xref: /openbmc/linux/drivers/mmc/core/sd.c (revision 6d425d7c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/sd.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/scatterlist.h>
16 
17 #include <linux/mmc/host.h>
18 #include <linux/mmc/card.h>
19 #include <linux/mmc/mmc.h>
20 #include <linux/mmc/sd.h>
21 
22 #include "core.h"
23 #include "card.h"
24 #include "host.h"
25 #include "bus.h"
26 #include "mmc_ops.h"
27 #include "sd.h"
28 #include "sd_ops.h"
29 
30 static const unsigned int tran_exp[] = {
31 	10000,		100000,		1000000,	10000000,
32 	0,		0,		0,		0
33 };
34 
35 static const unsigned char tran_mant[] = {
36 	0,	10,	12,	13,	15,	20,	25,	30,
37 	35,	40,	45,	50,	55,	60,	70,	80,
38 };
39 
40 static const unsigned int taac_exp[] = {
41 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
42 };
43 
44 static const unsigned int taac_mant[] = {
45 	0,	10,	12,	13,	15,	20,	25,	30,
46 	35,	40,	45,	50,	55,	60,	70,	80,
47 };
48 
49 static const unsigned int sd_au_size[] = {
50 	0,		SZ_16K / 512,		SZ_32K / 512,	SZ_64K / 512,
51 	SZ_128K / 512,	SZ_256K / 512,		SZ_512K / 512,	SZ_1M / 512,
52 	SZ_2M / 512,	SZ_4M / 512,		SZ_8M / 512,	(SZ_8M + SZ_4M) / 512,
53 	SZ_16M / 512,	(SZ_16M + SZ_8M) / 512,	SZ_32M / 512,	SZ_64M / 512,
54 };
55 
56 #define UNSTUFF_BITS(resp,start,size)					\
57 	({								\
58 		const int __size = size;				\
59 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
60 		const int __off = 3 - ((start) / 32);			\
61 		const int __shft = (start) & 31;			\
62 		u32 __res;						\
63 									\
64 		__res = resp[__off] >> __shft;				\
65 		if (__size + __shft > 32)				\
66 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
67 		__res & __mask;						\
68 	})
69 
70 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 2000
71 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000
72 
73 struct sd_busy_data {
74 	struct mmc_card *card;
75 	u8 *reg_buf;
76 };
77 
78 /*
79  * Given the decoded CSD structure, decode the raw CID to our CID structure.
80  */
81 void mmc_decode_cid(struct mmc_card *card)
82 {
83 	u32 *resp = card->raw_cid;
84 
85 	/*
86 	 * SD doesn't currently have a version field so we will
87 	 * have to assume we can parse this.
88 	 */
89 	card->cid.manfid		= UNSTUFF_BITS(resp, 120, 8);
90 	card->cid.oemid			= UNSTUFF_BITS(resp, 104, 16);
91 	card->cid.prod_name[0]		= UNSTUFF_BITS(resp, 96, 8);
92 	card->cid.prod_name[1]		= UNSTUFF_BITS(resp, 88, 8);
93 	card->cid.prod_name[2]		= UNSTUFF_BITS(resp, 80, 8);
94 	card->cid.prod_name[3]		= UNSTUFF_BITS(resp, 72, 8);
95 	card->cid.prod_name[4]		= UNSTUFF_BITS(resp, 64, 8);
96 	card->cid.hwrev			= UNSTUFF_BITS(resp, 60, 4);
97 	card->cid.fwrev			= UNSTUFF_BITS(resp, 56, 4);
98 	card->cid.serial		= UNSTUFF_BITS(resp, 24, 32);
99 	card->cid.year			= UNSTUFF_BITS(resp, 12, 8);
100 	card->cid.month			= UNSTUFF_BITS(resp, 8, 4);
101 
102 	card->cid.year += 2000; /* SD cards year offset */
103 }
104 
105 /*
106  * Given a 128-bit response, decode to our card CSD structure.
107  */
108 static int mmc_decode_csd(struct mmc_card *card)
109 {
110 	struct mmc_csd *csd = &card->csd;
111 	unsigned int e, m, csd_struct;
112 	u32 *resp = card->raw_csd;
113 
114 	csd_struct = UNSTUFF_BITS(resp, 126, 2);
115 
116 	switch (csd_struct) {
117 	case 0:
118 		m = UNSTUFF_BITS(resp, 115, 4);
119 		e = UNSTUFF_BITS(resp, 112, 3);
120 		csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
121 		csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
122 
123 		m = UNSTUFF_BITS(resp, 99, 4);
124 		e = UNSTUFF_BITS(resp, 96, 3);
125 		csd->max_dtr	  = tran_exp[e] * tran_mant[m];
126 		csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
127 
128 		e = UNSTUFF_BITS(resp, 47, 3);
129 		m = UNSTUFF_BITS(resp, 62, 12);
130 		csd->capacity	  = (1 + m) << (e + 2);
131 
132 		csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
133 		csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
134 		csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
135 		csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
136 		csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
137 		csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
138 		csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
139 		csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
140 
141 		if (UNSTUFF_BITS(resp, 46, 1)) {
142 			csd->erase_size = 1;
143 		} else if (csd->write_blkbits >= 9) {
144 			csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1;
145 			csd->erase_size <<= csd->write_blkbits - 9;
146 		}
147 
148 		if (UNSTUFF_BITS(resp, 13, 1))
149 			mmc_card_set_readonly(card);
150 		break;
151 	case 1:
152 		/*
153 		 * This is a block-addressed SDHC or SDXC card. Most
154 		 * interesting fields are unused and have fixed
155 		 * values. To avoid getting tripped by buggy cards,
156 		 * we assume those fixed values ourselves.
157 		 */
158 		mmc_card_set_blockaddr(card);
159 
160 		csd->taac_ns	 = 0; /* Unused */
161 		csd->taac_clks	 = 0; /* Unused */
162 
163 		m = UNSTUFF_BITS(resp, 99, 4);
164 		e = UNSTUFF_BITS(resp, 96, 3);
165 		csd->max_dtr	  = tran_exp[e] * tran_mant[m];
166 		csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
167 		csd->c_size	  = UNSTUFF_BITS(resp, 48, 22);
168 
169 		/* SDXC cards have a minimum C_SIZE of 0x00FFFF */
170 		if (csd->c_size >= 0xFFFF)
171 			mmc_card_set_ext_capacity(card);
172 
173 		m = UNSTUFF_BITS(resp, 48, 22);
174 		csd->capacity     = (1 + m) << 10;
175 
176 		csd->read_blkbits = 9;
177 		csd->read_partial = 0;
178 		csd->write_misalign = 0;
179 		csd->read_misalign = 0;
180 		csd->r2w_factor = 4; /* Unused */
181 		csd->write_blkbits = 9;
182 		csd->write_partial = 0;
183 		csd->erase_size = 1;
184 
185 		if (UNSTUFF_BITS(resp, 13, 1))
186 			mmc_card_set_readonly(card);
187 		break;
188 	default:
189 		pr_err("%s: unrecognised CSD structure version %d\n",
190 			mmc_hostname(card->host), csd_struct);
191 		return -EINVAL;
192 	}
193 
194 	card->erase_size = csd->erase_size;
195 
196 	return 0;
197 }
198 
199 /*
200  * Given a 64-bit response, decode to our card SCR structure.
