1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2003 Russell King, All Rights Reserved. 4 * Copyright 2006-2007 Pierre Ossman 5 */ 6 #include <linux/slab.h> 7 #include <linux/module.h> 8 #include <linux/blkdev.h> 9 #include <linux/freezer.h> 10 #include <linux/kthread.h> 11 #include <linux/scatterlist.h> 12 #include <linux/dma-mapping.h> 13 14 #include <linux/mmc/card.h> 15 #include <linux/mmc/host.h> 16 17 #include "queue.h" 18 #include "block.h" 19 #include "core.h" 20 #include "card.h" 21 #include "host.h" 22 23 static inline bool mmc_cqe_dcmd_busy(struct mmc_queue *mq) 24 { 25 /* Allow only 1 DCMD at a time */ 26 return mq->in_flight[MMC_ISSUE_DCMD]; 27 } 28 29 void mmc_cqe_check_busy(struct mmc_queue *mq) 30 { 31 if ((mq->cqe_busy & MMC_CQE_DCMD_BUSY) && !mmc_cqe_dcmd_busy(mq)) 32 mq->cqe_busy &= ~MMC_CQE_DCMD_BUSY; 33 34 mq->cqe_busy &= ~MMC_CQE_QUEUE_FULL; 35 } 36 37 static inline bool mmc_cqe_can_dcmd(struct mmc_host *host) 38 { 39 return host->caps2 & MMC_CAP2_CQE_DCMD; 40 } 41 42 static enum mmc_issue_type mmc_cqe_issue_type(struct mmc_host *host, 43 struct request *req) 44 { 45 switch (req_op(req)) { 46 case REQ_OP_DRV_IN: 47 case REQ_OP_DRV_OUT: 48 case REQ_OP_DISCARD: 49 case REQ_OP_SECURE_ERASE: 50 return MMC_ISSUE_SYNC; 51 case REQ_OP_FLUSH: 52 return mmc_cqe_can_dcmd(host) ? MMC_ISSUE_DCMD : MMC_ISSUE_SYNC; 53 default: 54 return MMC_ISSUE_ASYNC; 55 } 56 } 57 58 enum mmc_issue_type mmc_issue_type(struct mmc_queue *mq, struct request *req) 59 { 60 struct mmc_host *host = mq->card->host; 61 62 if (mq->use_cqe) 63 return mmc_cqe_issue_type(host, req); 64 65 if (req_op(req) == REQ_OP_READ || req_op(req) == REQ_OP_WRITE) 66 return MMC_ISSUE_ASYNC; 67 68 return MMC_ISSUE_SYNC; 69 } 70 71 static void __mmc_cqe_recovery_notifier(struct mmc_queue *mq) 72 { 73 if (!mq->recovery_needed) { 74 mq->recovery_needed = true; 75 schedule_work(&mq->recovery_work); 76 } 77 } 78 79 void mmc_cqe_recovery_notifier(struct mmc_request *mrq) 80 { 81 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 82 brq.mrq); 83 struct request *req = mmc_queue_req_to_req(mqrq); 84 struct request_queue *q = req->q; 85 struct mmc_queue *mq = q->queuedata; 86 unsigned long flags; 87 88 spin_lock_irqsave(&mq->lock, flags); 89 __mmc_cqe_recovery_notifier(mq); 90 spin_unlock_irqrestore(&mq->lock, flags); 91 } 92 93 static enum blk_eh_timer_return mmc_cqe_timed_out(struct request *req) 94 { 95 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 96 struct mmc_request *mrq = &mqrq->brq.mrq; 97 struct mmc_queue *mq = req->q->queuedata; 98 struct mmc_host *host = mq->card->host; 99 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 100 bool recovery_needed = false; 101 102 switch (issue_type) { 103 case MMC_ISSUE_ASYNC: 104 case MMC_ISSUE_DCMD: 105 if (host->cqe_ops->cqe_timeout(host, mrq, &recovery_needed)) { 106 if (recovery_needed) 107 __mmc_cqe_recovery_notifier(mq); 108 return BLK_EH_RESET_TIMER; 109 } 110 /* No timeout (XXX: huh? comment doesn't make much sense) */ 111 blk_mq_complete_request(req); 112 return BLK_EH_DONE; 113 default: 