xref: /openbmc/linux/drivers/mmc/core/queue.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2003 Russell King, All Rights Reserved.
4  *  Copyright 2006-2007 Pierre Ossman
5  */
6 #include <linux/slab.h>
7 #include <linux/module.h>
8 #include <linux/blkdev.h>
9 #include <linux/freezer.h>
10 #include <linux/scatterlist.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/backing-dev.h>
13 
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/host.h>
16 
17 #include "queue.h"
18 #include "block.h"
19 #include "core.h"
20 #include "card.h"
21 #include "crypto.h"
22 #include "host.h"
23 
24 #define MMC_DMA_MAP_MERGE_SEGMENTS	512
25 
26 static inline bool mmc_cqe_dcmd_busy(struct mmc_queue *mq)
27 {
28 	/* Allow only 1 DCMD at a time */
29 	return mq->in_flight[MMC_ISSUE_DCMD];
30 }
31 
32 void mmc_cqe_check_busy(struct mmc_queue *mq)
33 {
34 	if ((mq->cqe_busy & MMC_CQE_DCMD_BUSY) && !mmc_cqe_dcmd_busy(mq))
35 		mq->cqe_busy &= ~MMC_CQE_DCMD_BUSY;
36 }
37 
38 static inline bool mmc_cqe_can_dcmd(struct mmc_host *host)
39 {
40 	return host->caps2 & MMC_CAP2_CQE_DCMD;
41 }
42 
43 static enum mmc_issue_type mmc_cqe_issue_type(struct mmc_host *host,
44 					      struct request *req)
45 {
46 	switch (req_op(req)) {
47 	case REQ_OP_DRV_IN:
48 	case REQ_OP_DRV_OUT:
49 	case REQ_OP_DISCARD:
50 	case REQ_OP_SECURE_ERASE:
51 		return MMC_ISSUE_SYNC;
52 	case REQ_OP_FLUSH:
53 		return mmc_cqe_can_dcmd(host) ? MMC_ISSUE_DCMD : MMC_ISSUE_SYNC;
54 	default:
55 		return MMC_ISSUE_ASYNC;
56 	}
57 }
58 
59 enum mmc_issue_type mmc_issue_type(struct mmc_queue *mq, struct request *req)
60 {
61 	struct mmc_host *host = mq->card->host;
62 
63 	if (host->cqe_enabled && !host->hsq_enabled)
64 		return mmc_cqe_issue_type(host, req);
65 
66 	if (req_op(req) == REQ_OP_READ || req_op(req) == REQ_OP_WRITE)
67 		return MMC_ISSUE_ASYNC;
68 
69 	return MMC_ISSUE_SYNC;
70 }
71 
72 static void __mmc_cqe_recovery_notifier(struct mmc_queue *mq)
73 {
74 	if (!mq->recovery_needed) {
75 		mq->recovery_needed = true;
76 		schedule_work(&mq->recovery_work);
77 	}
78 }
79 
80 void mmc_cqe_recovery_notifier(struct mmc_request *mrq)
81 {
82 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
83 						  brq.mrq);
84 	struct request *req = mmc_queue_req_to_req(mqrq);
85 	struct request_queue *q = req->q;
86 	struct mmc_queue *mq = q->queuedata;
87 	unsigned long flags;
88 
89 	spin_lock_irqsave(&mq->lock, flags);
90 	__mmc_cqe_recovery_notifier(mq);
91 	spin_unlock_irqrestore(&mq->lock, flags);
92 }
93 
94 static enum blk_eh_timer_return mmc_cqe_timed_out(struct request *req)
95 {
96 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
97 	struct mmc_request *mrq = &mqrq->brq.mrq;
98 	struct mmc_queue *mq = req->q->queuedata;
99 	struct mmc_host *host = mq->card->host;
100 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
101 	bool recovery_needed = false;
102 
103 	switch (issue_type) {
104 	case MMC_ISSUE_ASYNC:
105 	case MMC_ISSUE_DCMD:
106 		if (host->cqe_ops->cqe_timeout(host, mrq, &recovery_needed)) {