201  */
202 static int mmc_decode_scr(struct mmc_card *card)
203 {
204 	struct sd_scr *scr = &card->scr;
205 	unsigned int scr_struct;
206 	u32 resp[4];
207 
208 	resp[3] = card->raw_scr[1];
209 	resp[2] = card->raw_scr[0];
210 
211 	scr_struct = UNSTUFF_BITS(resp, 60, 4);
212 	if (scr_struct != 0) {
213 		pr_err("%s: unrecognised SCR structure version %d\n",
214 			mmc_hostname(card->host), scr_struct);
215 		return -EINVAL;
216 	}
217 
218 	scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4);
219 	scr->bus_widths = UNSTUFF_BITS(resp, 48, 4);
220 	if (scr->sda_vsn == SCR_SPEC_VER_2)
221 		/* Check if Physical Layer Spec v3.0 is supported */
222 		scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1);
223 
224 	if (scr->sda_spec3) {
225 		scr->sda_spec4 = UNSTUFF_BITS(resp, 42, 1);
226 		scr->sda_specx = UNSTUFF_BITS(resp, 38, 4);
227 	}
228 
229 	if (UNSTUFF_BITS(resp, 55, 1))
230 		card->erased_byte = 0xFF;
231 	else
232 		card->erased_byte = 0x0;
233 
234 	if (scr->sda_spec4)
235 		scr->cmds = UNSTUFF_BITS(resp, 32, 4);
236 	else if (scr->sda_spec3)
237 		scr->cmds = UNSTUFF_BITS(resp, 32, 2);
238 
239 	/* SD Spec says: any SD Card shall set at least bits 0 and 2 */
240 	if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) ||
241 	    !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) {
242 		pr_err("%s: invalid bus width\n", mmc_hostname(card->host));
243 		return -EINVAL;
244 	}
245 
246 	return 0;
247 }
248 
249 /*
250  * Fetch and process SD Status register.
251  */
252 static int mmc_read_ssr(struct mmc_card *card)
253 {
254 	unsigned int au, es, et, eo;
255 	__be32 *raw_ssr;
256 	u32 resp[4] = {};
257 	u8 discard_support;
258 	int i;
259 
260 	if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
261 		pr_warn("%s: card lacks mandatory SD Status function\n",
262 			mmc_hostname(card->host));
263 		return 0;
264 	}
265 
266 	raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL);
267 	if (!raw_ssr)
268 		return -ENOMEM;
269 
270 	if (mmc_app_sd_status(card, raw_ssr)) {
271 		pr_warn("%s: problem reading SD Status register\n",
272 			mmc_hostname(card->host));
273 		kfree(raw_ssr);
274 		return 0;
275 	}
276 
277 	for (i = 0; i < 16; i++)
278 		card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]);
279 
280 	kfree(raw_ssr);
281 
282 	/*
283 	 * UNSTUFF_BITS only works with four u32s so we have to offset the
284 	 * bitfield positions accordingly.
285 	 */
286 	au = UNSTUFF_BITS(card->raw_ssr, 428 - 384, 4);
287 	if (au) {
288 		if (au <= 9 || card->scr.sda_spec3) {
289 			card->ssr.au = sd_au_size[au];
290 			es = UNSTUFF_BITS(card->raw_ssr, 408 - 384, 16);
291 			et = UNSTUFF_BITS(card->raw_ssr, 402 - 384, 6);
292 			if (es && et) {
293 				eo = UNSTUFF_BITS(card->raw_ssr, 400 - 384, 2);
294 				card->ssr.erase_timeout = (et * 1000) / es;
295 				card->ssr.erase_offset = eo * 1000;
296 			}
297 		} else {
298 			pr_warn("%s: SD Status: Invalid Allocation Unit size\n",
299 				mmc_hostname(card->host));
300 		}
301 	}
302 
303 	/*
304 	 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set
305 	 */
306 	resp[3] = card->raw_ssr[6];
307 	discard_support = UNSTUFF_BITS(resp, 313 - 288, 1);
308 	card->erase_arg = (card->scr.sda_specx && discard_support) ?
309 			    SD_DISCARD_ARG : SD_ERASE_ARG;
310 
311 	return 0;
312 }
313 
314 /*
315  * Fetches and decodes switch information
316  */
317 static int mmc_read_switch(struct mmc_card *card)
318 {
319 	int err;
320 	u8 *status;
321 
322 	if (card->scr.sda_vsn < SCR_SPEC_VER_1)
323 		return 0;
324 
325 	if (!(card->csd.cmdclass & CCC_SWITCH)) {
326 		pr_warn("%s: card lacks mandatory switch function, performance might suffer\n",
327 			mmc_hostname(card->host));
328 		return 0;
329 	}
330 
331 	status = kmalloc(64, GFP_KERNEL);
332 	if (!status)
333 		return -ENOMEM;
334 
335 	/*
336 	 * Find out the card's support bits with a mode 0 operation.
337 	 * The argument does not matter, as the support bits do not
338 	 * change with the arguments.
339 	 */
340 	err = mmc_sd_switch(card, 0, 0, 0, status);
341 	if (err) {
342 		/*
343 		 * If the host or the card can't do the switch,
344 		 * fail more gracefully.
345 		 */
346 		if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
347 			goto out;
348 
349 		pr_warn("%s: problem reading Bus Speed modes\n",
350 			mmc_hostname(card->host));
351 		err = 0;
352 
353 		goto out;
354 	}
355 
356 	if (status[13] & SD_MODE_HIGH_SPEED)
357 		card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR;
358 
359 	if (card->scr.sda_spec3) {
360 		card->sw_caps.sd3_bus_mode = status[13];
361 		/* Driver Strengths supported by the card */
362 		card->sw_caps.sd3_drv_type = status[9];
363 		card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8;
364 	}
365 
366 out:
367 	kfree(status);
368 
369 	return err;
370 }
371 
372 /*
373  * Test if the card supports high-speed mode and, if so, switch to it.
374  */
375 int mmc_sd_switch_hs(struct mmc_card *card)
376 {
377 	int err;
378 	u8 *status;
379 
380 	if (card->scr.sda_vsn < SCR_SPEC_VER_1)
381 		return 0;
382 
383 	if (!(card->csd.cmdclass & CCC_SWITCH))
384 		return 0;
385 
386 	if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
387 		return 0;
388 
389 	if (card->sw_caps.hs_max_dtr == 0)
390 		return 0;
391 
392 	status = kmalloc(64, GFP_KERNEL);
393 	if (!status)
394 		return -ENOMEM;
395 
396 	err = mmc_sd_switch(card, 1, 0, HIGH_SPEED_BUS_SPEED, status);
397 	if (err)
398 		goto out;
399 
400 	if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) {
401 		pr_warn("%s: Problem switching card into high-speed mode!\n",
402 			mmc_hostname(card->host));
403 		err = 0;
404 	} else {
405 		err = 1;
406 	}
407 
408 out:
409 	kfree(status);
410 
411 	return err;
412 }
413 
414 static int sd_select_driver_type(struct mmc_card *card, u8 *status)
415 {
416 	int card_drv_type, drive_strength, drv_type;
417 	int err;
418 
419 	card->drive_strength = 0;
420 
421 	card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B;
422 
423 	drive_strength = mmc_select_drive_strength(card,
424 						   card->sw_caps.uhs_max_dtr,
425 						   card_drv_type, &drv_type);
426 
427 	if (drive_strength) {
428 		err = mmc_sd_switch(card, 1, 2, drive_strength, status);
429 		if (err)
430 			return err;
431 		if ((status[15] & 0xF) != drive_strength) {
432 			pr_warn("%s: Problem setting drive strength!\n",
433 				mmc_hostname(card->host));
434 			return 0;
435 		}
436 		card->drive_strength = drive_strength;
437 	}
438 
439 	if (drv_type)
440 		mmc_set_driver_type(card->host, drv_type);
441 
442 	return 0;
443 }
444 
445 static void sd_update_bus_speed_mode(struct mmc_card *card)
446 {
447 	/*
448 	 * If the host doesn't support any of the UHS-I modes, fallback on
449 	 * default speed.
