1 /* 2 * linux/drivers/mmc/core/sd.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/err.h> 14 #include <linux/slab.h> 15 #include <linux/stat.h> 16 17 #include <linux/mmc/host.h> 18 #include <linux/mmc/card.h> 19 #include <linux/mmc/mmc.h> 20 #include <linux/mmc/sd.h> 21 22 #include "core.h" 23 #include "bus.h" 24 #include "mmc_ops.h" 25 #include "sd.h" 26 #include "sd_ops.h" 27 28 static const unsigned int tran_exp[] = { 29 10000, 100000, 1000000, 10000000, 30 0, 0, 0, 0 31 }; 32 33 static const unsigned char tran_mant[] = { 34 0, 10, 12, 13, 15, 20, 25, 30, 35 35, 40, 45, 50, 55, 60, 70, 80, 36 }; 37 38 static const unsigned int tacc_exp[] = { 39 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 40 }; 41 42 static const unsigned int tacc_mant[] = { 43 0, 10, 12, 13, 15, 20, 25, 30, 44 35, 40, 45, 50, 55, 60, 70, 80, 45 }; 46 47 #define UNSTUFF_BITS(resp,start,size) \ 48 ({ \ 49 const int __size = size; \ 50 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 51 const int __off = 3 - ((start) / 32); \ 52 const int __shft = (start) & 31; \ 53 u32 __res; \ 54 \ 55 __res = resp[__off] >> __shft; \ 56 if (__size + __shft > 32) \ 57 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 58 __res & __mask; \ 59 }) 60 61 /* 62 * Given the decoded CSD structure, decode the raw CID to our CID structure. 63 */ 64 void mmc_decode_cid(struct mmc_card *card) 65 { 66 u32 *resp = card->raw_cid; 67 68 memset(&card->cid, 0, sizeof(struct mmc_cid)); 69 70 /* 71 * SD doesn't currently have a version field so we will 72 * have to assume we can parse this. 73 */ 74 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 75 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 76 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 77 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 78 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 79 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 80 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 81 card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4); 82 card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4); 83 card->cid.serial = UNSTUFF_BITS(resp, 24, 32); 84 card->cid.year = UNSTUFF_BITS(resp, 12, 8); 85 card->cid.month = UNSTUFF_BITS(resp, 8, 4); 86 87 card->cid.year += 2000; /* SD cards year offset */ 88 } 89 90 /* 91 * Given a 128-bit response, decode to our card CSD structure. 92 */ 93 static int mmc_decode_csd(struct mmc_card *card) 94 { 95 struct mmc_csd *csd = &card->csd; 96 unsigned int e, m, csd_struct; 97 u32 *resp = card->raw_csd; 98 99 csd_struct = UNSTUFF_BITS(resp, 126, 2); 100 101 switch (csd_struct) { 102 case 0: 103 m = UNSTUFF_BITS(resp, 115, 4); 104 e = UNSTUFF_BITS(resp, 112, 3); 105 csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10; 106 csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 107 108 m = UNSTUFF_BITS(resp, 99, 4); 109 e = UNSTUFF_BITS(resp, 96, 3); 110 csd->max_dtr = tran_exp[e] * tran_mant[m]; 111 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 112 113 e = UNSTUFF_BITS(resp, 47, 3); 114 m = UNSTUFF_BITS(resp, 62, 12); 115 csd->capacity = (1 + m) << (e + 2); 116 117 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 118 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 119 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 120 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 121 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 122 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 123 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 124 125 if (UNSTUFF_BITS(resp, 46, 1)) { 126 csd->erase_size = 1; 127 } else if (csd->write_blkbits >= 9) { 128 csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1; 129 csd->erase_size <<= csd->write_blkbits - 9; 130 } 131 break; 132 case 1: 133 /* 134 * This is a block-addressed SDHC or SDXC card. Most 135 * interesting fields are unused and have fixed 136 * values. To avoid getting tripped by buggy cards, 137 * we assume those fixed values ourselves. 