1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/sd.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/sizes.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/random.h> 16 #include <linux/scatterlist.h> 17 #include <linux/sysfs.h> 18 19 #include <linux/mmc/host.h> 20 #include <linux/mmc/card.h> 21 #include <linux/mmc/mmc.h> 22 #include <linux/mmc/sd.h> 23 24 #include "core.h" 25 #include "card.h" 26 #include "host.h" 27 #include "bus.h" 28 #include "mmc_ops.h" 29 #include "quirks.h" 30 #include "sd.h" 31 #include "sd_ops.h" 32 33 static const unsigned int tran_exp[] = { 34 10000, 100000, 1000000, 10000000, 35 0, 0, 0, 0 36 }; 37 38 static const unsigned char tran_mant[] = { 39 0, 10, 12, 13, 15, 20, 25, 30, 40 35, 40, 45, 50, 55, 60, 70, 80, 41 }; 42 43 static const unsigned int taac_exp[] = { 44 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 45 }; 46 47 static const unsigned int taac_mant[] = { 48 0, 10, 12, 13, 15, 20, 25, 30, 49 35, 40, 45, 50, 55, 60, 70, 80, 50 }; 51 52 static const unsigned int sd_au_size[] = { 53 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512, 54 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512, 55 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512, 56 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512, 57 }; 58 59 #define UNSTUFF_BITS(resp,start,size) \ 60 ({ \ 61 const int __size = size; \ 62 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 63 const int __off = 3 - ((start) / 32); \ 64 const int __shft = (start) & 31; \ 65 u32 __res; \ 66 \ 67 __res = resp[__off] >> __shft; \ 68 if (__size + __shft > 32) \ 69 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 70 __res & __mask; \ 71 }) 72 73 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000 74 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000 75 76 struct sd_busy_data { 77 struct mmc_card *card; 78 u8 *reg_buf; 79 }; 80 81 /* 82 * Given the decoded CSD structure, decode the raw CID to our CID structure. 83 */ 84 void mmc_decode_cid(struct mmc_card *card) 85 { 86 u32 *resp = card->raw_cid; 87 88 /* 89 * Add the raw card ID (cid) data to the entropy pool. It doesn't 90 * matter that not all of it is unique, it's just bonus entropy. 91 */ 92 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid)); 93 94 /* 95 * SD doesn't currently have a version field so we will 96 * have to assume we can parse this. 97 */ 98 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 99 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 100 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 101 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 102 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 103 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 104 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 105 card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4); 106 card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4); 107 card->cid.serial = UNSTUFF_BITS(resp, 24, 32); 108 card->cid.year = UNSTUFF_BITS(resp, 12, 8); 109 card->cid.month = UNSTUFF_BITS(resp, 8, 4); 110 111 card->cid.year += 2000; /* SD cards year offset */ 112 } 113 114 /* 115 * Given a 128-bit response, decode to our card CSD structure. 116 */ 117 static int mmc_decode_csd(struct mmc_card *card) 118 { 119 struct mmc_csd *csd = &card->csd; 120 unsigned int e, m, csd_struct; 121 u32 *resp = card->raw_csd; 122 123 csd_struct = UNSTUFF_BITS(resp, 126, 2); 124 125 switch (csd_struct) { 126 case 0: 127 m = UNSTUFF_BITS(resp, 115, 4); 128 e = UNSTUFF_BITS(resp, 112, 3); 129 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 130 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 131 132 m = UNSTUFF_BITS(resp, 99, 4); 133 e = UNSTUFF_BITS(resp, 96, 3); 134 csd->max_dtr = tran_exp[e] * tran_mant[m]; 135 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 136 137 e = UNSTUFF_BITS(resp, 47, 3); 138 m = UNSTUFF_BITS(resp, 62, 12); 139 csd->capacity = (1 + m) << (e + 2); 140 141 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 142 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 143 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 144 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 145 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 146 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 147 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 148 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 149 150 if (UNSTUFF_BITS(resp, 46, 1)) { 151 csd->erase_size = 1; 152 } else if (csd->write_blkbits >= 9) { 153 csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1; 154 csd->erase_size <<= csd->write_blkbits - 9; 155 } 156 157 if (UNSTUFF_BITS(resp, 13, 1)) 158 mmc_card_set_readonly(card); 159 break; 160 case 1: 161 /* 162 * This is a block-addressed SDHC or SDXC card. Most 163 * interesting fields are unused and have fixed 164 * values. To avoid getting tripped by buggy cards, 165 * we assume those fixed values ourselves. 166 */ 167 mmc_card_set_blockaddr(card); 168 169 csd->taac_ns = 0; /* Unused */ 170 csd->taac_clks = 0; /* Unused */ 171 172 m = UNSTUFF_BITS(resp, 99, 4); 173 e = UNSTUFF_BITS(resp, 96, 3); 174 csd->max_dtr = tran_exp[e] * tran_mant[m]; 175 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 176 csd->c_size = UNSTUFF_BITS(resp, 48, 22); 177 178 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */ 179 if (csd->c_size >= 0xFFFF) 180 mmc_card_set_ext_capacity(card); 181 182 m = UNSTUFF_BITS(resp, 48, 22); 183 csd->capacity = (1 + m) << 10; 184 185 csd->read_blkbits = 9; 186 csd->read_partial = 0; 187 csd->write_misalign = 0; 188 csd->read_misalign = 0; 189 csd->r2w_factor = 4; /* Unused */ 190 csd->write_blkbits = 9; 191 csd->write_partial = 0; 192 csd->erase_size = 1; 193 194 if (UNSTUFF_BITS(resp, 13, 1)) 195 mmc_card_set_readonly(card); 196 break; 197 default: 198 pr_err("%s: unrecognised CSD structure version %d\n", 199 mmc_hostname(card->host), csd_struct); 200 return -EINVAL; 201 } 202 203 card->erase_size = csd->erase_size; 204 205 return 0; 206 } 207 208 /* 209 * Given a 64-bit response, decode to our card SCR structure. 