450 	 */
451 	if (!mmc_host_uhs(card->host)) {
452 		card->sd_bus_speed = 0;
453 		return;
454 	}
455 
456 	if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
457 	    (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
458 			card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
459 	} else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
460 		   (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
461 			card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
462 	} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
463 		    MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
464 		    SD_MODE_UHS_SDR50)) {
465 			card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
466 	} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
467 		    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
468 		   (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
469 			card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
470 	} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
471 		    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
472 		    MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
473 		    SD_MODE_UHS_SDR12)) {
474 			card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
475 	}
476 }
477 
478 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
479 {
480 	int err;
481 	unsigned int timing = 0;
482 
483 	switch (card->sd_bus_speed) {
484 	case UHS_SDR104_BUS_SPEED:
485 		timing = MMC_TIMING_UHS_SDR104;
486 		card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
487 		break;
488 	case UHS_DDR50_BUS_SPEED:
489 		timing = MMC_TIMING_UHS_DDR50;
490 		card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
491 		break;
492 	case UHS_SDR50_BUS_SPEED:
493 		timing = MMC_TIMING_UHS_SDR50;
494 		card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
495 		break;
496 	case UHS_SDR25_BUS_SPEED:
497 		timing = MMC_TIMING_UHS_SDR25;
498 		card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
499 		break;
500 	case UHS_SDR12_BUS_SPEED:
501 		timing = MMC_TIMING_UHS_SDR12;
502 		card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
503 		break;
504 	default:
505 		return 0;
506 	}
507 
508 	err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status);
509 	if (err)
510 		return err;
511 
512 	if ((status[16] & 0xF) != card->sd_bus_speed)
513 		pr_warn("%s: Problem setting bus speed mode!\n",
514 			mmc_hostname(card->host));
515 	else {
516 		mmc_set_timing(card->host, timing);
517 		mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
518 	}
519 
520 	return 0;
521 }
522 
523 /* Get host's max current setting at its current voltage */
524 static u32 sd_get_host_max_current(struct mmc_host *host)
525 {
526 	u32 voltage, max_current;
527 
528 	voltage = 1 << host->ios.vdd;
529 	switch (voltage) {
530 	case MMC_VDD_165_195:
531 		max_current = host->max_current_180;
532 		break;
533 	case MMC_VDD_29_30:
534 	case MMC_VDD_30_31:
535 		max_current = host->max_current_300;
536 		break;
537 	case MMC_VDD_32_33:
538 	case MMC_VDD_33_34:
539 		max_current = host->max_current_330;
540 		break;
541 	default:
542 		max_current = 0;
543 	}
544 
545 	return max_current;
546 }
547 
548 static int sd_set_current_limit(struct mmc_card *card, u8 *status)
549 {
550 	int current_limit = SD_SET_CURRENT_NO_CHANGE;
551 	int err;
552 	u32 max_current;
553 
554 	/*
555 	 * Current limit switch is only defined for SDR50, SDR104, and DDR50
556 	 * bus speed modes. For other bus speed modes, we do not change the
557 	 * current limit.
558 	 */
559 	if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) &&
560 	    (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) &&
561 	    (card->sd_bus_speed != UHS_DDR50_BUS_SPEED))
562 		return 0;
563 
564 	/*
565 	 * Host has different current capabilities when operating at
566 	 * different voltages, so find out its max current first.
567 	 */
568 	max_current = sd_get_host_max_current(card->host);
569 
570 	/*
571 	 * We only check host's capability here, if we set a limit that is
572 	 * higher than the card's maximum current, the card will be using its
573 	 * maximum current, e.g. if the card's maximum current is 300ma, and
574 	 * when we set current limit to 200ma, the card will draw 200ma, and
575 	 * when we set current limit to 400/600/800ma, the card will draw its
576 	 * maximum 300ma from the host.
577 	 *
578 	 * The above is incorrect: if we try to set a current limit that is
579 	 * not supported by the card, the card can rightfully error out the
580 	 * attempt, and remain at the default current limit.  This results
581 	 * in a 300mA card being limited to 200mA even though the host
582 	 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with
583 	 * an iMX6 host. --rmk
584 	 */
585 	if (max_current >= 800 &&
586 	    card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
587 		current_limit = SD_SET_CURRENT_LIMIT_800;
588 	else if (max_current >= 600 &&
589 		 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
590 		current_limit = SD_SET_CURRENT_LIMIT_600;
591 	else if (max_current >= 400 &&
592 		 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
593 		current_limit = SD_SET_CURRENT_LIMIT_400;
594 	else if (max_current >= 200 &&
595 		 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
596 		current_limit = SD_SET_CURRENT_LIMIT_200;
597 
598 	if (current_limit != SD_SET_CURRENT_NO_CHANGE) {
599 		err = mmc_sd_switch(card, 1, 3, current_limit, status);
600 		if (err)
601 			return err;
602 
603 		if (((status[15] >> 4) & 0x0F) != current_limit)
604 			pr_warn("%s: Problem setting current limit!\n",
605 				mmc_hostname(card->host));
606 
607 	}
608 
609 	return 0;
610 }
611 
612 /*
613  * UHS-I specific initialization procedure
614  */
615 static int mmc_sd_init_uhs_card(struct mmc_card *card)
616 {
617 	int err;
618 	u8 *status;
619 
620 	if (!(card->csd.cmdclass & CCC_SWITCH))
621 		return 0;
622 
623 	status = kmalloc(64, GFP_KERNEL);
624 	if (!status)
625 		return -ENOMEM;
626 
627 	/* Set 4-bit bus width */
628 	err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
629 	if (err)
630 		goto out;
631 
632 	mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
633 
634 	/*
635 	 * Select the bus speed mode depending on host
636 	 * and card capability.
637 	 */
638 	sd_update_bus_speed_mode(card);
639 
640 	/* Set the driver strength for the card */
641 	err = sd_select_driver_type(card, status);
642 	if (err)
643 		goto out;
644 
645 	/* Set current limit for the card */
646 	err = sd_set_current_limit(card, status);
647 	if (err)
648 		goto out;
649 
650 	/* Set bus speed mode of the card */
651 	err = sd_set_bus_speed_mode(card, status);
652 	if (err)
653 		goto out;
654 
655 	/*
656 	 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and
657 	 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104.
658 	 */
659 	if (!mmc_host_is_spi(card->host) &&
660 		(card->host->ios.timing == MMC_TIMING_UHS_SDR50 ||
661 		 card->host->ios.timing == MMC_TIMING_UHS_DDR50 ||
662 		 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) {
663 		err = mmc_execute_tuning(card);
664 
665 		/*
666 		 * As SD Specifications Part1 Physical Layer Specification
667 		 * Version 3.01 says, CMD19 tuning is available for unlocked
668 		 * cards in transfer state of 1.8V signaling mode. The small
669 		 * difference between v3.00 and 3.01 spec means that CMD19
670 		 * tuning is also available for DDR50 mode.