138 */ 139 mmc_card_set_blockaddr(card); 140 141 csd->tacc_ns = 0; /* Unused */ 142 csd->tacc_clks = 0; /* Unused */ 143 144 m = UNSTUFF_BITS(resp, 99, 4); 145 e = UNSTUFF_BITS(resp, 96, 3); 146 csd->max_dtr = tran_exp[e] * tran_mant[m]; 147 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 148 csd->c_size = UNSTUFF_BITS(resp, 48, 22); 149 150 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */ 151 if (csd->c_size >= 0xFFFF) 152 mmc_card_set_ext_capacity(card); 153 154 m = UNSTUFF_BITS(resp, 48, 22); 155 csd->capacity = (1 + m) << 10; 156 157 csd->read_blkbits = 9; 158 csd->read_partial = 0; 159 csd->write_misalign = 0; 160 csd->read_misalign = 0; 161 csd->r2w_factor = 4; /* Unused */ 162 csd->write_blkbits = 9; 163 csd->write_partial = 0; 164 csd->erase_size = 1; 165 break; 166 default: 167 pr_err("%s: unrecognised CSD structure version %d\n", 168 mmc_hostname(card->host), csd_struct); 169 return -EINVAL; 170 } 171 172 card->erase_size = csd->erase_size; 173 174 return 0; 175 } 176 177 /* 178 * Given a 64-bit response, decode to our card SCR structure. 179 */ 180 static int mmc_decode_scr(struct mmc_card *card) 181 { 182 struct sd_scr *scr = &card->scr; 183 unsigned int scr_struct; 184 u32 resp[4]; 185 186 resp[3] = card->raw_scr[1]; 187 resp[2] = card->raw_scr[0]; 188 189 scr_struct = UNSTUFF_BITS(resp, 60, 4); 190 if (scr_struct != 0) { 191 pr_err("%s: unrecognised SCR structure version %d\n", 192 mmc_hostname(card->host), scr_struct); 193 return -EINVAL; 194 } 195 196 scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4); 197 scr->bus_widths = UNSTUFF_BITS(resp, 48, 4); 198 if (scr->sda_vsn == SCR_SPEC_VER_2) 199 /* Check if Physical Layer Spec v3.0 is supported */ 200 scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1); 201 202 if (UNSTUFF_BITS(resp, 55, 1)) 203 card->erased_byte = 0xFF; 204 else 205 card->erased_byte = 0x0; 206 207 if (scr->sda_spec3) 208 scr->cmds = UNSTUFF_BITS(resp, 32, 2); 209 return 0; 210 } 211 212 /* 213 * Fetch and process SD Status register. 214 */ 215 static int mmc_read_ssr(struct mmc_card *card) 216 { 217 unsigned int au, es, et, eo; 218 int err, i; 219 u32 *ssr; 220 221 if (!(card->csd.cmdclass & CCC_APP_SPEC)) { 222 pr_warning("%s: card lacks mandatory SD Status " 223 "function.\n", mmc_hostname(card->host)); 224 return 0; 225 } 226 227 ssr = kmalloc(64, GFP_KERNEL); 228 if (!ssr) 229 return -ENOMEM; 230 231 err = mmc_app_sd_status(card, ssr); 232 if (err) { 233 pr_warning("%s: problem reading SD Status " 234 "register.\n", mmc_hostname(card->host)); 235 err = 0; 236 goto out; 237 } 238 239 for (i = 0; i < 16; i++) 240 ssr[i] = be32_to_cpu(ssr[i]); 241 242 /* 243 * UNSTUFF_BITS only works with four u32s so we have to offset the 244 * bitfield positions accordingly. 245 */ 246 au = UNSTUFF_BITS(ssr, 428 - 384, 4); 247 if (au > 0 && au <= 9) { 248 card->ssr.au = 1 << (au + 4); 249 es = UNSTUFF_BITS(ssr, 408 - 384, 16); 250 et = UNSTUFF_BITS(ssr, 402 - 384, 6); 251 eo = UNSTUFF_BITS(ssr, 400 - 384, 2); 252 if (es && et) { 253 card->ssr.erase_timeout = (et * 1000) / es; 254 card->ssr.erase_offset = eo * 1000; 255 } 256 } else { 257 pr_warning("%s: SD Status: Invalid Allocation Unit " 258 "size.\n", mmc_hostname(card->host)); 259 } 260 out: 261 kfree(ssr); 262 return err; 263 } 264 265 /* 266 * Fetches and decodes switch information 267 */ 268 static int mmc_read_switch(struct mmc_card *card) 269 { 270 int err; 271 u8 *status; 272 273 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 274 return 0; 275 276 if (!(card->csd.cmdclass & CCC_SWITCH)) { 277 pr_warning("%s: card lacks mandatory switch " 278 "function, performance might suffer.\n", 279 mmc_hostname(card->host)); 280 return 0; 281 } 282 283 err = -EIO; 284 285 status = kmalloc(64, GFP_KERNEL); 286 if (!status) { 287 pr_err("%s: could not allocate a buffer for " 288 "switch capabilities.\n", 289 mmc_hostname(card->host)); 290 return -ENOMEM; 291 } 292 293 /* 294 * Find out the card's support bits with a mode 0 operation. 295 * The argument does not matter, as the support bits do not 296 * change with the arguments. 