107 			if (recovery_needed)
108 				mmc_cqe_recovery_notifier(mrq);
109 			return BLK_EH_RESET_TIMER;
110 		}
111 		/* The request has gone already */
112 		return BLK_EH_DONE;
113 	default:
114 		/* Timeout is handled by mmc core */
115 		return BLK_EH_RESET_TIMER;
116 	}
117 }
118 
119 static enum blk_eh_timer_return mmc_mq_timed_out(struct request *req,
120 						 bool reserved)
121 {
122 	struct request_queue *q = req->q;
123 	struct mmc_queue *mq = q->queuedata;
124 	struct mmc_card *card = mq->card;
125 	struct mmc_host *host = card->host;
126 	unsigned long flags;
127 	bool ignore_tout;
128 
129 	spin_lock_irqsave(&mq->lock, flags);
130 	ignore_tout = mq->recovery_needed || !host->cqe_enabled || host->hsq_enabled;
131 	spin_unlock_irqrestore(&mq->lock, flags);
132 
133 	return ignore_tout ? BLK_EH_RESET_TIMER : mmc_cqe_timed_out(req);
134 }
135 
136 static void mmc_mq_recovery_handler(struct work_struct *work)
137 {
138 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
139 					    recovery_work);
140 	struct request_queue *q = mq->queue;
141 	struct mmc_host *host = mq->card->host;
142 
143 	mmc_get_card(mq->card, &mq->ctx);
144 
145 	mq->in_recovery = true;
146 
147 	if (host->cqe_enabled && !host->hsq_enabled)
148 		mmc_blk_cqe_recovery(mq);
149 	else
150 		mmc_blk_mq_recovery(mq);
151 
152 	mq->in_recovery = false;
153 
154 	spin_lock_irq(&mq->lock);
155 	mq->recovery_needed = false;
156 	spin_unlock_irq(&mq->lock);
157 
158 	if (host->hsq_enabled)
159 		host->cqe_ops->cqe_recovery_finish(host);
160 
161 	mmc_put_card(mq->card, &mq->ctx);
162 
163 	blk_mq_run_hw_queues(q, true);
164 }
165 
166 static struct scatterlist *mmc_alloc_sg(unsigned short sg_len, gfp_t gfp)
167 {
168 	struct scatterlist *sg;
169 
170 	sg = kmalloc_array(sg_len, sizeof(*sg), gfp);
171 	if (sg)
172 		sg_init_table(sg, sg_len);
173 
174 	return sg;
175 }
176 
177 static void mmc_queue_setup_discard(struct request_queue *q,
178 				    struct mmc_card *card)
179 {
180 	unsigned max_discard;
181 
182 	max_discard = mmc_calc_max_discard(card);
183 	if (!max_discard)
184 		return;
185 
186 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
187 	blk_queue_max_discard_sectors(q, max_discard);
188 	q->limits.discard_granularity = card->pref_erase << 9;
189 	/* granularity must not be greater than max. discard */
190 	if (card->pref_erase > max_discard)
191 		q->limits.discard_granularity = SECTOR_SIZE;
192 	if (mmc_can_secure_erase_trim(card))
193 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
194 }
195 
196 static unsigned short mmc_get_max_segments(struct mmc_host *host)
197 {
198 	return host->can_dma_map_merge ? MMC_DMA_MAP_MERGE_SEGMENTS :
199 					 host->max_segs;
200 }
201 
202 static int mmc_mq_init_request(struct blk_mq_tag_set *set, struct request *req,
203 			       unsigned int hctx_idx, unsigned int numa_node)
204 {
205 	struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req);
206 	struct mmc_queue *mq = set->driver_data;
