1 /* 2 * linux/drivers/mmc/core/sd.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/err.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 #include <linux/stat.h> 17 #include <linux/pm_runtime.h> 18 19 #include <linux/mmc/host.h> 20 #include <linux/mmc/card.h> 21 #include <linux/mmc/mmc.h> 22 #include <linux/mmc/sd.h> 23 24 #include "core.h" 25 #include "bus.h" 26 #include "mmc_ops.h" 27 #include "sd.h" 28 #include "sd_ops.h" 29 30 static const unsigned int tran_exp[] = { 31 10000, 100000, 1000000, 10000000, 32 0, 0, 0, 0 33 }; 34 35 static const unsigned char tran_mant[] = { 36 0, 10, 12, 13, 15, 20, 25, 30, 37 35, 40, 45, 50, 55, 60, 70, 80, 38 }; 39 40 static const unsigned int tacc_exp[] = { 41 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 42 }; 43 44 static const unsigned int tacc_mant[] = { 45 0, 10, 12, 13, 15, 20, 25, 30, 46 35, 40, 45, 50, 55, 60, 70, 80, 47 }; 48 49 static const unsigned int sd_au_size[] = { 50 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512, 51 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512, 52 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512, 53 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512, 54 }; 55 56 #define UNSTUFF_BITS(resp,start,size) \ 57 ({ \ 58 const int __size = size; \ 59 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 60 const int __off = 3 - ((start) / 32); \ 61 const int __shft = (start) & 31; \ 62 u32 __res; \ 63 \ 64 __res = resp[__off] >> __shft; \ 65 if (__size + __shft > 32) \ 66 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 67 __res & __mask; \ 68 }) 69 70 /* 71 * Given the decoded CSD structure, decode the raw CID to our CID structure. 72 */ 73 void mmc_decode_cid(struct mmc_card *card) 74 { 75 u32 *resp = card->raw_cid; 76 77 /* 78 * SD doesn't currently have a version field so we will 79 * have to assume we can parse this. 80 */ 81 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 82 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 83 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 84 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 85 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 86 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 87 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 88 card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4); 89 card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4); 90 card->cid.serial = UNSTUFF_BITS(resp, 24, 32); 91 card->cid.year = UNSTUFF_BITS(resp, 12, 8); 92 card->cid.month = UNSTUFF_BITS(resp, 8, 4); 93 94 card->cid.year += 2000; /* SD cards year offset */ 95 } 96 97 /* 98 * Given a 128-bit response, decode to our card CSD structure. 99 */ 100 static int mmc_decode_csd(struct mmc_card *card) 101 { 102 struct mmc_csd *csd = &card->csd; 103 unsigned int e, m, csd_struct; 104 u32 *resp = card->raw_csd; 105 106 csd_struct = UNSTUFF_BITS(resp, 126, 2); 107 108 switch (csd_struct) { 109 case 0: 110 m = UNSTUFF_BITS(resp, 115, 4); 111 e = UNSTUFF_BITS(resp, 112, 3); 112 csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10; 113 csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 114 115 m = UNSTUFF_BITS(resp, 99, 4); 116 e = UNSTUFF_BITS(resp, 96, 3); 117 csd->max_dtr = tran_exp[e] * tran_mant[m]; 118 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 119 120 e = UNSTUFF_BITS(resp, 47, 3); 121 m = UNSTUFF_BITS(resp, 62, 12); 122 csd->capacity = (1 + m) << (e + 2); 123 124 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 125 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 126 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 127 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 128 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 129 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 130 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 131 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 132 133 if (UNSTUFF_BITS(resp, 46, 1)) { 134 csd->erase_size = 1; 135 } else if (csd->write_blkbits >= 9) { 136 csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1; 137 csd->erase_size <<= csd->write_blkbits - 9; 138 } 139 break; 140 case 1: 141 /* 142 * This is a block-addressed SDHC or SDXC card. Most 143 * interesting fields are unused and have fixed 144 * values. To avoid getting tripped by buggy cards, 145 * we assume those fixed values ourselves. 