671 		 */
672 		if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) {
673 			pr_warn("%s: ddr50 tuning failed\n",
674 				mmc_hostname(card->host));
675 			err = 0;
676 		}
677 	}
678 
679 out:
680 	kfree(status);
681 
682 	return err;
683 }
684 
685 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
686 	card->raw_cid[2], card->raw_cid[3]);
687 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
688 	card->raw_csd[2], card->raw_csd[3]);
689 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
690 MMC_DEV_ATTR(ssr,
691 	"%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
692 		card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2],
693 		card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5],
694 		card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8],
695 		card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11],
696 		card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14],
697 		card->raw_ssr[15]);
698 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
699 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
700 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
701 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
702 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
703 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
704 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
705 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
706 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
707 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
708 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
709 
710 
711 static ssize_t mmc_dsr_show(struct device *dev,
712                            struct device_attribute *attr,
713                            char *buf)
714 {
715        struct mmc_card *card = mmc_dev_to_card(dev);
716        struct mmc_host *host = card->host;
717 
718        if (card->csd.dsr_imp && host->dsr_req)
719                return sprintf(buf, "0x%x\n", host->dsr);
720        else
721                /* return default DSR value */
722                return sprintf(buf, "0x%x\n", 0x404);
723 }
724 
725 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
726 
727 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor);
728 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device);
729 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev);
730 
731 #define sdio_info_attr(num)									\
732 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf)	\
733 {												\
734 	struct mmc_card *card = mmc_dev_to_card(dev);						\
735 												\
736 	if (num > card->num_info)								\
737 		return -ENODATA;								\
738 	if (!card->info[num-1][0])								\
739 		return 0;									\
740 	return sprintf(buf, "%s\n", card->info[num-1]);						\
741 }												\
742 static DEVICE_ATTR_RO(info##num)
743 
744 sdio_info_attr(1);
745 sdio_info_attr(2);
746 sdio_info_attr(3);
747 sdio_info_attr(4);
748 
749 static struct attribute *sd_std_attrs[] = {
750 	&dev_attr_vendor.attr,
751 	&dev_attr_device.attr,
752 	&dev_attr_revision.attr,
753 	&dev_attr_info1.attr,
754 	&dev_attr_info2.attr,
755 	&dev_attr_info3.attr,
756 	&dev_attr_info4.attr,
757 	&dev_attr_cid.attr,
758 	&dev_attr_csd.attr,
759 	&dev_attr_scr.attr,
760 	&dev_attr_ssr.attr,
761 	&dev_attr_date.attr,
762 	&dev_attr_erase_size.attr,
763 	&dev_attr_preferred_erase_size.attr,
764 	&dev_attr_fwrev.attr,
765 	&dev_attr_hwrev.attr,
766 	&dev_attr_manfid.attr,
767 	&dev_attr_name.attr,
768 	&dev_attr_oemid.attr,
769 	&dev_attr_serial.attr,
770 	&dev_attr_ocr.attr,
771 	&dev_attr_rca.attr,
772 	&dev_attr_dsr.attr,
773 	NULL,
774 };
775 
776 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr,
777 				 int index)
778 {
779 	struct device *dev = kobj_to_dev(kobj);
780 	struct mmc_card *card = mmc_dev_to_card(dev);
781 
782 	/* CIS vendor and device ids, revision and info string are available only for Combo cards */
783 	if ((attr == &dev_attr_vendor.attr ||
784 	     attr == &dev_attr_device.attr ||
785 	     attr == &dev_attr_revision.attr ||
786 	     attr == &dev_attr_info1.attr ||
787 	     attr == &dev_attr_info2.attr ||
788 	     attr == &dev_attr_info3.attr ||
789 	     attr == &dev_attr_info4.attr
790 	    ) && card->type != MMC_TYPE_SD_COMBO)
791 		return 0;
792 
793 	return attr->mode;
794 }
795 
796 static const struct attribute_group sd_std_group = {
797 	.attrs = sd_std_attrs,
798 	.is_visible = sd_std_is_visible,
799 };
800 __ATTRIBUTE_GROUPS(sd_std);
801 
802 struct device_type sd_type = {
803 	.groups = sd_std_groups,
804 };
805 
806 /*
807  * Fetch CID from card.
808  */
809 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
810 {
811 	int err;
812 	u32 max_current;
813 	int retries = 10;
814 	u32 pocr = ocr;
815 
816 try_again:
817 	if (!retries) {
818 		ocr &= ~SD_OCR_S18R;
819 		pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host));
820 	}
821 
822 	/*
823 	 * Since we're changing the OCR value, we seem to
824 	 * need to tell some cards to go back to the idle
825 	 * state.  We wait 1ms to give cards time to
826 	 * respond.
827 	 */
828 	mmc_go_idle(host);
829 
830 	/*
831 	 * If SD_SEND_IF_COND indicates an SD 2.0
832 	 * compliant card and we should set bit 30
833 	 * of the ocr to indicate that we can handle
834 	 * block-addressed SDHC cards.
835 	 */
836 	err = mmc_send_if_cond(host, ocr);
837 	if (!err)
838 		ocr |= SD_OCR_CCS;
839 
840 	/*
841 	 * If the host supports one of UHS-I modes, request the card
842 	 * to switch to 1.8V signaling level. If the card has failed
843 	 * repeatedly to switch however, skip this.
844 	 */
845 	if (retries && mmc_host_uhs(host))
846 		ocr |= SD_OCR_S18R;
847 
848 	/*
849 	 * If the host can supply more than 150mA at current voltage,
850 	 * XPC should be set to 1.
851 	 */
852 	max_current = sd_get_host_max_current(host);
853 	if (max_current > 150)
854 		ocr |= SD_OCR_XPC;
855 
856 	err = mmc_send_app_op_cond(host, ocr, rocr);
857 	if (err)
858 		return err;
859 
860 	/*
861 	 * In case the S18A bit is set in the response, let's start the signal
862 	 * voltage switch procedure. SPI mode doesn't support CMD11.
863 	 * Note that, according to the spec, the S18A bit is not valid unless
864 	 * the CCS bit is set as well. We deliberately deviate from the spec in
865 	 * regards to this, which allows UHS-I to be supported for SDSC cards.
866 	 */
867 	if (!mmc_host_is_spi(host) && rocr && (*rocr & 0x01000000)) {
868 		err = mmc_set_uhs_voltage(host, pocr);
869 		if (err == -EAGAIN) {
870 			retries--;
871 			goto try_again;
872 		} else if (err) {
873 			retries = 0;
874 			goto try_again;
875 		}
876 	}
877 
878 	err = mmc_send_cid(host, cid);
879 	return err;
880 }
881 
882 int mmc_sd_get_csd(struct mmc_card *card)
883 {
884 	int err;
885 
886 	/*
887 	 * Fetch CSD from card.
888 	 */
889 	err = mmc_send_csd(card, card->raw_csd);
890 	if (err)
891 		return err;
892 
893 	err = mmc_decode_csd(card);
894 	if (err)
895 		return err;
896 
897 	return 0;
898 }
899 
900 static int mmc_sd_get_ro(struct mmc_host *host)
901 {
902 	int ro;
903 
904 	/*
905 	 * Some systems don't feature a write-protect pin and don't need one.
906 	 * E.g. because they only have micro-SD card slot. For those systems
907 	 * assume that the SD card is always read-write.
908 	 */
909 	if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT)
910 		return 0;
911 
912 	if (!host->ops->get_ro)
913 		return -1;
914 
915 	ro = host->ops->get_ro(host);
916 
917 	return ro;
918 }
919 
920 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
921 	bool reinit)
922 {
923 	int err;
924 
925 	if (!reinit) {
926 		/*
927 		 * Fetch SCR from card.
