1 /* 2 * Copyright (C) 2003 Russell King, All Rights Reserved. 3 * Copyright 2006-2007 Pierre Ossman 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 */ 10 #include <linux/slab.h> 11 #include <linux/module.h> 12 #include <linux/blkdev.h> 13 #include <linux/freezer.h> 14 #include <linux/kthread.h> 15 #include <linux/scatterlist.h> 16 #include <linux/dma-mapping.h> 17 18 #include <linux/mmc/card.h> 19 #include <linux/mmc/host.h> 20 21 #include "queue.h" 22 #include "block.h" 23 #include "core.h" 24 #include "card.h" 25 #include "host.h" 26 27 static inline bool mmc_cqe_dcmd_busy(struct mmc_queue *mq) 28 { 29 /* Allow only 1 DCMD at a time */ 30 return mq->in_flight[MMC_ISSUE_DCMD]; 31 } 32 33 void mmc_cqe_check_busy(struct mmc_queue *mq) 34 { 35 if ((mq->cqe_busy & MMC_CQE_DCMD_BUSY) && !mmc_cqe_dcmd_busy(mq)) 36 mq->cqe_busy &= ~MMC_CQE_DCMD_BUSY; 37 38 mq->cqe_busy &= ~MMC_CQE_QUEUE_FULL; 39 } 40 41 static inline bool mmc_cqe_can_dcmd(struct mmc_host *host) 42 { 43 return host->caps2 & MMC_CAP2_CQE_DCMD; 44 } 45 46 static enum mmc_issue_type mmc_cqe_issue_type(struct mmc_host *host, 47 struct request *req) 48 { 49 switch (req_op(req)) { 50 case REQ_OP_DRV_IN: 51 case REQ_OP_DRV_OUT: 52 case REQ_OP_DISCARD: 53 case REQ_OP_SECURE_ERASE: 54 return MMC_ISSUE_SYNC; 55 case REQ_OP_FLUSH: 56 return mmc_cqe_can_dcmd(host) ? MMC_ISSUE_DCMD : MMC_ISSUE_SYNC; 57 default: 58 return MMC_ISSUE_ASYNC; 59 } 60 } 61 62 enum mmc_issue_type mmc_issue_type(struct mmc_queue *mq, struct request *req) 63 { 64 struct mmc_host *host = mq->card->host; 65 66 if (mq->use_cqe) 67 return mmc_cqe_issue_type(host, req); 68 69 if (req_op(req) == REQ_OP_READ || req_op(req) == REQ_OP_WRITE) 70 return MMC_ISSUE_ASYNC; 71 72 return MMC_ISSUE_SYNC; 73 } 74 75 static void __mmc_cqe_recovery_notifier(struct mmc_queue *mq) 76 { 77 if (!mq->recovery_needed) { 78 mq->recovery_needed = true; 79 schedule_work(&mq->recovery_work); 80 } 81 } 82 83 void mmc_cqe_recovery_notifier(struct mmc_request *mrq) 84 { 85 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 86 brq.mrq); 87 struct request *req = mmc_queue_req_to_req(mqrq); 88 struct request_queue *q = req->q; 89 struct mmc_queue *mq = q->queuedata; 90 unsigned long flags; 91 92 spin_lock_irqsave(q->queue_lock, flags); 93 __mmc_cqe_recovery_notifier(mq); 94 spin_unlock_irqrestore(q->queue_lock, flags); 95 } 96 97 static enum blk_eh_timer_return mmc_cqe_timed_out(struct request *req) 98 { 99 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 100 struct mmc_request *mrq = &mqrq->brq.mrq; 101 struct mmc_queue *mq = req->q->queuedata; 102 struct mmc_host *host = mq->card->host; 103 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 104 bool recovery_needed = false; 105 106 switch (issue_type) { 107 case MMC_ISSUE_ASYNC: 108 case MMC_ISSUE_DCMD: 109 if (host->cqe_ops->cqe_timeout(host, mrq, &recovery_needed)) { 110 if (recovery_needed) 111 __mmc_cqe_recovery_notifier(mq); 112 return BLK_EH_RESET_TIMER; 113 } 114 /* No timeout */ 115 return BLK_EH_HANDLED; 116 default: 117 /* Timeout is handled by mmc core */ 118 return BLK_EH_RESET_TIMER; 119 } 120 } 121 122 static enum blk_eh_timer_return mmc_mq_timed_out(struct request *req, 123 bool reserved) 124 { 125 struct request_queue *q = req->q; 126 struct mmc_queue *mq = q->queuedata; 127 unsigned long flags; 128 int ret; 129 130 spin_lock_irqsave(q->queue_lock, flags); 