146 */ 147 mmc_card_set_blockaddr(card); 148 149 csd->tacc_ns = 0; /* Unused */ 150 csd->tacc_clks = 0; /* Unused */ 151 152 m = UNSTUFF_BITS(resp, 99, 4); 153 e = UNSTUFF_BITS(resp, 96, 3); 154 csd->max_dtr = tran_exp[e] * tran_mant[m]; 155 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 156 csd->c_size = UNSTUFF_BITS(resp, 48, 22); 157 158 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */ 159 if (csd->c_size >= 0xFFFF) 160 mmc_card_set_ext_capacity(card); 161 162 m = UNSTUFF_BITS(resp, 48, 22); 163 csd->capacity = (1 + m) << 10; 164 165 csd->read_blkbits = 9; 166 csd->read_partial = 0; 167 csd->write_misalign = 0; 168 csd->read_misalign = 0; 169 csd->r2w_factor = 4; /* Unused */ 170 csd->write_blkbits = 9; 171 csd->write_partial = 0; 172 csd->erase_size = 1; 173 break; 174 default: 175 pr_err("%s: unrecognised CSD structure version %d\n", 176 mmc_hostname(card->host), csd_struct); 177 return -EINVAL; 178 } 179 180 card->erase_size = csd->erase_size; 181 182 return 0; 183 } 184 185 /* 186 * Given a 64-bit response, decode to our card SCR structure. 187 */ 188 static int mmc_decode_scr(struct mmc_card *card) 189 { 190 struct sd_scr *scr = &card->scr; 191 unsigned int scr_struct; 192 u32 resp[4]; 193 194 resp[3] = card->raw_scr[1]; 195 resp[2] = card->raw_scr[0]; 196 197 scr_struct = UNSTUFF_BITS(resp, 60, 4); 198 if (scr_struct != 0) { 199 pr_err("%s: unrecognised SCR structure version %d\n", 200 mmc_hostname(card->host), scr_struct); 201 return -EINVAL; 202 } 203 204 scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4); 205 scr->bus_widths = UNSTUFF_BITS(resp, 48, 4); 206 if (scr->sda_vsn == SCR_SPEC_VER_2) 207 /* Check if Physical Layer Spec v3.0 is supported */ 208 scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1); 209 210 if (UNSTUFF_BITS(resp, 55, 1)) 211 card->erased_byte = 0xFF; 212 else 213 card->erased_byte = 0x0; 214 215 if (scr->sda_spec3) 216 scr->cmds = UNSTUFF_BITS(resp, 32, 2); 217 return 0; 218 } 219 220 /* 221 * Fetch and process SD Status register. 222 */ 223 static int mmc_read_ssr(struct mmc_card *card) 224 { 225 unsigned int au, es, et, eo; 226 int err, i; 227 u32 *ssr; 228 229 if (!(card->csd.cmdclass & CCC_APP_SPEC)) { 230 pr_warn("%s: card lacks mandatory SD Status function\n", 231 mmc_hostname(card->host)); 232 return 0; 233 } 234 235 ssr = kmalloc(64, GFP_KERNEL); 236 if (!ssr) 237 return -ENOMEM; 238 239 err = mmc_app_sd_status(card, ssr); 240 if (err) { 241 pr_warn("%s: problem reading SD Status register\n", 242 mmc_hostname(card->host)); 243 err = 0; 244 goto out; 245 } 246 247 for (i = 0; i < 16; i++) 248 ssr[i] = be32_to_cpu(ssr[i]); 249 250 /* 251 * UNSTUFF_BITS only works with four u32s so we have to offset the 252 * bitfield positions accordingly. 253 */ 254 au = UNSTUFF_BITS(ssr, 428 - 384, 4); 255 if (au) { 256 if (au <= 9 || card->scr.sda_spec3) { 257 card->ssr.au = sd_au_size[au]; 258 es = UNSTUFF_BITS(ssr, 408 - 384, 16); 259 et = UNSTUFF_BITS(ssr, 402 - 384, 6); 260 if (es && et) { 261 eo = UNSTUFF_BITS(ssr, 400 - 384, 2); 262 card->ssr.erase_timeout = (et * 1000) / es; 263 card->ssr.erase_offset = eo * 1000; 264 } 265 } else { 266 pr_warn("%s: SD Status: Invalid Allocation Unit size\n", 267 mmc_hostname(card->host)); 268 } 269 } 270 out: 271 kfree(ssr); 272 return err; 273 } 274 275 /* 276 * Fetches and decodes switch information 277 */ 278 static int mmc_read_switch(struct mmc_card *card) 279 { 280 int err; 281 u8 *status; 282 283 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 284 return 0; 285 286 if (!