297 */ 298 err = mmc_sd_switch(card, 0, 0, 0, status); 299 if (err) { 300 /* 301 * If the host or the card can't do the switch, 302 * fail more gracefully. 303 */ 304 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT) 305 goto out; 306 307 pr_warning("%s: problem reading Bus Speed modes.\n", 308 mmc_hostname(card->host)); 309 err = 0; 310 311 goto out; 312 } 313 314 if (status[13] & SD_MODE_HIGH_SPEED) 315 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR; 316 317 if (card->scr.sda_spec3) { 318 card->sw_caps.sd3_bus_mode = status[13]; 319 /* Driver Strengths supported by the card */ 320 card->sw_caps.sd3_drv_type = status[9]; 321 } 322 323 out: 324 kfree(status); 325 326 return err; 327 } 328 329 /* 330 * Test if the card supports high-speed mode and, if so, switch to it. 331 */ 332 int mmc_sd_switch_hs(struct mmc_card *card) 333 { 334 int err; 335 u8 *status; 336 337 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 338 return 0; 339 340 if (!(card->csd.cmdclass & CCC_SWITCH)) 341 return 0; 342 343 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED)) 344 return 0; 345 346 if (card->sw_caps.hs_max_dtr == 0) 347 return 0; 348 349 err = -EIO; 350 351 status = kmalloc(64, GFP_KERNEL); 352 if (!status) { 353 pr_err("%s: could not allocate a buffer for " 354 "switch capabilities.\n", mmc_hostname(card->host)); 355 return -ENOMEM; 356 } 357 358 err = mmc_sd_switch(card, 1, 0, 1, status); 359 if (err) 360 goto out; 361 362 if ((status[16] & 0xF) != 1) { 363 pr_warning("%s: Problem switching card " 364 "into high-speed mode!\n", 365 mmc_hostname(card->host)); 366 err = 0; 367 } else { 368 err = 1; 369 } 370 371 out: 372 kfree(status); 373 374 return err; 375 } 376 377 static int sd_select_driver_type(struct mmc_card *card, u8 *status) 378 { 379 int host_drv_type = SD_DRIVER_TYPE_B; 380 int card_drv_type = SD_DRIVER_TYPE_B; 381 int drive_strength; 382 int err; 383 384 /* 385 * If the host doesn't support any of the Driver Types A,C or D, 386 * or there is no board specific handler then default Driver 387 * Type B is used. 388 */ 389 if (!(card->host->caps & (MMC_CAP_DRIVER_TYPE_A | MMC_CAP_DRIVER_TYPE_C 390 | MMC_CAP_DRIVER_TYPE_D))) 391 return 0; 392 393 if (!card->host->ops->select_drive_strength) 394 return 0; 395 396 if (card->host->caps & MMC_CAP_DRIVER_TYPE_A) 397 host_drv_type |= SD_DRIVER_TYPE_A; 398 399 if (card->host->caps & MMC_CAP_DRIVER_TYPE_C) 400 host_drv_type |= SD_DRIVER_TYPE_C; 401 402 if (card->host->caps & MMC_CAP_DRIVER_TYPE_D) 403 host_drv_type |= SD_DRIVER_TYPE_D; 404 405 if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_A) 406 card_drv_type |= SD_DRIVER_TYPE_A; 407 408 if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_C) 409 card_drv_type |= SD_DRIVER_TYPE_C; 410 411 if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_D) 412 card_drv_type |= SD_DRIVER_TYPE_D; 413 414 /* 415 * The drive strength that the hardware can support 416 * depends on the board design. Pass the appropriate 417 * information and let the hardware specific code 418 * return what is possible given the options 419 */ 420 mmc_host_clk_hold(card->host); 421 drive_strength = card->host->ops->select_drive_strength( 422 card->sw_caps.uhs_max_dtr, 423 host_drv_type, card_drv_type); 424 mmc_host_clk_release(card->host); 425 426 err = mmc_sd_switch(card, 1, 2, drive_strength, status); 427 if (err) 428 return err; 429 430 if ((status[15] & 0xF) != drive_strength) { 431 pr_warning("%s: Problem setting drive strength!\n", 432 mmc_hostname(card->host)); 433 return 0; 434 } 435 436 mmc_set_driver_type(card->host, drive_strength); 437 438 return 0; 439 } 440 441 static void sd_update_bus_speed_mode(struct mmc_card *card) 442 { 443 /* 444 * If the host doesn't support any of the UHS-I modes, fallback on 445 * default speed. 