1035 cmd.arg = fno << 27 | page << 18 | offset << 9; 1036 1037 /* The first byte in the buffer is the data to be written. */ 1038 reg_buf[0] = reg_data; 1039 1040 data.flags = MMC_DATA_WRITE; 1041 data.blksz = 512; 1042 data.blocks = 1; 1043 data.sg = &sg; 1044 data.sg_len = 1; 1045 sg_init_one(&sg, reg_buf, 512); 1046 1047 cmd.opcode = SD_WRITE_EXTR_SINGLE; 1048 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; 1049 1050 mmc_set_data_timeout(&data, card); 1051 mmc_wait_for_req(host, &mrq); 1052 1053 kfree(reg_buf); 1054 1055 /* 1056 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s 1057 * after the CMD49. Although, let's leave this to be managed by the 1058 * caller. 1059 */ 1060 1061 if (cmd.error) 1062 return cmd.error; 1063 if (data.error) 1064 return data.error; 1065 1066 return 0; 1067 } 1068 1069 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page, 1070 u16 offset, u16 len, u8 *reg_buf) 1071 { 1072 u32 cmd_args; 1073 1074 /* 1075 * Command arguments of CMD48: 1076 * [31:31] MIO (0 = memory). 1077 * [30:27] FNO (function number). 1078 * [26:26] reserved (0). 1079 * [25:18] page number. 1080 * [17:9] offset address. 1081 * [8:0] length (0 = 1 byte, 1ff = 512 bytes). 1082 */ 1083 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1); 1084 1085 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE, 1086 cmd_args, reg_buf, 512); 1087 } 1088 1089 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page, 1090 u16 offset) 1091 { 1092 int err; 1093 u8 *reg_buf; 1094 1095 reg_buf = kzalloc(512, GFP_KERNEL); 1096 if (!reg_buf) 1097 return -ENOMEM; 1098 1099 /* Read the extension register for power management function. */ 1100 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); 1101 if (err) { 1102 pr_warn("%s: error %d reading PM func of ext reg\n", 1103 mmc_hostname(card->host), err); 1104 goto out; 1105 } 1106 1107 /* PM revision consists of 4 bits. */ 1108 card->ext_power.rev = reg_buf[0] & 0xf; 1109 1110 /* Power Off Notification support at bit 4. */ 1111 if (reg_buf[1] & BIT(4)) 1112 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY; 1113 1114 /* Power Sustenance support at bit 5. */ 1115 if (reg_buf[1] & BIT(5)) 1116 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE; 1117 1118 /* Power Down Mode support at bit 6. */ 1119 if (reg_buf[1] & BIT(6)) 1120 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE; 1121 1122 card->ext_power.fno = fno; 1123 card->ext_power.page = page; 1124 card->ext_power.offset = offset; 1125 1126 out: 1127 kfree(reg_buf); 1128 return err; 1129 } 1130 1131 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page, 1132 u16 offset) 1133 { 1134 int err; 1135 u8 *reg_buf; 1136 1137 reg_buf = kzalloc(512, GFP_KERNEL); 1138 if (!reg_buf) 1139 return -ENOMEM; 1140 1141 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); 1142 if (err) { 1143 pr_warn("%s: error %d reading PERF func of ext reg\n", 1144 mmc_hostname(card->host), err); 1145 goto out; 1146 } 1147 1148 /* PERF revision. */ 1149 card->ext_perf.rev = reg_buf[0]; 1150 1151 /* FX_EVENT support at bit 0. */ 1152 if (reg_buf[1] & BIT(0)) 1153 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT; 1154 1155 /* Card initiated self-maintenance support at bit 0. */ 1156 if (reg_buf[2] & BIT(0)) 1157 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT; 1158 1159 /* Host initiated self-maintenance support at bit 1. */ 1160 if (reg_buf[2] & BIT(1)) 1161 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT; 1162 1163 /* Cache support at