207 	struct mmc_card *card = mq->card;
208 	struct mmc_host *host = card->host;
209 
210 	mq_rq->sg = mmc_alloc_sg(mmc_get_max_segments(host), GFP_KERNEL);
211 	if (!mq_rq->sg)
212 		return -ENOMEM;
213 
214 	return 0;
215 }
216 
217 static void mmc_mq_exit_request(struct blk_mq_tag_set *set, struct request *req,
218 				unsigned int hctx_idx)
219 {
220 	struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req);
221 
222 	kfree(mq_rq->sg);
223 	mq_rq->sg = NULL;
224 }
225 
226 static blk_status_t mmc_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
227 				    const struct blk_mq_queue_data *bd)
228 {
229 	struct request *req = bd->rq;
230 	struct request_queue *q = req->q;
231 	struct mmc_queue *mq = q->queuedata;
232 	struct mmc_card *card = mq->card;
233 	struct mmc_host *host = card->host;
234 	enum mmc_issue_type issue_type;
235 	enum mmc_issued issued;
236 	bool get_card, cqe_retune_ok;
237 	int ret;
238 
239 	if (mmc_card_removed(mq->card)) {
240 		req->rq_flags |= RQF_QUIET;
241 		return BLK_STS_IOERR;
242 	}
243 
244 	issue_type = mmc_issue_type(mq, req);
245 
246 	spin_lock_irq(&mq->lock);
247 
248 	if (mq->recovery_needed || mq->busy) {
249 		spin_unlock_irq(&mq->lock);
250 		return BLK_STS_RESOURCE;
251 	}
252 
253 	switch (issue_type) {
254 	case MMC_ISSUE_DCMD:
255 		if (mmc_cqe_dcmd_busy(mq)) {
256 			mq->cqe_busy |= MMC_CQE_DCMD_BUSY;
257 			spin_unlock_irq(&mq->lock);
258 			return BLK_STS_RESOURCE;
259 		}
260 		break;
261 	case MMC_ISSUE_ASYNC:
262 		/*
263 		 * For MMC host software queue, we only allow 2 requests in
264 		 * flight to avoid a long latency.
265 		 */
266 		if (host->hsq_enabled && mq->in_flight[issue_type] > 2) {
267 			spin_unlock_irq(&mq->lock);
268 			return BLK_STS_RESOURCE;
269 		}
270 		break;
271 	default:
272 		/*
273 		 * Timeouts are handled by mmc core, and we don't have a host
274 		 * API to abort requests, so we can't handle the timeout anyway.
275 		 * However, when the timeout happens, blk_mq_complete_request()
276 		 * no longer works (to stop the request disappearing under us).
277 		 * To avoid racing with that, set a large timeout.
278 		 */
279 		req->timeout = 600 * HZ;
280 		break;
281 	}
282 
283 	/* Parallel dispatch of requests is not supported at the moment */
284 	mq->busy = true;
285 
286 	mq->in_flight[issue_type] += 1;
287 	get_card = (mmc_tot_in_flight(mq) == 1);
288 	cqe_retune_ok = (mmc_cqe_qcnt(mq) == 1);
289 
290 	spin_unlock_irq(&mq->lock);
291 
292 	if (!(req->rq_flags & RQF_DONTPREP)) {
293 		req_to_mmc_queue_req(req)->retries = 0;
294 		req->rq_flags |= RQF_DONTPREP;
295 	}
296 
297 	if (get_card)
298 		mmc_get_card(card, &mq->ctx);
299 
300 	if (host->cqe_enabled) {
301 		host->retune_now = host->need_retune && cqe_retune_ok &&
302 				   !host->hold_retune;
303 	}
304 
305 	blk_mq_start_request(req);
306 
307 	issued = mmc_blk_mq_issue_rq(mq, req);
308 
309 	switch (issued) {
310 	case MMC_REQ_BUSY:
311 		ret = BLK_STS_RESOURCE;
312 		break;