210 */ 211 static int mmc_decode_scr(struct mmc_card *card) 212 { 213 struct sd_scr *scr = &card->scr; 214 unsigned int scr_struct; 215 u32 resp[4]; 216 217 resp[3] = card->raw_scr[1]; 218 resp[2] = card->raw_scr[0]; 219 220 scr_struct = UNSTUFF_BITS(resp, 60, 4); 221 if (scr_struct != 0) { 222 pr_err("%s: unrecognised SCR structure version %d\n", 223 mmc_hostname(card->host), scr_struct); 224 return -EINVAL; 225 } 226 227 scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4); 228 scr->bus_widths = UNSTUFF_BITS(resp, 48, 4); 229 if (scr->sda_vsn == SCR_SPEC_VER_2) 230 /* Check if Physical Layer Spec v3.0 is supported */ 231 scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1); 232 233 if (scr->sda_spec3) { 234 scr->sda_spec4 = UNSTUFF_BITS(resp, 42, 1); 235 scr->sda_specx = UNSTUFF_BITS(resp, 38, 4); 236 } 237 238 if (UNSTUFF_BITS(resp, 55, 1)) 239 card->erased_byte = 0xFF; 240 else 241 card->erased_byte = 0x0; 242 243 if (scr->sda_spec4) 244 scr->cmds = UNSTUFF_BITS(resp, 32, 4); 245 else if (scr->sda_spec3) 246 scr->cmds = UNSTUFF_BITS(resp, 32, 2); 247 248 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */ 249 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) || 250 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) { 251 pr_err("%s: invalid bus width\n", mmc_hostname(card->host)); 252 return -EINVAL; 253 } 254 255 return 0; 256 } 257 258 /* 259 * Fetch and process SD Status register. 260 */ 261 static int mmc_read_ssr(struct mmc_card *card) 262 { 263 unsigned int au, es, et, eo; 264 __be32 *raw_ssr; 265 u32 resp[4] = {}; 266 u8 discard_support; 267 int i; 268 269 if (!(card->csd.cmdclass & CCC_APP_SPEC)) { 270 pr_warn("%s: card lacks mandatory SD Status function\n", 271 mmc_hostname(card->host)); 272 return 0; 273 } 274 275 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL); 276 if (!raw_ssr) 277 return -ENOMEM; 278 279 if (mmc_app_sd_status(card, raw_ssr)) { 280 pr_warn("%s: problem reading SD Status register\n", 281 mmc_hostname(card->host)); 282 kfree(raw_ssr); 283 return 0; 284 } 285 286 for (i = 0; i < 16; i++) 287 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]); 288 289 kfree(raw_ssr); 290 291 /* 292 * UNSTUFF_BITS only works with four u32s so we have to offset the 293 * bitfield positions accordingly. 294 */ 295 au = UNSTUFF_BITS(card->raw_ssr, 428 - 384, 4); 296 if (au) { 297 if (au <= 9 || card->scr.sda_spec3) { 298 card->ssr.au = sd_au_size[au]; 299 es = UNSTUFF_BITS(card->raw_ssr, 408 - 384, 16); 300 et = UNSTUFF_BITS(card->raw_ssr, 402 - 384, 6); 301 if (es && et) { 302 eo = UNSTUFF_BITS(card->raw_ssr, 400 - 384, 2); 303 card->ssr.erase_timeout = (et * 1000) / es; 304 card->ssr.erase_offset = eo * 1000; 305 } 306 } else { 307 pr_warn("%s: SD Status: Invalid Allocation Unit size\n", 308 mmc_hostname(card->host)); 309 } 310 } 311 312 /* 313 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set 314 */ 315 resp[3] = card->raw_ssr[6]; 316 discard_support = UNSTUFF_BITS(resp, 313 - 288, 1); 317 card->erase_arg = (card->scr.sda_specx && discard_support) ? 318 SD_DISCARD_ARG : SD_ERASE_ARG; 319 320 return 0; 321 } 322 323 /* 324 * Fetches and decodes switch information 325 */ 326 static int mmc_read_switch(struct mmc_card *card) 327 { 328 int err; 329 u8 *status; 330 331 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 332 return 0; 333 334 if (!(card->csd.cmdclass & CCC_SWITCH)) { 335 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n", 336 mmc_hostname(card->host)); 337 return 0; 338 } 339 340 status = kmalloc(64, GFP_KERNEL); 341 if (!status) 342 return -ENOMEM; 343 344 /* 345 * Find out the card's support bits with a mode 0 operation. 346 * The argument does not matter, as the support bits do not 347 * change with the arguments. 348 */ 349 err = mmc_sd_switch(card, 0, 0, 0, status); 350 if (err) { 351 /* 352 * If the host or the card can't do the switch, 353 * fail more gracefully. 354 */ 355 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT) 356 goto out; 357 358 pr_warn("%s: problem reading Bus Speed modes\n", 359 mmc_hostname(card->host)); 360 err = 0; 361 362 goto out; 363 } 364 365 if (status[13] & SD_MODE_HIGH_SPEED) 366 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR; 367 368 if (card->scr.sda_spec3) { 369 card->sw_caps.sd3_bus_mode = status[13]; 370 /* Driver Strengths supported by the card */ 371 card->sw_caps.sd3_drv_type = status[9]; 372 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8; 373 } 374 375 out: 376 kfree(status); 377 378 return err; 379 } 380 381 /* 382 * Test if the card supports high-speed mode and, if so, switch to it. 383 */ 384 int mmc_sd_switch_hs(struct mmc_card *card) 385 { 386 int err; 387 u8 *status; 388 389 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 390 return 0; 391 392 if (!(card->csd.cmdclass & CCC_SWITCH)) 393 return 0; 394 395 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED)) 396 return 0; 397 398 if (card->sw_caps.hs_max_dtr == 0) 399 return 0; 400 401 status = kmalloc(64, GFP_KERNEL); 402 if (!status) 403 return -ENOMEM; 404 405 err = mmc_sd_switch(card, 1, 0, HIGH_SPEED_BUS_SPEED, status); 406 if (err) 407 goto out; 408 409 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) { 410 pr_warn("%s: Problem switching card into high-speed mode!\n", 411 mmc_hostname(card->host)); 412 err = 0; 413 } else { 414 err = 1; 415 } 416 417 out: 418 kfree(status); 419 420 return err; 421 } 422 423 static int sd_select_driver_type(struct mmc_card *card, u8 *status) 424 { 425 int card_drv_type, drive_strength, drv_type; 426 int err; 427 428 card->drive_strength = 0; 429 430 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B; 431 432 drive_strength = mmc_select_drive_strength(card, 433 card->sw_caps.uhs_max_dtr, 434 card_drv_type, &drv_type); 435 436 if (drive_strength) { 437 err = mmc_sd_switch(card, 1, 2, drive_strength, status); 438 if (err) 439 return err; 440 if ((status[15] & 0xF) != drive_strength) { 441 pr_warn("%s: Problem setting drive strength!\n", 442 mmc_hostname(card->host)); 443 return 0; 444 } 445 card->drive_strength = drive_strength; 446 } 447 448 if (drv_type) 449 mmc_set_driver_type(card->host, drv_type); 450 451 return 0; 452 } 453 454 static void sd_update_bus_speed_mode(struct mmc_card *card) 455 { 456 /* 457 * If the host doesn't support any of the UHS-I modes, fallback on 458 * default speed. 