446 */ 447 if (!mmc_host_uhs(card->host)) { 448 card->sd_bus_speed = 0; 449 return; 450 } 451 452 if ((card->host->caps & MMC_CAP_UHS_SDR104) && 453 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) { 454 card->sd_bus_speed = UHS_SDR104_BUS_SPEED; 455 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) && 456 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) { 457 card->sd_bus_speed = UHS_DDR50_BUS_SPEED; 458 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 459 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode & 460 SD_MODE_UHS_SDR50)) { 461 card->sd_bus_speed = UHS_SDR50_BUS_SPEED; 462 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 463 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) && 464 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) { 465 card->sd_bus_speed = UHS_SDR25_BUS_SPEED; 466 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 467 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 | 468 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode & 469 SD_MODE_UHS_SDR12)) { 470 card->sd_bus_speed = UHS_SDR12_BUS_SPEED; 471 } 472 } 473 474 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status) 475 { 476 int err; 477 unsigned int timing = 0; 478 479 switch (card->sd_bus_speed) { 480 case UHS_SDR104_BUS_SPEED: 481 timing = MMC_TIMING_UHS_SDR104; 482 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR; 483 break; 484 case UHS_DDR50_BUS_SPEED: 485 timing = MMC_TIMING_UHS_DDR50; 486 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR; 487 break; 488 case UHS_SDR50_BUS_SPEED: 489 timing = MMC_TIMING_UHS_SDR50; 490 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR; 491 break; 492 case UHS_SDR25_BUS_SPEED: 493 timing = MMC_TIMING_UHS_SDR25; 494 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR; 495 break; 496 case UHS_SDR12_BUS_SPEED: 497 timing = MMC_TIMING_UHS_SDR12; 498 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR; 499 break; 500 default: 501 return 0; 502 } 503 504 err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status); 505 if (err) 506 return err; 507 508 if ((status[16] & 0xF) != card->sd_bus_speed) 509 pr_warning("%s: Problem setting bus speed mode!\n", 510 mmc_hostname(card->host)); 511 else { 512 mmc_set_timing(card->host, timing); 513 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr); 514 } 515 516 return 0; 517 } 518 519 /* Get host's max current setting at its current voltage */ 520 static u32 sd_get_host_max_current(struct mmc_host *host) 521 { 522 u32 voltage, max_current; 523 524 voltage = 1 << host->ios.vdd; 525 switch (voltage) { 526 case MMC_VDD_165_195: 527 max_current = host->max_current_180; 528 break; 529 case MMC_VDD_29_30: 530 case MMC_VDD_30_31: 531 max_current = host->max_current_300; 532 break; 533 case MMC_VDD_32_33: 534 case MMC_VDD_33_34: 535 max_current = host->max_current_330; 536 break; 537 default: 538 max_current = 0; 539 } 540 541 return max_current; 542 } 543 544 static int sd_set_current_limit(struct mmc_card *card, u8 *status) 545 { 546 int current_limit = SD_SET_CURRENT_NO_CHANGE; 547 int err; 548 u32 max_current; 549 550 /* 551 * Current limit switch is only defined for SDR50, SDR104, and DDR50 552 * bus speed modes. For other bus speed modes, we do not change the 553 * current limit. 554 */ 555 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) && 556 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) && 557 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED)) 558 return 0; 559 560 /* 561 * Host has different current capabilities when operating at 562 * different voltages, so find out its max current first. 563 */ 564 max_current = sd_get_host_max_current(card->host); 565 566 /* 567 * We only check host's capability here, if we set a limit that is 568 * higher than the card's maximum current, the card will be using its 569 * maximum current, e.g. if the card's maximum current is 300ma, and 570 * when we set current limit to 200ma, the card will draw 200ma, and 571 * when we set current limit to 400/600/800ma, the card will draw its 572 * maximum 300ma from the host. 573 */ 574 if (max_current >= 800) 575 current_limit = SD_SET_CURRENT_LIMIT_800; 576 else if (max_current >= 600) 577 current_limit = SD_SET_CURRENT_LIMIT_600; 578 else if (max_current >= 400) 579 current_limit = SD_SET_CURRENT_LIMIT_400; 580 else if (max_current >= 200) 581 current_limit = SD_SET_CURRENT_LIMIT_200; 582 583 if (current_limit != SD_SET_CURRENT_NO_CHANGE) { 584 err = mmc_sd_switch(card, 1, 3, current_limit, status); 585 if (err) 586 return err; 587 588 if (((status[15] >> 4) & 0x0F) != current_limit) 589 pr_warning("%s: Problem setting current limit!