131 132 if (mq->recovery_needed || !mq->use_cqe) 133 ret = BLK_EH_RESET_TIMER; 134 else 135 ret = mmc_cqe_timed_out(req); 136 137 spin_unlock_irqrestore(q->queue_lock, flags); 138 139 return ret; 140 } 141 142 static void mmc_mq_recovery_handler(struct work_struct *work) 143 { 144 struct mmc_queue *mq = container_of(work, struct mmc_queue, 145 recovery_work); 146 struct request_queue *q = mq->queue; 147 148 mmc_get_card(mq->card, &mq->ctx); 149 150 mq->in_recovery = true; 151 152 if (mq->use_cqe) 153 mmc_blk_cqe_recovery(mq); 154 else 155 mmc_blk_mq_recovery(mq); 156 157 mq->in_recovery = false; 158 159 spin_lock_irq(q->queue_lock); 160 mq->recovery_needed = false; 161 spin_unlock_irq(q->queue_lock); 162 163 mmc_put_card(mq->card, &mq->ctx); 164 165 blk_mq_run_hw_queues(q, true); 166 } 167 168 static struct scatterlist *mmc_alloc_sg(int sg_len, gfp_t gfp) 169 { 170 struct scatterlist *sg; 171 172 sg = kmalloc_array(sg_len, sizeof(*sg), gfp); 173 if (sg) 174 sg_init_table(sg, sg_len); 175 176 return sg; 177 } 178 179 static void mmc_queue_setup_discard(struct request_queue *q, 180 struct mmc_card *card) 181 { 182 unsigned max_discard; 183 184 max_discard = mmc_calc_max_discard(card); 185 if (!max_discard) 186 return; 187 188 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 189 blk_queue_max_discard_sectors(q, max_discard); 190 q->limits.discard_granularity = card->pref_erase << 9; 191 /* granularity must not be greater than max. discard */ 192 if (card->pref_erase > max_discard) 193 q->limits.discard_granularity = 0; 194 if (mmc_can_secure_erase_trim(card)) 195 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 196 } 197 198 /** 199 * mmc_init_request() - initialize the MMC-specific per-request data 200 * @q: the request queue 201 * @req: the request 202 * @gfp: memory allocation policy 203 */ 204 static int __mmc_init_request(struct mmc_queue *mq, struct request *req, 205 gfp_t gfp) 206 { 207 struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req); 208 struct mmc_card *card = mq->card; 209 struct mmc_host *host = card->host; 210 211 mq_rq->sg = mmc_alloc_sg(host->max_segs, gfp); 212 if (!mq_rq->sg) 213 return -ENOMEM; 214 215 return 0; 216 } 217 218 static void mmc_exit_request(struct request_queue *q, struct request *req) 219 { 220 struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req); 221 222 kfree(mq_rq->sg); 223 mq_rq->sg = NULL; 224 } 225 226 static int mmc_mq_init_request(struct blk_mq_tag_set *set, struct request *req, 227 unsigned int hctx_idx, unsigned int numa_node) 228 { 229 return __mmc_init_request(set->driver_data, req, GFP_KERNEL); 230 } 231 232 static void mmc_mq_exit_request(struct blk_mq_tag_set *set, struct request *req, 233 unsigned int hctx_idx) 234 { 235 struct mmc_queue *mq = set->driver_data; 236 237 mmc_exit_request(mq->queue, req); 238 } 239 240 /* 241 * We use BLK_MQ_F_BLOCKING and have only 1 hardware queue, which means requests 242 * will not be dispatched in parallel. 