bit 0. */ 1164 if (reg_buf[4] & BIT(0)) 1165 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE; 1166 1167 /* Command queue support indicated via queue depth bits (0 to 4). */ 1168 if (reg_buf[6] & 0x1f) 1169 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE; 1170 1171 card->ext_perf.fno = fno; 1172 card->ext_perf.page = page; 1173 card->ext_perf.offset = offset; 1174 1175 out: 1176 kfree(reg_buf); 1177 return err; 1178 } 1179 1180 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf, 1181 u16 *next_ext_addr) 1182 { 1183 u8 num_regs, fno, page; 1184 u16 sfc, offset, ext = *next_ext_addr; 1185 u32 reg_addr; 1186 1187 /* 1188 * Parse only one register set per extension, as that is sufficient to 1189 * support the standard functions. This means another 48 bytes in the 1190 * buffer must be available. 1191 */ 1192 if (ext + 48 > 512) 1193 return -EFAULT; 1194 1195 /* Standard Function Code */ 1196 memcpy(&sfc, &gen_info_buf[ext], 2); 1197 1198 /* Address to the next extension. */ 1199 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2); 1200 1201 /* Number of registers for this extension. */ 1202 num_regs = gen_info_buf[ext + 42]; 1203 1204 /* We support only one register per extension. */ 1205 if (num_regs != 1) 1206 return 0; 1207 1208 /* Extension register address. */ 1209 memcpy(®_addr, &gen_info_buf[ext + 44], 4); 1210 1211 /* 9 bits (0 to 8) contains the offset address. */ 1212 offset = reg_addr & 0x1ff; 1213 1214 /* 8 bits (9 to 16) contains the page number. */ 1215 page = reg_addr >> 9 & 0xff ; 1216 1217 /* 4 bits (18 to 21) contains the function number. */ 1218 fno = reg_addr >> 18 & 0xf; 1219 1220 /* Standard Function Code for power management. */ 1221 if (sfc == 0x1) 1222 return sd_parse_ext_reg_power(card, fno, page, offset); 1223 1224 /* Standard Function Code for performance enhancement. */ 1225 if (sfc == 0x2) 1226 return sd_parse_ext_reg_perf(card, fno, page, offset); 1227 1228 return 0; 1229 } 1230 1231 static int sd_read_ext_regs(struct mmc_card *card) 1232 { 1233 int err, i; 1234 u8 num_ext, *gen_info_buf; 1235 u16 rev, len, next_ext_addr; 1236 1237 if (mmc_host_is_spi(card->host)) 1238 return 0; 1239 1240 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT)) 1241 return 0; 1242 1243 gen_info_buf = kzalloc(512, GFP_KERNEL); 1244 if (!gen_info_buf) 1245 return -ENOMEM; 1246 1247 /* 1248 * Read 512 bytes of general info, which is found at function number 0, 1249 * at page 0 and with no offset. 1250 */ 1251 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf); 1252 if (err) { 1253 pr_warn("%s: error %d reading general info of SD ext reg\n", 1254 mmc_hostname(card->host), err); 1255 goto out; 1256 } 1257 1258 /* General info structure revision. */ 1259 memcpy(&rev, &gen_info_buf[0], 2); 1260 1261 /* Length of general info in bytes. */ 1262 memcpy(&len, &gen_info_buf[2], 2); 1263 1264 /* Number of extensions to be find. */ 1265 num_ext = gen_info_buf[4]; 1266 1267 /* We support revision 0, but limit it to 512 bytes for simplicity. */ 1268 if (rev != 0 || len > 512) { 1269 pr_warn("%s: non-supported SD ext reg layout\n", 1270 mmc_hostname(card->host)); 1271 goto out; 1272 } 1273 1274 /* 1275 * Parse the extension registers. The first extension should start 1276 * immediately after the general info header (16 bytes). 