xref: /openbmc/linux/drivers/mmc/core/sd.c (revision 61cb9ac6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/sd.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 
16 #include <linux/mmc/host.h>
17 #include <linux/mmc/card.h>
18 #include <linux/mmc/mmc.h>
19 #include <linux/mmc/sd.h>
20 
21 #include "core.h"
22 #include "card.h"
23 #include "host.h"
24 #include "bus.h"
25 #include "mmc_ops.h"
26 #include "sd.h"
27 #include "sd_ops.h"
28 
29 static const unsigned int tran_exp[] = {
30 	10000,		100000,		1000000,	10000000,
31 	0,		0,		0,		0
32 };
33 
34 static const unsigned char tran_mant[] = {
35 	0,	10,	12,	13,	15,	20,	25,	30,
36 	35,	40,	45,	50,	55,	60,	70,	80,
37 };
38 
39 static const unsigned int taac_exp[] = {
40 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
41 };
42 
43 static const unsigned int taac_mant[] = {
44 	0,	10,	12,	13,	15,	20,	25,	30,
45 	35,	40,	45,	50,	55,	60,	70,	80,
46 };
47 
48 static const unsigned int sd_au_size[] = {
49 	0,		SZ_16K / 512,		SZ_32K / 512,	SZ_64K / 512,
50 	SZ_128K / 512,	SZ_256K / 512,		SZ_512K / 512,	SZ_1M / 512,
51 	SZ_2M / 512,	SZ_4M / 512,		SZ_8M / 512,	(SZ_8M + SZ_4M) / 512,
52 	SZ_16M / 512,	(SZ_16M + SZ_8M) / 512,	SZ_32M / 512,	SZ_64M / 512,
53 };
54 
55 #define UNSTUFF_BITS(resp,start,size)					\
56 	({								\
57 		const int __size = size;				\
58 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
59 		const int __off = 3 - ((start) / 32);			\
60 		const int __shft = (start) & 31;			\
61 		u32 __res;						\
62 									\
63 		__res = resp[__off] >> __shft;				\
64 		if (__size + __shft > 32)				\
65 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
66 		__res & __mask;						\
67 	})
68 
69 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 2000
70 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000
71 
72 struct sd_busy_data {
73 	struct mmc_card *card;
74 	u8 *reg_buf;
75 };
76 
77 /*
78  * Given the decoded CSD structure, decode the raw CID to our CID structure.
79  */
80 void mmc_decode_cid(struct mmc_card *card)
81 {
82 	u32 *resp = card->raw_cid;
83 
84 	/*
85 	 * SD doesn't currently have a version field so we will
86 	 * have to assume we can parse this.
87 	 */
88 	card->cid.manfid		= UNSTUFF_BITS(resp, 120, 8);
89 	card->cid.oemid			= UNSTUFF_BITS(resp, 104, 16);
90 	card->cid.prod_name[0]		= UNSTUFF_BITS(resp, 96, 8);
91 	card->cid.prod_name[1]		= UNSTUFF_BITS(resp, 88, 8);
92 	card->cid.prod_name[2]		= UNSTUFF_BITS(resp, 80, 8);
93 	card->cid.prod_name[3]		= UNSTUFF_BITS(resp, 72, 8);
94 	card->cid.prod_name[4]		= UNSTUFF_BITS(resp, 64, 8);
95 	card->cid.hwrev			= UNSTUFF_BITS(resp, 60, 4);
96 	card->cid.fwrev			= UNSTUFF_BITS(resp, 56, 4);
97 	card->cid.serial		= UNSTUFF_BITS(resp, 24, 32);
98 	card->cid.year			= UNSTUFF_BITS(resp, 12, 8);
99 	card->cid.month			= UNSTUFF_BITS(resp, 8, 4);
100 
101 	card->cid.year += 2000; /* SD cards year offset */
102 }
103 
104 /*
105  * Given a 128-bit response, decode to our card CSD structure.
106  */
107 static int mmc_decode_csd(struct mmc_card *card)
108 {
109 	struct mmc_csd *csd = &card->csd;
110 	unsigned int e, m, csd_struct;
111 	u32 *resp = card->raw_csd;
112 
113 	csd_struct = UNSTUFF_BITS(resp, 126, 2);
114 
115 	switch (csd_struct) {
116 	case 0:
117 		m = UNSTUFF_BITS(resp, 115, 4);
118 		e = UNSTUFF_BITS(resp, 112, 3);
119 		csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
120 		csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
121 
122 		m = UNSTUFF_BITS(resp, 99, 4);
123 		e = UNSTUFF_BITS(resp, 96, 3);
124 		csd->max_dtr	  = tran_exp[e] * tran_mant[m];
125 		csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
126 
127 		e = UNSTUFF_BITS(resp, 47, 3);
128 		m = UNSTUFF_BITS(resp, 62, 12);
129 		csd->capacity	  = (1 + m) << (e + 2);
130 
131 		csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
132 		csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
133 		csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
134 		csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
135 		csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
136 		csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
137 		csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
138 		csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
139 
140 		if (UNSTUFF_BITS(resp, 46, 1)) {
141 			csd->erase_size = 1;
142 		} else if (csd->write_blkbits >= 9) {
143 			csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1;
144 			csd->erase_size <<= csd->write_blkbits - 9;
145 		}
146 
147 		if (UNSTUFF_BITS(resp, 13, 1))
148 			mmc_card_set_readonly(card);
149 		break;
150 	case 1:
151 		/*
152 		 * This is a block-addressed SDHC or SDXC card. Most
153 		 * interesting fields are unused and have fixed
154 		 * values. To avoid getting tripped by buggy cards,
155 		 * we assume those fixed values ourselves.
156 		 */
157 		mmc_card_set_blockaddr(card);
158 
159 		csd->taac_ns	 = 0; /* Unused */
160 		csd->taac_clks	 = 0; /* Unused */
161 
162 		m = UNSTUFF_BITS(resp, 99, 4);
163 		e = UNSTUFF_BITS(resp, 96, 3);
164 		csd->max_dtr	  = tran_exp[e] * tran_mant[m];
165 		csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
166 		csd->c_size	  = UNSTUFF_BITS(resp, 48, 22);
167 
168 		/* SDXC cards have a minimum C_SIZE of 0x00FFFF */
169 		if (csd->c_size >= 0xFFFF)
170 			mmc_card_set_ext_capacity(card);
171 
172 		m = UNSTUFF_BITS(resp, 48, 22);
173 		csd->capacity     = (1 + m) << 10;
174 
175 		csd->read_blkbits = 9;
176 		csd->read_partial = 0;
177 		csd->write_misalign = 0;
178 		csd->read_misalign = 0;
179 		csd->r2w_factor = 4; /* Unused */
180 		csd->write_blkbits = 9;
181 		csd->write_partial = 0;
182 		csd->erase_size = 1;
183 
184 		if (UNSTUFF_BITS(resp, 13, 1))
185 			mmc_card_set_readonly(card);
186 		break;
187 	default:
188 		pr_err("%s: unrecognised CSD structure version %d\n",
189 			mmc_hostname(card->host), csd_struct);
190 		return -EINVAL;
191 	}
192 
193 	card->erase_size = csd->erase_size;
194 
195 	return 0;
196 }
197 
198 /*
199  * Given a 64-bit response, decode to our card SCR structure.