(card->csd.cmdclass & CCC_SWITCH)) { 287 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n", 288 mmc_hostname(card->host)); 289 return 0; 290 } 291 292 err = -EIO; 293 294 status = kmalloc(64, GFP_KERNEL); 295 if (!status) { 296 pr_err("%s: could not allocate a buffer for " 297 "switch capabilities.\n", 298 mmc_hostname(card->host)); 299 return -ENOMEM; 300 } 301 302 /* 303 * Find out the card's support bits with a mode 0 operation. 304 * The argument does not matter, as the support bits do not 305 * change with the arguments. 306 */ 307 err = mmc_sd_switch(card, 0, 0, 0, status); 308 if (err) { 309 /* 310 * If the host or the card can't do the switch, 311 * fail more gracefully. 312 */ 313 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT) 314 goto out; 315 316 pr_warn("%s: problem reading Bus Speed modes\n", 317 mmc_hostname(card->host)); 318 err = 0; 319 320 goto out; 321 } 322 323 if (status[13] & SD_MODE_HIGH_SPEED) 324 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR; 325 326 if (card->scr.sda_spec3) { 327 card->sw_caps.sd3_bus_mode = status[13]; 328 /* Driver Strengths supported by the card */ 329 card->sw_caps.sd3_drv_type = status[9]; 330 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8; 331 } 332 333 out: 334 kfree(status); 335 336 return err; 337 } 338 339 /* 340 * Test if the card supports high-speed mode and, if so, switch to it. 341 */ 342 int mmc_sd_switch_hs(struct mmc_card *card) 343 { 344 int err; 345 u8 *status; 346 347 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 348 return 0; 349 350 if (!(card->csd.cmdclass & CCC_SWITCH)) 351 return 0; 352 353 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED)) 354 return 0; 355 356 if (card->sw_caps.hs_max_dtr == 0) 357 return 0; 358 359 status = kmalloc(64, GFP_KERNEL); 360 if (!status) { 361 pr_err("%s: could not allocate a buffer for " 362 "switch capabilities.\n", mmc_hostname(card->host)); 363 return -ENOMEM; 364 } 365 366 err = mmc_sd_switch(card, 1, 0, 1, status); 367 if (err) 368 goto out; 369 370 if ((status[16] & 0xF) != 1) { 371 pr_warn("%s: Problem switching card into high-speed mode!\n", 372 mmc_hostname(card->host)); 373 err = 0; 374 } else { 375 err = 1; 376 } 377 378 out: 379 kfree(status); 380 381 return err; 382 } 383 384 static int sd_select_driver_type(struct mmc_card *card, u8 *status) 385 { 386 int card_drv_type, drive_strength, drv_type; 387 int err; 388 389 card->drive_strength = 0; 390 391 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B; 392 393 drive_strength = mmc_select_drive_strength(card, 394 card->sw_caps.uhs_max_dtr, 395 card_drv_type, &drv_type); 396 397 if (drive_strength) { 398 err = mmc_sd_switch(card, 1, 2, drive_strength, status); 399 if (err) 400 return err; 401 if ((status[15] & 0xF) != drive_strength) { 402 pr_warn("%s: Problem setting drive strength!\n", 403 mmc_hostname(card->host)); 404 return 0; 405 } 406 card->drive_strength = drive_strength; 407 } 408 409 if (drv_type) 410 mmc_set_driver_type(card->host, drv_type); 411 412 return 0; 413 } 414 415 static void sd_update_bus_speed_mode(struct mmc_card *card) 416 { 417 /* 418 * If the host doesn't support any of the UHS-I modes, fallback on 419 * default speed. 420 */ 421 if (!mmc_host_uhs(card->host)) { 422 card->sd_bus_speed = 0; 423 return; 424 } 425 426 if ((card->host->caps & MMC_CAP_UHS_SDR104) && 427 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) { 428 card->sd_bus_speed = UHS_SDR104_BUS_SPEED; 429 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) && 430 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) { 431 card->sd_bus_speed = UHS_DDR50_BUS_SPEED; 432 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 433 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode & 434 SD_MODE_UHS_SDR50)) { 435 card->sd_bus_speed = UHS_SDR50_BUS_SPEED; 436 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 437 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) && 438 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) { 439 card->sd_bus_speed = UHS_SDR25_BUS_SPEED; 440 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 441 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 | 442 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode & 443 SD_MODE_UHS_SDR12)) { 444 card->sd_bus_speed = UHS_SDR12_BUS_SPEED; 445 } 446 } 447 448 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status) 449 { 450 int err; 451 unsigned int timing = 0; 452 453 switch (card->sd_bus_speed) { 454 case UHS_SDR104_BUS_SPEED: 455 timing = MMC_TIMING_UHS_SDR104; 456 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR; 457 break; 458 case UHS_DDR50_BUS_SPEED: 459 timing = MMC_TIMING_UHS_DDR50; 460 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR; 461 break; 462 case UHS_SDR50_BUS_SPEED: 463 timing = MMC_TIMING_UHS_SDR50; 464 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR; 465 break; 466 case UHS_SDR25_BUS_SPEED: 467 timing = MMC_TIMING_UHS_SDR25; 468 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR; 469 break; 470 case UHS_SDR12_BUS_SPEED: 471 timing = MMC_TIMING_UHS_SDR12; 472 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR; 473 break; 474 default: 475 return 0; 476 } 477 478 err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status); 479 if (err) 480 return err; 481 482 if ((status[16] & 0xF) != card->sd_bus_speed) 483 pr_warn("%s: Problem setting bus speed mode!\n", 484 mmc_hostname(card->host)); 485 else { 486 mmc_set_timing(card->host, timing); 487 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr); 488 } 489 490 return 0; 491 } 492 493 /* Get host's max current setting at its current voltage */ 494 static u32 sd_get_host_max_current(struct mmc_host *host) 495 { 496 u32 voltage, max_current; 497 498 voltage = 1 << host->ios.vdd; 499 switch (voltage) { 500 case MMC_VDD_165_195: 501 max_current = host->max_current_180; 502 break; 503 case MMC_VDD_29_30: 504 case MMC_VDD_30_31: 505 max_current = host->max_current_300; 506 break; 507 case MMC_VDD_32_33: 508 case MMC_VDD_33_34: 509 max_current = host->max_current_330; 510 break; 511 default: 512 max_current = 0; 513 } 514 515 return max_current; 516 } 517 518 static int sd_set_current_limit(struct mmc_card *card, u8 *status) 519 { 520 int current_limit = SD_SET_CURRENT_NO_CHANGE; 521 int err; 522 u32 max_current; 523 524 /* 525 * Current limit switch is only defined for SDR50, SDR104, and DDR50 526 * bus speed modes. For other bus speed modes, we do not change the 527 * current limit. 528 */ 529 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) && 530 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) && 531 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED)) 532 return 0; 533 534 /* 535 * Host has different current capabilities when operating at 536 * different voltages, so find out its max current first. 537 */ 538 max_current = sd_get_host_max_current(card->host); 539 540 /* 541 * We only check host's capability here, if we set a limit that is 542 * higher than the card's maximum current, the card will be using its 543 * maximum current, e.g. if the card's maximum current is 300ma, and 544 * when we set current limit to 200ma, the card will draw 200ma, and 545 * when we set current limit to 400/600/800ma, the card will draw its 546 * maximum 300ma from the host. 547 * 548 * The above is incorrect: if we try to set a current limit that is 549 * not supported by the card, the card can rightfully error out the 550 * attempt, and remain at the default current limit. This results 551 * in a 300mA card being limited to 200mA even though the host 552 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with 553 * an iMX6 host. --rmk 554 */ 555 if (max_current >= 800 && 556 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800) 557 current_limit = SD_SET_CURRENT_LIMIT_800; 558 else if (max_current >= 600 && 559 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600) 560 current_limit = SD_SET_CURRENT_LIMIT_600; 561 else if (max_current >= 400 && 562 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400) 563 current_limit = SD_SET_CURRENT_LIMIT_400; 564 else if (max_current >= 200 && 565 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200) 566 current_limit = SD_SET_CURRENT_LIMIT_200; 567 568 if (current_limit != SD_SET_CURRENT_NO_CHANGE) { 569 err = mmc_sd_switch(card, 1, 3, current_limit, status); 570 if (err) 571 return err; 572 573 if (((status[15] >> 4) & 0x0F) != current_limit) 574 pr_warn("%s: Problem setting current limit!