1277 */ 1278 next_ext_addr = 16; 1279 for (i = 0; i < num_ext; i++) { 1280 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr); 1281 if (err) { 1282 pr_warn("%s: error %d parsing SD ext reg\n", 1283 mmc_hostname(card->host), err); 1284 goto out; 1285 } 1286 } 1287 1288 out: 1289 kfree(gen_info_buf); 1290 return err; 1291 } 1292 1293 static bool sd_cache_enabled(struct mmc_host *host) 1294 { 1295 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE; 1296 } 1297 1298 static int sd_flush_cache(struct mmc_host *host) 1299 { 1300 struct mmc_card *card = host->card; 1301 u8 *reg_buf, fno, page; 1302 u16 offset; 1303 int err; 1304 1305 if (!sd_cache_enabled(host)) 1306 return 0; 1307 1308 reg_buf = kzalloc(512, GFP_KERNEL); 1309 if (!reg_buf) 1310 return -ENOMEM; 1311 1312 /* 1313 * Set Flush Cache at bit 0 in the performance enhancement register at 1314 * 261 bytes offset. 1315 */ 1316 fno = card->ext_perf.fno; 1317 page = card->ext_perf.page; 1318 offset = card->ext_perf.offset + 261; 1319 1320 err = sd_write_ext_reg(card, fno, page, offset, BIT(0)); 1321 if (err) { 1322 pr_warn("%s: error %d writing Cache Flush bit\n", 1323 mmc_hostname(host), err); 1324 goto out; 1325 } 1326 1327 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1328 MMC_BUSY_EXTR_SINGLE); 1329 if (err) 1330 goto out; 1331 1332 /* 1333 * Read the Flush Cache bit. The card shall reset it, to confirm that 1334 * it's has completed the flushing of the cache. 1335 */ 1336 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf); 1337 if (err) { 1338 pr_warn("%s: error %d reading Cache Flush bit\n", 1339 mmc_hostname(host), err); 1340 goto out; 1341 } 1342 1343 if (reg_buf[0] & BIT(0)) 1344 err = -ETIMEDOUT; 1345 out: 1346 kfree(reg_buf); 1347 return err; 1348 } 1349 1350 static int sd_enable_cache(struct mmc_card *card) 1351 { 1352 u8 *reg_buf; 1353 int err; 1354 1355 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE; 1356 1357 reg_buf = kzalloc(512, GFP_KERNEL); 1358 if (!reg_buf) 1359 return -ENOMEM; 1360 1361 /* 1362 * Set Cache Enable at bit 0 in the performance enhancement register at 1363 * 260 bytes offset. 1364 */ 1365 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page, 1366 card->ext_perf.offset + 260, BIT(0)); 1367 if (err) { 1368 pr_warn("%s: error %d writing Cache Enable bit\n", 1369 mmc_hostname(card->host), err); 1370 goto out; 1371 } 1372 1373 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1374 MMC_BUSY_EXTR_SINGLE); 1375 if (!err) 1376 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE; 1377 1378 out: 1379 kfree(reg_buf); 1380 return err; 1381 } 1382 1383 /* 1384 * Handle the detection and initialisation of a card. 1385 * 1386 * In the case of a resume, "oldcard" will contain the card 1387 * we're trying to reinitialise. 1388 */ 1389 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr, 1390 struct mmc_card *oldcard) 1391 { 1392 struct mmc_card *card; 1393 int err; 1394 u32 cid[4]; 1395 u32 rocr = 0; 1396 bool v18_fixup_failed = false; 1397 1398 WARN_ON(!host->claimed); 1399 retry: 1400 err = mmc_sd_get_cid(host, ocr, cid, &rocr); 1401 if (err) 1402 return err; 1403 1404 if (oldcard) { 1405 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1406 pr_debug("%s: Perhaps the card was replaced\n", 1407 mmc_hostname(host)); 1408 return -ENOENT; 1409 } 1410 1411 card = oldcard; 1412 } else { 1413 /* 1414 * Allocate card structure. 1415 */ 1416 card = mmc_alloc_card(host, &sd_type); 1417 if (IS_ERR(card)) 1418 return PTR_ERR(card); 1419 1420 card->ocr = ocr; 1421 card->type = MMC_TYPE_SD; 1422 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1423 } 1424 1425 /* 1426 * Call the optional HC's init_card function to handle quirks. 