200  */
201 static int mmc_decode_scr(struct mmc_card *card)
202 {
203 	struct sd_scr *scr = &card->scr;
204 	unsigned int scr_struct;
205 	u32 resp[4];
206 
207 	resp[3] = card->raw_scr[1];
208 	resp[2] = card->raw_scr[0];
209 
210 	scr_struct = UNSTUFF_BITS(resp, 60, 4);
211 	if (scr_struct != 0) {
212 		pr_err("%s: unrecognised SCR structure version %d\n",
213 			mmc_hostname(card->host), scr_struct);
214 		return -EINVAL;
215 	}
216 
217 	scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4);
218 	scr->bus_widths = UNSTUFF_BITS(resp, 48, 4);
219 	if (scr->sda_vsn == SCR_SPEC_VER_2)
220 		/* Check if Physical Layer Spec v3.0 is supported */
221 		scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1);
222 
223 	if (scr->sda_spec3) {
224 		scr->sda_spec4 = UNSTUFF_BITS(resp, 42, 1);
225 		scr->sda_specx = UNSTUFF_BITS(resp, 38, 4);
226 	}
227 
228 	if (UNSTUFF_BITS(resp, 55, 1))
229 		card->erased_byte = 0xFF;
230 	else
231 		card->erased_byte = 0x0;
232 
233 	if (scr->sda_spec4)
234 		scr->cmds = UNSTUFF_BITS(resp, 32, 4);
235 	else if (scr->sda_spec3)
236 		scr->cmds = UNSTUFF_BITS(resp, 32, 2);
237 
238 	/* SD Spec says: any SD Card shall set at least bits 0 and 2 */
239 	if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) ||
240 	    !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) {
241 		pr_err("%s: invalid bus width\n", mmc_hostname(card->host));
242 		return -EINVAL;
243 	}
244 
245 	return 0;
246 }
247 
248 /*
249  * Fetch and process SD Status register.
250  */
251 static int mmc_read_ssr(struct mmc_card *card)
252 {
253 	unsigned int au, es, et, eo;
254 	__be32 *raw_ssr;
255 	u32 resp[4] = {};
256 	u8 discard_support;
257 	int i;
258 
259 	if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
260 		pr_warn("%s: card lacks mandatory SD Status function\n",
261 			mmc_hostname(card->host));
262 		return 0;
263 	}
264 
265 	raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL);
266 	if (!raw_ssr)
267 		return -ENOMEM;
268 
269 	if (mmc_app_sd_status(card, raw_ssr)) {
270 		pr_warn("%s: problem reading SD Status register\n",
271 			mmc_hostname(card->host));
272 		kfree(raw_ssr);
273 		return 0;
274 	}
275 
276 	for (i = 0; i < 16; i++)
277 		card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]);
278 
279 	kfree(raw_ssr);
280 
281 	/*
282 	 * UNSTUFF_BITS only works with four u32s so we have to offset the
283 	 * bitfield positions accordingly.
284 	 */
285 	au = UNSTUFF_BITS(card->raw_ssr, 428 - 384, 4);
286 	if (au) {
287 		if (au <= 9 || card->scr.sda_spec3) {
288 			card->ssr.au = sd_au_size[au];
289 			es = UNSTUFF_BITS(card->raw_ssr, 408 - 384, 16);
290 			et = UNSTUFF_BITS(card->raw_ssr, 402 - 384, 6);
291 			if (es && et) {
292 				eo = UNSTUFF_BITS(card->raw_ssr, 400 - 384, 2);
293 				card->ssr.erase_timeout = (et * 1000) / es;
294 				card->ssr.erase_offset = eo * 1000;
295 			}
296 		} else {
297 			pr_warn("%s: SD Status: Invalid Allocation Unit size\n",
298 				mmc_hostname(card->host));
299 		}
300 	}
301 
302 	/*
303 	 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set
304 	 */
305 	resp[3] = card->raw_ssr[6];
306 	discard_support = UNSTUFF_BITS(resp, 313 - 288, 1);
307 	card->erase_arg = (card->scr.sda_specx && discard_support) ?
308 			    SD_DISCARD_ARG : SD_ERASE_ARG;
309 
310 	return 0;
311 }
312 
313 /*
314  * Fetches and decodes switch information
315  */
316 static int mmc_read_switch(struct mmc_card *card)
317 {
318 	int err;
319 	u8 *status;
320 
321 	if (card->scr.sda_vsn < SCR_SPEC_VER_1)
322 		return 0;
323 
324 	if (!(card->csd.cmdclass & CCC_SWITCH)) {
325 		pr_warn("%s: card lacks mandatory switch function, performance might suffer\n",
326 			mmc_hostname(card->host));
327 		return 0;
328 	}
329 
330 	status = kmalloc(64, GFP_KERNEL);
331 	if (!status)
332 		return -ENOMEM;
333 
334 	/*
335 	 * Find out the card's support bits with a mode 0 operation.
336 	 * The argument does not matter, as the support bits do not
337 	 * change with the arguments.
338 	 */
339 	err = mmc_sd_switch(card, 0, 0, 0, status);
340 	if (err) {
341 		/*
342 		 * If the host or the card can't do the switch,
343 		 * fail more gracefully.
344 		 */
345 		if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
346 			goto out;
347 
348 		pr_warn("%s: problem reading Bus Speed modes\n",
349 			mmc_hostname(card->host));
350 		err = 0;
351 
352 		goto out;
353 	}
354 
355 	if (status[13] & SD_MODE_HIGH_SPEED)
356 		card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR;
357 
358 	if (card->scr.sda_spec3) {
359 		card->sw_caps.sd3_bus_mode = status[13];
360 		/* Driver Strengths supported by the card */
361 		card->sw_caps.sd3_drv_type = status[9];
362 		card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8;
363 	}
364 
365 out:
366 	kfree(status);
367 
368 	return err;
369 }
370 
371 /*
372  * Test if the card supports high-speed mode and, if so, switch to it.
373  */
374 int mmc_sd_switch_hs(struct mmc_card *card)
375 {
376 	int err;
377 	u8 *status;
378 
379 	if (card->scr.sda_vsn < SCR_SPEC_VER_1)
380 		return 0;
381 
382 	if (!(card->csd.cmdclass & CCC_SWITCH))
383 		return 0;
384 
385 	if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
386 		return 0;
387 
388 	if (card->sw_caps.hs_max_dtr == 0)
389 		return 0;
390 
391 	status = kmalloc(64, GFP_KERNEL);
392 	if (!status)
393 		return -ENOMEM;
394 
395 	err = mmc_sd_switch(card, 1, 0, HIGH_SPEED_BUS_SPEED, status);
396 	if (err)
397 		goto out;
398 
399 	if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) {
400 		pr_warn("%s: Problem switching card into high-speed mode!\n",
401 			mmc_hostname(card->host));
402 		err = 0;
403 	} else {
404 		err = 1;
405 	}
406 
407 out:
408 	kfree(status);
409 
410 	return err;
411 }
412 
413 static int sd_select_driver_type(struct mmc_card *card, u8 *status)
414 {
415 	int card_drv_type, drive_strength, drv_type;
416 	int err;
417 
418 	card->drive_strength = 0;
419 
420 	card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B;
421 
422 	drive_strength = mmc_select_drive_strength(card,
423 						   card->sw_caps.uhs_max_dtr,
424 						   card_drv_type, &drv_type);
425 
426 	if (drive_strength) {
427 		err = mmc_sd_switch(card, 1, 2, drive_strength, status);
428 		if (err)
429 			return err;
430 		if ((status[15] & 0xF) != drive_strength) {
431 			pr_warn("%s: Problem setting drive strength!\n",
432 				mmc_hostname(card->host));
433 			return 0;
434 		}
435 		card->drive_strength = drive_strength;
436 	}
437 
438 	if (drv_type)
439 		mmc_set_driver_type(card->host, drv_type);
440 
441 	return 0;
442 }
443 
444 static void sd_update_bus_speed_mode(struct mmc_card *card)
445 {
446 	/*
447 	 * If the host doesn't support any of the UHS-I modes, fallback on
448 	 * default speed.