\n", 575 mmc_hostname(card->host)); 576 577 } 578 579 return 0; 580 } 581 582 /* 583 * UHS-I specific initialization procedure 584 */ 585 static int mmc_sd_init_uhs_card(struct mmc_card *card) 586 { 587 int err; 588 u8 *status; 589 590 if (!card->scr.sda_spec3) 591 return 0; 592 593 if (!(card->csd.cmdclass & CCC_SWITCH)) 594 return 0; 595 596 status = kmalloc(64, GFP_KERNEL); 597 if (!status) { 598 pr_err("%s: could not allocate a buffer for " 599 "switch capabilities.\n", mmc_hostname(card->host)); 600 return -ENOMEM; 601 } 602 603 /* Set 4-bit bus width */ 604 if ((card->host->caps & MMC_CAP_4_BIT_DATA) && 605 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { 606 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 607 if (err) 608 goto out; 609 610 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4); 611 } 612 613 /* 614 * Select the bus speed mode depending on host 615 * and card capability. 616 */ 617 sd_update_bus_speed_mode(card); 618 619 /* Set the driver strength for the card */ 620 err = sd_select_driver_type(card, status); 621 if (err) 622 goto out; 623 624 /* Set current limit for the card */ 625 err = sd_set_current_limit(card, status); 626 if (err) 627 goto out; 628 629 /* Set bus speed mode of the card */ 630 err = sd_set_bus_speed_mode(card, status); 631 if (err) 632 goto out; 633 634 /* 635 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and 636 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104. 637 */ 638 if (!mmc_host_is_spi(card->host) && 639 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 || 640 card->host->ios.timing == MMC_TIMING_UHS_DDR50 || 641 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) { 642 err = mmc_execute_tuning(card); 643 644 /* 645 * As SD Specifications Part1 Physical Layer Specification 646 * Version 3.01 says, CMD19 tuning is available for unlocked 647 * cards in transfer state of 1.8V signaling mode. The small 648 * difference between v3.00 and 3.01 spec means that CMD19 649 * tuning is also available for DDR50 mode. 650 */ 651 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) { 652 pr_warn("%s: ddr50 tuning failed\n", 653 mmc_hostname(card->host)); 654 err = 0; 655 } 656 } 657 658 out: 659 kfree(status); 660 661 return err; 662 } 663 664 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 665 card->raw_cid[2], card->raw_cid[3]); 666 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 667 card->raw_csd[2], card->raw_csd[3]); 668 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]); 669 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 670 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 671 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 672 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev); 673 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 674 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 675 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 676 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 677 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 678 679 680 static struct attribute *sd_std_attrs[] = { 681 &dev_attr_cid.attr, 682 &dev_attr_csd.attr, 683 &dev_attr_scr.attr, 684 &dev_attr_date.attr, 685 &dev_attr_erase_size.attr, 686 &dev_attr_preferred_erase_size.attr, 687 &dev_attr_fwrev.attr, 688 &dev_attr_hwrev.attr, 689 &dev_attr_manfid.attr, 690 &dev_attr_name.attr, 691 &dev_attr_oemid.attr, 692 &dev_attr_serial.attr, 693 NULL, 694 }; 695 ATTRIBUTE_GROUPS(sd_std); 696 697 struct device_type sd_type = { 698 .groups = sd_std_groups, 699 }; 700 701 /* 702 * Fetch CID from card. 703 */ 704 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr) 705 { 706 int err; 707 u32 max_current; 708 int retries = 10; 709 u32 pocr = ocr; 710 711 try_again: 712 if (!retries) { 713 ocr &= ~SD_OCR_S18R; 714 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host)); 715 } 716 717 /* 718 * Since we're changing the OCR value, we seem to 719 * need to tell some cards to go back to the idle 720 * state. We wait 1ms to give cards time to 721 * respond. 