1427 */ 1428 if (host->ops->init_card) 1429 host->ops->init_card(host, card); 1430 1431 /* 1432 * For native busses: get card RCA and quit open drain mode. 1433 */ 1434 if (!mmc_host_is_spi(host)) { 1435 err = mmc_send_relative_addr(host, &card->rca); 1436 if (err) 1437 goto free_card; 1438 } 1439 1440 if (!oldcard) { 1441 err = mmc_sd_get_csd(card); 1442 if (err) 1443 goto free_card; 1444 1445 mmc_decode_cid(card); 1446 } 1447 1448 /* 1449 * handling only for cards supporting DSR and hosts requesting 1450 * DSR configuration 1451 */ 1452 if (card->csd.dsr_imp && host->dsr_req) 1453 mmc_set_dsr(host); 1454 1455 /* 1456 * Select card, as all following commands rely on that. 1457 */ 1458 if (!mmc_host_is_spi(host)) { 1459 err = mmc_select_card(card); 1460 if (err) 1461 goto free_card; 1462 } 1463 1464 err = mmc_sd_setup_card(host, card, oldcard != NULL); 1465 if (err) 1466 goto free_card; 1467 1468 /* 1469 * If the card has not been power cycled, it may still be using 1.8V 1470 * signaling. Detect that situation and try to initialize a UHS-I (1.8V) 1471 * transfer mode. 1472 */ 1473 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) && 1474 mmc_sd_card_using_v18(card) && 1475 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) { 1476 /* 1477 * Re-read switch information in case it has changed since 1478 * oldcard was initialized. 1479 */ 1480 if (oldcard) { 1481 err = mmc_read_switch(card); 1482 if (err) 1483 goto free_card; 1484 } 1485 if (mmc_sd_card_using_v18(card)) { 1486 if (mmc_host_set_uhs_voltage(host) || 1487 mmc_sd_init_uhs_card(card)) { 1488 v18_fixup_failed = true; 1489 mmc_power_cycle(host, ocr); 1490 if (!oldcard) 1491 mmc_remove_card(card); 1492 goto retry; 1493 } 1494 goto done; 1495 } 1496 } 1497 1498 /* Initialization sequence for UHS-I cards */ 1499 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) { 1500 err = mmc_sd_init_uhs_card(card); 1501 if (err) 1502 goto free_card; 1503 } else { 1504 /* 1505 * Attempt to change to high-speed (if supported) 1506 */ 1507 err = mmc_sd_switch_hs(card); 1508 if (err > 0) 1509 mmc_set_timing(card->host, MMC_TIMING_SD_HS); 1510 else if (err) 1511 goto free_card; 1512 1513 /* 1514 * Set bus speed. 1515 */ 1516 mmc_set_clock(host, mmc_sd_get_max_clock(card)); 1517 1518 /* 1519 * Switch to wider bus (if supported). 1520 */ 1521 if ((host->caps & MMC_CAP_4_BIT_DATA) && 1522 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { 1523 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 1524 if (err) 1525 goto free_card; 1526 1527 mmc_set_bus_width(host, MMC_BUS_WIDTH_4); 1528 } 1529 } 1530 1531 if (!oldcard) { 1532 /* Read/parse the extension registers. */ 1533 err = sd_read_ext_regs(card); 1534 if (err) 1535 goto free_card; 1536 } 1537 1538 /* Enable internal SD cache if supported. */ 1539 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) { 1540 err = sd_enable_cache(card); 1541 if (err) 1542 goto free_card; 1543 } 1544 1545 if (host->cqe_ops && !host->cqe_enabled) { 1546 err = host->cqe_ops->cqe_enable(host, card); 1547 if (!err) { 1548 host->cqe_enabled = true; 1549 host->hsq_enabled = true; 1550 pr_info("%s: Host Software Queue enabled\n", 1551 mmc_hostname(host)); 1552 } 1553 } 1554 1555 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1556 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1557 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1558 mmc_hostname(host)); 1559 err = -EINVAL; 1560 goto free_card; 1561 } 1562 done: 1563 host->card = card; 1564 return 0; 1565 1566 free_card: 1567 if (!oldcard) 1568 mmc_remove_card(card); 1569 1570 return err; 1571 } 1572 1573 /* 1574 * Host is being removed. Free up the current card. 1575 */ 1576 static void mmc_sd_remove(struct mmc_host *host) 1577 { 1578 mmc_remove_card(host->card); 1579 host->card = NULL; 1580 } 1581 1582 /* 1583 * Card detection - card is alive. 