928 		 */
929 		err = mmc_app_send_scr(card);
930 		if (err)
931 			return err;
932 
933 		err = mmc_decode_scr(card);
934 		if (err)
935 			return err;
936 
937 		/*
938 		 * Fetch and process SD Status register.
939 		 */
940 		err = mmc_read_ssr(card);
941 		if (err)
942 			return err;
943 
944 		/* Erase init depends on CSD and SSR */
945 		mmc_init_erase(card);
946 
947 		/*
948 		 * Fetch switch information from card.
949 		 */
950 		err = mmc_read_switch(card);
951 		if (err)
952 			return err;
953 	}
954 
955 	/*
956 	 * For SPI, enable CRC as appropriate.
957 	 * This CRC enable is located AFTER the reading of the
958 	 * card registers because some SDHC cards are not able
959 	 * to provide valid CRCs for non-512-byte blocks.
960 	 */
961 	if (mmc_host_is_spi(host)) {
962 		err = mmc_spi_set_crc(host, use_spi_crc);
963 		if (err)
964 			return err;
965 	}
966 
967 	/*
968 	 * Check if read-only switch is active.
969 	 */
970 	if (!reinit) {
971 		int ro = mmc_sd_get_ro(host);
972 
973 		if (ro < 0) {
974 			pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n",
975 				mmc_hostname(host));
976 		} else if (ro > 0) {
977 			mmc_card_set_readonly(card);
978 		}
979 	}
980 
981 	return 0;
982 }
983 
984 unsigned mmc_sd_get_max_clock(struct mmc_card *card)
985 {
986 	unsigned max_dtr = (unsigned int)-1;
987 
988 	if (mmc_card_hs(card)) {
989 		if (max_dtr > card->sw_caps.hs_max_dtr)
990 			max_dtr = card->sw_caps.hs_max_dtr;
991 	} else if (max_dtr > card->csd.max_dtr) {
992 		max_dtr = card->csd.max_dtr;
993 	}
994 
995 	return max_dtr;
996 }
997 
998 static bool mmc_sd_card_using_v18(struct mmc_card *card)
999 {
1000 	/*
1001 	 * According to the SD spec., the Bus Speed Mode (function group 1) bits
1002 	 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus
1003 	 * they can be used to determine if the card has already switched to
1004 	 * 1.8V signaling.
1005 	 */
1006 	return card->sw_caps.sd3_bus_mode &
1007 	       (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50);
1008 }
1009 
1010 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset,
1011 			    u8 reg_data)
1012 {
1013 	struct mmc_host *host = card->host;
1014 	struct mmc_request mrq = {};
1015 	struct mmc_command cmd = {};
1016 	struct mmc_data data = {};
1017 	struct scatterlist sg;
1018 	u8 *reg_buf;
1019 
1020 	reg_buf = kzalloc(512, GFP_KERNEL);
1021 	if (!reg_buf)
1022 		return -ENOMEM;
1023 
1024 	mrq.cmd = &cmd;
1025 	mrq.data = &data;
1026 
1027 	/*
1028 	 * Arguments of CMD49:
1029 	 * [31:31] MIO (0 = memory).
1030 	 * [30:27] FNO (function number).
1031 	 * [26:26] MW - mask write mode (0 = disable).
1032 	 * [25:18] page number.
1033 	 * [17:9] offset address.
1034 	 * [8:0] length (0 = 1 byte).
1035 	 */
1036 	cmd.arg = fno << 27 | page << 18 | offset << 9;
1037 
1038 	/* The first byte in the buffer is the data to be written. */
1039 	reg_buf[0] = reg_data;
1040 
1041 	data.flags = MMC_DATA_WRITE;
1042 	data.blksz = 512;
1043 	data.blocks = 1;
1044 	data.sg = &sg;
1045 	data.sg_len = 1;
1046 	sg_init_one(&sg, reg_buf, 512);
1047 
1048 	cmd.opcode = SD_WRITE_EXTR_SINGLE;
1049 	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1050 
1051 	mmc_set_data_timeout(&data, card);
1052 	mmc_wait_for_req(host, &mrq);
1053 
1054 	kfree(reg_buf);
1055 
1056 	/*
1057 	 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s
1058 	 * after the CMD49. Although, let's leave this to be managed by the
1059 	 * caller.
1060 	 */
1061 
1062 	if (cmd.error)
1063 		return cmd.error;
1064 	if (data.error)
1065 		return data.error;
1066 
1067 	return 0;
1068 }
1069 
1070 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page,
1071 			   u16 offset, u16 len, u8 *reg_buf)
1072 {
1073 	u32 cmd_args;
1074 
1075 	/*
1076 	 * Command arguments of CMD48:
1077 	 * [31:31] MIO (0 = memory).
1078 	 * [30:27] FNO (function number).
1079 	 * [26:26] reserved (0).
1080 	 * [25:18] page number.
1081 	 * [17:9] offset address.
1082 	 * [8:0] length (0 = 1 byte, 1ff = 512 bytes).
1083 	 */
1084 	cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1);
1085 
1086 	return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE,
1087 				  cmd_args, reg_buf, 512);
1088 }
1089 
1090 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page,
1091 				  u16 offset)
1092 {
1093 	int err;
1094 	u8 *reg_buf;
1095 
1096 	reg_buf = kzalloc(512, GFP_KERNEL);
1097 	if (!reg_buf)
1098 		return -ENOMEM;
1099 
1100 	/* Read the extension register for power management function. */
1101 	err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1102 	if (err) {
1103 		pr_warn("%s: error %d reading PM func of ext reg\n",
1104 			mmc_hostname(card->host), err);
1105 		goto out;
1106 	}
1107 
1108 	/* PM revision consists of 4 bits. */
1109 	card->ext_power.rev = reg_buf[0] & 0xf;
1110 
1111 	/* Power Off Notification support at bit 4. */
1112 	if (reg_buf[1] & BIT(4))
1113 		card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY;
1114 
1115 	/* Power Sustenance support at bit 5. */
1116 	if (reg_buf[1] & BIT(5))
1117 		card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE;
1118 
1119 	/* Power Down Mode support at bit 6. */
1120 	if (reg_buf[1] & BIT(6))
1121 		card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE;
1122 
1123 	card->ext_power.fno = fno;
1124 	card->ext_power.page = page;
1125 	card->ext_power.offset = offset;
1126 
1127 out:
1128 	kfree(reg_buf);
1129 	return err;
1130 }
1131 
1132 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page,
1133 				 u16 offset)
1134 {
1135 	int err;
1136 	u8 *reg_buf;
1137 
1138 	reg_buf = kzalloc(512, GFP_KERNEL);
1139 	if (!reg_buf)
1140 		return -ENOMEM;
1141 
1142 	err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1143 	if (err) {
1144 		pr_warn("%s: error %d reading PERF func of ext reg\n",
1145 			mmc_hostname(card->host), err);
1146 		goto out;
1147 	}
1148 
1149 	/* PERF revision. */
1150 	card->ext_perf.rev = reg_buf[0];
1151 
1152 	/* FX_EVENT support at bit 0. */
1153 	if (reg_buf[1] & BIT(0))
1154 		card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT;
1155 
1156 	/* Card initiated self-maintenance support at bit 0. */
1157 	if (reg_buf[2] & BIT(0))
1158 		card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT;
1159 
1160 	/* Host initiated self-maintenance support at bit 1. */
1161 	if (reg_buf[2] & BIT(1))
1162 		card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT;
1163 
1164 	/* Cache support at bit 0. */
1165 	if (reg_buf[4] & BIT(0))
1166 		card->ext_perf.feature_support |= SD_EXT_PERF_CACHE;
1167 
1168 	/* Command queue support indicated via queue depth bits (0 to 4). */
1169 	if (reg_buf[6] & 0x1f)
1170 		card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE;
1171 
1172 	card->ext_perf.fno = fno;
1173 	card->ext_perf.page = page;
1174 	card->ext_perf.offset = offset;
1175 
1176 out:
1177 	kfree(reg_buf);
1178 	return err;
1179 }
1180 
1181 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf,
1182 			    u16 *next_ext_addr)
1183 {
1184 	u8 num_regs, fno, page;
1185 	u16 sfc, offset, ext = *next_ext_addr;
1186 	u32 reg_addr;
1187 
1188 	/*
1189 	 * Parse only one register set per extension, as that is sufficient to
1190 	 * support the standard functions. This means another 48 bytes in the
1191 	 * buffer must be available.