449 	 */
450 	if (!mmc_host_uhs(card->host)) {
451 		card->sd_bus_speed = 0;
452 		return;
453 	}
454 
455 	if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
456 	    (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
457 			card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
458 	} else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
459 		   (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
460 			card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
461 	} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
462 		    MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
463 		    SD_MODE_UHS_SDR50)) {
464 			card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
465 	} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
466 		    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
467 		   (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
468 			card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
469 	} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
470 		    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
471 		    MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
472 		    SD_MODE_UHS_SDR12)) {
473 			card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
474 	}
475 }
476 
477 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
478 {
479 	int err;
480 	unsigned int timing = 0;
481 
482 	switch (card->sd_bus_speed) {
483 	case UHS_SDR104_BUS_SPEED:
484 		timing = MMC_TIMING_UHS_SDR104;
485 		card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
486 		break;
487 	case UHS_DDR50_BUS_SPEED:
488 		timing = MMC_TIMING_UHS_DDR50;
489 		card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
490 		break;
491 	case UHS_SDR50_BUS_SPEED:
492 		timing = MMC_TIMING_UHS_SDR50;
493 		card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
494 		break;
495 	case UHS_SDR25_BUS_SPEED:
496 		timing = MMC_TIMING_UHS_SDR25;
497 		card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
498 		break;
499 	case UHS_SDR12_BUS_SPEED:
500 		timing = MMC_TIMING_UHS_SDR12;
501 		card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
502 		break;
503 	default:
504 		return 0;
505 	}
506 
507 	err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status);
508 	if (err)
509 		return err;
510 
511 	if ((status[16] & 0xF) != card->sd_bus_speed)
512 		pr_warn("%s: Problem setting bus speed mode!\n",
513 			mmc_hostname(card->host));
514 	else {
515 		mmc_set_timing(card->host, timing);
516 		mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
517 	}
518 
519 	return 0;
520 }
521 
522 /* Get host's max current setting at its current voltage */
523 static u32 sd_get_host_max_current(struct mmc_host *host)
524 {
525 	u32 voltage, max_current;
526 
527 	voltage = 1 << host->ios.vdd;
528 	switch (voltage) {
529 	case MMC_VDD_165_195:
530 		max_current = host->max_current_180;
531 		break;
532 	case MMC_VDD_29_30:
533 	case MMC_VDD_30_31:
534 		max_current = host->max_current_300;
535 		break;
536 	case MMC_VDD_32_33:
537 	case MMC_VDD_33_34:
538 		max_current = host->max_current_330;
539 		break;
540 	default:
541 		max_current = 0;
542 	}
543 
544 	return max_current;
545 }
546 
547 static int sd_set_current_limit(struct mmc_card *card, u8 *status)
548 {
549 	int current_limit = SD_SET_CURRENT_NO_CHANGE;
550 	int err;
551 	u32 max_current;
552 
553 	/*
554 	 * Current limit switch is only defined for SDR50, SDR104, and DDR50
555 	 * bus speed modes. For other bus speed modes, we do not change the
556 	 * current limit.
557 	 */
558 	if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) &&
559 	    (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) &&
560 	    (card->sd_bus_speed != UHS_DDR50_BUS_SPEED))
561 		return 0;
562 
563 	/*
564 	 * Host has different current capabilities when operating at
565 	 * different voltages, so find out its max current first.
566 	 */
567 	max_current = sd_get_host_max_current(card->host);
568 
569 	/*
570 	 * We only check host's capability here, if we set a limit that is
571 	 * higher than the card's maximum current, the card will be using its
572 	 * maximum current, e.g. if the card's maximum current is 300ma, and
573 	 * when we set current limit to 200ma, the card will draw 200ma, and
574 	 * when we set current limit to 400/600/800ma, the card will draw its
575 	 * maximum 300ma from the host.
576 	 *
577 	 * The above is incorrect: if we try to set a current limit that is
578 	 * not supported by the card, the card can rightfully error out the
579 	 * attempt, and remain at the default current limit.  This results
580 	 * in a 300mA card being limited to 200mA even though the host
581 	 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with
582 	 * an iMX6 host. --rmk
583 	 */
584 	if (max_current >= 800 &&
585 	    card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
586 		current_limit = SD_SET_CURRENT_LIMIT_800;
587 	else if (max_current >= 600 &&
588 		 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
589 		current_limit = SD_SET_CURRENT_LIMIT_600;
590 	else if (max_current >= 400 &&
591 		 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
592 		current_limit = SD_SET_CURRENT_LIMIT_400;
593 	else if (max_current >= 200 &&
594 		 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
595 		current_limit = SD_SET_CURRENT_LIMIT_200;
596 
597 	if (current_limit != SD_SET_CURRENT_NO_CHANGE) {
598 		err = mmc_sd_switch(card, 1, 3, current_limit, status);
599 		if (err)
600 			return err;
601 
602 		if (((status[15] >> 4) & 0x0F) != current_limit)
603 			pr_warn("%s: Problem setting current limit!\n",
604 				mmc_hostname(card->host));
605 
606 	}
607 
608 	return 0;
609 }
610 
611 /*
612  * UHS-I specific initialization procedure
613  */
614 static int mmc_sd_init_uhs_card(struct mmc_card *card)
615 {
616 	int err;
617 	u8 *status;
618 
619 	if (!(card->csd.cmdclass & CCC_SWITCH))
620 		return 0;
621 
622 	status = kmalloc(64, GFP_KERNEL);
623 	if (!status)
624 		return -ENOMEM;
625 
626 	/* Set 4-bit bus width */
627 	err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
628 	if (err)
629 		goto out;
630 
631 	mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
632 
633 	/*
634 	 * Select the bus speed mode depending on host
635 	 * and card capability.
636 	 */
637 	sd_update_bus_speed_mode(card);
638 
639 	/* Set the driver strength for the card */
640 	err = sd_select_driver_type(card, status);
641 	if (err)
642 		goto out;
643 
644 	/* Set current limit for the card */
645 	err = sd_set_current_limit(card, status);
646 	if (err)
647 		goto out;
648 
649 	/* Set bus speed mode of the card */
650 	err = sd_set_bus_speed_mode(card, status);
651 	if (err)
652 		goto out;
653 
654 	/*
655 	 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and
656 	 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104.
657 	 */
658 	if (!mmc_host_is_spi(card->host) &&
659 		(card->host->ios.timing == MMC_TIMING_UHS_SDR50 ||
660 		 card->host->ios.timing == MMC_TIMING_UHS_DDR50 ||
661 		 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) {
662 		err = mmc_execute_tuning(card);
663 
664 		/*
665 		 * As SD Specifications Part1 Physical Layer Specification
666 		 * Version 3.01 says, CMD19 tuning is available for unlocked
667 		 * cards in transfer state of 1.8V signaling mode. The small
668 		 * difference between v3.00 and 3.01 spec means that CMD19
669 		 * tuning is also available for DDR50 mode.