722 */ 723 mmc_go_idle(host); 724 725 /* 726 * If SD_SEND_IF_COND indicates an SD 2.0 727 * compliant card and we should set bit 30 728 * of the ocr to indicate that we can handle 729 * block-addressed SDHC cards. 730 */ 731 err = mmc_send_if_cond(host, ocr); 732 if (!err) 733 ocr |= SD_OCR_CCS; 734 735 /* 736 * If the host supports one of UHS-I modes, request the card 737 * to switch to 1.8V signaling level. If the card has failed 738 * repeatedly to switch however, skip this. 739 */ 740 if (retries && mmc_host_uhs(host)) 741 ocr |= SD_OCR_S18R; 742 743 /* 744 * If the host can supply more than 150mA at current voltage, 745 * XPC should be set to 1. 746 */ 747 max_current = sd_get_host_max_current(host); 748 if (max_current > 150) 749 ocr |= SD_OCR_XPC; 750 751 err = mmc_send_app_op_cond(host, ocr, rocr); 752 if (err) 753 return err; 754 755 /* 756 * In case CCS and S18A in the response is set, start Signal Voltage 757 * Switch procedure. SPI mode doesn't support CMD11. 758 */ 759 if (!mmc_host_is_spi(host) && rocr && 760 ((*rocr & 0x41000000) == 0x41000000)) { 761 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180, 762 pocr); 763 if (err == -EAGAIN) { 764 retries--; 765 goto try_again; 766 } else if (err) { 767 retries = 0; 768 goto try_again; 769 } 770 } 771 772 if (mmc_host_is_spi(host)) 773 err = mmc_send_cid(host, cid); 774 else 775 err = mmc_all_send_cid(host, cid); 776 777 return err; 778 } 779 780 int mmc_sd_get_csd(struct mmc_host *host, struct mmc_card *card) 781 { 782 int err; 783 784 /* 785 * Fetch CSD from card. 786 */ 787 err = mmc_send_csd(card, card->raw_csd); 788 if (err) 789 return err; 790 791 err = mmc_decode_csd(card); 792 if (err) 793 return err; 794 795 return 0; 796 } 797 798 static int mmc_sd_get_ro(struct mmc_host *host) 799 { 800 int ro; 801 802 /* 803 * Some systems don't feature a write-protect pin and don't need one. 804 * E.g. because they only have micro-SD card slot. For those systems 805 * assume that the SD card is always read-write. 806 */ 807 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT) 808 return 0; 809 810 if (!host->ops->get_ro) 811 return -1; 812 813 ro = host->ops->get_ro(host); 814 815 return ro; 816 } 817 818 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card, 819 bool reinit) 820 { 821 int err; 822 823 if (!reinit) { 824 /* 825 * Fetch SCR from card. 826 */ 827 err = mmc_app_send_scr(card, card->raw_scr); 828 if (err) 829 return err; 830 831 err = mmc_decode_scr(card); 832 if (err) 833 return err; 834 835 /* 836 * Fetch and process SD Status register. 837 */ 838 err = mmc_read_ssr(card); 839 if (err) 840 return err; 841 842 /* Erase init depends on CSD and SSR */ 843 mmc_init_erase(card); 844 845 /* 846 * Fetch switch information from card. 847 */ 848 err = mmc_read_switch(card); 849 if (err) 850 return err; 851 } 852 853 /* 854 * For SPI, enable CRC as appropriate. 855 * This CRC enable is located AFTER the reading of the 856 * card registers because some SDHC cards are not able 857 * to provide valid CRCs for non-512-byte blocks. 858 */ 859 if (mmc_host_is_spi(host)) { 860 err = mmc_spi_set_crc(host, use_spi_crc); 861 if (err) 862 return err; 863 } 864 865 /* 866 * Check if read-only switch is active. 867 */ 868 if (!reinit) { 869 int ro = mmc_sd_get_ro(host); 870 871 if (ro < 0) { 872 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n", 873 mmc_hostname(host)); 874 } else if (ro > 0) { 875 mmc_card_set_readonly(card); 876 } 877 } 878 879 return 0; 880 } 881 882 unsigned mmc_sd_get_max_clock(struct mmc_card *card) 883 { 884 unsigned max_dtr = (unsigned int)-1; 885 886 if (mmc_card_hs(card)) { 887 if (max_dtr > card->sw_caps.hs_max_dtr) 888 max_dtr = card->sw_caps.hs_max_dtr; 889 } else if (max_dtr > card->csd.max_dtr) { 890 max_dtr = card->csd.max_dtr; 891 } 892 893 return max_dtr; 894 } 895 896 /* 897 * Handle the detection and initialisation of a card. 898 * 899 * In the case of a resume, "oldcard" will contain the card 900 * we're trying to reinitialise. 