\n", 590 mmc_hostname(card->host)); 591 592 } 593 594 return 0; 595 } 596 597 /* 598 * UHS-I specific initialization procedure 599 */ 600 static int mmc_sd_init_uhs_card(struct mmc_card *card) 601 { 602 int err; 603 u8 *status; 604 605 if (!card->scr.sda_spec3) 606 return 0; 607 608 if (!(card->csd.cmdclass & CCC_SWITCH)) 609 return 0; 610 611 status = kmalloc(64, GFP_KERNEL); 612 if (!status) { 613 pr_err("%s: could not allocate a buffer for " 614 "switch capabilities.\n", mmc_hostname(card->host)); 615 return -ENOMEM; 616 } 617 618 /* Set 4-bit bus width */ 619 if ((card->host->caps & MMC_CAP_4_BIT_DATA) && 620 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { 621 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 622 if (err) 623 goto out; 624 625 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4); 626 } 627 628 /* 629 * Select the bus speed mode depending on host 630 * and card capability. 631 */ 632 sd_update_bus_speed_mode(card); 633 634 /* Set the driver strength for the card */ 635 err = sd_select_driver_type(card, status); 636 if (err) 637 goto out; 638 639 /* Set current limit for the card */ 640 err = sd_set_current_limit(card, status); 641 if (err) 642 goto out; 643 644 /* Set bus speed mode of the card */ 645 err = sd_set_bus_speed_mode(card, status); 646 if (err) 647 goto out; 648 649 /* 650 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and 651 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104. 652 */ 653 if (!mmc_host_is_spi(card->host) && card->host->ops->execute_tuning && 654 (card->sd_bus_speed == UHS_SDR50_BUS_SPEED || 655 card->sd_bus_speed == UHS_SDR104_BUS_SPEED)) { 656 mmc_host_clk_hold(card->host); 657 err = card->host->ops->execute_tuning(card->host, 658 MMC_SEND_TUNING_BLOCK); 659 mmc_host_clk_release(card->host); 660 } 661 662 out: 663 kfree(status); 664 665 return err; 666 } 667 668 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 669 card->raw_cid[2], card->raw_cid[3]); 670 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 671 card->raw_csd[2], card->raw_csd[3]); 672 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]); 673 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 674 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 675 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 676 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev); 677 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 678 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 679 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 680 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 681 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 682 683 684 static struct attribute *sd_std_attrs[] = { 685 &dev_attr_cid.attr, 686 &dev_attr_csd.attr, 687 &dev_attr_scr.attr, 688 &dev_attr_date.attr, 689 &dev_attr_erase_size.attr, 690 &dev_attr_preferred_erase_size.attr, 691 &dev_attr_fwrev.attr, 692 &dev_attr_hwrev.attr, 693 &dev_attr_manfid.attr, 694 &dev_attr_name.attr, 695 &dev_attr_oemid.attr, 696 &dev_attr_serial.attr, 697 NULL, 698 }; 699 700 static struct attribute_group sd_std_attr_group = { 701 .attrs = sd_std_attrs, 702 }; 703 704 static const struct attribute_group *sd_attr_groups[] = { 705 &sd_std_attr_group, 706 NULL, 707 }; 708 709 struct device_type sd_type = { 710 .groups = sd_attr_groups, 711 }; 712 713 /* 714 * Fetch CID from card. 715 */ 716 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr) 717 { 718 int err; 719 u32 max_current; 720 int retries = 10; 721 722 try_again: 723 if (!retries) { 724 ocr &= ~SD_OCR_S18R; 725 pr_warning("%s: Skipping voltage switch\n", 726 mmc_hostname(host)); 727 } 728 729 /* 730 * Since we're changing the OCR value, we seem to 731 * need to tell some cards to go back to the idle 732 * state. We wait 1ms to give cards time to 733 * respond. 