459 */ 460 if (!mmc_host_uhs(card->host)) { 461 card->sd_bus_speed = 0; 462 return; 463 } 464 465 if ((card->host->caps & MMC_CAP_UHS_SDR104) && 466 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) { 467 card->sd_bus_speed = UHS_SDR104_BUS_SPEED; 468 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) && 469 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) { 470 card->sd_bus_speed = UHS_DDR50_BUS_SPEED; 471 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 472 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode & 473 SD_MODE_UHS_SDR50)) { 474 card->sd_bus_speed = UHS_SDR50_BUS_SPEED; 475 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 476 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) && 477 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) { 478 card->sd_bus_speed = UHS_SDR25_BUS_SPEED; 479 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 480 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 | 481 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode & 482 SD_MODE_UHS_SDR12)) { 483 card->sd_bus_speed = UHS_SDR12_BUS_SPEED; 484 } 485 } 486 487 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status) 488 { 489 int err; 490 unsigned int timing = 0; 491 492 switch (card->sd_bus_speed) { 493 case UHS_SDR104_BUS_SPEED: 494 timing = MMC_TIMING_UHS_SDR104; 495 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR; 496 break; 497 case UHS_DDR50_BUS_SPEED: 498 timing = MMC_TIMING_UHS_DDR50; 499 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR; 500 break; 501 case UHS_SDR50_BUS_SPEED: 502 timing = MMC_TIMING_UHS_SDR50; 503 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR; 504 break; 505 case UHS_SDR25_BUS_SPEED: 506 timing = MMC_TIMING_UHS_SDR25; 507 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR; 508 break; 509 case UHS_SDR12_BUS_SPEED: 510 timing = MMC_TIMING_UHS_SDR12; 511 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR; 512 break; 513 default: 514 return 0; 515 } 516 517 err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status); 518 if (err) 519 return err; 520 521 if ((status[16] & 0xF) != card->sd_bus_speed) 522 pr_warn("%s: Problem setting bus speed mode!\n", 523 mmc_hostname(card->host)); 524 else { 525 mmc_set_timing(card->host, timing); 526 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr); 527 } 528 529 return 0; 530 } 531 532 /* Get host's max current setting at its current voltage */ 533 static u32 sd_get_host_max_current(struct mmc_host *host) 534 { 535 u32 voltage, max_current; 536 537 voltage = 1 << host->ios.vdd; 538 switch (voltage) { 539 case MMC_VDD_165_195: 540 max_current = host->max_current_180; 541 break; 542 case MMC_VDD_29_30: 543 case MMC_VDD_30_31: 544 max_current = host->max_current_300; 545 break; 546 case MMC_VDD_32_33: 547 case MMC_VDD_33_34: 548 max_current = host->max_current_330; 549 break; 550 default: 551 max_current = 0; 552 } 553 554 return max_current; 555 } 556 557 static int sd_set_current_limit(struct mmc_card *card, u8 *status) 558 { 559 int current_limit = SD_SET_CURRENT_NO_CHANGE; 560 int err; 561 u32 max_current; 562 563 /* 564 * Current limit switch is only defined for SDR50, SDR104, and DDR50 565 * bus speed modes. For other bus speed modes, we do not change the 566 * current limit. 567 */ 568 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) && 569 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) && 570 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED)) 571 return 0; 572 573 /* 574 * Host has different current capabilities when operating at 575 * different voltages, so find out its max current first. 576 */ 577 max_current = sd_get_host_max_current(card->host); 578 579 /* 580 * We only check host's capability here, if we set a limit that is 581 * higher than the card's maximum current, the card will be using its 582 * maximum current, e.g. if the card's maximum current is 300ma, and 583 * when we set current limit to 200ma, the card will draw 200ma, and 584 * when we set current limit to 400/600/800ma, the card will draw its 585 * maximum 300ma from the host. 586 * 587 * The above is incorrect: if we try to set a current limit that is 588 * not supported by the card, the card can rightfully error out the 589 * attempt, and remain at the default current limit. This results 590 * in a 300mA card being limited to 200mA even though the host 591 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with 592 * an iMX6 host. --rmk 593 */ 594 if (max_current >= 800 && 595 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800) 596 current_limit = SD_SET_CURRENT_LIMIT_800; 597 else if (max_current >= 600 && 598 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600) 599 current_limit = SD_SET_CURRENT_LIMIT_600; 600 else if (max_current >= 400 && 601 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400) 602 current_limit = SD_SET_CURRENT_LIMIT_400; 603 else if (max_current >= 200 && 604 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200) 605 current_limit = SD_SET_CURRENT_LIMIT_200; 606 607 if (current_limit != SD_SET_CURRENT_NO_CHANGE) { 608 err = mmc_sd_switch(card, 1, 3, current_limit, status); 609 if (err) 610 return err; 611 612 if (((status[15] >> 4) & 0x0F) != current_limit) 613 pr_warn("%s: Problem setting current limit!\n", 614 mmc_hostname(card->host)); 615 616 } 617 618 return 0; 619 } 620 621 /* 622 * UHS-I specific initialization procedure 623 */ 624 static int mmc_sd_init_uhs_card(struct mmc_card *card) 625 { 626 int err; 627 u8 *status; 628 629 if (!(card->csd.cmdclass & CCC_SWITCH)) 630 return 0; 631 632 status = kmalloc(64, GFP_KERNEL); 633 if (!status) 634 return -ENOMEM; 635 636 /* Set 4-bit bus width */ 637 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 638 if (err) 639 goto out; 640 641 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4); 642 643 /* 644 * Select the bus speed mode depending on host 645 * and card capability. 646 */ 647 sd_update_bus_speed_mode(card); 648 649 /* Set the driver strength for the card */ 650 err = sd_select_driver_type(card, status); 651 if (err) 652 goto out; 653 654 /* Set current limit for the card */ 655 err = sd_set_current_limit(card, status); 656 if (err) 657 goto out; 658 659 /* Set bus speed mode of the card */ 660 err = sd_set_bus_speed_mode(card, status); 661 if (err) 662 goto out; 663 664 /* 665 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and 666 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104. 