901 */ 902 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr, 903 struct mmc_card *oldcard) 904 { 905 struct mmc_card *card; 906 int err; 907 u32 cid[4]; 908 u32 rocr = 0; 909 910 BUG_ON(!host); 911 WARN_ON(!host->claimed); 912 913 err = mmc_sd_get_cid(host, ocr, cid, &rocr); 914 if (err) 915 return err; 916 917 if (oldcard) { 918 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) 919 return -ENOENT; 920 921 card = oldcard; 922 } else { 923 /* 924 * Allocate card structure. 925 */ 926 card = mmc_alloc_card(host, &sd_type); 927 if (IS_ERR(card)) 928 return PTR_ERR(card); 929 930 card->ocr = ocr; 931 card->type = MMC_TYPE_SD; 932 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 933 } 934 935 /* 936 * Call the optional HC's init_card function to handle quirks. 937 */ 938 if (host->ops->init_card) 939 host->ops->init_card(host, card); 940 941 /* 942 * For native busses: get card RCA and quit open drain mode. 943 */ 944 if (!mmc_host_is_spi(host)) { 945 err = mmc_send_relative_addr(host, &card->rca); 946 if (err) 947 goto free_card; 948 } 949 950 if (!oldcard) { 951 err = mmc_sd_get_csd(host, card); 952 if (err) 953 goto free_card; 954 955 mmc_decode_cid(card); 956 } 957 958 /* 959 * handling only for cards supporting DSR and hosts requesting 960 * DSR configuration 961 */ 962 if (card->csd.dsr_imp && host->dsr_req) 963 mmc_set_dsr(host); 964 965 /* 966 * Select card, as all following commands rely on that. 967 */ 968 if (!mmc_host_is_spi(host)) { 969 err = mmc_select_card(card); 970 if (err) 971 goto free_card; 972 } 973 974 err = mmc_sd_setup_card(host, card, oldcard != NULL); 975 if (err) 976 goto free_card; 977 978 /* Initialization sequence for UHS-I cards */ 979 if (rocr & SD_ROCR_S18A) { 980 err = mmc_sd_init_uhs_card(card); 981 if (err) 982 goto free_card; 983 } else { 984 /* 985 * Attempt to change to high-speed (if supported) 986 */ 987 err = mmc_sd_switch_hs(card); 988 if (err > 0) 989 mmc_set_timing(card->host, MMC_TIMING_SD_HS); 990 else if (err) 991 goto free_card; 992 993 /* 994 * Set bus speed. 995 */ 996 mmc_set_clock(host, mmc_sd_get_max_clock(card)); 997 998 /* 999 * Switch to wider bus (if supported). 1000 */ 1001 if ((host->caps & MMC_CAP_4_BIT_DATA) && 1002 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { 1003 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 1004 if (err) 1005 goto free_card; 1006 1007 mmc_set_bus_width(host, MMC_BUS_WIDTH_4); 1008 } 1009 } 1010 1011 host->card = card; 1012 return 0; 1013 1014 free_card: 1015 if (!oldcard) 1016 mmc_remove_card(card); 1017 1018 return err; 1019 } 1020 1021 /* 1022 * Host is being removed. Free up the current card. 1023 */ 1024 static void mmc_sd_remove(struct mmc_host *host) 1025 { 1026 BUG_ON(!host); 1027 BUG_ON(!host->card); 1028 1029 mmc_remove_card(host->card); 1030 host->card = NULL; 1031 } 1032 1033 /* 1034 * Card detection - card is alive. 1035 */ 1036 static int mmc_sd_alive(struct mmc_host *host) 1037 { 1038 return mmc_send_status(host->card, NULL); 1039 } 1040 1041 /* 1042 * Card detection callback from host. 1043 */ 1044 static void mmc_sd_detect(struct mmc_host *host) 1045 { 1046 int err; 1047 1048 BUG_ON(!host); 1049 BUG_ON(!host->card); 1050 1051 mmc_get_card(host->card); 1052 1053 /* 1054 * Just check if our card has been removed. 