1192 	 */
1193 	if (ext + 48 > 512)
1194 		return -EFAULT;
1195 
1196 	/* Standard Function Code */
1197 	memcpy(&sfc, &gen_info_buf[ext], 2);
1198 
1199 	/* Address to the next extension. */
1200 	memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2);
1201 
1202 	/* Number of registers for this extension. */
1203 	num_regs = gen_info_buf[ext + 42];
1204 
1205 	/* We support only one register per extension. */
1206 	if (num_regs != 1)
1207 		return 0;
1208 
1209 	/* Extension register address. */
1210 	memcpy(&reg_addr, &gen_info_buf[ext + 44], 4);
1211 
1212 	/* 9 bits (0 to 8) contains the offset address. */
1213 	offset = reg_addr & 0x1ff;
1214 
1215 	/* 8 bits (9 to 16) contains the page number. */
1216 	page = reg_addr >> 9 & 0xff ;
1217 
1218 	/* 4 bits (18 to 21) contains the function number. */
1219 	fno = reg_addr >> 18 & 0xf;
1220 
1221 	/* Standard Function Code for power management. */
1222 	if (sfc == 0x1)
1223 		return sd_parse_ext_reg_power(card, fno, page, offset);
1224 
1225 	/* Standard Function Code for performance enhancement. */
1226 	if (sfc == 0x2)
1227 		return sd_parse_ext_reg_perf(card, fno, page, offset);
1228 
1229 	return 0;
1230 }
1231 
1232 static int sd_read_ext_regs(struct mmc_card *card)
1233 {
1234 	int err, i;
1235 	u8 num_ext, *gen_info_buf;
1236 	u16 rev, len, next_ext_addr;
1237 
1238 	if (mmc_host_is_spi(card->host))
1239 		return 0;
1240 
1241 	if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT))
1242 		return 0;
1243 
1244 	gen_info_buf = kzalloc(512, GFP_KERNEL);
1245 	if (!gen_info_buf)
1246 		return -ENOMEM;
1247 
1248 	/*
1249 	 * Read 512 bytes of general info, which is found at function number 0,
1250 	 * at page 0 and with no offset.
1251 	 */
1252 	err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf);
1253 	if (err) {
1254 		pr_warn("%s: error %d reading general info of SD ext reg\n",
1255 			mmc_hostname(card->host), err);
1256 		goto out;
1257 	}
1258 
1259 	/* General info structure revision. */
1260 	memcpy(&rev, &gen_info_buf[0], 2);
1261 
1262 	/* Length of general info in bytes. */
1263 	memcpy(&len, &gen_info_buf[2], 2);
1264 
1265 	/* Number of extensions to be find. */
1266 	num_ext = gen_info_buf[4];
1267 
1268 	/* We support revision 0, but limit it to 512 bytes for simplicity. */
1269 	if (rev != 0 || len > 512) {
1270 		pr_warn("%s: non-supported SD ext reg layout\n",
1271 			mmc_hostname(card->host));
1272 		goto out;
1273 	}
1274 
1275 	/*
1276 	 * Parse the extension registers. The first extension should start
1277 	 * immediately after the general info header (16 bytes).
1278 	 */
1279 	next_ext_addr = 16;
1280 	for (i = 0; i < num_ext; i++) {
1281 		err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr);
1282 		if (err) {
1283 			pr_warn("%s: error %d parsing SD ext reg\n",
1284 				mmc_hostname(card->host), err);
1285 			goto out;
1286 		}
1287 	}
1288 
1289 out:
1290 	kfree(gen_info_buf);
1291 	return err;
1292 }
1293 
1294 static bool sd_cache_enabled(struct mmc_host *host)
1295 {
1296 	return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE;
1297 }
1298 
1299 static int sd_flush_cache(struct mmc_host *host)
1300 {
1301 	struct mmc_card *card = host->card;
1302 	u8 *reg_buf, fno, page;
1303 	u16 offset;
1304 	int err;
1305 
1306 	if (!sd_cache_enabled(host))
1307 		return 0;
1308 
1309 	reg_buf = kzalloc(512, GFP_KERNEL);
1310 	if (!reg_buf)
1311 		return -ENOMEM;
1312 
1313 	/*
1314 	 * Set Flush Cache at bit 0 in the performance enhancement register at
1315 	 * 261 bytes offset.
1316 	 */
1317 	fno = card->ext_perf.fno;
1318 	page = card->ext_perf.page;
1319 	offset = card->ext_perf.offset + 261;
1320 
1321 	err = sd_write_ext_reg(card, fno, page, offset, BIT(0));
1322 	if (err) {
1323 		pr_warn("%s: error %d writing Cache Flush bit\n",
1324 			mmc_hostname(host), err);
1325 		goto out;
1326 	}
1327 
1328 	err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1329 				MMC_BUSY_EXTR_SINGLE);
1330 	if (err)
1331 		goto out;
1332 
1333 	/*
1334 	 * Read the Flush Cache bit. The card shall reset it, to confirm that
1335 	 * it's has completed the flushing of the cache.
1336 	 */
1337 	err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf);
1338 	if (err) {
1339 		pr_warn("%s: error %d reading Cache Flush bit\n",
1340 			mmc_hostname(host), err);
1341 		goto out;
1342 	}
1343 
1344 	if (reg_buf[0] & BIT(0))
1345 		err = -ETIMEDOUT;
1346 out:
1347 	kfree(reg_buf);
1348 	return err;
1349 }
1350 
1351 static int sd_enable_cache(struct mmc_card *card)
1352 {
1353 	u8 *reg_buf;
1354 	int err;
1355 
1356 	card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE;
1357 
1358 	reg_buf = kzalloc(512, GFP_KERNEL);
1359 	if (!reg_buf)
1360 		return -ENOMEM;
1361 
1362 	/*
1363 	 * Set Cache Enable at bit 0 in the performance enhancement register at
1364 	 * 260 bytes offset.
1365 	 */
1366 	err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page,
1367 			       card->ext_perf.offset + 260, BIT(0));
1368 	if (err) {
1369 		pr_warn("%s: error %d writing Cache Enable bit\n",
1370 			mmc_hostname(card->host), err);
1371 		goto out;
1372 	}
1373 
1374 	err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1375 				MMC_BUSY_EXTR_SINGLE);
1376 	if (!err)
1377 		card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE;
1378 
1379 out:
1380 	kfree(reg_buf);
1381 	return err;
1382 }
1383 
1384 /*
1385  * Handle the detection and initialisation of a card.
1386  *
1387  * In the case of a resume, "oldcard" will contain the card
1388  * we're trying to reinitialise.