670 		 */
671 		if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) {
672 			pr_warn("%s: ddr50 tuning failed\n",
673 				mmc_hostname(card->host));
674 			err = 0;
675 		}
676 	}
677 
678 out:
679 	kfree(status);
680 
681 	return err;
682 }
683 
684 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
685 	card->raw_cid[2], card->raw_cid[3]);
686 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
687 	card->raw_csd[2], card->raw_csd[3]);
688 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
689 MMC_DEV_ATTR(ssr,
690 	"%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
691 		card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2],
692 		card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5],
693 		card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8],
694 		card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11],
695 		card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14],
696 		card->raw_ssr[15]);
697 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
698 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
699 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
700 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
701 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
702 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
703 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
704 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
705 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
706 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
707 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
708 
709 
710 static ssize_t mmc_dsr_show(struct device *dev,
711                            struct device_attribute *attr,
712                            char *buf)
713 {
714        struct mmc_card *card = mmc_dev_to_card(dev);
715        struct mmc_host *host = card->host;
716 
717        if (card->csd.dsr_imp && host->dsr_req)
718                return sprintf(buf, "0x%x\n", host->dsr);
719        else
720                /* return default DSR value */
721                return sprintf(buf, "0x%x\n", 0x404);
722 }
723 
724 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
725 
726 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor);
727 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device);
728 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev);
729 
730 #define sdio_info_attr(num)									\
731 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf)	\
732 {												\
733 	struct mmc_card *card = mmc_dev_to_card(dev);						\
734 												\
735 	if (num > card->num_info)								\
736 		return -ENODATA;								\
737 	if (!card->info[num-1][0])								\
738 		return 0;									\
739 	return sprintf(buf, "%s\n", card->info[num-1]);						\
740 }												\
741 static DEVICE_ATTR_RO(info##num)
742 
743 sdio_info_attr(1);
744 sdio_info_attr(2);
745 sdio_info_attr(3);
746 sdio_info_attr(4);
747 
748 static struct attribute *sd_std_attrs[] = {
749 	&dev_attr_vendor.attr,
750 	&dev_attr_device.attr,
751 	&dev_attr_revision.attr,
752 	&dev_attr_info1.attr,
753 	&dev_attr_info2.attr,
754 	&dev_attr_info3.attr,
755 	&dev_attr_info4.attr,
756 	&dev_attr_cid.attr,
757 	&dev_attr_csd.attr,
758 	&dev_attr_scr.attr,
759 	&dev_attr_ssr.attr,
760 	&dev_attr_date.attr,
761 	&dev_attr_erase_size.attr,
762 	&dev_attr_preferred_erase_size.attr,
763 	&dev_attr_fwrev.attr,
764 	&dev_attr_hwrev.attr,
765 	&dev_attr_manfid.attr,
766 	&dev_attr_name.attr,
767 	&dev_attr_oemid.attr,
768 	&dev_attr_serial.attr,
769 	&dev_attr_ocr.attr,
770 	&dev_attr_rca.attr,
771 	&dev_attr_dsr.attr,
772 	NULL,
773 };
774 
775 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr,
776 				 int index)
777 {
778 	struct device *dev = kobj_to_dev(kobj);
779 	struct mmc_card *card = mmc_dev_to_card(dev);
780 
781 	/* CIS vendor and device ids, revision and info string are available only for Combo cards */
782 	if ((attr == &dev_attr_vendor.attr ||
783 	     attr == &dev_attr_device.attr ||
784 	     attr == &dev_attr_revision.attr ||
785 	     attr == &dev_attr_info1.attr ||
786 	     attr == &dev_attr_info2.attr ||
787 	     attr == &dev_attr_info3.attr ||
788 	     attr == &dev_attr_info4.attr
789 	    ) && card->type != MMC_TYPE_SD_COMBO)
790 		return 0;
791 
792 	return attr->mode;
793 }
794 
795 static const struct attribute_group sd_std_group = {
796 	.attrs = sd_std_attrs,
797 	.is_visible = sd_std_is_visible,
798 };
799 __ATTRIBUTE_GROUPS(sd_std);
800 
801 struct device_type sd_type = {
802 	.groups = sd_std_groups,
803 };
804 
805 /*
806  * Fetch CID from card.
807  */
808 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
809 {
810 	int err;
811 	u32 max_current;
812 	int retries = 10;
813 	u32 pocr = ocr;
814 
815 try_again:
816 	if (!retries) {
817 		ocr &= ~SD_OCR_S18R;
818 		pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host));
819 	}
820 
821 	/*
822 	 * Since we're changing the OCR value, we seem to
823 	 * need to tell some cards to go back to the idle
824 	 * state.  We wait 1ms to give cards time to
825 	 * respond.
826 	 */
827 	mmc_go_idle(host);
828 
829 	/*
830 	 * If SD_SEND_IF_COND indicates an SD 2.0
831 	 * compliant card and we should set bit 30
832 	 * of the ocr to indicate that we can handle
833 	 * block-addressed SDHC cards.
834 	 */
835 	err = mmc_send_if_cond(host, ocr);
836 	if (!err)
837 		ocr |= SD_OCR_CCS;
838 
839 	/*
840 	 * If the host supports one of UHS-I modes, request the card
841 	 * to switch to 1.8V signaling level. If the card has failed
842 	 * repeatedly to switch however, skip this.
843 	 */
844 	if (retries && mmc_host_uhs(host))
845 		ocr |= SD_OCR_S18R;
846 
847 	/*
848 	 * If the host can supply more than 150mA at current voltage,
849 	 * XPC should be set to 1.
850 	 */
851 	max_current = sd_get_host_max_current(host);
852 	if (max_current > 150)
853 		ocr |= SD_OCR_XPC;
854 
855 	err = mmc_send_app_op_cond(host, ocr, rocr);
856 	if (err)
857 		return err;
858 
859 	/*
860 	 * In case the S18A bit is set in the response, let's start the signal
861 	 * voltage switch procedure. SPI mode doesn't support CMD11.
862 	 * Note that, according to the spec, the S18A bit is not valid unless
863 	 * the CCS bit is set as well. We deliberately deviate from the spec in
864 	 * regards to this, which allows UHS-I to be supported for SDSC cards.
865 	 */
866 	if (!mmc_host_is_spi(host) && rocr && (*rocr & 0x01000000)) {
867 		err = mmc_set_uhs_voltage(host, pocr);
868 		if (err == -EAGAIN) {
869 			retries--;
870 			goto try_again;
871 		} else if (err) {
872 			retries = 0;
873 			goto try_again;
874 		}
875 	}
876 
877 	err = mmc_send_cid(host, cid);
878 	return err;
879 }
880 
881 int mmc_sd_get_csd(struct mmc_card *card)
882 {
883 	int err;
884 
885 	/*
886 	 * Fetch CSD from card.
887 	 */
888 	err = mmc_send_csd(card, card->raw_csd);
889 	if (err)
890 		return err;
891 
892 	err = mmc_decode_csd(card);
893 	if (err)
894 		return err;
895 
896 	return 0;
897 }
898 
899 static int mmc_sd_get_ro(struct mmc_host *host)
900 {
901 	int ro;
902 
903 	/*
904 	 * Some systems don't feature a write-protect pin and don't need one.
905 	 * E.g. because they only have micro-SD card slot. For those systems
906 	 * assume that the SD card is always read-write.
907 	 */
908 	if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT)
909 		return 0;
910 
911 	if (!host->ops->get_ro)
912 		return -1;
913 
914 	ro = host->ops->get_ro(host);
915 
916 	return ro;
917 }
918 
919 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
920 	bool reinit)
921 {
922 	int err;
923 
924 	if (!reinit) {
925 		/*
926 		 * Fetch SCR from card.