114 /* Timeout is handled by mmc core */ 115 return BLK_EH_RESET_TIMER; 116 } 117 } 118 119 static enum blk_eh_timer_return mmc_mq_timed_out(struct request *req, 120 bool reserved) 121 { 122 struct request_queue *q = req->q; 123 struct mmc_queue *mq = q->queuedata; 124 unsigned long flags; 125 int ret; 126 127 spin_lock_irqsave(&mq->lock, flags); 128 129 if (mq->recovery_needed || !mq->use_cqe) 130 ret = BLK_EH_RESET_TIMER; 131 else 132 ret = mmc_cqe_timed_out(req); 133 134 spin_unlock_irqrestore(&mq->lock, flags); 135 136 return ret; 137 } 138 139 static void mmc_mq_recovery_handler(struct work_struct *work) 140 { 141 struct mmc_queue *mq = container_of(work, struct mmc_queue, 142 recovery_work); 143 struct request_queue *q = mq->queue; 144 145 mmc_get_card(mq->card, &mq->ctx); 146 147 mq->in_recovery = true; 148 149 if (mq->use_cqe) 150 mmc_blk_cqe_recovery(mq); 151 else 152 mmc_blk_mq_recovery(mq); 153 154 mq->in_recovery = false; 155 156 spin_lock_irq(&mq->lock); 157 mq->recovery_needed = false; 158 spin_unlock_irq(&mq->lock); 159 160 mmc_put_card(mq->card, &mq->ctx); 161 162 blk_mq_run_hw_queues(q, true); 163 } 164 165 static struct scatterlist *mmc_alloc_sg(int sg_len, gfp_t gfp) 166 { 167 struct scatterlist *sg; 168 169 sg = kmalloc_array(sg_len, sizeof(*sg), gfp); 170 if (sg) 171 sg_init_table(sg, sg_len); 172 173 return sg; 174 } 175 176 static void mmc_queue_setup_discard(struct request_queue *q, 177 struct mmc_card *card) 178 { 179 unsigned max_discard; 180 181 max_discard = mmc_calc_max_discard(card); 182 if (!max_discard) 183 return; 184 185 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 186 blk_queue_max_discard_sectors(q, max_discard); 187 q->limits.discard_granularity = card->pref_erase << 9; 188 /* granularity must not be greater than max. discard */ 189 if (card->pref_erase > max_discard) 190 q->limits.discard_granularity = 0; 191 if (mmc_can_secure_erase_trim(card)) 192 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 193 } 194 195 /** 196 * mmc_init_request() - initialize the MMC-specific per-request data 197 * @q: the request queue 198 * @req: the request 199 * @gfp: memory allocation policy 200 */ 201 static int __mmc_init_request(struct mmc_queue *mq, struct request *req, 202 gfp_t gfp) 203 { 204 struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req); 205 struct mmc_card *card = mq->card; 206 struct mmc_host *host = card->host; 207 208 mq_rq->sg = mmc_alloc_sg(host->max_segs, gfp); 209 if (!mq_rq->sg) 210 return -ENOMEM; 211 212 return 0; 213 } 214 215 static void mmc_exit_request(struct request_queue *q, struct request *req) 216 { 217 struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req); 218 219 kfree(mq_rq->sg); 220 mq_rq->sg = NULL; 221 } 222 223 static int mmc_mq_init_request(struct blk_mq_tag_set *set, struct request *req, 224 unsigned int hctx_idx, unsigned int numa_node) 225 { 226 return __mmc_init_request(set->driver_data, req, GFP_KERNEL); 227 } 228 229 static void mmc_mq_exit_request(struct blk_mq_tag_set *set, struct request *req, 230 unsigned int hctx_idx) 