1389  */
1390 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
1391 	struct mmc_card *oldcard)
1392 {
1393 	struct mmc_card *card;
1394 	int err;
1395 	u32 cid[4];
1396 	u32 rocr = 0;
1397 	bool v18_fixup_failed = false;
1398 
1399 	WARN_ON(!host->claimed);
1400 retry:
1401 	err = mmc_sd_get_cid(host, ocr, cid, &rocr);
1402 	if (err)
1403 		return err;
1404 
1405 	if (oldcard) {
1406 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1407 			pr_debug("%s: Perhaps the card was replaced\n",
1408 				mmc_hostname(host));
1409 			return -ENOENT;
1410 		}
1411 
1412 		card = oldcard;
1413 	} else {
1414 		/*
1415 		 * Allocate card structure.
1416 		 */
1417 		card = mmc_alloc_card(host, &sd_type);
1418 		if (IS_ERR(card))
1419 			return PTR_ERR(card);
1420 
1421 		card->ocr = ocr;
1422 		card->type = MMC_TYPE_SD;
1423 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1424 	}
1425 
1426 	/*
1427 	 * Call the optional HC's init_card function to handle quirks.
1428 	 */
1429 	if (host->ops->init_card)
1430 		host->ops->init_card(host, card);
1431 
1432 	/*
1433 	 * For native busses:  get card RCA and quit open drain mode.
1434 	 */
1435 	if (!mmc_host_is_spi(host)) {
1436 		err = mmc_send_relative_addr(host, &card->rca);
1437 		if (err)
1438 			goto free_card;
1439 	}
1440 
1441 	if (!oldcard) {
1442 		err = mmc_sd_get_csd(card);
1443 		if (err)
1444 			goto free_card;
1445 
1446 		mmc_decode_cid(card);
1447 	}
1448 
1449 	/*
1450 	 * handling only for cards supporting DSR and hosts requesting
1451 	 * DSR configuration
1452 	 */
1453 	if (card->csd.dsr_imp && host->dsr_req)
1454 		mmc_set_dsr(host);
1455 
1456 	/*
1457 	 * Select card, as all following commands rely on that.
1458 	 */
1459 	if (!mmc_host_is_spi(host)) {
1460 		err = mmc_select_card(card);
1461 		if (err)
1462 			goto free_card;
1463 	}
1464 
1465 	err = mmc_sd_setup_card(host, card, oldcard != NULL);
1466 	if (err)
1467 		goto free_card;
1468 
1469 	/*
1470 	 * If the card has not been power cycled, it may still be using 1.8V
1471 	 * signaling. Detect that situation and try to initialize a UHS-I (1.8V)
1472 	 * transfer mode.
1473 	 */
1474 	if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) &&
1475 	    mmc_sd_card_using_v18(card) &&
1476 	    host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
1477 		/*
1478 		 * Re-read switch information in case it has changed since
1479 		 * oldcard was initialized.
1480 		 */
1481 		if (oldcard) {
1482 			err = mmc_read_switch(card);
1483 			if (err)
1484 				goto free_card;
1485 		}
1486 		if (mmc_sd_card_using_v18(card)) {
1487 			if (mmc_host_set_uhs_voltage(host) ||
1488 			    mmc_sd_init_uhs_card(card)) {
1489 				v18_fixup_failed = true;
1490 				mmc_power_cycle(host, ocr);
1491 				if (!oldcard)
1492 					mmc_remove_card(card);
1493 				goto retry;
1494 			}
1495 			goto done;
1496 		}
1497 	}
1498 
1499 	/* Initialization sequence for UHS-I cards */
1500 	if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) {
1501 		err = mmc_sd_init_uhs_card(card);
1502 		if (err)
1503 			goto free_card;
1504 	} else {
1505 		/*
1506 		 * Attempt to change to high-speed (if supported)
1507 		 */
1508 		err = mmc_sd_switch_hs(card);
1509 		if (err > 0)
1510 			mmc_set_timing(card->host, MMC_TIMING_SD_HS);
1511 		else if (err)
1512 			goto free_card;
1513 
1514 		/*
1515 		 * Set bus speed.
1516 		 */
1517 		mmc_set_clock(host, mmc_sd_get_max_clock(card));
1518 
1519 		/*
1520 		 * Switch to wider bus (if supported).
1521 		 */
1522 		if ((host->caps & MMC_CAP_4_BIT_DATA) &&
1523 			(card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
1524 			err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
1525 			if (err)
1526 				goto free_card;
1527 
1528 			mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
1529 		}
1530 	}
1531 
1532 	if (!oldcard) {
1533 		/* Read/parse the extension registers. */
1534 		err = sd_read_ext_regs(card);
1535 		if (err)
1536 			goto free_card;
1537 	}
1538 
1539 	/* Enable internal SD cache if supported. */
1540 	if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) {
1541 		err = sd_enable_cache(card);
1542 		if (err)
1543 			goto free_card;
1544 	}
1545 
1546 	if (host->cqe_ops && !host->cqe_enabled) {
1547 		err = host->cqe_ops->cqe_enable(host, card);
1548 		if (!err) {
1549 			host->cqe_enabled = true;
1550 			host->hsq_enabled = true;
1551 			pr_info("%s: Host Software Queue enabled\n",
1552 				mmc_hostname(host));
1553 		}
1554 	}
1555 
1556 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1557 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1558 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1559 			mmc_hostname(host));
1560 		err = -EINVAL;
1561 		goto free_card;
1562 	}
1563 done:
1564 	host->card = card;
1565 	return 0;
1566 
1567 free_card:
1568 	if (!oldcard)
1569 		mmc_remove_card(card);
1570 
1571 	return err;
1572 }
1573 
1574 /*
1575  * Host is being removed. Free up the current card.
1576  */
1577 static void mmc_sd_remove(struct mmc_host *host)
1578 {
1579 	mmc_remove_card(host->card);
1580 	host->card = NULL;
1581 }
1582 
1583 /*
1584  * Card detection - card is alive.
1585  */
1586 static int mmc_sd_alive(struct mmc_host *host)
1587 {
1588 	return mmc_send_status(host->card, NULL);
1589 }
1590 
1591 /*
1592  * Card detection callback from host.
1593  */
1594 static void mmc_sd_detect(struct mmc_host *host)
1595 {
1596 	int err;
1597 
1598 	mmc_get_card(host->card, NULL);
1599 
1600 	/*
1601 	 * Just check if our card has been removed.
1602 	 */
1603 	err = _mmc_detect_card_removed(host);
1604 
1605 	mmc_put_card(host->card, NULL);
1606 
1607 	if (err) {
1608 		mmc_sd_remove(host);
1609 
1610 		mmc_claim_host(host);
1611 		mmc_detach_bus(host);
1612 		mmc_power_off(host);
1613 		mmc_release_host(host);
1614 	}
1615 }
1616 
1617 static int sd_can_poweroff_notify(struct mmc_card *card)
1618 {
1619 	return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY;
1620 }
1621 
1622 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy)
1623 {
1624 	struct sd_busy_data *data = cb_data;
1625 	struct mmc_card *card = data->card;
1626 	int err;
1627 
1628 	/*
1629 	 * Read the status register for the power management function. It's at
1630 	 * one byte offset and is one byte long. The Power Off Notification
1631 	 * Ready is bit 0.