927 		 */
928 		err = mmc_app_send_scr(card);
929 		if (err)
930 			return err;
931 
932 		err = mmc_decode_scr(card);
933 		if (err)
934 			return err;
935 
936 		/*
937 		 * Fetch and process SD Status register.
938 		 */
939 		err = mmc_read_ssr(card);
940 		if (err)
941 			return err;
942 
943 		/* Erase init depends on CSD and SSR */
944 		mmc_init_erase(card);
945 
946 		/*
947 		 * Fetch switch information from card.
948 		 */
949 		err = mmc_read_switch(card);
950 		if (err)
951 			return err;
952 	}
953 
954 	/*
955 	 * For SPI, enable CRC as appropriate.
956 	 * This CRC enable is located AFTER the reading of the
957 	 * card registers because some SDHC cards are not able
958 	 * to provide valid CRCs for non-512-byte blocks.
959 	 */
960 	if (mmc_host_is_spi(host)) {
961 		err = mmc_spi_set_crc(host, use_spi_crc);
962 		if (err)
963 			return err;
964 	}
965 
966 	/*
967 	 * Check if read-only switch is active.
968 	 */
969 	if (!reinit) {
970 		int ro = mmc_sd_get_ro(host);
971 
972 		if (ro < 0) {
973 			pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n",
974 				mmc_hostname(host));
975 		} else if (ro > 0) {
976 			mmc_card_set_readonly(card);
977 		}
978 	}
979 
980 	return 0;
981 }
982 
983 unsigned mmc_sd_get_max_clock(struct mmc_card *card)
984 {
985 	unsigned max_dtr = (unsigned int)-1;
986 
987 	if (mmc_card_hs(card)) {
988 		if (max_dtr > card->sw_caps.hs_max_dtr)
989 			max_dtr = card->sw_caps.hs_max_dtr;
990 	} else if (max_dtr > card->csd.max_dtr) {
991 		max_dtr = card->csd.max_dtr;
992 	}
993 
994 	return max_dtr;
995 }
996 
997 static bool mmc_sd_card_using_v18(struct mmc_card *card)
998 {
999 	/*
1000 	 * According to the SD spec., the Bus Speed Mode (function group 1) bits
1001 	 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus
1002 	 * they can be used to determine if the card has already switched to
1003 	 * 1.8V signaling.
1004 	 */
1005 	return card->sw_caps.sd3_bus_mode &
1006 	       (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50);
1007 }
1008 
1009 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset,
1010 			    u8 reg_data)
1011 {
1012 	struct mmc_host *host = card->host;
1013 	struct mmc_request mrq = {};
1014 	struct mmc_command cmd = {};
1015 	struct mmc_data data = {};
1016 	struct scatterlist sg;
1017 	u8 *reg_buf;
1018 
1019 	reg_buf = kzalloc(512, GFP_KERNEL);
1020 	if (!reg_buf)
1021 		return -ENOMEM;
1022 
1023 	mrq.cmd = &cmd;
1024 	mrq.data = &data;
1025 
1026 	/*
1027 	 * Arguments of CMD49:
1028 	 * [31:31] MIO (0 = memory).
1029 	 * [30:27] FNO (function number).
1030 	 * [26:26] MW - mask write mode (0 = disable).
1031 	 * [25:18] page number.
1032 	 * [17:9] offset address.
1033 	 * [8:0] length (0 = 1 byte).
1034 	 */
1035 	cmd.arg = fno << 27 | page << 18 | offset << 9;
1036 
1037 	/* The first byte in the buffer is the data to be written. */
1038 	reg_buf[0] = reg_data;
1039 
1040 	data.flags = MMC_DATA_WRITE;
1041 	data.blksz = 512;
1042 	data.blocks = 1;
1043 	data.sg = &sg;
1044 	data.sg_len = 1;
1045 	sg_init_one(&sg, reg_buf, 512);
1046 
1047 	cmd.opcode = SD_WRITE_EXTR_SINGLE;
1048 	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1049 
1050 	mmc_set_data_timeout(&data, card);
1051 	mmc_wait_for_req(host, &mrq);
1052 
1053 	kfree(reg_buf);
1054 
1055 	/*
1056 	 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s
1057 	 * after the CMD49. Although, let's leave this to be managed by the
1058 	 * caller.
1059 	 */
1060 
1061 	if (cmd.error)
1062 		return cmd.error;
1063 	if (data.error)
1064 		return data.error;
1065 
1066 	return 0;
1067 }
1068 
1069 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page,
1070 			   u16 offset, u16 len, u8 *reg_buf)
1071 {
1072 	u32 cmd_args;
1073 
1074 	/*
1075 	 * Command arguments of CMD48:
1076 	 * [31:31] MIO (0 = memory).
1077 	 * [30:27] FNO (function number).
1078 	 * [26:26] reserved (0).
1079 	 * [25:18] page number.
1080 	 * [17:9] offset address.
1081 	 * [8:0] length (0 = 1 byte, 1ff = 512 bytes).
1082 	 */
1083 	cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1);
1084 
1085 	return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE,
1086 				  cmd_args, reg_buf, 512);
1087 }
1088 
1089 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page,
1090 				  u16 offset)
1091 {
1092 	int err;
1093 	u8 *reg_buf;
1094 
1095 	reg_buf = kzalloc(512, GFP_KERNEL);
1096 	if (!reg_buf)
1097 		return -ENOMEM;
1098 
1099 	/* Read the extension register for power management function. */
1100 	err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1101 	if (err) {
1102 		pr_warn("%s: error %d reading PM func of ext reg\n",
1103 			mmc_hostname(card->host), err);
1104 		goto out;
1105 	}
1106 
1107 	/* PM revision consists of 4 bits. */
1108 	card->ext_power.rev = reg_buf[0] & 0xf;
1109 
1110 	/* Power Off Notification support at bit 4. */
1111 	if (reg_buf[1] & BIT(4))
1112 		card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY;
1113 
1114 	/* Power Sustenance support at bit 5. */
1115 	if (reg_buf[1] & BIT(5))
1116 		card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE;
1117 
1118 	/* Power Down Mode support at bit 6. */
1119 	if (reg_buf[1] & BIT(6))
1120 		card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE;
1121 
1122 	card->ext_power.fno = fno;
1123 	card->ext_power.page = page;
1124 	card->ext_power.offset = offset;
1125 
1126 out:
1127 	kfree(reg_buf);
1128 	return err;
1129 }
1130 
1131 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page,
1132 				 u16 offset)
1133 {
1134 	int err;
1135 	u8 *reg_buf;
1136 
1137 	reg_buf = kzalloc(512, GFP_KERNEL);
1138 	if (!reg_buf)
1139 		return -ENOMEM;
1140 
1141 	err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1142 	if (err) {
1143 		pr_warn("%s: error %d reading PERF func of ext reg\n",
1144 			mmc_hostname(card->host), err);
1145 		goto out;
1146 	}
1147 
1148 	/* PERF revision. */
1149 	card->ext_perf.rev = reg_buf[0];
1150 
1151 	/* FX_EVENT support at bit 0. */
1152 	if (reg_buf[1] & BIT(0))
1153 		card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT;
1154 
1155 	/* Card initiated self-maintenance support at bit 0. */
1156 	if (reg_buf[2] & BIT(0))
1157 		card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT;
1158 
1159 	/* Host initiated self-maintenance support at bit 1. */
1160 	if (reg_buf[2] & BIT(1))
1161 		card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT;
1162 
1163 	/* Cache support at bit 0. */
1164 	if (reg_buf[4] & BIT(0))
1165 		card->ext_perf.feature_support |= SD_EXT_PERF_CACHE;
1166 
1167 	/* Command queue support indicated via queue depth bits (0 to 4). */
1168 	if (reg_buf[6] & 0x1f)
1169 		card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE;
1170 
1171 	card->ext_perf.fno = fno;
1172 	card->ext_perf.page = page;
1173 	card->ext_perf.offset = offset;
1174 
1175 out:
1176 	kfree(reg_buf);
1177 	return err;
1178 }
1179 
1180 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf,
1181 			    u16 *next_ext_addr)
1182 {
1183 	u8 num_regs, fno, page;
1184 	u16 sfc, offset, ext = *next_ext_addr;
1185 	u32 reg_addr;
1186 
1187 	/*
1188 	 * Parse only one register set per extension, as that is sufficient to
1189 	 * support the standard functions. This means another 48 bytes in the
1190 	 * buffer must be available.