313 	case MMC_REQ_FAILED_TO_START:
314 		ret = BLK_STS_IOERR;
315 		break;
316 	default:
317 		ret = BLK_STS_OK;
318 		break;
319 	}
320 
321 	if (issued != MMC_REQ_STARTED) {
322 		bool put_card = false;
323 
324 		spin_lock_irq(&mq->lock);
325 		mq->in_flight[issue_type] -= 1;
326 		if (mmc_tot_in_flight(mq) == 0)
327 			put_card = true;
328 		mq->busy = false;
329 		spin_unlock_irq(&mq->lock);
330 		if (put_card)
331 			mmc_put_card(card, &mq->ctx);
332 	} else {
333 		WRITE_ONCE(mq->busy, false);
334 	}
335 
336 	return ret;
337 }
338 
339 static const struct blk_mq_ops mmc_mq_ops = {
340 	.queue_rq	= mmc_mq_queue_rq,
341 	.init_request	= mmc_mq_init_request,
342 	.exit_request	= mmc_mq_exit_request,
343 	.complete	= mmc_blk_mq_complete,
344 	.timeout	= mmc_mq_timed_out,
345 };
346 
347 static void mmc_setup_queue(struct mmc_queue *mq, struct mmc_card *card)
348 {
349 	struct mmc_host *host = card->host;
350 	unsigned block_size = 512;
351 
352 	blk_queue_flag_set(QUEUE_FLAG_NONROT, mq->queue);
353 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, mq->queue);
354 	if (mmc_can_erase(card))
355 		mmc_queue_setup_discard(mq->queue, card);
356 
357 	if (!mmc_dev(host)->dma_mask || !*mmc_dev(host)->dma_mask)
358 		blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_HIGH);
359 	blk_queue_max_hw_sectors(mq->queue,
360 		min(host->max_blk_count, host->max_req_size / 512));
361 	if (host->can_dma_map_merge)
362 		WARN(!blk_queue_can_use_dma_map_merging(mq->queue,
363 							mmc_dev(host)),
364 		     "merging was advertised but not possible");
365 	blk_queue_max_segments(mq->queue, mmc_get_max_segments(host));
366 
367 	if (mmc_card_mmc(card) && card->ext_csd.data_sector_size) {
368 		block_size = card->ext_csd.data_sector_size;
369 		WARN_ON(block_size != 512 && block_size != 4096);
370 	}
371 
372 	blk_queue_logical_block_size(mq->queue, block_size);
373 	/*
374 	 * After blk_queue_can_use_dma_map_merging() was called with succeed,
375 	 * since it calls blk_queue_virt_boundary(), the mmc should not call
376 	 * both blk_queue_max_segment_size().
377 	 */
378 	if (!host->can_dma_map_merge)
379 		blk_queue_max_segment_size(mq->queue,
380 			round_down(host->max_seg_size, block_size));
381 
382 	dma_set_max_seg_size(mmc_dev(host), queue_max_segment_size(mq->queue));
383 
384 	INIT_WORK(&mq->recovery_work, mmc_mq_recovery_handler);
385 	INIT_WORK(&mq->complete_work, mmc_blk_mq_complete_work);
386 
387 	mutex_init(&mq->complete_lock);
388 
389 	init_waitqueue_head(&mq->wait);
390 
391 	mmc_crypto_setup_queue(mq->queue, host);
392 }
393 
394 static inline bool mmc_merge_capable(struct mmc_host *host)
395 {
396 	return host->caps2 & MMC_CAP2_MERGE_CAPABLE;
397 }
398 
399 /* Set queue depth to get a reasonable value for q->nr_requests */
400 #define MMC_QUEUE_DEPTH 64
401 
402 /**
403  * mmc_init_queue - initialise a queue structure.
404  * @mq: mmc queue
405  * @card: mmc card to attach this queue
406  *
407  * Initialise a MMC card request queue.
