1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2003 Russell King, All Rights Reserved. 4 * Copyright 2006-2007 Pierre Ossman 5 */ 6 #include <linux/slab.h> 7 #include <linux/module.h> 8 #include <linux/blkdev.h> 9 #include <linux/freezer.h> 10 #include <linux/scatterlist.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/backing-dev.h> 13 14 #include <linux/mmc/card.h> 15 #include <linux/mmc/host.h> 16 17 #include "queue.h" 18 #include "block.h" 19 #include "core.h" 20 #include "card.h" 21 #include "crypto.h" 22 #include "host.h" 23 24 #define MMC_DMA_MAP_MERGE_SEGMENTS 512 25 26 static inline bool mmc_cqe_dcmd_busy(struct mmc_queue *mq) 27 { 28 /* Allow only 1 DCMD at a time */ 29 return mq->in_flight[MMC_ISSUE_DCMD]; 30 } 31 32 void mmc_cqe_check_busy(struct mmc_queue *mq) 33 { 34 if ((mq->cqe_busy & MMC_CQE_DCMD_BUSY) && !mmc_cqe_dcmd_busy(mq)) 35 mq->cqe_busy &= ~MMC_CQE_DCMD_BUSY; 36 } 37 38 static inline bool mmc_cqe_can_dcmd(struct mmc_host *host) 39 { 40 return host->caps2 & MMC_CAP2_CQE_DCMD; 41 } 42 43 static enum mmc_issue_type mmc_cqe_issue_type(struct mmc_host *host, 44 struct request *req) 45 { 46 switch (req_op(req)) { 47 case REQ_OP_DRV_IN: 48 case REQ_OP_DRV_OUT: 49 case REQ_OP_DISCARD: 50 case REQ_OP_SECURE_ERASE: 51 return MMC_ISSUE_SYNC; 52 case REQ_OP_FLUSH: 53 return mmc_cqe_can_dcmd(host) ? MMC_ISSUE_DCMD : MMC_ISSUE_SYNC; 54 default: 55 return MMC_ISSUE_ASYNC; 56 } 57 } 58 59 enum mmc_issue_type mmc_issue_type(struct mmc_queue *mq, struct request *req) 60 { 61 struct mmc_host *host = mq->card->host; 62 63 if (host->cqe_enabled && !host->hsq_enabled) 64 return mmc_cqe_issue_type(host, req); 65 66 if (req_op(req) == REQ_OP_READ || req_op(req) == REQ_OP_WRITE) 67 return MMC_ISSUE_ASYNC; 68 69 return MMC_ISSUE_SYNC; 70 } 71 72 static void __mmc_cqe_recovery_notifier(struct mmc_queue *mq) 73 { 74 if (!mq->recovery_needed) { 75 mq->recovery_needed = true; 76 schedule_work(&mq->recovery_work); 77 } 78 } 79 80 void mmc_cqe_recovery_notifier(struct mmc_request *mrq) 81 { 82 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 83 brq.mrq); 84 struct request *req = mmc_queue_req_to_req(mqrq); 85 struct request_queue *q = req->q; 86 struct mmc_queue *mq = q->queuedata; 87 unsigned long flags; 88 89 spin_lock_irqsave(&mq->lock, flags); 90 __mmc_cqe_recovery_notifier(mq); 91 spin_unlock_irqrestore(&mq->lock, flags); 92 } 93 94 static enum blk_eh_timer_return mmc_cqe_timed_out(struct request *req) 95 { 96 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 97 struct mmc_request *mrq = &mqrq->brq.mrq; 98 struct mmc_queue *mq = req->q->queuedata; 99 struct mmc_host *host = mq->card->host; 100 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 101 bool recovery_needed = false; 102 103 switch (issue_type) { 104 case MMC_ISSUE_ASYNC: 105 case MMC_ISSUE_DCMD: 106 if (host->cqe_ops->cqe_timeout(host, mrq, &recovery_needed)) { 107 if (recovery_needed) 108 mmc_cqe_recovery_notifier(mrq); 109 return BLK_EH_RESET_TIMER; 110 } 111 /* The request has gone already */ 112 return BLK_EH_DONE; 113 default: 114 /* Timeout is handled by mmc core */ 115 return BLK_EH_RESET_TIMER; 116 } 117 } 118 119 static enum blk_eh_timer_return mmc_mq_timed_out(struct request *req, 120 bool reserved) 121 { 122 struct request_queue *q = req->q; 123 struct mmc_queue *mq = q->queuedata; 124 struct mmc_card *card = mq->card; 125 struct mmc_host *host = card->host; 126 unsigned long flags; 127 bool ignore_tout; 128 129 spin_lock_irqsave(&mq->lock, flags); 130 ignore_tout = mq->recovery_needed || !host->cqe_enabled || host->hsq_enabled; 131 spin_unlock_irqrestore(&mq->lock, flags); 