667 */ 668 if (!mmc_host_is_spi(card->host) && 669 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 || 670 card->host->ios.timing == MMC_TIMING_UHS_DDR50 || 671 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) { 672 err = mmc_execute_tuning(card); 673 674 /* 675 * As SD Specifications Part1 Physical Layer Specification 676 * Version 3.01 says, CMD19 tuning is available for unlocked 677 * cards in transfer state of 1.8V signaling mode. The small 678 * difference between v3.00 and 3.01 spec means that CMD19 679 * tuning is also available for DDR50 mode. 680 */ 681 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) { 682 pr_warn("%s: ddr50 tuning failed\n", 683 mmc_hostname(card->host)); 684 err = 0; 685 } 686 } 687 688 out: 689 kfree(status); 690 691 return err; 692 } 693 694 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 695 card->raw_cid[2], card->raw_cid[3]); 696 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 697 card->raw_csd[2], card->raw_csd[3]); 698 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]); 699 MMC_DEV_ATTR(ssr, 700 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n", 701 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2], 702 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5], 703 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8], 704 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11], 705 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14], 706 card->raw_ssr[15]); 707 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 708 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 709 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 710 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev); 711 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 712 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 713 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 714 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 715 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 716 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 717 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 718 719 720 static ssize_t mmc_dsr_show(struct device *dev, struct device_attribute *attr, 721 char *buf) 722 { 723 struct mmc_card *card = mmc_dev_to_card(dev); 724 struct mmc_host *host = card->host; 725 726 if (card->csd.dsr_imp && host->dsr_req) 727 return sysfs_emit(buf, "0x%x\n", host->dsr); 728 /* return default DSR value */ 729 return sysfs_emit(buf, "0x%x\n", 0x404); 730 } 731 732 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 733 734 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor); 735 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device); 736 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev); 737 738 #define sdio_info_attr(num) \ 739 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \ 740 { \ 741 struct mmc_card *card = mmc_dev_to_card(dev); \ 742 \ 743 if (num > card->num_info) \ 744 return -ENODATA; \ 745 if (!card->info[num - 1][0]) \ 746 return 0; \ 747 return sysfs_emit(buf, "%s\n", card->info[num - 1]); \ 748 } \ 749 static DEVICE_ATTR_RO(info##num) 750 751 sdio_info_attr(1); 752 sdio_info_attr(2); 753 sdio_info_attr(3); 754 sdio_info_attr(4); 755 756 static struct attribute *sd_std_attrs[] = { 757 &dev_attr_vendor.attr, 758 &dev_attr_device.attr, 759 &dev_attr_revision.attr, 760 &dev_attr_info1.attr, 761 &dev_attr_info2.attr, 762 &dev_attr_info3.attr, 763 &dev_attr_info4.attr, 764 &dev_attr_cid.attr, 765 &dev_attr_csd.attr, 766 &dev_attr_scr.attr, 767 &dev_attr_ssr.attr, 768 &dev_attr_date.attr, 769 &dev_attr_erase_size.attr, 770 &dev_attr_preferred_erase_size.attr, 771 &dev_attr_fwrev.attr, 772 &dev_attr_hwrev.attr, 773 &dev_attr_manfid.attr, 774 &dev_attr_name.attr, 775 &dev_attr_oemid.attr, 776 &dev_attr_serial.attr, 777 &dev_attr_ocr.attr, 778 &dev_attr_rca.attr, 779 &dev_attr_dsr.attr, 780 NULL, 781 }; 782 783 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr, 784 int index) 785 { 786 struct device *dev = kobj_to_dev(kobj); 787 struct mmc_card *card = mmc_dev_to_card(dev); 788 789 /* CIS vendor and device ids, revision and info string are available only for Combo cards */ 790 if ((attr == &dev_attr_vendor.attr || 791 attr == &dev_attr_device.attr || 792 attr == &dev_attr_revision.attr || 793 attr == &dev_attr_info1.attr || 794 attr == &dev_attr_info2.attr || 795 attr == &dev_attr_info3.attr || 796 attr == &dev_attr_info4.attr 797 ) &&!mmc_card_sd_combo(card)) 798 return 0; 799 800 return attr->mode; 801 } 802 803 static const struct attribute_group sd_std_group = { 804 .attrs = sd_std_attrs, 805 .is_visible = sd_std_is_visible, 806 }; 807 __ATTRIBUTE_GROUPS(sd_std); 808 809 struct device_type sd_type = { 810 .groups = sd_std_groups, 811 }; 812 813 /* 814 * Fetch CID from card. 815 */ 816 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr) 817 { 818 int err; 819 u32 max_current; 820 int retries = 10; 821 u32 pocr = ocr; 822 823 try_again: 824 if (!retries) { 825 ocr &= ~SD_OCR_S18R; 826 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host)); 827 } 828 829 /* 830 * Since we're changing the OCR value, we seem to 831 * need to tell some cards to go back to the idle 832 * state. We wait 1ms to give cards time to 833 * respond. 834 */ 835 mmc_go_idle(host); 836 837 /* 838 * If SD_SEND_IF_COND indicates an SD 2.0 839 * compliant card and we should set bit 30 840 * of the ocr to indicate that we can handle 841 * block-addressed SDHC cards. 842 */ 843 err = mmc_send_if_cond(host, ocr); 844 if (!err) 845 ocr |= SD_OCR_CCS; 846 847 /* 848 * If the host supports one of UHS-I modes, request the card 849 * to switch to 1.8V signaling level. If the card has failed 850 * repeatedly to switch however, skip this. 851 */ 852 if (retries && mmc_host_uhs(host)) 853 ocr |= SD_OCR_S18R; 854 855 /* 856 * If the host can supply more than 150mA at current voltage, 857 * XPC should be set to 1. 858 */ 859 max_current = sd_get_host_max_current(host); 860 if (max_current > 150) 861 ocr |= SD_OCR_XPC; 862 863 err = mmc_send_app_op_cond(host, ocr, rocr); 864 if (err) 865 return err; 866 867 /* 868 * In case the S18A bit is set in the response, let's start the signal 869 * voltage switch procedure. SPI mode doesn't support CMD11. 870 * Note that, according to the spec, the S18A bit is not valid unless 871 * the CCS bit is set as well. We deliberately deviate from the spec in 872 * regards to this, which allows UHS-I to be supported for SDSC cards. 