1584 */ 1585 static int mmc_sd_alive(struct mmc_host *host) 1586 { 1587 return mmc_send_status(host->card, NULL); 1588 } 1589 1590 /* 1591 * Card detection callback from host. 1592 */ 1593 static void mmc_sd_detect(struct mmc_host *host) 1594 { 1595 int err; 1596 1597 mmc_get_card(host->card, NULL); 1598 1599 /* 1600 * Just check if our card has been removed. 1601 */ 1602 err = _mmc_detect_card_removed(host); 1603 1604 mmc_put_card(host->card, NULL); 1605 1606 if (err) { 1607 mmc_sd_remove(host); 1608 1609 mmc_claim_host(host); 1610 mmc_detach_bus(host); 1611 mmc_power_off(host); 1612 mmc_release_host(host); 1613 } 1614 } 1615 1616 static int sd_can_poweroff_notify(struct mmc_card *card) 1617 { 1618 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY; 1619 } 1620 1621 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy) 1622 { 1623 struct sd_busy_data *data = cb_data; 1624 struct mmc_card *card = data->card; 1625 int err; 1626 1627 /* 1628 * Read the status register for the power management function. It's at 1629 * one byte offset and is one byte long. The Power Off Notification 1630 * Ready is bit 0. 1631 */ 1632 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page, 1633 card->ext_power.offset + 1, 1, data->reg_buf); 1634 if (err) { 1635 pr_warn("%s: error %d reading status reg of PM func\n", 1636 mmc_hostname(card->host), err); 1637 return err; 1638 } 1639 1640 *busy = !(data->reg_buf[0] & BIT(0)); 1641 return 0; 1642 } 1643 1644 static int sd_poweroff_notify(struct mmc_card *card) 1645 { 1646 struct sd_busy_data cb_data; 1647 u8 *reg_buf; 1648 int err; 1649 1650 reg_buf = kzalloc(512, GFP_KERNEL); 1651 if (!reg_buf) 1652 return -ENOMEM; 1653 1654 /* 1655 * Set the Power Off Notification bit in the power management settings 1656 * register at 2 bytes offset. 1657 */ 1658 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page, 1659 card->ext_power.offset + 2, BIT(0)); 1660 if (err) { 1661 pr_warn("%s: error %d writing Power Off Notify bit\n", 1662 mmc_hostname(card->host), err); 1663 goto out; 1664 } 1665 1666 cb_data.card = card; 1667 cb_data.reg_buf = reg_buf; 1668 err = __mmc_poll_for_busy(card, SD_POWEROFF_NOTIFY_TIMEOUT_MS, 1669 &sd_busy_poweroff_notify_cb, &cb_data); 1670 1671 out: 1672 kfree(reg_buf); 1673 return err; 1674 } 1675 1676 static int _mmc_sd_suspend(struct mmc_host *host) 1677 { 1678 struct mmc_card *card = host->card; 1679 int err = 0; 1680 1681 mmc_claim_host(host); 1682 1683 if (mmc_card_suspended(card)) 1684 goto out; 1685 1686 if (sd_can_poweroff_notify(card)) 1687 err = sd_poweroff_notify(card); 1688 else if (!mmc_host_is_spi(host)) 1689 err = mmc_deselect_cards(host); 1690 1691 if (!err) { 1692 mmc_power_off(host); 1693 mmc_card_set_suspended(card); 1694 } 1695 1696 out: 1697 mmc_release_host(host); 1698 return err; 1699 } 1700 1701 /* 1702 * Callback for suspend 1703 */ 1704 static int mmc_sd_suspend(struct mmc_host *host) 1705 { 1706 int err; 1707 1708 err = _mmc_sd_suspend(host); 1709 if (!err) { 1710 pm_runtime_disable(&host->card->dev); 1711 pm_runtime_set_suspended(&host->card->dev); 1712 } 1713 1714 return err; 1715 } 1716 1717 /* 1718 * This function tries to determine