1055 */ 1056 err = _mmc_detect_card_removed(host); 1057 1058 mmc_put_card(host->card); 1059 1060 if (err) { 1061 mmc_sd_remove(host); 1062 1063 mmc_claim_host(host); 1064 mmc_detach_bus(host); 1065 mmc_power_off(host); 1066 mmc_release_host(host); 1067 } 1068 } 1069 1070 static int _mmc_sd_suspend(struct mmc_host *host) 1071 { 1072 int err = 0; 1073 1074 BUG_ON(!host); 1075 BUG_ON(!host->card); 1076 1077 mmc_claim_host(host); 1078 1079 if (mmc_card_suspended(host->card)) 1080 goto out; 1081 1082 if (!mmc_host_is_spi(host)) 1083 err = mmc_deselect_cards(host); 1084 1085 if (!err) { 1086 mmc_power_off(host); 1087 mmc_card_set_suspended(host->card); 1088 } 1089 1090 out: 1091 mmc_release_host(host); 1092 return err; 1093 } 1094 1095 /* 1096 * Callback for suspend 1097 */ 1098 static int mmc_sd_suspend(struct mmc_host *host) 1099 { 1100 int err; 1101 1102 err = _mmc_sd_suspend(host); 1103 if (!err) { 1104 pm_runtime_disable(&host->card->dev); 1105 pm_runtime_set_suspended(&host->card->dev); 1106 } 1107 1108 return err; 1109 } 1110 1111 /* 1112 * This function tries to determine if the same card is still present 1113 * and, if so, restore all state to it. 1114 */ 1115 static int _mmc_sd_resume(struct mmc_host *host) 1116 { 1117 int err = 0; 1118 1119 BUG_ON(!host); 1120 BUG_ON(!host->card); 1121 1122 mmc_claim_host(host); 1123 1124 if (!mmc_card_suspended(host->card)) 1125 goto out; 1126 1127 mmc_power_up(host, host->card->ocr); 1128 err = mmc_sd_init_card(host, host->card->ocr, host->card); 1129 mmc_card_clr_suspended(host->card); 1130 1131 out: 1132 mmc_release_host(host); 1133 return err; 1134 } 1135 1136 /* 1137 * Callback for resume 1138 */ 1139 static int mmc_sd_resume(struct mmc_host *host) 1140 { 1141 pm_runtime_enable(&host->card->dev); 1142 return 0; 1143 } 1144 1145 /* 1146 * Callback for runtime_suspend. 1147 */ 1148 static int mmc_sd_runtime_suspend(struct mmc_host *host) 1149 { 1150 int err; 1151 1152 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 1153 return 0; 1154 1155 err = _mmc_sd_suspend(host); 1156 if (err) 1157 pr_err("%s: error %d doing aggressive suspend\n", 1158 mmc_hostname(host), err); 1159 1160 return err; 1161 } 1162 1163 /* 1164 * Callback for runtime_resume. 1165 */ 1166 static int mmc_sd_runtime_resume(struct mmc_host *host) 1167 { 1168 int err; 1169 1170 err = _mmc_sd_resume(host); 1171 if (err && err != -ENOMEDIUM) 1172 pr_err("%s: error %d doing runtime resume\n", 1173 mmc_hostname(host), err); 1174 1175 return 0; 1176 } 1177 1178 static int mmc_sd_reset(struct mmc_host *host) 1179 { 1180 mmc_power_cycle(host, host->card->ocr); 1181 return mmc_sd_init_card(host, host->card->ocr, host->card); 1182 } 1183 1184 static const struct mmc_bus_ops mmc_sd_ops = { 1185 .remove = mmc_sd_remove, 1186 .detect = mmc_sd_detect, 1187 .runtime_suspend = mmc_sd_runtime_suspend, 1188 .runtime_resume = mmc_sd_runtime_resume, 1189 .suspend = mmc_sd_suspend, 1190 .resume = mmc_sd_resume, 1191 .alive = mmc_sd_alive, 1192 .shutdown = mmc_sd_suspend, 1193 .reset = mmc_sd_reset, 1194 }; 1195 1196 /* 1197 * Starting point for SD card init. 1198 */ 1199 int mmc_attach_sd(struct mmc_host *host) 1200 { 1201 int err; 1202 u32 ocr, rocr; 1203 1204 BUG_ON(!host); 1205 WARN_ON(!host->claimed); 1206 1207 err = mmc_send_app_op_cond(host, 0, &ocr); 1208 if (err) 1209 return err; 1210 1211 mmc_attach_bus(host, &mmc_sd_ops); 1212 if (host->ocr_avail_sd) 1213 host->ocr_avail = host->ocr_avail_sd; 1214 1215 /* 1216 * We need to get OCR a different way for SPI. 1217 */ 1218 if (mmc_host_is_spi(host)) { 1219 mmc_go_idle(host); 1220 1221 err = mmc_spi_read_ocr(host, 0, &ocr); 1222 if (err) 1223 goto err; 1224 } 1225 1226 rocr = mmc_select_voltage(host, ocr); 1227 1228 /* 1229 * Can we support the voltage(s) of the card(s)? 1230 */ 1231 if (!rocr) { 1232 err = -EINVAL; 1233 goto err; 1234 } 1235 1236 /* 1237 * Detect and init the card. 1238 */ 1239 err = mmc_sd_init_card(host, rocr, NULL); 1240 if (err) 1241 goto err; 1242 1243 mmc_release_host(host); 1244 err = mmc_add_card(host->card); 1245 if (err) 1246 goto remove_card; 1247 1248 mmc_claim_host(host); 1249 return 0; 1250 1251 remove_card: 1252 mmc_remove_card(host->card); 1253 host->card = NULL; 1254 mmc_claim_host(host); 1255 err: 1256 mmc_detach_bus(host); 1257 1258 pr_err("%s: error %d whilst initialising SD card\n", 1259 mmc_hostname(host), err); 1260 1261 return err; 1262 } 1263