1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2003 Russell King, All Rights Reserved. 4 * Copyright 2006-2007 Pierre Ossman 5 */ 6 #include <linux/slab.h> 7 #include <linux/module.h> 8 #include <linux/blkdev.h> 9 #include <linux/freezer.h> 10 #include <linux/kthread.h> 11 #include <linux/scatterlist.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/backing-dev.h> 14 15 #include <linux/mmc/card.h> 16 #include <linux/mmc/host.h> 17 18 #include "queue.h" 19 #include "block.h" 20 #include "core.h" 21 #include "card.h" 22 #include "host.h" 23 24 static inline bool mmc_cqe_dcmd_busy(struct mmc_queue *mq) 25 { 26 /* Allow only 1 DCMD at a time */ 27 return mq->in_flight[MMC_ISSUE_DCMD]; 28 } 29 30 void mmc_cqe_check_busy(struct mmc_queue *mq) 31 { 32 if ((mq->cqe_busy & MMC_CQE_DCMD_BUSY) && !mmc_cqe_dcmd_busy(mq)) 33 mq->cqe_busy &= ~MMC_CQE_DCMD_BUSY; 34 35 mq->cqe_busy &= ~MMC_CQE_QUEUE_FULL; 36 } 37 38 static inline bool mmc_cqe_can_dcmd(struct mmc_host *host) 39 { 40 return host->caps2 & MMC_CAP2_CQE_DCMD; 41 } 42 43 static enum mmc_issue_type mmc_cqe_issue_type(struct mmc_host *host, 44 struct request *req) 45 { 46 switch (req_op(req)) { 47 case REQ_OP_DRV_IN: 48 case REQ_OP_DRV_OUT: 49 case REQ_OP_DISCARD: 50 case REQ_OP_SECURE_ERASE: 51 return MMC_ISSUE_SYNC; 52 case REQ_OP_FLUSH: 53 return mmc_cqe_can_dcmd(host) ? MMC_ISSUE_DCMD : MMC_ISSUE_SYNC; 54 default: 55 return MMC_ISSUE_ASYNC; 56 } 57 } 58 59 enum mmc_issue_type mmc_issue_type(struct mmc_queue *mq, struct request *req) 60 { 61 struct mmc_host *host = mq->card->host; 62 63 if (mq->use_cqe) 64 return mmc_cqe_issue_type(host, req); 65 66 if (req_op(req) == REQ_OP_READ || req_op(req) == REQ_OP_WRITE) 67 return MMC_ISSUE_ASYNC; 68 69 return MMC_ISSUE_SYNC; 70 } 71 72 static void __mmc_cqe_recovery_notifier(struct mmc_queue *mq) 73 { 74 if (!mq->recovery_needed) { 75 mq->recovery_needed = true; 76 schedule_work(&mq->recovery_work); 77 } 78 } 79 80 void mmc_cqe_recovery_notifier(struct mmc_request *mrq) 81 { 82 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 83 brq.mrq); 84 struct request *req = mmc_queue_req_to_req(mqrq); 85 struct request_queue *q = req->q; 86 struct mmc_queue *mq = q->queuedata; 87 unsigned long flags; 88 89 spin_lock_irqsave(&mq->lock, flags); 90 __mmc_cqe_recovery_notifier(mq); 91 spin_unlock_irqrestore(&mq->lock, flags); 92 } 93 94 static enum blk_eh_timer_return mmc_cqe_timed_out(struct request *req) 95 { 96 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 97 struct mmc_request *mrq = &mqrq->brq.mrq; 98 struct mmc_queue *mq = req->q->queuedata; 99 struct mmc_host *host = mq->card->host; 100 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 101 bool recovery_needed = false; 102 103 switch (issue_type) { 104 case MMC_ISSUE_ASYNC: 105 case MMC_ISSUE_DCMD: 106 if (host->cqe_ops->cqe_timeout(host, mrq, &recovery_needed)) { 107 if (recovery_needed) 108 __mmc_cqe_recovery_notifier(mq); 109 return BLK_EH_RESET_TIMER; 110 } 111 /* No timeout (XXX: huh? comment doesn't make much sense) */ 112 blk_mq_complete_request(req); 113 return BLK_EH_DONE; 114 default: 115 /* Timeout is handled by mmc core */ 116 return BLK_EH_RESET_TIMER; 117 } 118 } 119 120 static enum blk_eh_timer_return mmc_mq_timed_out(struct request *req, 121 bool reserved) 122 { 123 struct request_queue *q = req->q; 124 struct mmc_queue *mq = q->queuedata; 125 unsigned long flags; 126 int ret; 127 128 spin_lock_irqsave(&mq->lock, flags); 129 130 if (mq->recovery_needed || !mq->use_cqe) 131 ret = BLK_EH_RESET_TIMER; 132 else 133 ret = mmc_cqe_timed_out(req); 134 135 spin_unlock_irqrestore(&mq->lock, flags); 136 137 return ret; 138 } 139 140 static void mmc_mq_recovery_handler(struct work_struct *work) 141 { 142 struct mmc_queue *mq = container_of(work, struct mmc_queue, 143 recovery_work); 144 struct request_queue *q = mq->queue; 145 146 mmc_get_card(mq->card, &mq->ctx); 147 148 mq->in_recovery = true; 149 150 if (mq->use_cqe) 151 mmc_blk_cqe_recovery(mq); 152 else 153 mmc_blk_mq_recovery(mq); 154 155 mq->in_recovery = false; 156 157 spin_lock_irq(&mq->lock); 158 mq->recovery_needed = false; 159 spin_unlock_irq(&mq->lock); 160 161 mmc_put_card(mq->card, &mq->ctx); 162 163 blk_mq_run_hw_queues(q, true); 164 } 165 166 static struct scatterlist *mmc_alloc_sg(int sg_len, gfp_t gfp) 167 { 168 struct scatterlist *sg; 169 170 sg = kmalloc_array(sg_len, sizeof(*sg), gfp); 171 if (sg) 172 sg_init_table(sg, sg_len); 173 174 return sg; 175 } 176 177 static void mmc_queue_setup_discard(struct request_queue *q, 178 struct mmc_card *card) 179 { 180 unsigned max_discard; 181 182 max_discard = mmc_calc_max_discard(card); 183 if (!max_discard) 184 return; 185 186 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 187 blk_queue_max_discard_sectors(q, max_discard); 188 q->limits.discard_granularity = card->pref_erase << 9; 189 /* granularity must not be greater than max. discard */ 190 if (card->pref_erase > max_discard) 191 q->limits.discard_granularity = 0; 192 if (mmc_can_secure_erase_trim(card)) 193 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 194 } 195 196 /** 197 * mmc_init_request() - initialize the MMC-specific per-request data 198 * @q: the request queue 199 * @req: the request 200 * @gfp: memory allocation policy 201 */ 202 static int __mmc_init_request(struct mmc_queue *mq, struct request *req, 203 gfp_t gfp) 204 { 205 struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req); 206 struct mmc_card *card = mq->card; 207 struct mmc_host *host = card->host; 208 209 mq_rq->sg = mmc_alloc_sg(host->max_segs, gfp); 210 if (!mq_rq->sg) 211 return -ENOMEM; 212 213 return 0; 214 } 215 216 static void mmc_exit_request(struct request_queue *q, struct request *req) 217 { 218 struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req); 219 220 kfree(mq_rq->sg); 221 mq_rq->sg = NULL; 222 } 223 224 static int mmc_mq_init_request(struct blk_mq_tag_set *set, struct request *req, 225 unsigned int hctx_idx, unsigned int numa_node) 226 { 227 return __mmc_init_request(set->driver_data, req, GFP_KERNEL); 228 } 229 230 static void mmc_mq_exit_request(struct blk_mq_tag_set *set, struct request *req, 231 unsigned int hctx_idx) 232 { 233 struct mmc_queue *mq = set->driver_data; 234 235 mmc_exit_request(mq->queue, req); 236 } 237 238 static blk_status_t mmc_mq_queue_rq(struct blk_mq_hw_ctx *hctx, 239 const struct blk_mq_queue_data *bd) 240 { 241 struct request *req = bd->rq; 242 struct request_queue *q = req->q; 243 struct mmc_queue *mq = q->queuedata; 244 struct mmc_card *card = mq->card; 245 struct mmc_host *host = card->host; 246 enum mmc_issue_type issue_type; 247 enum mmc_issued issued; 