1632 	 */
1633 	err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1634 			      card->ext_power.offset + 1, 1, data->reg_buf);
1635 	if (err) {
1636 		pr_warn("%s: error %d reading status reg of PM func\n",
1637 			mmc_hostname(card->host), err);
1638 		return err;
1639 	}
1640 
1641 	*busy = !(data->reg_buf[0] & BIT(0));
1642 	return 0;
1643 }
1644 
1645 static int sd_poweroff_notify(struct mmc_card *card)
1646 {
1647 	struct sd_busy_data cb_data;
1648 	u8 *reg_buf;
1649 	int err;
1650 
1651 	reg_buf = kzalloc(512, GFP_KERNEL);
1652 	if (!reg_buf)
1653 		return -ENOMEM;
1654 
1655 	/*
1656 	 * Set the Power Off Notification bit in the power management settings
1657 	 * register at 2 bytes offset.
1658 	 */
1659 	err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1660 			       card->ext_power.offset + 2, BIT(0));
1661 	if (err) {
1662 		pr_warn("%s: error %d writing Power Off Notify bit\n",
1663 			mmc_hostname(card->host), err);
1664 		goto out;
1665 	}
1666 
1667 	cb_data.card = card;
1668 	cb_data.reg_buf = reg_buf;
1669 	err = __mmc_poll_for_busy(card, SD_POWEROFF_NOTIFY_TIMEOUT_MS,
1670 				  &sd_busy_poweroff_notify_cb, &cb_data);
1671 
1672 out:
1673 	kfree(reg_buf);
1674 	return err;
1675 }
1676 
1677 static int _mmc_sd_suspend(struct mmc_host *host)
1678 {
1679 	struct mmc_card *card = host->card;
1680 	int err = 0;
1681 
1682 	mmc_claim_host(host);
1683 
1684 	if (mmc_card_suspended(card))
1685 		goto out;
1686 
1687 	if (sd_can_poweroff_notify(card))
1688 		err = sd_poweroff_notify(card);
1689 	else if (!mmc_host_is_spi(host))
1690 		err = mmc_deselect_cards(host);
1691 
1692 	if (!err) {
1693 		mmc_power_off(host);
1694 		mmc_card_set_suspended(card);
1695 	}
1696 
1697 out:
1698 	mmc_release_host(host);
1699 	return err;
1700 }
1701 
1702 /*
1703  * Callback for suspend
1704  */
1705 static int mmc_sd_suspend(struct mmc_host *host)
1706 {
1707 	int err;
1708 
1709 	err = _mmc_sd_suspend(host);
1710 	if (!err) {
1711 		pm_runtime_disable(&host->card->dev);
1712 		pm_runtime_set_suspended(&host->card->dev);
1713 	}
1714 
1715 	return err;
1716 }
1717 
1718 /*
1719  * This function tries to determine if the same card is still present
1720  * and, if so, restore all state to it.
1721  */
1722 static int _mmc_sd_resume(struct mmc_host *host)
1723 {
1724 	int err = 0;
1725 
1726 	mmc_claim_host(host);
1727 
1728 	if (!mmc_card_suspended(host->card))
1729 		goto out;
1730 
1731 	mmc_power_up(host, host->card->ocr);
1732 	err = mmc_sd_init_card(host, host->card->ocr, host->card);
1733 	mmc_card_clr_suspended(host->card);
1734 
1735 out:
1736 	mmc_release_host(host);
1737 	return err;
1738 }
1739 
1740 /*
1741  * Callback for resume
1742  */
1743 static int mmc_sd_resume(struct mmc_host *host)
1744 {
1745 	pm_runtime_enable(&host->card->dev);
1746 	return 0;
1747 }
1748 
1749 /*
1750  * Callback for runtime_suspend.
1751  */
1752 static int mmc_sd_runtime_suspend(struct mmc_host *host)
1753 {
1754 	int err;
1755 
1756 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1757 		return 0;
1758 
1759 	err = _mmc_sd_suspend(host);
1760 	if (err)
1761 		pr_err("%s: error %d doing aggressive suspend\n",
1762 			mmc_hostname(host), err);
1763 
1764 	return err;
1765 }
1766 
1767 /*
1768  * Callback for runtime_resume.
1769  */
1770 static int mmc_sd_runtime_resume(struct mmc_host *host)
1771 {
1772 	int err;
1773 
1774 	err = _mmc_sd_resume(host);
1775 	if (err && err != -ENOMEDIUM)
1776 		pr_err("%s: error %d doing runtime resume\n",
1777 			mmc_hostname(host), err);
1778 
1779 	return 0;
1780 }
1781 
1782 static int mmc_sd_hw_reset(struct mmc_host *host)
1783 {
1784 	mmc_power_cycle(host, host->card->ocr);
1785 	return mmc_sd_init_card(host, host->card->ocr, host->card);
1786 }
1787 
1788 static const struct mmc_bus_ops mmc_sd_ops = {
1789 	.remove = mmc_sd_remove,
1790 	.detect = mmc_sd_detect,
1791 	.runtime_suspend = mmc_sd_runtime_suspend,
1792 	.runtime_resume = mmc_sd_runtime_resume,
1793 	.suspend = mmc_sd_suspend,
1794 	.resume = mmc_sd_resume,
1795 	.alive = mmc_sd_alive,
1796 	.shutdown = mmc_sd_suspend,
1797 	.hw_reset = mmc_sd_hw_reset,
1798 	.cache_enabled = sd_cache_enabled,
1799 	.flush_cache = sd_flush_cache,
1800 };
1801 
1802 /*
1803  * Starting point for SD card init.
1804  */
1805 int mmc_attach_sd(struct mmc_host *host)
1806 {
1807 	int err;
1808 	u32 ocr, rocr;
1809 
1810 	WARN_ON(!host->claimed);
1811 
1812 	err = mmc_send_app_op_cond(host, 0, &ocr);
1813 	if (err)
1814 		return err;
1815 
1816 	mmc_attach_bus(host, &mmc_sd_ops);
1817 	if (host->ocr_avail_sd)
1818 		host->ocr_avail = host->ocr_avail_sd;
1819 
1820 	/*
1821 	 * We need to get OCR a different way for SPI.
1822 	 */
1823 	if (mmc_host_is_spi(host)) {
1824 		mmc_go_idle(host);
1825 
1826 		err = mmc_spi_read_ocr(host, 0, &ocr);
1827 		if (err)
1828 			goto err;
1829 	}
1830 
1831 	/*
1832 	 * Some SD cards claims an out of spec VDD voltage range. Let's treat
1833 	 * these bits as being in-valid and especially also bit7.
1834 	 */
1835 	ocr &= ~0x7FFF;
1836 
1837 	rocr = mmc_select_voltage(host, ocr);
1838 
1839 	/*
1840 	 * Can we support the voltage(s) of the card(s)?
1841 	 */
1842 	if (!rocr) {
1843 		err = -EINVAL;
1844 		goto err;
1845 	}
1846 
1847 	/*
1848 	 * Detect and init the card.
1849 	 */
1850 	err = mmc_sd_init_card(host, rocr, NULL);
1851 	if (err)
1852 		goto err;
1853 
1854 	mmc_release_host(host);
1855 	err = mmc_add_card(host->card);
1856 	if (err)
1857 		goto remove_card;
1858 
1859 	mmc_claim_host(host);
1860 	return 0;
1861 
1862 remove_card:
1863 	mmc_remove_card(host->card);
1864 	host->card = NULL;
1865 	mmc_claim_host(host);
1866 err:
1867 	mmc_detach_bus(host);
1868 
1869 	pr_err("%s: error %d whilst initialising SD card\n",
1870 		mmc_hostname(host), err);
1871 
1872 	return err;
1873 }
1874