873 */ 874 if (!mmc_host_is_spi(host) && (ocr & SD_OCR_S18R) && 875 rocr && (*rocr & SD_ROCR_S18A)) { 876 err = mmc_set_uhs_voltage(host, pocr); 877 if (err == -EAGAIN) { 878 retries--; 879 goto try_again; 880 } else if (err) { 881 retries = 0; 882 goto try_again; 883 } 884 } 885 886 err = mmc_send_cid(host, cid); 887 return err; 888 } 889 890 int mmc_sd_get_csd(struct mmc_card *card) 891 { 892 int err; 893 894 /* 895 * Fetch CSD from card. 896 */ 897 err = mmc_send_csd(card, card->raw_csd); 898 if (err) 899 return err; 900 901 err = mmc_decode_csd(card); 902 if (err) 903 return err; 904 905 return 0; 906 } 907 908 static int mmc_sd_get_ro(struct mmc_host *host) 909 { 910 int ro; 911 912 /* 913 * Some systems don't feature a write-protect pin and don't need one. 914 * E.g. because they only have micro-SD card slot. For those systems 915 * assume that the SD card is always read-write. 916 */ 917 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT) 918 return 0; 919 920 if (!host->ops->get_ro) 921 return -1; 922 923 ro = host->ops->get_ro(host); 924 925 return ro; 926 } 927 928 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card, 929 bool reinit) 930 { 931 int err; 932 933 if (!reinit) { 934 /* 935 * Fetch SCR from card. 936 */ 937 err = mmc_app_send_scr(card); 938 if (err) 939 return err; 940 941 err = mmc_decode_scr(card); 942 if (err) 943 return err; 944 945 /* 946 * Fetch and process SD Status register. 947 */ 948 err = mmc_read_ssr(card); 949 if (err) 950 return err; 951 952 /* Erase init depends on CSD and SSR */ 953 mmc_init_erase(card); 954 } 955 956 /* 957 * Fetch switch information from card. Note, sd3_bus_mode can change if 958 * voltage switch outcome changes, so do this always. 959 */ 960 err = mmc_read_switch(card); 961 if (err) 962 return err; 963 964 /* 965 * For SPI, enable CRC as appropriate. 966 * This CRC enable is located AFTER the reading of the 967 * card registers because some SDHC cards are not able 968 * to provide valid CRCs for non-512-byte blocks. 969 */ 970 if (mmc_host_is_spi(host)) { 971 err = mmc_spi_set_crc(host, use_spi_crc); 972 if (err) 973 return err; 974 } 975 976 /* 977 * Check if read-only switch is active. 978 */ 979 if (!reinit) { 980 int ro = mmc_sd_get_ro(host); 981 982 if (ro < 0) { 983 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n", 984 mmc_hostname(host)); 985 } else if (ro > 0) { 986 mmc_card_set_readonly(card); 987 } 988 } 989 990 return 0; 991 } 992 993 unsigned mmc_sd_get_max_clock(struct mmc_card *card) 994 { 995 unsigned max_dtr = (unsigned int)-1; 996 997 if (mmc_card_hs(card)) { 998 if (max_dtr > card->sw_caps.hs_max_dtr) 999 max_dtr = card->sw_caps.hs_max_dtr; 1000 } else if (max_dtr > card->csd.max_dtr) { 1001 max_dtr = card->csd.max_dtr; 1002 } 1003 1004 return max_dtr; 1005 } 1006 1007 static bool mmc_sd_card_using_v18(struct mmc_card *card) 1008 { 1009 /* 1010 * According to the SD spec., the Bus Speed Mode (function group 1) bits 1011 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus 1012 * they can be used to determine if the card has already switched to 1013 * 1.8V signaling. 1014 */ 1015 return card->sw_caps.sd3_bus_mode & 1016 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50); 1017 } 1018 1019 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset, 1020 u8 reg_data) 1021 { 1022 struct mmc_host *host = card->host; 1023 struct mmc_request mrq = {}; 1024 struct mmc_command cmd = {}; 1025 struct mmc_data data = {}; 1026 struct scatterlist sg; 1027 u8 *reg_buf; 1028 1029 reg_buf = kzalloc(512, GFP_KERNEL); 1030 if (!reg_buf) 1031 return -ENOMEM; 1032 1033 mrq.cmd = &cmd; 1034 mrq.data = &data; 1035 1036 /* 1037 * Arguments of CMD49: 1038 * [31:31] MIO (0 = memory). 1039 * [30:27] FNO (function number). 1040 * [26:26] MW - mask write mode (0 = disable). 1041 * [25:18] page number. 1042 * [17:9] offset address. 1043 * [8:0] length (0 = 1 byte). 1044 */ 1045 cmd.arg = fno << 27 | page << 18 | offset << 9; 1046 1047 /* The first byte in the buffer is the data to be written. */ 1048 reg_buf[0] = reg_data; 1049 1050 data.flags = MMC_DATA_WRITE; 1051 data.blksz = 512; 1052 data.blocks = 1; 1053 data.sg = &sg; 1054 data.sg_len = 1; 1055 sg_init_one(&sg, reg_buf, 512); 1056 1057 cmd.opcode = SD_WRITE_EXTR_SINGLE; 1058 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; 1059 1060 mmc_set_data_timeout(&data, card); 1061 mmc_wait_for_req(host, &mrq); 1062 1063 kfree(reg_buf); 1064 1065 /* 1066 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s 1067 * after the CMD49. Although, let's leave this to be managed by the 1068 * caller. 1069 */ 1070 1071 if (cmd.error) 1072 return cmd.error; 1073 if (data.error) 1074 return data.error; 1075 1076 return 0; 1077 } 1078 1079 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page, 1080 u16 offset, u16 len, u8 *reg_buf) 1081 { 1082 u32 cmd_args; 1083 1084 /* 1085 * Command arguments of CMD48: 1086 * [31:31] MIO (0 = memory). 1087 * [30:27] FNO (function number). 1088 * [26:26] reserved (0). 1089 * [25:18] page number. 1090 * [17:9] offset address. 1091 * [8:0] length (0 = 1 byte, 1ff = 512 bytes). 1092 */ 1093 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1); 1094 1095 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE, 1096 cmd_args, reg_buf, 512); 1097 } 1098 1099 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page, 1100 u16 offset) 1101 { 1102 int err; 1103 u8 *reg_buf; 1104 1105 reg_buf = kzalloc(512, GFP_KERNEL); 1106 if (!reg_buf) 1107 return -ENOMEM; 1108 1109 /* Read the extension register for power management function. */ 1110 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); 1111 if (err) { 1112 pr_warn("%s: error %d reading PM func of ext reg\n", 1113 mmc_hostname(card->host), err); 1114 goto out; 1115 } 1116 1117 /* PM revision consists of 4 bits. */ 1118 card->ext_power.rev = reg_buf[0] & 0xf; 1119 1120 /* Power Off Notification support at bit 4. */ 1121 if (reg_buf[1] & BIT(4)) 1122 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY; 1123 1124 /* Power Sustenance support at bit 5. */ 1125 if (reg_buf[1] & BIT(5)) 1126 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE; 1127 1128 /* Power Down Mode support at bit 6. */ 1129 if (reg_buf[1] & BIT(6)) 1130 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE; 1131 1132 card->ext_power.fno = fno; 1133 card->ext_power.page = page; 1134 card->ext_power.offset = offset; 1135 1136 out: 1137 kfree(reg_buf); 1138 return err; 1139 } 1140 1141 