248 bool get_card, cqe_retune_ok; 249 int ret; 250 251 if (mmc_card_removed(mq->card)) { 252 req->rq_flags |= RQF_QUIET; 253 return BLK_STS_IOERR; 254 } 255 256 issue_type = mmc_issue_type(mq, req); 257 258 spin_lock_irq(&mq->lock); 259 260 if (mq->recovery_needed || mq->busy) { 261 spin_unlock_irq(&mq->lock); 262 return BLK_STS_RESOURCE; 263 } 264 265 switch (issue_type) { 266 case MMC_ISSUE_DCMD: 267 if (mmc_cqe_dcmd_busy(mq)) { 268 mq->cqe_busy |= MMC_CQE_DCMD_BUSY; 269 spin_unlock_irq(&mq->lock); 270 return BLK_STS_RESOURCE; 271 } 272 break; 273 case MMC_ISSUE_ASYNC: 274 break; 275 default: 276 /* 277 * Timeouts are handled by mmc core, and we don't have a host 278 * API to abort requests, so we can't handle the timeout anyway. 279 * However, when the timeout happens, blk_mq_complete_request() 280 * no longer works (to stop the request disappearing under us). 281 * To avoid racing with that, set a large timeout. 282 */ 283 req->timeout = 600 * HZ; 284 break; 285 } 286 287 /* Parallel dispatch of requests is not supported at the moment */ 288 mq->busy = true; 289 290 mq->in_flight[issue_type] += 1; 291 get_card = (mmc_tot_in_flight(mq) == 1); 292 cqe_retune_ok = (mmc_cqe_qcnt(mq) == 1); 293 294 spin_unlock_irq(&mq->lock); 295 296 if (!(req->rq_flags & RQF_DONTPREP)) { 297 req_to_mmc_queue_req(req)->retries = 0; 298 req->rq_flags |= RQF_DONTPREP; 299 } 300 301 if (get_card) 302 mmc_get_card(card, &mq->ctx); 303 304 if (mq->use_cqe) { 305 host->retune_now = host->need_retune && cqe_retune_ok && 306 !host->hold_retune; 307 } 308 309 blk_mq_start_request(req); 310 311 issued = mmc_blk_mq_issue_rq(mq, req); 312 313 switch (issued) { 314 case MMC_REQ_BUSY: 315 ret = BLK_STS_RESOURCE; 316 break; 317 case MMC_REQ_FAILED_TO_START: 318 ret = BLK_STS_IOERR; 319 break; 320 default: 321 ret = BLK_STS_OK; 322 break; 323 } 324 325 if (issued != MMC_REQ_STARTED) { 326 bool put_card = false; 327 328 spin_lock_irq(&mq->lock); 329 mq->in_flight[issue_type] -= 1; 330 if (mmc_tot_in_flight(mq) == 0) 331 put_card = true; 332 mq->busy = false; 333 spin_unlock_irq(&mq->lock); 334 if (put_card) 335 mmc_put_card(card, &mq->ctx); 336 } else { 337 WRITE_ONCE(mq->busy, false); 338 } 339 340 return ret; 341 } 342 343 static const struct blk_mq_ops mmc_mq_ops = { 344 .queue_rq = mmc_mq_queue_rq, 345 .init_request = mmc_mq_init_request, 346 .exit_request = mmc_mq_exit_request, 347 .complete = mmc_blk_mq_complete, 348 .timeout = mmc_mq_timed_out, 349 }; 350 351 static void mmc_setup_queue(struct mmc_queue *mq, struct mmc_card *card) 352 { 353 struct mmc_host *host = card->host; 354 unsigned block_size = 512; 355 356 blk_queue_flag_set(QUEUE_FLAG_NONROT, mq->queue); 357 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, mq->queue); 358 if (mmc_can_erase(card)) 359 mmc_queue_setup_discard(mq->queue, card); 360 361 if (!mmc_dev(host)->dma_mask || !