1191 	 */
1192 	if (ext + 48 > 512)
1193 		return -EFAULT;
1194 
1195 	/* Standard Function Code */
1196 	memcpy(&sfc, &gen_info_buf[ext], 2);
1197 
1198 	/* Address to the next extension. */
1199 	memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2);
1200 
1201 	/* Number of registers for this extension. */
1202 	num_regs = gen_info_buf[ext + 42];
1203 
1204 	/* We support only one register per extension. */
1205 	if (num_regs != 1)
1206 		return 0;
1207 
1208 	/* Extension register address. */
1209 	memcpy(&reg_addr, &gen_info_buf[ext + 44], 4);
1210 
1211 	/* 9 bits (0 to 8) contains the offset address. */
1212 	offset = reg_addr & 0x1ff;
1213 
1214 	/* 8 bits (9 to 16) contains the page number. */
1215 	page = reg_addr >> 9 & 0xff ;
1216 
1217 	/* 4 bits (18 to 21) contains the function number. */
1218 	fno = reg_addr >> 18 & 0xf;
1219 
1220 	/* Standard Function Code for power management. */
1221 	if (sfc == 0x1)
1222 		return sd_parse_ext_reg_power(card, fno, page, offset);
1223 
1224 	/* Standard Function Code for performance enhancement. */
1225 	if (sfc == 0x2)
1226 		return sd_parse_ext_reg_perf(card, fno, page, offset);
1227 
1228 	return 0;
1229 }
1230 
1231 static int sd_read_ext_regs(struct mmc_card *card)
1232 {
1233 	int err, i;
1234 	u8 num_ext, *gen_info_buf;
1235 	u16 rev, len, next_ext_addr;
1236 
1237 	if (mmc_host_is_spi(card->host))
1238 		return 0;
1239 
1240 	if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT))
1241 		return 0;
1242 
1243 	gen_info_buf = kzalloc(512, GFP_KERNEL);
1244 	if (!gen_info_buf)
1245 		return -ENOMEM;
1246 
1247 	/*
1248 	 * Read 512 bytes of general info, which is found at function number 0,
1249 	 * at page 0 and with no offset.
1250 	 */
1251 	err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf);
1252 	if (err) {
1253 		pr_warn("%s: error %d reading general info of SD ext reg\n",
1254 			mmc_hostname(card->host), err);
1255 		goto out;
1256 	}
1257 
1258 	/* General info structure revision. */
1259 	memcpy(&rev, &gen_info_buf[0], 2);
1260 
1261 	/* Length of general info in bytes. */
1262 	memcpy(&len, &gen_info_buf[2], 2);
1263 
1264 	/* Number of extensions to be find. */
1265 	num_ext = gen_info_buf[4];
1266 
1267 	/* We support revision 0, but limit it to 512 bytes for simplicity. */
1268 	if (rev != 0 || len > 512) {
1269 		pr_warn("%s: non-supported SD ext reg layout\n",
1270 			mmc_hostname(card->host));
1271 		goto out;
1272 	}
1273 
1274 	/*
1275 	 * Parse the extension registers. The first extension should start
1276 	 * immediately after the general info header (16 bytes).
1277 	 */
1278 	next_ext_addr = 16;
1279 	for (i = 0; i < num_ext; i++) {
1280 		err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr);
1281 		if (err) {
1282 			pr_warn("%s: error %d parsing SD ext reg\n",
1283 				mmc_hostname(card->host), err);
1284 			goto out;
1285 		}
1286 	}
1287 
1288 out:
1289 	kfree(gen_info_buf);
1290 	return err;
1291 }
1292 
1293 static bool sd_cache_enabled(struct mmc_host *host)
1294 {
1295 	return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE;
1296 }
1297 
1298 static int sd_flush_cache(struct mmc_host *host)
1299 {
1300 	struct mmc_card *card = host->card;
1301 	u8 *reg_buf, fno, page;
1302 	u16 offset;
1303 	int err;
1304 
1305 	if (!sd_cache_enabled(host))
1306 		return 0;
1307 
1308 	reg_buf = kzalloc(512, GFP_KERNEL);
1309 	if (!reg_buf)
1310 		return -ENOMEM;
1311 
1312 	/*
1313 	 * Set Flush Cache at bit 0 in the performance enhancement register at
1314 	 * 261 bytes offset.
1315 	 */
1316 	fno = card->ext_perf.fno;
1317 	page = card->ext_perf.page;
1318 	offset = card->ext_perf.offset + 261;
1319 
1320 	err = sd_write_ext_reg(card, fno, page, offset, BIT(0));
1321 	if (err) {
1322 		pr_warn("%s: error %d writing Cache Flush bit\n",
1323 			mmc_hostname(host), err);
1324 		goto out;
1325 	}
1326 
1327 	err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1328 				MMC_BUSY_EXTR_SINGLE);
1329 	if (err)
1330 		goto out;
1331 
1332 	/*
1333 	 * Read the Flush Cache bit. The card shall reset it, to confirm that
1334 	 * it's has completed the flushing of the cache.
1335 	 */
1336 	err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf);
1337 	if (err) {
1338 		pr_warn("%s: error %d reading Cache Flush bit\n",
1339 			mmc_hostname(host), err);
1340 		goto out;
1341 	}
1342 
1343 	if (reg_buf[0] & BIT(0))
1344 		err = -ETIMEDOUT;
1345 out:
1346 	kfree(reg_buf);
1347 	return err;
1348 }
1349 
1350 static int sd_enable_cache(struct mmc_card *card)
1351 {
1352 	u8 *reg_buf;
1353 	int err;
1354 
1355 	card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE;
1356 
1357 	reg_buf = kzalloc(512, GFP_KERNEL);
1358 	if (!reg_buf)
1359 		return -ENOMEM;
1360 
1361 	/*
1362 	 * Set Cache Enable at bit 0 in the performance enhancement register at
1363 	 * 260 bytes offset.
1364 	 */
1365 	err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page,
1366 			       card->ext_perf.offset + 260, BIT(0));
1367 	if (err) {
1368 		pr_warn("%s: error %d writing Cache Enable bit\n",
1369 			mmc_hostname(card->host), err);
1370 		goto out;
1371 	}
1372 
1373 	err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1374 				MMC_BUSY_EXTR_SINGLE);
1375 	if (!err)
1376 		card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE;
1377 
1378 out:
1379 	kfree(reg_buf);
1380 	return err;
1381 }
1382 
1383 /*
1384  * Handle the detection and initialisation of a card.
1385  *
1386  * In the case of a resume, "oldcard" will contain the card
1387  * we're trying to reinitialise.