132 133 return ignore_tout ? BLK_EH_RESET_TIMER : mmc_cqe_timed_out(req); 134 } 135 136 static void mmc_mq_recovery_handler(struct work_struct *work) 137 { 138 struct mmc_queue *mq = container_of(work, struct mmc_queue, 139 recovery_work); 140 struct request_queue *q = mq->queue; 141 struct mmc_host *host = mq->card->host; 142 143 mmc_get_card(mq->card, &mq->ctx); 144 145 mq->in_recovery = true; 146 147 if (host->cqe_enabled && !host->hsq_enabled) 148 mmc_blk_cqe_recovery(mq); 149 else 150 mmc_blk_mq_recovery(mq); 151 152 mq->in_recovery = false; 153 154 spin_lock_irq(&mq->lock); 155 mq->recovery_needed = false; 156 spin_unlock_irq(&mq->lock); 157 158 if (host->hsq_enabled) 159 host->cqe_ops->cqe_recovery_finish(host); 160 161 mmc_put_card(mq->card, &mq->ctx); 162 163 blk_mq_run_hw_queues(q, true); 164 } 165 166 static struct scatterlist *mmc_alloc_sg(unsigned short sg_len, gfp_t gfp) 167 { 168 struct scatterlist *sg; 169 170 sg = kmalloc_array(sg_len, sizeof(*sg), gfp); 171 if (sg) 172 sg_init_table(sg, sg_len); 173 174 return sg; 175 } 176 177 static void mmc_queue_setup_discard(struct request_queue *q, 178 struct mmc_card *card) 179 { 180 unsigned max_discard; 181 182 max_discard = mmc_calc_max_discard(card); 183 if (!max_discard) 184 return; 185 186 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 187 blk_queue_max_discard_sectors(q, max_discard); 188 q->limits.discard_granularity = card->pref_erase << 9; 189 /* granularity must not be greater than max. discard */ 190 if (card->pref_erase > max_discard) 191 q->limits.discard_granularity = SECTOR_SIZE; 192 if (mmc_can_secure_erase_trim(card)) 193 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 194 } 195 196 static unsigned short mmc_get_max_segments(struct mmc_host *host) 197 { 198 return host->can_dma_map_merge ? MMC_DMA_MAP_MERGE_SEGMENTS : 199 host->max_segs; 200 } 201 202 static int mmc_mq_init_request(struct blk_mq_tag_set *set, struct request *req, 203 unsigned int hctx_idx, unsigned int numa_node) 204 { 205 struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req); 206 struct mmc_queue *mq = set->driver_data; 207 struct mmc_card *card = mq->card; 208 struct mmc_host *host = card->host; 209 210 mq_rq->sg = mmc_alloc_sg(mmc_get_max_segments(host), GFP_KERNEL); 211 if (!mq_rq->sg) 212 return -ENOMEM; 213 214 return 0; 215 } 216 217 static void mmc_mq_exit_request(struct blk_mq_tag_set *set, struct request *req, 218 unsigned int hctx_idx) 219 { 220 struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req); 221 222 kfree(mq_rq->sg); 223 mq_rq->sg = NULL; 224 } 225 226 static blk_status_t mmc_mq_queue_rq(struct blk_mq_hw_ctx *hctx, 227 const struct blk_mq_queue_data *bd) 228 { 229 struct request *req = bd->rq; 230 struct request_queue *q = req->q; 231 struct mmc_queue *mq = q->queuedata; 232 struct mmc_card *card = mq->card; 233 struct mmc_host *host = card->host; 234 enum mmc_issue_type issue_type; 235 enum mmc_issued issued; 236 bool get_card, cqe_retune_ok; 237 int ret; 238 239 if (mmc_card_removed(mq->card)) { 240 req->rq_flags |= RQF_QUIET; 241 return BLK_STS_IOERR; 242 } 243 244 issue_type = mmc_issue_type(mq, req); 245 246 spin_lock_irq(&mq->lock); 247 248 if (mq->recovery_needed || mq->busy) { 249 spin_unlock_irq(&mq->lock); 250 return BLK_STS_RESOURCE; 251 } 252 253 switch (issue_type) { 254 case MMC_ISSUE_DCMD: 255 if (mmc_cqe_dcmd_busy(mq)) { 256 mq->cqe_busy |= MMC_CQE_DCMD_BUSY; 257 spin_unlock_irq(&mq->lock); 258 return BLK_STS_RESOURCE; 259 } 260 break; 261 case MMC_ISSUE_ASYNC: 262 /* 263 * For MMC host software queue, we only allow 2 requests in 264 * flight to avoid a long latency. 