*mmc_dev(host)->dma_mask) 362 blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_HIGH); 363 blk_queue_max_hw_sectors(mq->queue, 364 min(host->max_blk_count, host->max_req_size / 512)); 365 blk_queue_max_segments(mq->queue, host->max_segs); 366 367 if (mmc_card_mmc(card)) 368 block_size = card->ext_csd.data_sector_size; 369 370 blk_queue_logical_block_size(mq->queue, block_size); 371 blk_queue_max_segment_size(mq->queue, 372 round_down(host->max_seg_size, block_size)); 373 374 dma_set_max_seg_size(mmc_dev(host), queue_max_segment_size(mq->queue)); 375 376 INIT_WORK(&mq->recovery_work, mmc_mq_recovery_handler); 377 INIT_WORK(&mq->complete_work, mmc_blk_mq_complete_work); 378 379 mutex_init(&mq->complete_lock); 380 381 init_waitqueue_head(&mq->wait); 382 } 383 384 /* Set queue depth to get a reasonable value for q->nr_requests */ 385 #define MMC_QUEUE_DEPTH 64 386 387 /** 388 * mmc_init_queue - initialise a queue structure. 389 * @mq: mmc queue 390 * @card: mmc card to attach this queue 391 * 392 * Initialise a MMC card request queue. 393 */ 394 int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card) 395 { 396 struct mmc_host *host = card->host; 397 int ret; 398 399 mq->card = card; 400 mq->use_cqe = host->cqe_enabled; 401 402 spin_lock_init(&mq->lock); 403 404 memset(&mq->tag_set, 0, sizeof(mq->tag_set)); 405 mq->tag_set.ops = &mmc_mq_ops; 406 /* 407 * The queue depth for CQE must match the hardware because the request 408 * tag is used to index the hardware queue. 409 */ 410 if (mq->use_cqe) 411 mq->tag_set.queue_depth = 412 min_t(int, card->ext_csd.cmdq_depth, host->cqe_qdepth); 413 else 414 mq->tag_set.queue_depth = MMC_QUEUE_DEPTH; 415 mq->tag_set.numa_node = NUMA_NO_NODE; 416 mq->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 417 mq->tag_set.nr_hw_queues = 1; 418 mq->tag_set.cmd_size = sizeof(struct mmc_queue_req); 419 mq->tag_set.driver_data = mq; 420 421 ret = blk_mq_alloc_tag_set(&mq->tag_set); 422 if (ret) 423 return ret; 424 425 mq->queue = blk_mq_init_queue(&mq->tag_set); 426 if (IS_ERR(mq->queue)) { 427 ret = PTR_ERR(mq->queue); 428 goto free_tag_set; 429 } 430 431 if (mmc_host_is_spi(host) && host->use_spi_crc) 432 mq->queue->backing_dev_info->capabilities |= 433 BDI_CAP_STABLE_WRITES; 434 435 mq->queue->queuedata = mq; 436 blk_queue_rq_timeout(mq->queue, 60 * HZ); 437 438 mmc_setup_queue(mq, card); 439 return 0; 440 441 free_tag_set: 442 blk_mq_free_tag_set(&mq->tag_set); 443 return ret; 444 } 445 446 void mmc_queue_suspend(struct mmc_queue *mq) 447 { 448 blk_mq_quiesce_queue(mq->queue); 449 450 /* 451 * The host remains claimed while there are outstanding requests, so 452 * simply claiming and releasing here ensures there are none. 453 */ 454 mmc_claim_host(mq->card->host); 455 mmc_release_host(mq->card->host); 456 } 457 458 void mmc_queue_resume(struct mmc_queue *mq) 459 { 460 blk_mq_unquiesce_queue(mq->queue); 461 } 462 463 void mmc_cleanup_queue(struct mmc_queue *mq) 464 { 465 struct request_queue *q = mq->queue; 466 467 /* 468 * The legacy code handled the possibility of being suspended, 469 * so do that here too. 470 */ 471 if (blk_queue_quiesced(q)) 472 blk_mq_unquiesce_queue(q); 473 474 blk_cleanup_queue(q); 475 blk_mq_free_tag_set(&mq->tag_set); 476 477 /* 478 * A request can be completed before the next request, potentially 479 * leaving a complete_work with nothing to do. Such a work item might 480 * still be queued at this point. Flush it. 481 */ 482 flush_work(&mq->complete_work); 483 484 mq->card = NULL; 485 } 486 487 /* 488 * Prepare the sg list(s) to be handed of to the host driver 489 */ 490 unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq) 491 { 492 struct request *req = mmc_queue_req_to_req(mqrq); 493 494 return blk_rq_map_sg(mq->queue, req, mqrq->sg); 495 } 496