243 */ 244 static blk_status_t mmc_mq_queue_rq(struct blk_mq_hw_ctx *hctx, 245 const struct blk_mq_queue_data *bd) 246 { 247 struct request *req = bd->rq; 248 struct request_queue *q = req->q; 249 struct mmc_queue *mq = q->queuedata; 250 struct mmc_card *card = mq->card; 251 struct mmc_host *host = card->host; 252 enum mmc_issue_type issue_type; 253 enum mmc_issued issued; 254 bool get_card, cqe_retune_ok; 255 int ret; 256 257 if (mmc_card_removed(mq->card)) { 258 req->rq_flags |= RQF_QUIET; 259 return BLK_STS_IOERR; 260 } 261 262 issue_type = mmc_issue_type(mq, req); 263 264 spin_lock_irq(q->queue_lock); 265 266 if (mq->recovery_needed) { 267 spin_unlock_irq(q->queue_lock); 268 return BLK_STS_RESOURCE; 269 } 270 271 switch (issue_type) { 272 case MMC_ISSUE_DCMD: 273 if (mmc_cqe_dcmd_busy(mq)) { 274 mq->cqe_busy |= MMC_CQE_DCMD_BUSY; 275 spin_unlock_irq(q->queue_lock); 276 return BLK_STS_RESOURCE; 277 } 278 break; 279 case MMC_ISSUE_ASYNC: 280 break; 281 default: 282 /* 283 * Timeouts are handled by mmc core, and we don't have a host 284 * API to abort requests, so we can't handle the timeout anyway. 285 * However, when the timeout happens, blk_mq_complete_request() 286 * no longer works (to stop the request disappearing under us). 287 * To avoid racing with that, set a large timeout. 288 */ 289 req->timeout = 600 * HZ; 290 break; 291 } 292 293 mq->in_flight[issue_type] += 1; 294 get_card = (mmc_tot_in_flight(mq) == 1); 295 cqe_retune_ok = (mmc_cqe_qcnt(mq) == 1); 296 297 spin_unlock_irq(q->queue_lock); 298 299 if (!(req->rq_flags & RQF_DONTPREP)) { 300 req_to_mmc_queue_req(req)->retries = 0; 301 req->rq_flags |= RQF_DONTPREP; 302 } 303 304 if (get_card) 305 mmc_get_card(card, &mq->ctx); 306 307 if (mq->use_cqe) { 308 host->retune_now = host->need_retune && cqe_retune_ok && 309 !host->hold_retune; 310 } 311 312 blk_mq_start_request(req); 313 314 issued = mmc_blk_mq_issue_rq(mq, req); 315 316 switch (issued) { 317 case MMC_REQ_BUSY: 318 ret = BLK_STS_RESOURCE; 319 break; 320 case MMC_REQ_FAILED_TO_START: 321 ret = BLK_STS_IOERR; 322 break; 323 default: 324 ret = BLK_STS_OK; 325 break; 326 } 327 328 if (issued != MMC_REQ_STARTED) { 329 bool put_card = false; 330 331 spin_lock_irq(q->queue_lock); 332 mq->in_flight[issue_type] -= 1; 333 if (mmc_tot_in_flight(mq) == 0) 334 put_card = true; 335 spin_unlock_irq(q->queue_lock); 336 if (put_card) 337 mmc_put_card(card, &mq->ctx); 338 } 339 340 return ret; 341 } 342 343 static const struct blk_mq_ops mmc_mq_ops = { 344 .queue_rq = mmc_mq_queue_rq, 345 .init_request = mmc_mq_init_request, 346 .exit_request = mmc_mq_exit_request, 347 .complete = mmc_blk_mq_complete, 348 .timeout = mmc_mq_timed_out, 349 }; 350 351 static void mmc_setup_queue(struct mmc_queue *mq, struct mmc_card *card) 352 { 353 struct mmc_host *host = card->host; 354 u64 limit = BLK_BOUNCE_HIGH; 355 356 if (mmc_dev(host)->dma_mask && *mmc_dev(host)->dma_mask) 357 limit = (u64)dma_max_pfn(mmc_dev(host)) << PAGE_SHIFT; 358 359 blk_queue_flag_set(QUEUE_FLAG_NONROT, mq->queue); 360 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, mq->queue); 361 if (mmc_can_erase(card)) 362 mmc_queue_setup_discard(mq->queue, card); 363 364 blk_queue_bounce_limit(mq->queue, limit); 365 blk_queue_max_hw_sectors(mq->queue, 366 min(host->max_blk_count, host->max_req_size / 512)); 367 blk_queue_max_segments(mq->queue, host->max_segs); 368 blk_queue_max_segment_size(mq->queue, host->max_seg_size); 369 370 INIT_WORK(&mq->recovery_work, mmc_mq_recovery_handler); 371 INIT_WORK(&mq->complete_work, mmc_blk_mq_complete_work); 372 373 mutex_init(&mq->complete_lock); 374 375 init_waitqueue_head(&mq->wait); 376 } 377 378 static int mmc_mq_init_queue(struct mmc_queue *mq, int q_depth, 379 const struct blk_mq_ops *mq_ops, spinlock_t *lock) 380 { 381 int ret; 382 383 memset(&mq->tag_set, 0, sizeof(mq->tag_set)); 384 mq->tag_set.ops = mq_ops; 385 mq->tag_set.queue_depth = q_depth; 386 mq->tag_set.numa_node = NUMA_NO_NODE; 387 mq->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE | 388 BLK_MQ_F_BLOCKING; 389 mq->tag_set.nr_hw_queues = 1; 390 mq->tag_set.cmd_size = sizeof(struct mmc_queue_req); 391 mq->tag_set.driver_data = mq; 392 393 ret = blk_mq_alloc_tag_set(&mq->tag_set); 394 if (ret) 395 return ret; 396 397 mq->queue = blk_mq_init_queue(&mq->tag_set); 398 if (IS_ERR(mq->queue)) { 399 ret = PTR_ERR(mq->queue); 400 goto free_tag_set; 401 } 402 403 mq->queue->queue_lock = lock; 404 mq->queue->queuedata = mq; 405 406 return 0; 407 408 free_tag_set: 409 blk_mq_free_tag_set(&mq->tag_set); 410 411 return ret; 412 } 413 414 /* Set queue depth to get a reasonable value for q->nr_requests */ 415 #define MMC_QUEUE_DEPTH 64 416 417 static int mmc_mq_init(struct mmc_queue *mq, struct mmc_card *card, 418 spinlock_t *lock) 419 { 420 struct mmc_host *host = card->host; 421 int q_depth; 422 int ret; 423 424 /* 425 * The queue depth for CQE must match the hardware because the request 426 * tag is used to index the hardware queue. 427 */ 428 if (mq->use_cqe) 429 q_depth = min_t(int, card->ext_csd.cmdq_depth, host->cqe_qdepth); 430 else 431 q_depth = MMC_QUEUE_DEPTH; 432 433 ret = mmc_mq_init_queue(mq, q_depth, &mmc_mq_ops, lock); 434 if (ret) 435 return ret; 436 437 blk_queue_rq_timeout(mq->queue, 60 * HZ); 438 439 mmc_setup_queue(mq, card); 440 441 return 0; 442 } 443 444 /** 445 * mmc_init_queue - initialise a queue structure. 446 * @mq: mmc queue 447 * @card: mmc card to attach this queue 448 * @lock: queue lock 449 * @subname: partition subname 450 * 451 * Initialise a MMC card request queue. 452 */ 453 int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card, 454 spinlock_t *lock, const char *subname) 455 { 456 struct mmc_host *host = card->host; 457 458 mq->card = card; 459 460 mq->use_cqe = host->cqe_enabled; 461 462 return mmc_mq_init(mq, card, lock); 463 } 464 465 void mmc_queue_suspend(struct mmc_queue *mq) 466 { 467 blk_mq_quiesce_queue(mq->queue); 468 469 /* 470 * The host remains claimed while there are outstanding requests, so 471 * simply claiming and releasing here ensures there are none. 472 */ 473 mmc_claim_host(mq->card->host); 474 mmc_release_host(mq->card->host); 475 } 476 477 void mmc_queue_resume(struct mmc_queue *mq) 478 { 479 blk_mq_unquiesce_queue(mq->queue); 480 } 481 482 void mmc_cleanup_queue(struct mmc_queue *mq) 483 { 484 struct request_queue *q = mq->queue; 485 486 /* 487 * The legacy code handled the possibility of being suspended, 488 * so do that here too. 489 */ 490 if (blk_queue_quiesced(q)) 491 blk_mq_unquiesce_queue(q); 492 493 blk_cleanup_queue(q); 494 495 /* 496 * A request can be completed before the next request, potentially 497 * leaving a complete_work with nothing to do. Such a work item might 498 * still be queued at this point. Flush it. 499 */ 500 flush_work(&mq->complete_work); 501 502 mq->card = NULL; 503 } 504 505 /* 506 * Prepare the sg list(s) to be handed of to the host driver 507 */ 508 unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq) 509 { 510 struct request *req = mmc_queue_req_to_req(mqrq); 511 512 return blk_rq_map_sg(mq->queue, req, mqrq->sg); 513 } 514