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page, 1142 u16 offset) 1143 { 1144 int err; 1145 u8 *reg_buf; 1146 1147 reg_buf = kzalloc(512, GFP_KERNEL); 1148 if (!reg_buf) 1149 return -ENOMEM; 1150 1151 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); 1152 if (err) { 1153 pr_warn("%s: error %d reading PERF func of ext reg\n", 1154 mmc_hostname(card->host), err); 1155 goto out; 1156 } 1157 1158 /* PERF revision. */ 1159 card->ext_perf.rev = reg_buf[0]; 1160 1161 /* FX_EVENT support at bit 0. */ 1162 if (reg_buf[1] & BIT(0)) 1163 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT; 1164 1165 /* Card initiated self-maintenance support at bit 0. */ 1166 if (reg_buf[2] & BIT(0)) 1167 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT; 1168 1169 /* Host initiated self-maintenance support at bit 1. */ 1170 if (reg_buf[2] & BIT(1)) 1171 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT; 1172 1173 /* Cache support at bit 0. */ 1174 if ((reg_buf[4] & BIT(0)) && !mmc_card_broken_sd_cache(card)) 1175 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE; 1176 1177 /* Command queue support indicated via queue depth bits (0 to 4). */ 1178 if (reg_buf[6] & 0x1f) 1179 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE; 1180 1181 card->ext_perf.fno = fno; 1182 card->ext_perf.page = page; 1183 card->ext_perf.offset = offset; 1184 1185 out: 1186 kfree(reg_buf); 1187 return err; 1188 } 1189 1190 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf, 1191 u16 *next_ext_addr) 1192 { 1193 u8 num_regs, fno, page; 1194 u16 sfc, offset, ext = *next_ext_addr; 1195 u32 reg_addr; 1196 1197 /* 1198 * Parse only one register set per extension, as that is sufficient to 1199 * support the standard functions. This means another 48 bytes in the 1200 * buffer must be available. 1201 */ 1202 if (ext + 48 > 512) 1203 return -EFAULT; 1204 1205 /* Standard Function Code */ 1206 memcpy(&sfc, &gen_info_buf[ext], 2); 1207 1208 /* Address to the next extension. */ 1209 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2); 1210 1211 /* Number of registers for this extension. */ 1212 num_regs = gen_info_buf[ext + 42]; 1213 1214 /* We support only one register per extension. */ 1215 if (num_regs != 1) 1216 return 0; 1217 1218 /* Extension register address. */ 1219 memcpy(®_addr, &gen_info_buf[ext + 44], 4); 1220 1221 /* 9 bits (0 to 8) contains the offset address. */ 1222 offset = reg_addr & 0x1ff; 1223 1224 /* 8 bits (9 to 16) contains the page number. */ 1225 page = reg_addr >> 9 & 0xff ; 1226 1227 /* 4 bits (18 to 21) contains the function number. */ 1228 fno = reg_addr >> 18 & 0xf; 1229 1230 /* Standard Function Code for power management. */ 1231 if (sfc == 0x1) 1232 return sd_parse_ext_reg_power(card, fno, page, offset); 1233 1234 /* Standard Function Code for performance enhancement. */ 1235 if (sfc == 0x2) 1236 return sd_parse_ext_reg_perf(card, fno, page, offset); 1237 1238 return 0; 1239 } 1240 1241 static int sd_read_ext_regs(struct mmc_card *card) 1242 { 1243 int err, i; 1244 u8 num_ext, *gen_info_buf; 1245 u16 rev, len, next_ext_addr; 1246 1247 if (mmc_host_is_spi(card->host)) 1248 return 0; 1249 1250 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT)) 1251 return 0; 1252 1253 gen_info_buf = kzalloc(512, GFP_KERNEL); 1254 if (!gen_info_buf) 1255 return -ENOMEM; 1256 1257 /* 1258 * Read 512 bytes of general info, which is found at function number 0, 1259 * at page 0 and with no offset. 1260 */ 1261 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf); 1262 if (err) { 1263 pr_err("%s: error %d reading general info of SD ext reg\n", 1264 mmc_hostname(card->host), err); 1265 goto out; 1266 } 1267 1268 /* General info structure revision. */ 1269 memcpy(&rev, &gen_info_buf[0], 2); 1270 1271 /* Length of general info in bytes. */ 1272 memcpy(&len, &gen_info_buf[2], 2); 1273 1274 /* Number of extensions to be find. */ 1275 num_ext = gen_info_buf[4]; 1276 1277 /* 1278 * We only support revision 0 and limit it to 512 bytes for simplicity. 1279 * No matter what, let's return zero to allow us to continue using the 1280 * card, even if we can't support the features from the SD function 1281 * extensions registers. 1282 */ 1283 if (rev != 0 || len > 512) { 1284 pr_warn("%s: non-supported SD ext reg layout\n", 1285 mmc_hostname(card->host)); 1286 goto out; 1287 } 1288 1289 /* 1290 * Parse the extension registers. The first extension should start 1291 * immediately after the general info header (16 bytes). 1292 */ 1293 next_ext_addr = 16; 1294 for (i = 0; i < num_ext; i++) { 1295 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr); 1296 if (err) { 1297 pr_err("%s: error %d parsing SD ext reg\n", 1298 mmc_hostname(card->host), err); 1299 goto out; 1300 } 1301 } 1302 1303 out: 1304 kfree(gen_info_buf); 1305 return err; 1306 } 1307 1308 static bool sd_cache_enabled(struct mmc_host *host) 1309 { 1310 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE; 1311 } 1312 1313 static int sd_flush_cache(struct mmc_host *host) 1314 { 1315 struct mmc_card *card = host->card; 1316 u8 *reg_buf, fno, page; 1317 u16 offset; 1318 int err; 1319 1320 if (!sd_cache_enabled(host)) 1321 return 0; 1322 1323 reg_buf = kzalloc(512, GFP_KERNEL); 1324 if (!reg_buf) 1325 return -ENOMEM; 1326 1327 /* 1328 * Set Flush Cache at bit 0 in the performance enhancement register at 1329 * 261 bytes offset. 1330 */ 1331 fno = card->ext_perf.fno; 1332 page = card->ext_perf.page; 1333 offset = card->ext_perf.offset + 261; 1334 1335 err = sd_write_ext_reg(card, fno, page, offset, BIT(0)); 1336 if (err) { 1337 pr_warn("%s: error %d writing Cache Flush bit\n", 1338 mmc_hostname(host), err); 1339 goto out; 1340 } 1341 1342 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1343 MMC_BUSY_EXTR_SINGLE); 1344 if (err) 1345 goto out; 1346 1347 /* 1348 * Read the Flush Cache bit. The card shall reset it, to confirm that 1349 * it's has completed the flushing of the cache. 1350 */ 1351 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf); 1352 if (err) { 1353 pr_warn("%s: error %d reading Cache Flush bit\n", 1354 mmc_hostname(host), err); 1355 goto out; 1356 } 1357 1358 if (reg_buf[0] & BIT(0)) 1359 err = -ETIMEDOUT; 1360 out: 1361 kfree(reg_buf); 1362 return err; 1363 } 1364 1365 static int sd_enable_cache(struct mmc_card *card) 1366 { 1367 u8 *reg_buf; 1368 int err; 1369 1370 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE; 1371 1372 reg_buf = kzalloc(512, GFP_KERNEL); 1373 if (!reg_buf) 1374 return -ENOMEM; 1375 1376 /* 1377 * Set Cache Enable at bit 0 in the performance enhancement register at 1378 * 260 bytes offset. 