734 */ 735 mmc_go_idle(host); 736 737 /* 738 * If SD_SEND_IF_COND indicates an SD 2.0 739 * compliant card and we should set bit 30 740 * of the ocr to indicate that we can handle 741 * block-addressed SDHC cards. 742 */ 743 err = mmc_send_if_cond(host, ocr); 744 if (!err) 745 ocr |= SD_OCR_CCS; 746 747 /* 748 * If the host supports one of UHS-I modes, request the card 749 * to switch to 1.8V signaling level. If the card has failed 750 * repeatedly to switch however, skip this. 751 */ 752 if (retries && mmc_host_uhs(host)) 753 ocr |= SD_OCR_S18R; 754 755 /* 756 * If the host can supply more than 150mA at current voltage, 757 * XPC should be set to 1. 758 */ 759 max_current = sd_get_host_max_current(host); 760 if (max_current > 150) 761 ocr |= SD_OCR_XPC; 762 763 err = mmc_send_app_op_cond(host, ocr, rocr); 764 if (err) 765 return err; 766 767 /* 768 * In case CCS and S18A in the response is set, start Signal Voltage 769 * Switch procedure. SPI mode doesn't support CMD11. 770 */ 771 if (!mmc_host_is_spi(host) && rocr && 772 ((*rocr & 0x41000000) == 0x41000000)) { 773 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 774 if (err == -EAGAIN) { 775 retries--; 776 goto try_again; 777 } else if (err) { 778 retries = 0; 779 goto try_again; 780 } 781 } 782 783 if (mmc_host_is_spi(host)) 784 err = mmc_send_cid(host, cid); 785 else 786 err = mmc_all_send_cid(host, cid); 787 788 return err; 789 } 790 791 int mmc_sd_get_csd(struct mmc_host *host, struct mmc_card *card) 792 { 793 int err; 794 795 /* 796 * Fetch CSD from card. 797 */ 798 err = mmc_send_csd(card, card->raw_csd); 799 if (err) 800 return err; 801 802 err = mmc_decode_csd(card); 803 if (err) 804 return err; 805 806 return 0; 807 } 808 809 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card, 810 bool reinit) 811 { 812 int err; 813 814 if (!reinit) { 815 /* 816 * Fetch SCR from card. 817 */ 818 err = mmc_app_send_scr(card, card->raw_scr); 819 if (err) 820 return err; 821 822 err = mmc_decode_scr(card); 823 if (err) 824 return err; 825 826 /* 827 * Fetch and process SD Status register. 828 */ 829 err = mmc_read_ssr(card); 830 if (err) 831 return err; 832 833 /* Erase init depends on CSD and SSR */ 834 mmc_init_erase(card); 835 836 /* 837 * Fetch switch information from card. 838 */ 839 err = mmc_read_switch(card); 840 if (err) 841 return err; 842 } 843 844 /* 845 * For SPI, enable CRC as appropriate. 846 * This CRC enable is located AFTER the reading of the 847 * card registers because some SDHC cards are not able 848 * to provide valid CRCs for non-512-byte blocks. 849 */ 850 if (mmc_host_is_spi(host)) { 851 err = mmc_spi_set_crc(host, use_spi_crc); 852 if (err) 853 return err; 854 } 855 856 /* 857 * Check if read-only switch is active. 858 */ 859 if (!reinit) { 860 int ro = -1; 861 862 if (host->ops->get_ro) { 863 mmc_host_clk_hold(card->host); 864 ro = host->ops->get_ro(host); 865 mmc_host_clk_release(card->host); 866 } 867 868 if (ro < 0) { 869 pr_warning("%s: host does not " 870 "support reading read-only " 871 "switch. assuming write-enable.\n", 872 mmc_hostname(host)); 873 } else if (ro > 0) { 874 mmc_card_set_readonly(card); 875 } 876 } 877 878 return 0; 879 } 880 881 unsigned mmc_sd_get_max_clock(struct mmc_card *card) 882 { 883 unsigned max_dtr = (unsigned int)-1; 884 885 if (mmc_card_highspeed(card)) { 886 if (max_dtr > card->sw_caps.hs_max_dtr) 887 max_dtr = card->sw_caps.hs_max_dtr; 888 } else if (max_dtr > card->csd.max_dtr) { 889 max_dtr = card->csd.max_dtr; 890 } 891 892 return max_dtr; 893 } 894 895 void mmc_sd_go_highspeed(struct mmc_card *card) 896 { 897 mmc_card_set_highspeed(card); 898 mmc_set_timing(card->host, MMC_TIMING_SD_HS); 899 } 900 901 /* 902 * Handle the detection and initialisation of a card. 903 * 904 * In the case of a resume, "oldcard" will contain the card 905 * we're trying to reinitialise. 