1388  */
1389 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
1390 	struct mmc_card *oldcard)
1391 {
1392 	struct mmc_card *card;
1393 	int err;
1394 	u32 cid[4];
1395 	u32 rocr = 0;
1396 	bool v18_fixup_failed = false;
1397 
1398 	WARN_ON(!host->claimed);
1399 retry:
1400 	err = mmc_sd_get_cid(host, ocr, cid, &rocr);
1401 	if (err)
1402 		return err;
1403 
1404 	if (oldcard) {
1405 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1406 			pr_debug("%s: Perhaps the card was replaced\n",
1407 				mmc_hostname(host));
1408 			return -ENOENT;
1409 		}
1410 
1411 		card = oldcard;
1412 	} else {
1413 		/*
1414 		 * Allocate card structure.
1415 		 */
1416 		card = mmc_alloc_card(host, &sd_type);
1417 		if (IS_ERR(card))
1418 			return PTR_ERR(card);
1419 
1420 		card->ocr = ocr;
1421 		card->type = MMC_TYPE_SD;
1422 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1423 	}
1424 
1425 	/*
1426 	 * Call the optional HC's init_card function to handle quirks.
1427 	 */
1428 	if (host->ops->init_card)
1429 		host->ops->init_card(host, card);
1430 
1431 	/*
1432 	 * For native busses:  get card RCA and quit open drain mode.
1433 	 */
1434 	if (!mmc_host_is_spi(host)) {
1435 		err = mmc_send_relative_addr(host, &card->rca);
1436 		if (err)
1437 			goto free_card;
1438 	}
1439 
1440 	if (!oldcard) {
1441 		err = mmc_sd_get_csd(card);
1442 		if (err)
1443 			goto free_card;
1444 
1445 		mmc_decode_cid(card);
1446 	}
1447 
1448 	/*
1449 	 * handling only for cards supporting DSR and hosts requesting
1450 	 * DSR configuration
1451 	 */
1452 	if (card->csd.dsr_imp && host->dsr_req)
1453 		mmc_set_dsr(host);
1454 
1455 	/*
1456 	 * Select card, as all following commands rely on that.
1457 	 */
1458 	if (!mmc_host_is_spi(host)) {
1459 		err = mmc_select_card(card);
1460 		if (err)
1461 			goto free_card;
1462 	}
1463 
1464 	err = mmc_sd_setup_card(host, card, oldcard != NULL);
1465 	if (err)
1466 		goto free_card;
1467 
1468 	/*
1469 	 * If the card has not been power cycled, it may still be using 1.8V
1470 	 * signaling. Detect that situation and try to initialize a UHS-I (1.8V)
1471 	 * transfer mode.
1472 	 */
1473 	if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) &&
1474 	    mmc_sd_card_using_v18(card) &&
1475 	    host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
1476 		/*
1477 		 * Re-read switch information in case it has changed since
1478 		 * oldcard was initialized.
1479 		 */
1480 		if (oldcard) {
1481 			err = mmc_read_switch(card);
1482 			if (err)
1483 				goto free_card;
1484 		}
1485 		if (mmc_sd_card_using_v18(card)) {
1486 			if (mmc_host_set_uhs_voltage(host) ||
1487 			    mmc_sd_init_uhs_card(card)) {
1488 				v18_fixup_failed = true;
1489 				mmc_power_cycle(host, ocr);
1490 				if (!oldcard)
1491 					mmc_remove_card(card);
1492 				goto retry;
1493 			}
1494 			goto done;
1495 		}
1496 	}
1497 
1498 	/* Initialization sequence for UHS-I cards */
1499 	if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) {
1500 		err = mmc_sd_init_uhs_card(card);
1501 		if (err)
1502 			goto free_card;
1503 	} else {
1504 		/*
1505 		 * Attempt to change to high-speed (if supported)
1506 		 */
1507 		err = mmc_sd_switch_hs(card);
1508 		if (err > 0)
1509 			mmc_set_timing(card->host, MMC_TIMING_SD_HS);
1510 		else if (err)
1511 			goto free_card;
1512 
1513 		/*
1514 		 * Set bus speed.
1515 		 */
1516 		mmc_set_clock(host, mmc_sd_get_max_clock(card));
1517 
1518 		/*
1519 		 * Switch to wider bus (if supported).
1520 		 */
1521 		if ((host->caps & MMC_CAP_4_BIT_DATA) &&
1522 			(card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
1523 			err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
1524 			if (err)
1525 				goto free_card;
1526 
1527 			mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
1528 		}
1529 	}
1530 
1531 	if (!oldcard) {
1532 		/* Read/parse the extension registers. */
1533 		err = sd_read_ext_regs(card);
1534 		if (err)
1535 			goto free_card;
1536 	}
1537 
1538 	/* Enable internal SD cache if supported. */
1539 	if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) {
1540 		err = sd_enable_cache(card);
1541 		if (err)
1542 			goto free_card;
1543 	}
1544 
1545 	if (host->cqe_ops && !host->cqe_enabled) {
1546 		err = host->cqe_ops->cqe_enable(host, card);
1547 		if (!err) {
1548 			host->cqe_enabled = true;
1549 			host->hsq_enabled = true;
1550 			pr_info("%s: Host Software Queue enabled\n",
1551 				mmc_hostname(host));
1552 		}
1553 	}
1554 
1555 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1556 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1557 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1558 			mmc_hostname(host));
1559 		err = -EINVAL;
1560 		goto free_card;
1561 	}
1562 done:
1563 	host->card = card;
1564 	return 0;
1565 
1566 free_card:
1567 	if (!oldcard)
1568 		mmc_remove_card(card);
1569 
1570 	return err;
1571 }
1572 
1573 /*
1574  * Host is being removed. Free up the current card.
1575  */
1576 static void mmc_sd_remove(struct mmc_host *host)
1577 {
1578 	mmc_remove_card(host->card);
1579 	host->card = NULL;
1580 }
1581 
1582 /*
1583  * Card detection - card is alive.
1584  */
1585 static int mmc_sd_alive(struct mmc_host *host)
1586 {
1587 	return mmc_send_status(host->card, NULL);
1588 }
1589 
1590 /*
1591  * Card detection callback from host.
1592  */
1593 static void mmc_sd_detect(struct mmc_host *host)
1594 {
1595 	int err;
1596 
1597 	mmc_get_card(host->card, NULL);
1598 
1599 	/*
1600 	 * Just check if our card has been removed.
1601 	 */
1602 	err = _mmc_detect_card_removed(host);
1603 
1604 	mmc_put_card(host->card, NULL);
1605 
1606 	if (err) {
1607 		mmc_sd_remove(host);
1608 
1609 		mmc_claim_host(host);
1610 		mmc_detach_bus(host);
1611 		mmc_power_off(host);
1612 		mmc_release_host(host);
1613 	}
1614 }
1615 
1616 static int sd_can_poweroff_notify(struct mmc_card *card)
1617 {
1618 	return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY;
1619 }
1620 
1621 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy)
1622 {
1623 	struct sd_busy_data *data = cb_data;
1624 	struct mmc_card *card = data->card;
1625 	int err;
1626 
1627 	/*
1628 	 * Read the status register for the power management function. It's at
1629 	 * one byte offset and is one byte long. The Power Off Notification
1630 	 * Ready is bit 0.