1379 */ 1380 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page, 1381 card->ext_perf.offset + 260, BIT(0)); 1382 if (err) { 1383 pr_warn("%s: error %d writing Cache Enable bit\n", 1384 mmc_hostname(card->host), err); 1385 goto out; 1386 } 1387 1388 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1389 MMC_BUSY_EXTR_SINGLE); 1390 if (!err) 1391 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE; 1392 1393 out: 1394 kfree(reg_buf); 1395 return err; 1396 } 1397 1398 /* 1399 * Handle the detection and initialisation of a card. 1400 * 1401 * In the case of a resume, "oldcard" will contain the card 1402 * we're trying to reinitialise. 1403 */ 1404 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr, 1405 struct mmc_card *oldcard) 1406 { 1407 struct mmc_card *card; 1408 int err; 1409 u32 cid[4]; 1410 u32 rocr = 0; 1411 bool v18_fixup_failed = false; 1412 1413 WARN_ON(!host->claimed); 1414 retry: 1415 err = mmc_sd_get_cid(host, ocr, cid, &rocr); 1416 if (err) 1417 return err; 1418 1419 if (oldcard) { 1420 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1421 pr_debug("%s: Perhaps the card was replaced\n", 1422 mmc_hostname(host)); 1423 return -ENOENT; 1424 } 1425 1426 card = oldcard; 1427 } else { 1428 /* 1429 * Allocate card structure. 1430 */ 1431 card = mmc_alloc_card(host, &sd_type); 1432 if (IS_ERR(card)) 1433 return PTR_ERR(card); 1434 1435 card->ocr = ocr; 1436 card->type = MMC_TYPE_SD; 1437 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1438 } 1439 1440 /* 1441 * Call the optional HC's init_card function to handle quirks. 1442 */ 1443 if (host->ops->init_card) 1444 host->ops->init_card(host, card); 1445 1446 /* 1447 * For native busses: get card RCA and quit open drain mode. 1448 */ 1449 if (!mmc_host_is_spi(host)) { 1450 err = mmc_send_relative_addr(host, &card->rca); 1451 if (err) 1452 goto free_card; 1453 } 1454 1455 if (!oldcard) { 1456 err = mmc_sd_get_csd(card); 1457 if (err) 1458 goto free_card; 1459 1460 mmc_decode_cid(card); 1461 } 1462 1463 /* 1464 * handling only for cards supporting DSR and hosts requesting 1465 * DSR configuration 1466 */ 1467 if (card->csd.dsr_imp && host->dsr_req) 1468 mmc_set_dsr(host); 1469 1470 /* 1471 * Select card, as all following commands rely on that. 1472 */ 1473 if (!mmc_host_is_spi(host)) { 1474 err = mmc_select_card(card); 1475 if (err) 1476 goto free_card; 1477 } 1478 1479 /* Apply quirks prior to card setup */ 1480 mmc_fixup_device(card, mmc_sd_fixups); 1481 1482 err = mmc_sd_setup_card(host, card, oldcard != NULL); 1483 if (err) 1484 goto free_card; 1485 1486 /* 1487 * If the card has not been power cycled, it may still be using 1.8V 1488 * signaling. Detect that situation and try to initialize a UHS-I (1.8V) 1489 * transfer mode. 1490 */ 1491 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) && 1492 mmc_sd_card_using_v18(card) && 1493 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) { 1494 if (mmc_host_set_uhs_voltage(host) || 1495 mmc_sd_init_uhs_card(card)) { 1496 v18_fixup_failed = true; 1497 mmc_power_cycle(host, ocr); 1498 if (!oldcard) 1499 mmc_remove_card(card); 1500 goto retry; 1501 } 1502 goto cont; 1503 } 1504 1505 /* Initialization sequence for UHS-I cards */ 1506 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) { 1507 err = mmc_sd_init_uhs_card(card); 1508 if (err) 1509 goto free_card; 1510 } else { 1511 /* 1512 * Attempt to change to high-speed (if supported) 1513 */ 1514 err = mmc_sd_switch_hs(card); 1515 if (err > 0) 1516 mmc_set_timing(card->host, MMC_TIMING_SD_HS); 1517 else if (err) 1518 goto free_card; 1519 1520 /* 1521 * Set bus speed. 1522 */ 1523 mmc_set_clock(host, mmc_sd_get_max_clock(card)); 1524 1525 if (host->ios.timing == MMC_TIMING_SD_HS && 1526 host->ops->prepare_sd_hs_tuning) { 1527 err = host->ops->prepare_sd_hs_tuning(host, card); 1528 if (err) 1529 goto free_card; 1530 } 1531 1532 /* 1533 * Switch to wider bus (if supported). 1534 */ 1535 if ((host->caps & MMC_CAP_4_BIT_DATA) && 1536 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { 1537 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 1538 if (err) 1539 goto free_card; 1540 1541 mmc_set_bus_width(host, MMC_BUS_WIDTH_4); 1542 } 1543 1544 if (host->ios.timing == MMC_TIMING_SD_HS && 1545 host->ops->execute_sd_hs_tuning) { 1546 err = host->ops->execute_sd_hs_tuning(host, card); 1547 if (err) 1548 goto free_card; 1549 } 1550 } 1551 cont: 1552 if (!oldcard) { 1553 /* Read/parse the extension registers. */ 1554 err = sd_read_ext_regs(card); 1555 if (err) 1556 goto free_card; 1557 } 1558 1559 /* Enable internal SD cache if supported. */ 1560 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) { 1561 err = sd_enable_cache(card); 1562 if (err) 1563 goto free_card; 1564 } 1565 1566 if (host->cqe_ops && !host->cqe_enabled) { 1567 err = host->cqe_ops->cqe_enable(host, card); 1568 if (!err) { 1569 host->cqe_enabled = true; 1570 host->hsq_enabled = true; 1571 pr_info("%s: Host Software Queue enabled\n", 1572 mmc_hostname(host)); 1573 } 1574 } 1575 1576 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1577 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1578 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1579 mmc_hostname(host)); 1580 err = -EINVAL; 1581 goto free_card; 1582 } 1583 1584 host->card = card; 1585 return 0; 1586 1587 free_card: 1588 if (!oldcard) 1589 mmc_remove_card(card); 1590 1591 return err; 1592 } 1593 1594 /* 1595 * Host is being removed. Free up the current card. 1596 */ 1597 static void mmc_sd_remove(struct mmc_host *host) 1598 { 1599 mmc_remove_card(host->card); 1600 host->card = NULL; 1601 } 1602 1603 /* 1604 * Card detection - card is alive. 1605 */ 1606 static int mmc_sd_alive(struct mmc_host *host) 1607 { 1608 return mmc_send_status(host->card, NULL); 1609 } 1610 1611 /* 1612 * Card detection callback from host. 1613 */ 1614 static void mmc_sd_detect(struct mmc_host *host) 1615 { 1616 int err; 1617 1618 mmc_get_card(host->card, NULL); 1619 1620 /* 1621 * Just check if our card has been removed. 