906 */ 907 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr, 908 struct mmc_card *oldcard) 909 { 910 struct mmc_card *card; 911 int err; 912 u32 cid[4]; 913 u32 rocr = 0; 914 915 BUG_ON(!host); 916 WARN_ON(!host->claimed); 917 918 err = mmc_sd_get_cid(host, ocr, cid, &rocr); 919 if (err) 920 return err; 921 922 if (oldcard) { 923 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) 924 return -ENOENT; 925 926 card = oldcard; 927 } else { 928 /* 929 * Allocate card structure. 930 */ 931 card = mmc_alloc_card(host, &sd_type); 932 if (IS_ERR(card)) 933 return PTR_ERR(card); 934 935 card->type = MMC_TYPE_SD; 936 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 937 } 938 939 /* 940 * For native busses: get card RCA and quit open drain mode. 941 */ 942 if (!mmc_host_is_spi(host)) { 943 err = mmc_send_relative_addr(host, &card->rca); 944 if (err) 945 return err; 946 } 947 948 if (!oldcard) { 949 err = mmc_sd_get_csd(host, card); 950 if (err) 951 return err; 952 953 mmc_decode_cid(card); 954 } 955 956 /* 957 * Select card, as all following commands rely on that. 958 */ 959 if (!mmc_host_is_spi(host)) { 960 err = mmc_select_card(card); 961 if (err) 962 return err; 963 } 964 965 err = mmc_sd_setup_card(host, card, oldcard != NULL); 966 if (err) 967 goto free_card; 968 969 /* Initialization sequence for UHS-I cards */ 970 if (rocr & SD_ROCR_S18A) { 971 err = mmc_sd_init_uhs_card(card); 972 if (err) 973 goto free_card; 974 975 /* Card is an ultra-high-speed card */ 976 mmc_card_set_uhs(card); 977 } else { 978 /* 979 * Attempt to change to high-speed (if supported) 980 */ 981 err = mmc_sd_switch_hs(card); 982 if (err > 0) 983 mmc_sd_go_highspeed(card); 984 else if (err) 985 goto free_card; 986 987 /* 988 * Set bus speed. 989 */ 990 mmc_set_clock(host, mmc_sd_get_max_clock(card)); 991 992 /* 993 * Switch to wider bus (if supported). 994 */ 995 if ((host->caps & MMC_CAP_4_BIT_DATA) && 996 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { 997 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 998 if (err) 999 goto free_card; 1000 1001 mmc_set_bus_width(host, MMC_BUS_WIDTH_4); 1002 } 1003 } 1004 1005 host->card = card; 1006 return 0; 1007 1008 free_card: 1009 if (!oldcard) 1010 mmc_remove_card(card); 1011 1012 return err; 1013 } 1014 1015 /* 1016 * Host is being removed. Free up the current card. 1017 */ 1018 static void mmc_sd_remove(struct mmc_host *host) 1019 { 1020 BUG_ON(!host); 1021 BUG_ON(!host->card); 1022 1023 mmc_remove_card(host->card); 1024 host->card = NULL; 1025 } 1026 1027 /* 1028 * Card detection - card is alive. 1029 */ 1030 static int mmc_sd_alive(struct mmc_host *host) 1031 { 1032 return mmc_send_status(host->card, NULL); 1033 } 1034 1035 /* 1036 * Card detection callback from host. 1037 */ 1038 static void mmc_sd_detect(struct mmc_host *host) 1039 { 1040 int err; 1041 1042 BUG_ON(!host); 1043 BUG_ON(!host->card); 1044 1045 mmc_get_card(host->card); 1046 1047 /* 1048 * Just check if our card has been removed. 1049 */ 1050 err = _mmc_detect_card_removed(host); 1051 1052 mmc_put_card(host->card); 1053 1054 if (err) { 1055 mmc_sd_remove(host); 1056 1057 mmc_claim_host(host); 1058 mmc_detach_bus(host); 1059 mmc_power_off(host); 1060 mmc_release_host(host); 1061 } 1062 } 1063 1064 /* 1065 * Suspend callback from host. 1066 */ 1067 static int mmc_sd_suspend(struct mmc_host *host) 1068 { 1069 int err = 0; 1070 1071 BUG_ON(!host); 1072 BUG_ON(!host->card); 1073 1074 mmc_claim_host(host); 1075 if (!mmc_host_is_spi(host)) 1076 err = mmc_deselect_cards(host); 1077 host->card->state &= ~MMC_STATE_HIGHSPEED; 1078 if (!err) 1079 mmc_power_off(host); 1080 mmc_release_host(host); 1081 1082 return err; 1083 } 1084 1085 /* 1086 * Resume callback from host. 1087 * 1088 * This function tries to determine if the same card is still present 1089 * and, if so, restore all state to it. 1090 */ 1091 static int mmc_sd_resume(struct mmc_host *host) 1092 { 1093 int err; 1094 1095 BUG_ON(!host); 1096 BUG_ON(!host->card); 1097 1098 mmc_claim_host(host); 1099 mmc_power_up(host); 1100 mmc_select_voltage(host, host->ocr); 1101 err = mmc_sd_init_card(host, host->ocr, host->card); 1102 mmc_release_host(host); 1103 1104 return err; 1105 } 1106 1107 /* 1108 * Callback for runtime_suspend. 