265 */ 266 if (host->hsq_enabled && mq->in_flight[issue_type] > 2) { 267 spin_unlock_irq(&mq->lock); 268 return BLK_STS_RESOURCE; 269 } 270 break; 271 default: 272 /* 273 * Timeouts are handled by mmc core, and we don't have a host 274 * API to abort requests, so we can't handle the timeout anyway. 275 * However, when the timeout happens, blk_mq_complete_request() 276 * no longer works (to stop the request disappearing under us). 277 * To avoid racing with that, set a large timeout. 278 */ 279 req->timeout = 600 * HZ; 280 break; 281 } 282 283 /* Parallel dispatch of requests is not supported at the moment */ 284 mq->busy = true; 285 286 mq->in_flight[issue_type] += 1; 287 get_card = (mmc_tot_in_flight(mq) == 1); 288 cqe_retune_ok = (mmc_cqe_qcnt(mq) == 1); 289 290 spin_unlock_irq(&mq->lock); 291 292 if (!(req->rq_flags & RQF_DONTPREP)) { 293 req_to_mmc_queue_req(req)->retries = 0; 294 req->rq_flags |= RQF_DONTPREP; 295 } 296 297 if (get_card) 298 mmc_get_card(card, &mq->ctx); 299 300 if (host->cqe_enabled) { 301 host->retune_now = host->need_retune && cqe_retune_ok && 302 !host->hold_retune; 303 } 304 305 blk_mq_start_request(req); 306 307 issued = mmc_blk_mq_issue_rq(mq, req); 308 309 switch (issued) { 310 case MMC_REQ_BUSY: 311 ret = BLK_STS_RESOURCE; 312 break; 313 case MMC_REQ_FAILED_TO_START: 314 ret = BLK_STS_IOERR; 315 break; 316 default: 317 ret = BLK_STS_OK; 318 break; 319 } 320 321 if (issued != MMC_REQ_STARTED) { 322 bool put_card = false; 323 324 spin_lock_irq(&mq->lock); 325 mq->in_flight[issue_type] -= 1; 326 if (mmc_tot_in_flight(mq) == 0) 327 put_card = true; 328 mq->busy = false; 329 spin_unlock_irq(&mq->lock); 330 if (put_card) 331 mmc_put_card(card, &mq->ctx); 332 } else { 333 WRITE_ONCE(mq->busy, false); 334 } 335 336 return ret; 337 } 338 339 static const struct blk_mq_ops mmc_mq_ops = { 340 .queue_rq = mmc_mq_queue_rq, 341 .init_request = mmc_mq_init_request, 342 .exit_request = mmc_mq_exit_request, 343 .complete = mmc_blk_mq_complete, 344 .timeout = mmc_mq_timed_out, 345 }; 346 347 static void mmc_setup_queue(struct mmc_queue *mq, struct mmc_card *card) 348 { 349 struct mmc_host *host = card->host; 350 unsigned block_size = 512; 351 352 blk_queue_flag_set(QUEUE_FLAG_NONROT, mq->queue); 353 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, mq->queue); 354 if (mmc_can_erase(card)) 355 mmc_queue_setup_discard(mq->queue, card); 356 357 if (!mmc_dev(host)->dma_mask || !*mmc_dev(host)->dma_mask) 358 blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_HIGH); 359 blk_queue_max_hw_sectors(mq->queue, 360 min(host->max_blk_count, host->max_req_size / 512)); 361 if (host->can_dma_map_merge) 362 WARN(!blk_queue_can_use_dma_map_merging(mq->queue, 363 mmc_dev(host)), 364 "merging was advertised but not possible"); 365 blk_queue_max_segments(mq->queue, mmc_get_max_segments(host)); 366 367 if (mmc_card_mmc(card) && card->ext_csd.data_sector_size) { 368 block_size = card->ext_csd.data_sector_size; 369 WARN_ON(block_size != 512 && block_size != 4096); 370 } 371 372 blk_queue_logical_block_size(mq->queue, block_size); 373 /* 374 * After blk_queue_can_use_dma_map_merging() was called with succeed, 375 * since it calls blk_queue_virt_boundary(), the mmc should not call 376 * both blk_queue_max_segment_size(). 