if the same card is still present 1719 * and, if so, restore all state to it. 1720 */ 1721 static int _mmc_sd_resume(struct mmc_host *host) 1722 { 1723 int err = 0; 1724 1725 mmc_claim_host(host); 1726 1727 if (!mmc_card_suspended(host->card)) 1728 goto out; 1729 1730 mmc_power_up(host, host->card->ocr); 1731 err = mmc_sd_init_card(host, host->card->ocr, host->card); 1732 mmc_card_clr_suspended(host->card); 1733 1734 out: 1735 mmc_release_host(host); 1736 return err; 1737 } 1738 1739 /* 1740 * Callback for resume 1741 */ 1742 static int mmc_sd_resume(struct mmc_host *host) 1743 { 1744 pm_runtime_enable(&host->card->dev); 1745 return 0; 1746 } 1747 1748 /* 1749 * Callback for runtime_suspend. 1750 */ 1751 static int mmc_sd_runtime_suspend(struct mmc_host *host) 1752 { 1753 int err; 1754 1755 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 1756 return 0; 1757 1758 err = _mmc_sd_suspend(host); 1759 if (err) 1760 pr_err("%s: error %d doing aggressive suspend\n", 1761 mmc_hostname(host), err); 1762 1763 return err; 1764 } 1765 1766 /* 1767 * Callback for runtime_resume. 1768 */ 1769 static int mmc_sd_runtime_resume(struct mmc_host *host) 1770 { 1771 int err; 1772 1773 err = _mmc_sd_resume(host); 1774 if (err && err != -ENOMEDIUM) 1775 pr_err("%s: error %d doing runtime resume\n", 1776 mmc_hostname(host), err); 1777 1778 return 0; 1779 } 1780 1781 static int mmc_sd_hw_reset(struct mmc_host *host) 1782 { 1783 mmc_power_cycle(host, host->card->ocr); 1784 return mmc_sd_init_card(host, host->card->ocr, host->card); 1785 } 1786 1787 static const struct mmc_bus_ops mmc_sd_ops = { 1788 .remove = mmc_sd_remove, 1789 .detect = mmc_sd_detect, 1790 .runtime_suspend = mmc_sd_runtime_suspend, 1791 .runtime_resume = mmc_sd_runtime_resume, 1792 .suspend = mmc_sd_suspend, 1793 .resume = mmc_sd_resume, 1794 .alive = mmc_sd_alive, 1795 .shutdown = mmc_sd_suspend, 1796 .hw_reset = mmc_sd_hw_reset, 1797 .cache_enabled = sd_cache_enabled, 1798 .flush_cache = sd_flush_cache, 1799 }; 1800 1801 /* 1802 * Starting point for SD card init. 1803 */ 1804 int mmc_attach_sd(struct mmc_host *host) 1805 { 1806 int err; 1807 u32 ocr, rocr; 1808 1809 WARN_ON(!host->claimed); 1810 1811 err = mmc_send_app_op_cond(host, 0, &ocr); 1812 if (err) 1813 return err; 1814 1815 mmc_attach_bus(host, &mmc_sd_ops); 1816 if (host->ocr_avail_sd) 1817 host->ocr_avail = host->ocr_avail_sd; 1818 1819 /* 1820 * We need to get OCR a different way for SPI. 1821 */ 1822 if (mmc_host_is_spi(host)) { 1823 mmc_go_idle(host); 1824 1825 err = mmc_spi_read_ocr(host, 0, &ocr); 1826 if (err) 1827 goto err; 1828 } 1829 1830 /* 1831 * Some SD cards claims an out of spec VDD voltage range. Let's treat 1832 * these bits as being in-valid and especially also bit7. 1833 */ 1834 ocr &= ~0x7FFF; 1835 1836 rocr = mmc_select_voltage(host, ocr); 1837 1838 /* 1839 * Can we support the voltage(s) of the card(s)? 1840 */ 1841 if (!rocr) { 1842 err = -EINVAL; 1843 goto err; 1844 } 1845 1846 /* 1847 * Detect and init the card. 1848 */ 1849 err = mmc_sd_init_card(host, rocr, NULL); 1850 if (err) 1851 goto err; 1852 1853 mmc_release_host(host); 1854 err = mmc_add_card(host->card); 1855 if (err) 1856 goto remove_card; 1857 1858 mmc_claim_host(host); 1859 return 0; 1860 1861 remove_card: 1862 mmc_remove_card(host->card); 1863 host->card = NULL; 1864 mmc_claim_host(host); 1865 err: 1866 mmc_detach_bus(host); 1867 1868 pr_err("%s: error %d whilst initialising SD card\n", 1869 mmc_hostname(host), err); 1870 1871 return err; 1872 } 1873