1109 */ 1110 static int mmc_sd_runtime_suspend(struct mmc_host *host) 1111 { 1112 int err; 1113 1114 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 1115 return 0; 1116 1117 mmc_claim_host(host); 1118 1119 err = mmc_sd_suspend(host); 1120 if (err) { 1121 pr_err("%s: error %d doing aggessive suspend\n", 1122 mmc_hostname(host), err); 1123 goto out; 1124 } 1125 mmc_power_off(host); 1126 1127 out: 1128 mmc_release_host(host); 1129 return err; 1130 } 1131 1132 /* 1133 * Callback for runtime_resume. 1134 */ 1135 static int mmc_sd_runtime_resume(struct mmc_host *host) 1136 { 1137 int err; 1138 1139 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 1140 return 0; 1141 1142 mmc_claim_host(host); 1143 1144 mmc_power_up(host); 1145 err = mmc_sd_resume(host); 1146 if (err) 1147 pr_err("%s: error %d doing aggessive resume\n", 1148 mmc_hostname(host), err); 1149 1150 mmc_release_host(host); 1151 return 0; 1152 } 1153 1154 static int mmc_sd_power_restore(struct mmc_host *host) 1155 { 1156 int ret; 1157 1158 host->card->state &= ~MMC_STATE_HIGHSPEED; 1159 mmc_claim_host(host); 1160 ret = mmc_sd_init_card(host, host->ocr, host->card); 1161 mmc_release_host(host); 1162 1163 return ret; 1164 } 1165 1166 static const struct mmc_bus_ops mmc_sd_ops = { 1167 .remove = mmc_sd_remove, 1168 .detect = mmc_sd_detect, 1169 .suspend = NULL, 1170 .resume = NULL, 1171 .power_restore = mmc_sd_power_restore, 1172 .alive = mmc_sd_alive, 1173 .shutdown = mmc_sd_suspend, 1174 }; 1175 1176 static const struct mmc_bus_ops mmc_sd_ops_unsafe = { 1177 .remove = mmc_sd_remove, 1178 .detect = mmc_sd_detect, 1179 .runtime_suspend = mmc_sd_runtime_suspend, 1180 .runtime_resume = mmc_sd_runtime_resume, 1181 .suspend = mmc_sd_suspend, 1182 .resume = mmc_sd_resume, 1183 .power_restore = mmc_sd_power_restore, 1184 .alive = mmc_sd_alive, 1185 .shutdown = mmc_sd_suspend, 1186 }; 1187 1188 static void mmc_sd_attach_bus_ops(struct mmc_host *host) 1189 { 1190 const struct mmc_bus_ops *bus_ops; 1191 1192 if (!mmc_card_is_removable(host)) 1193 bus_ops = &mmc_sd_ops_unsafe; 1194 else 1195 bus_ops = &mmc_sd_ops; 1196 mmc_attach_bus(host, bus_ops); 1197 } 1198 1199 /* 1200 * Starting point for SD card init. 1201 */ 1202 int mmc_attach_sd(struct mmc_host *host) 1203 { 1204 int err; 1205 u32 ocr; 1206 1207 BUG_ON(!host); 1208 WARN_ON(!host->claimed); 1209 1210 err = mmc_send_app_op_cond(host, 0, &ocr); 1211 if (err) 1212 return err; 1213 1214 mmc_sd_attach_bus_ops(host); 1215 if (host->ocr_avail_sd) 1216 host->ocr_avail = host->ocr_avail_sd; 1217 1218 /* 1219 * We need to get OCR a different way for SPI. 1220 */ 1221 if (mmc_host_is_spi(host)) { 1222 mmc_go_idle(host); 1223 1224 err = mmc_spi_read_ocr(host, 0, &ocr); 1225 if (err) 1226 goto err; 1227 } 1228 1229 /* 1230 * Sanity check the voltages that the card claims to 1231 * support. 1232 */ 1233 if (ocr & 0x7F) { 1234 pr_warning("%s: card claims to support voltages " 1235 "below the defined range. These will be ignored.\n", 1236 mmc_hostname(host)); 1237 ocr &= ~0x7F; 1238 } 1239 1240 if ((ocr & MMC_VDD_165_195) && 1241 !(host->ocr_avail_sd & MMC_VDD_165_195)) { 1242 pr_warning("%s: SD card claims to support the " 1243 "incompletely defined 'low voltage range'. This " 1244 "will be ignored.\n", mmc_hostname(host)); 1245 ocr &= ~MMC_VDD_165_195; 1246 } 1247 1248 host->ocr = mmc_select_voltage(host, ocr); 1249 1250 /* 1251 * Can we support the voltage(s) of the card(s)? 1252 */ 1253 if (!host->ocr) { 1254 err = -EINVAL; 1255 goto err; 1256 } 1257 1258 /* 1259 * Detect and init the card. 1260 */ 1261 err = mmc_sd_init_card(host, host->ocr, NULL); 1262 if (err) 1263 goto err; 1264 1265 mmc_release_host(host); 1266 err = mmc_add_card(host->card); 1267 mmc_claim_host(host); 1268 if (err) 1269 goto remove_card; 1270 1271 return 0; 1272 1273 remove_card: 1274 mmc_release_host(host); 1275 mmc_remove_card(host->card); 1276 host->card = NULL; 1277 mmc_claim_host(host); 1278 err: 1279 mmc_detach_bus(host); 1280 1281 pr_err("%s: error %d whilst initialising SD card\n", 1282 mmc_hostname(host), err); 1283 1284 return err; 1285 } 1286 1287