377 */ 378 if (!host->can_dma_map_merge) 379 blk_queue_max_segment_size(mq->queue, 380 round_down(host->max_seg_size, block_size)); 381 382 dma_set_max_seg_size(mmc_dev(host), queue_max_segment_size(mq->queue)); 383 384 INIT_WORK(&mq->recovery_work, mmc_mq_recovery_handler); 385 INIT_WORK(&mq->complete_work, mmc_blk_mq_complete_work); 386 387 mutex_init(&mq->complete_lock); 388 389 init_waitqueue_head(&mq->wait); 390 391 mmc_crypto_setup_queue(mq->queue, host); 392 } 393 394 static inline bool mmc_merge_capable(struct mmc_host *host) 395 { 396 return host->caps2 & MMC_CAP2_MERGE_CAPABLE; 397 } 398 399 /* Set queue depth to get a reasonable value for q->nr_requests */ 400 #define MMC_QUEUE_DEPTH 64 401 402 /** 403 * mmc_init_queue - initialise a queue structure. 404 * @mq: mmc queue 405 * @card: mmc card to attach this queue 406 * 407 * Initialise a MMC card request queue. 408 */ 409 struct gendisk *mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card) 410 { 411 struct mmc_host *host = card->host; 412 struct gendisk *disk; 413 int ret; 414 415 mq->card = card; 416 417 spin_lock_init(&mq->lock); 418 419 memset(&mq->tag_set, 0, sizeof(mq->tag_set)); 420 mq->tag_set.ops = &mmc_mq_ops; 421 /* 422 * The queue depth for CQE must match the hardware because the request 423 * tag is used to index the hardware queue. 424 */ 425 if (host->cqe_enabled && !host->hsq_enabled) 426 mq->tag_set.queue_depth = 427 min_t(int, card->ext_csd.cmdq_depth, host->cqe_qdepth); 428 else 429 mq->tag_set.queue_depth = MMC_QUEUE_DEPTH; 430 mq->tag_set.numa_node = NUMA_NO_NODE; 431 mq->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 432 mq->tag_set.nr_hw_queues = 1; 433 mq->tag_set.cmd_size = sizeof(struct mmc_queue_req); 434 mq->tag_set.driver_data = mq; 435 436 /* 437 * Since blk_mq_alloc_tag_set() calls .init_request() of mmc_mq_ops, 438 * the host->can_dma_map_merge should be set before to get max_segs 439 * from mmc_get_max_segments(). 440 */ 441 if (mmc_merge_capable(host) && 442 host->max_segs < MMC_DMA_MAP_MERGE_SEGMENTS && 443 dma_get_merge_boundary(mmc_dev(host))) 444 host->can_dma_map_merge = 1; 445 else 446 host->can_dma_map_merge = 0; 447 448 ret = blk_mq_alloc_tag_set(&mq->tag_set); 449 if (ret) 450 return ERR_PTR(ret); 451 452 453 disk = blk_mq_alloc_disk(&mq->tag_set, mq); 454 if (IS_ERR(disk)) { 455 blk_mq_free_tag_set(&mq->tag_set); 456 return disk; 457 } 458 mq->queue = disk->queue; 459 460 if (mmc_host_is_spi(host) && host->use_spi_crc) 461 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, mq->queue); 462 blk_queue_rq_timeout(mq->queue, 60 * HZ); 463 464 mmc_setup_queue(mq, card); 465 return disk; 466 } 467 468 void mmc_queue_suspend(struct mmc_queue *mq) 469 { 470 blk_mq_quiesce_queue(mq->queue); 471 472 /* 473 * The host remains claimed while there are outstanding requests, so 474 * simply claiming and releasing here ensures there are none. 475 */ 476 mmc_claim_host(mq->card->host); 477 mmc_release_host(mq->card->host); 478 } 479 480 void mmc_queue_resume(struct mmc_queue *mq) 481 { 482 blk_mq_unquiesce_queue(mq->queue); 483 } 484 485 void mmc_cleanup_queue(struct mmc_queue *mq) 486 { 487 struct request_queue *q = mq->queue; 488 489 /* 490 * The legacy code handled the possibility of being suspended, 491 * so do that here too. 492 */ 493 if (blk_queue_quiesced(q)) 494 blk_mq_unquiesce_queue(q); 495 496 blk_cleanup_queue(q); 497 blk_mq_free_tag_set(&mq->tag_set); 498 499 /* 500 * A request can be completed before the next request, potentially 501 * leaving a complete_work with nothing to do. Such a work item might 502 * still be queued at this point. Flush it. 503 */ 504 flush_work(&mq->complete_work); 505 506 mq->card = NULL; 507 } 508 509 /* 510 * Prepare the sg list(s) to be handed of to the host driver 511 */ 512 unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq) 513 { 514 struct request *req = mmc_queue_req_to_req(mqrq); 515 516 return blk_rq_map_sg(mq->queue, req, mqrq->sg); 517 } 518