408  */
409 struct gendisk *mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card)
410 {
411 	struct mmc_host *host = card->host;
412 	struct gendisk *disk;
413 	int ret;
414 
415 	mq->card = card;
416 
417 	spin_lock_init(&mq->lock);
418 
419 	memset(&mq->tag_set, 0, sizeof(mq->tag_set));
420 	mq->tag_set.ops = &mmc_mq_ops;
421 	/*
422 	 * The queue depth for CQE must match the hardware because the request
423 	 * tag is used to index the hardware queue.
424 	 */
425 	if (host->cqe_enabled && !host->hsq_enabled)
426 		mq->tag_set.queue_depth =
427 			min_t(int, card->ext_csd.cmdq_depth, host->cqe_qdepth);
428 	else
429 		mq->tag_set.queue_depth = MMC_QUEUE_DEPTH;
430 	mq->tag_set.numa_node = NUMA_NO_NODE;
431 	mq->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
432 	mq->tag_set.nr_hw_queues = 1;
433 	mq->tag_set.cmd_size = sizeof(struct mmc_queue_req);
434 	mq->tag_set.driver_data = mq;
435 
436 	/*
437 	 * Since blk_mq_alloc_tag_set() calls .init_request() of mmc_mq_ops,
438 	 * the host->can_dma_map_merge should be set before to get max_segs
439 	 * from mmc_get_max_segments().
440 	 */
441 	if (mmc_merge_capable(host) &&
442 	    host->max_segs < MMC_DMA_MAP_MERGE_SEGMENTS &&
443 	    dma_get_merge_boundary(mmc_dev(host)))
444 		host->can_dma_map_merge = 1;
445 	else
446 		host->can_dma_map_merge = 0;
447 
448 	ret = blk_mq_alloc_tag_set(&mq->tag_set);
449 	if (ret)
450 		return ERR_PTR(ret);
451 
452 
453 	disk = blk_mq_alloc_disk(&mq->tag_set, mq);
454 	if (IS_ERR(disk)) {
455 		blk_mq_free_tag_set(&mq->tag_set);
456 		return disk;
457 	}
458 	mq->queue = disk->queue;
459 
460 	if (mmc_host_is_spi(host) && host->use_spi_crc)
461 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, mq->queue);
462 	blk_queue_rq_timeout(mq->queue, 60 * HZ);
463 
464 	mmc_setup_queue(mq, card);
465 	return disk;
466 }
467 
468 void mmc_queue_suspend(struct mmc_queue *mq)
469 {
470 	blk_mq_quiesce_queue(mq->queue);
471 
472 	/*
473 	 * The host remains claimed while there are outstanding requests, so
474 	 * simply claiming and releasing here ensures there are none.
475 	 */
476 	mmc_claim_host(mq->card->host);
477 	mmc_release_host(mq->card->host);
478 }
479 
480 void mmc_queue_resume(struct mmc_queue *mq)
481 {
482 	blk_mq_unquiesce_queue(mq->queue);
483 }
484 
485 void mmc_cleanup_queue(struct mmc_queue *mq)
486 {
487 	struct request_queue *q = mq->queue;
488 
489 	/*
490 	 * The legacy code handled the possibility of being suspended,
491 	 * so do that here too.
492 	 */
493 	if (blk_queue_quiesced(q))
494 		blk_mq_unquiesce_queue(q);
495 
496 	blk_cleanup_queue(q);
497 	blk_mq_free_tag_set(&mq->tag_set);
498 
499 	/*
500 	 * A request can be completed before the next request, potentially
501 	 * leaving a complete_work with nothing to do. Such a work item might
502 	 * still be queued at this point. Flush it.
503 	 */
504 	flush_work(&mq->complete_work);
505 
506 	mq->card = NULL;
507 }
508 
509 /*
510  * Prepare the sg list(s) to be handed of to the host driver
511  */
512 unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq)
513 {
514 	struct request *req = mmc_queue_req_to_req(mqrq);
515 
516 	return blk_rq_map_sg(mq->queue, req, mqrq->sg);
517 }
518