1631 	 */
1632 	err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1633 			      card->ext_power.offset + 1, 1, data->reg_buf);
1634 	if (err) {
1635 		pr_warn("%s: error %d reading status reg of PM func\n",
1636 			mmc_hostname(card->host), err);
1637 		return err;
1638 	}
1639 
1640 	*busy = !(data->reg_buf[0] & BIT(0));
1641 	return 0;
1642 }
1643 
1644 static int sd_poweroff_notify(struct mmc_card *card)
1645 {
1646 	struct sd_busy_data cb_data;
1647 	u8 *reg_buf;
1648 	int err;
1649 
1650 	reg_buf = kzalloc(512, GFP_KERNEL);
1651 	if (!reg_buf)
1652 		return -ENOMEM;
1653 
1654 	/*
1655 	 * Set the Power Off Notification bit in the power management settings
1656 	 * register at 2 bytes offset.
1657 	 */
1658 	err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1659 			       card->ext_power.offset + 2, BIT(0));
1660 	if (err) {
1661 		pr_warn("%s: error %d writing Power Off Notify bit\n",
1662 			mmc_hostname(card->host), err);
1663 		goto out;
1664 	}
1665 
1666 	cb_data.card = card;
1667 	cb_data.reg_buf = reg_buf;
1668 	err = __mmc_poll_for_busy(card, SD_POWEROFF_NOTIFY_TIMEOUT_MS,
1669 				  &sd_busy_poweroff_notify_cb, &cb_data);
1670 
1671 out:
1672 	kfree(reg_buf);
1673 	return err;
1674 }
1675 
1676 static int _mmc_sd_suspend(struct mmc_host *host)
1677 {
1678 	struct mmc_card *card = host->card;
1679 	int err = 0;
1680 
1681 	mmc_claim_host(host);
1682 
1683 	if (mmc_card_suspended(card))
1684 		goto out;
1685 
1686 	if (sd_can_poweroff_notify(card))
1687 		err = sd_poweroff_notify(card);
1688 	else if (!mmc_host_is_spi(host))
1689 		err = mmc_deselect_cards(host);
1690 
1691 	if (!err) {
1692 		mmc_power_off(host);
1693 		mmc_card_set_suspended(card);
1694 	}
1695 
1696 out:
1697 	mmc_release_host(host);
1698 	return err;
1699 }
1700 
1701 /*
1702  * Callback for suspend
1703  */
1704 static int mmc_sd_suspend(struct mmc_host *host)
1705 {
1706 	int err;
1707 
1708 	err = _mmc_sd_suspend(host);
1709 	if (!err) {
1710 		pm_runtime_disable(&host->card->dev);
1711 		pm_runtime_set_suspended(&host->card->dev);
1712 	}
1713 
1714 	return err;
1715 }
1716 
1717 /*
1718  * This function tries to determine if the same card is still present
1719  * and, if so, restore all state to it.
1720  */
1721 static int _mmc_sd_resume(struct mmc_host *host)
1722 {
1723 	int err = 0;
1724 
1725 	mmc_claim_host(host);
1726 
1727 	if (!mmc_card_suspended(host->card))
1728 		goto out;
1729 
1730 	mmc_power_up(host, host->card->ocr);
1731 	err = mmc_sd_init_card(host, host->card->ocr, host->card);
1732 	mmc_card_clr_suspended(host->card);
1733 
1734 out:
1735 	mmc_release_host(host);
1736 	return err;
1737 }
1738 
1739 /*
1740  * Callback for resume
1741  */
1742 static int mmc_sd_resume(struct mmc_host *host)
1743 {
1744 	pm_runtime_enable(&host->card->dev);
1745 	return 0;
1746 }
1747 
1748 /*
1749  * Callback for runtime_suspend.
1750  */
1751 static int mmc_sd_runtime_suspend(struct mmc_host *host)
1752 {
1753 	int err;
1754 
1755 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1756 		return 0;
1757 
1758 	err = _mmc_sd_suspend(host);
1759 	if (err)
1760 		pr_err("%s: error %d doing aggressive suspend\n",
1761 			mmc_hostname(host), err);
1762 
1763 	return err;
1764 }
1765 
1766 /*
1767  * Callback for runtime_resume.
1768  */
1769 static int mmc_sd_runtime_resume(struct mmc_host *host)
1770 {
1771 	int err;
1772 
1773 	err = _mmc_sd_resume(host);
1774 	if (err && err != -ENOMEDIUM)
1775 		pr_err("%s: error %d doing runtime resume\n",
1776 			mmc_hostname(host), err);
1777 
1778 	return 0;
1779 }
1780 
1781 static int mmc_sd_hw_reset(struct mmc_host *host)
1782 {
1783 	mmc_power_cycle(host, host->card->ocr);
1784 	return mmc_sd_init_card(host, host->card->ocr, host->card);
1785 }
1786 
1787 static const struct mmc_bus_ops mmc_sd_ops = {
1788 	.remove = mmc_sd_remove,
1789 	.detect = mmc_sd_detect,
1790 	.runtime_suspend = mmc_sd_runtime_suspend,
1791 	.runtime_resume = mmc_sd_runtime_resume,
1792 	.suspend = mmc_sd_suspend,
1793 	.resume = mmc_sd_resume,
1794 	.alive = mmc_sd_alive,
1795 	.shutdown = mmc_sd_suspend,
1796 	.hw_reset = mmc_sd_hw_reset,
1797 	.cache_enabled = sd_cache_enabled,
1798 	.flush_cache = sd_flush_cache,
1799 };
1800 
1801 /*
1802  * Starting point for SD card init.
1803  */
1804 int mmc_attach_sd(struct mmc_host *host)
1805 {
1806 	int err;
1807 	u32 ocr, rocr;
1808 
1809 	WARN_ON(!host->claimed);
1810 
1811 	err = mmc_send_app_op_cond(host, 0, &ocr);
1812 	if (err)
1813 		return err;
1814 
1815 	mmc_attach_bus(host, &mmc_sd_ops);
1816 	if (host->ocr_avail_sd)
1817 		host->ocr_avail = host->ocr_avail_sd;
1818 
1819 	/*
1820 	 * We need to get OCR a different way for SPI.
1821 	 */
1822 	if (mmc_host_is_spi(host)) {
1823 		mmc_go_idle(host);
1824 
1825 		err = mmc_spi_read_ocr(host, 0, &ocr);
1826 		if (err)
1827 			goto err;
1828 	}
1829 
1830 	/*
1831 	 * Some SD cards claims an out of spec VDD voltage range. Let's treat
1832 	 * these bits as being in-valid and especially also bit7.
1833 	 */
1834 	ocr &= ~0x7FFF;
1835 
1836 	rocr = mmc_select_voltage(host, ocr);
1837 
1838 	/*
1839 	 * Can we support the voltage(s) of the card(s)?
1840 	 */
1841 	if (!rocr) {
1842 		err = -EINVAL;
1843 		goto err;
1844 	}
1845 
1846 	/*
1847 	 * Detect and init the card.
1848 	 */
1849 	err = mmc_sd_init_card(host, rocr, NULL);
1850 	if (err)
1851 		goto err;
1852 
1853 	mmc_release_host(host);
1854 	err = mmc_add_card(host->card);
1855 	if (err)
1856 		goto remove_card;
1857 
1858 	mmc_claim_host(host);
1859 	return 0;
1860 
1861 remove_card:
1862 	mmc_remove_card(host->card);
1863 	host->card = NULL;
1864 	mmc_claim_host(host);
1865 err:
1866 	mmc_detach_bus(host);
1867 
1868 	pr_err("%s: error %d whilst initialising SD card\n",
1869 		mmc_hostname(host), err);
1870 
1871 	return err;
1872 }
1873