1622 */ 1623 err = _mmc_detect_card_removed(host); 1624 1625 mmc_put_card(host->card, NULL); 1626 1627 if (err) { 1628 mmc_sd_remove(host); 1629 1630 mmc_claim_host(host); 1631 mmc_detach_bus(host); 1632 mmc_power_off(host); 1633 mmc_release_host(host); 1634 } 1635 } 1636 1637 static int sd_can_poweroff_notify(struct mmc_card *card) 1638 { 1639 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY; 1640 } 1641 1642 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy) 1643 { 1644 struct sd_busy_data *data = cb_data; 1645 struct mmc_card *card = data->card; 1646 int err; 1647 1648 /* 1649 * Read the status register for the power management function. It's at 1650 * one byte offset and is one byte long. The Power Off Notification 1651 * Ready is bit 0. 1652 */ 1653 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page, 1654 card->ext_power.offset + 1, 1, data->reg_buf); 1655 if (err) { 1656 pr_warn("%s: error %d reading status reg of PM func\n", 1657 mmc_hostname(card->host), err); 1658 return err; 1659 } 1660 1661 *busy = !(data->reg_buf[0] & BIT(0)); 1662 return 0; 1663 } 1664 1665 static int sd_poweroff_notify(struct mmc_card *card) 1666 { 1667 struct sd_busy_data cb_data; 1668 u8 *reg_buf; 1669 int err; 1670 1671 reg_buf = kzalloc(512, GFP_KERNEL); 1672 if (!reg_buf) 1673 return -ENOMEM; 1674 1675 /* 1676 * Set the Power Off Notification bit in the power management settings 1677 * register at 2 bytes offset. 1678 */ 1679 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page, 1680 card->ext_power.offset + 2, BIT(0)); 1681 if (err) { 1682 pr_warn("%s: error %d writing Power Off Notify bit\n", 1683 mmc_hostname(card->host), err); 1684 goto out; 1685 } 1686 1687 /* Find out when the command is completed. */ 1688 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1689 MMC_BUSY_EXTR_SINGLE); 1690 if (err) 1691 goto out; 1692 1693 cb_data.card = card; 1694 cb_data.reg_buf = reg_buf; 1695 err = __mmc_poll_for_busy(card->host, 0, SD_POWEROFF_NOTIFY_TIMEOUT_MS, 1696 &sd_busy_poweroff_notify_cb, &cb_data); 1697 1698 out: 1699 kfree(reg_buf); 1700 return err; 1701 } 1702 1703 static int _mmc_sd_suspend(struct mmc_host *host) 1704 { 1705 struct mmc_card *card = host->card; 1706 int err = 0; 1707 1708 mmc_claim_host(host); 1709 1710 if (mmc_card_suspended(card)) 1711 goto out; 1712 1713 if (sd_can_poweroff_notify(card)) 1714 err = sd_poweroff_notify(card); 1715 else if (!mmc_host_is_spi(host)) 1716 err = mmc_deselect_cards(host); 1717 1718 if (!err) { 1719 mmc_power_off(host); 1720 mmc_card_set_suspended(card); 1721 } 1722 1723 out: 1724 mmc_release_host(host); 1725 return err; 1726 } 1727 1728 /* 1729 * Callback for suspend 1730 */ 1731 static int mmc_sd_suspend(struct mmc_host *host) 1732 { 1733 int err; 1734 1735 err = _mmc_sd_suspend(host); 1736 if (!err) { 1737 pm_runtime_disable(&host->card->dev); 1738 pm_runtime_set_suspended(&host->card->dev); 1739 } 1740 1741 return err; 1742 } 1743 1744 /* 1745 * This function tries to determine if the same card is still present 1746 * and, if so, restore all state to it. 1747 */ 1748 static int _mmc_sd_resume(struct mmc_host *host) 1749 { 1750 int err = 0; 1751 1752 mmc_claim_host(host); 1753 1754 if (!mmc_card_suspended(host->card)) 1755 goto out; 1756 1757 mmc_power_up(host, host->card->ocr); 1758 err = mmc_sd_init_card(host, host->card->ocr, host->card); 1759 mmc_card_clr_suspended(host->card); 1760 1761 out: 1762 mmc_release_host(host); 1763 return err; 1764 } 1765 1766 /* 1767 * Callback for resume 1768 */ 1769 static int mmc_sd_resume(struct mmc_host *host) 1770 { 1771 pm_runtime_enable(&host->card->dev); 1772 return 0; 1773 } 1774 1775 /* 1776 * Callback for runtime_suspend. 1777 */ 1778 static int mmc_sd_runtime_suspend(struct mmc_host *host) 1779 { 1780 int err; 1781 1782 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 1783 return 0; 1784 1785 err = _mmc_sd_suspend(host); 1786 if (err) 1787 pr_err("%s: error %d doing aggressive suspend\n", 1788 mmc_hostname(host), err); 1789 1790 return err; 1791 } 1792 1793 /* 1794 * Callback for runtime_resume. 1795 */ 1796 static int mmc_sd_runtime_resume(struct mmc_host *host) 1797 { 1798 int err; 1799 1800 err = _mmc_sd_resume(host); 1801 if (err && err != -ENOMEDIUM) 1802 pr_err("%s: error %d doing runtime resume\n", 1803 mmc_hostname(host), err); 1804 1805 return 0; 1806 } 1807 1808 static int mmc_sd_hw_reset(struct mmc_host *host) 1809 { 1810 mmc_power_cycle(host, host->card->ocr); 1811 return mmc_sd_init_card(host, host->card->ocr, host->card); 1812 } 1813 1814 static const struct mmc_bus_ops mmc_sd_ops = { 1815 .remove = mmc_sd_remove, 1816 .detect = mmc_sd_detect, 1817 .runtime_suspend = mmc_sd_runtime_suspend, 1818 .runtime_resume = mmc_sd_runtime_resume, 1819 .suspend = mmc_sd_suspend, 1820 .resume = mmc_sd_resume, 1821 .alive = mmc_sd_alive, 1822 .shutdown = mmc_sd_suspend, 1823 .hw_reset = mmc_sd_hw_reset, 1824 .cache_enabled = sd_cache_enabled, 1825 .flush_cache = sd_flush_cache, 1826 }; 1827 1828 /* 1829 * Starting point for SD card init. 1830 */ 1831 int mmc_attach_sd(struct mmc_host *host) 1832 { 1833 int err; 1834 u32 ocr, rocr; 1835 1836 WARN_ON(!host->claimed); 1837 1838 err = mmc_send_app_op_cond(host, 0, &ocr); 1839 if (err) 1840 return err; 1841 1842 mmc_attach_bus(host, &mmc_sd_ops); 1843 if (host->ocr_avail_sd) 1844 host->ocr_avail = host->ocr_avail_sd; 1845 1846 /* 1847 * We need to get OCR a different way for SPI. 1848 */ 1849 if (mmc_host_is_spi(host)) { 1850 mmc_go_idle(host); 1851 1852 err = mmc_spi_read_ocr(host, 0, &ocr); 1853 if (err) 1854 goto err; 1855 } 1856 1857 /* 1858 * Some SD cards claims an out of spec VDD voltage range. Let's treat 1859 * these bits as being in-valid and especially also bit7. 1860 */ 1861 ocr &= ~0x7FFF; 1862 1863 rocr = mmc_select_voltage(host, ocr); 1864 1865 /* 1866 * Can we support the voltage(s) of the card(s)? 1867 */ 1868 if (!rocr) { 1869 err = -EINVAL; 1870 goto err; 1871 } 1872 1873 /* 1874 * Detect and init the card. 1875 */ 1876 err = mmc_sd_init_card(host, rocr, NULL); 1877 if (err) 1878 goto err; 1879 1880 mmc_release_host(host); 1881 err = mmc_add_card(host->card); 1882 if (err) 1883 goto remove_card; 1884 1885 mmc_claim_host(host); 1886 return 0; 1887 1888 remove_card: 1889 mmc_remove_card(host->card); 1890 host->card = NULL; 1891 mmc_claim_host(host); 1892 err: 1893 mmc_detach_bus(host); 1894 1895 pr_err("%s: error %d whilst initialising SD card\n", 1896 mmc_hostname(host), err); 1897 1898 return err; 1899 } 1900