231 { 232 struct mmc_queue *mq = set->driver_data; 233 234 mmc_exit_request(mq->queue, req); 235 } 236 237 static blk_status_t mmc_mq_queue_rq(struct blk_mq_hw_ctx *hctx, 238 const struct blk_mq_queue_data *bd) 239 { 240 struct request *req = bd->rq; 241 struct request_queue *q = req->q; 242 struct mmc_queue *mq = q->queuedata; 243 struct mmc_card *card = mq->card; 244 struct mmc_host *host = card->host; 245 enum mmc_issue_type issue_type; 246 enum mmc_issued issued; 247 bool get_card, cqe_retune_ok; 248 int ret; 249 250 if (mmc_card_removed(mq->card)) { 251 req->rq_flags |= RQF_QUIET; 252 return BLK_STS_IOERR; 253 } 254 255 issue_type = mmc_issue_type(mq, req); 256 257 spin_lock_irq(&mq->lock); 258 259 if (mq->recovery_needed || mq->busy) { 260 spin_unlock_irq(&mq->lock); 261 return BLK_STS_RESOURCE; 262 } 263 264 switch (issue_type) { 265 case MMC_ISSUE_DCMD: 266 if (mmc_cqe_dcmd_busy(mq)) { 267 mq->cqe_busy |= MMC_CQE_DCMD_BUSY; 268 spin_unlock_irq(&mq->lock); 269 return BLK_STS_RESOURCE; 270 } 271 break; 272 case MMC_ISSUE_ASYNC: 273 break; 274 default: 275 /* 276 * Timeouts are handled by mmc core, and we don't have a host 277 * API to abort requests, so we can't handle the timeout anyway. 278 * However, when the timeout happens, blk_mq_complete_request() 279 * no longer works (to stop the request disappearing under us). 280 * To avoid racing with that, set a large timeout. 281 */ 282 req->timeout = 600 * HZ; 283 break; 284 } 285 286 /* Parallel dispatch of requests is not supported at the moment */ 287 mq->busy = true; 288 289 mq->in_flight[issue_type] += 1; 290 get_card = (mmc_tot_in_flight(mq) == 1); 291 cqe_retune_ok = (mmc_cqe_qcnt(mq) == 1); 292 293 spin_unlock_irq(&mq->lock); 294 295 if (!(req->rq_flags & RQF_DONTPREP)) { 296 req_to_mmc_queue_req(req)->retries = 0; 297 req->rq_flags |= RQF_DONTPREP; 298 } 299 300 if (get_card) 301 mmc_get_card(card, &mq->ctx); 302 303 if (mq->use_cqe) { 304 host->retune_now = host->need_retune && cqe_retune_ok && 305 !host->hold_retune; 306 } 307 308 blk_mq_start_request(req); 309 310 issued = mmc_blk_mq_issue_rq(mq, req); 311 312 switch (issued) { 313 case MMC_REQ_BUSY: 314 ret = BLK_STS_RESOURCE; 315 break; 316 case MMC_REQ_FAILED_TO_START: 317 ret = BLK_STS_IOERR; 318 break; 319 default: 320 ret = BLK_STS_OK; 321 break; 322 } 323 324 if (issued != MMC_REQ_STARTED) { 325 bool put_card = false; 326 327 spin_lock_irq(&mq->lock); 328 mq->in_flight[issue_type] -= 1; 329 if (mmc_tot_in_flight(mq) == 0) 330 put_card = true; 331 mq->busy = false; 332 spin_unlock_irq(&mq->lock); 333 if (put_card) 334 mmc_put_card(card, &mq->ctx); 335 } else { 336 WRITE_ONCE(mq->busy, false); 337 } 338 339 return ret; 340 } 341 342 static const struct blk_mq_ops mmc_mq_ops = { 343 .queue_rq = mmc_mq_queue_rq, 344 .init_request = mmc_mq_init_request, 345 .exit_request = mmc_mq_exit_request, 346 .complete = mmc_blk_mq_complete, 347 .timeout = mmc_mq_timed_out, 348 }; 349 350 static void mmc_setup_queue(struct mmc_queue *mq, struct mmc_card *card) 351 { 352 struct mmc_host *host = card->host; 353 u64 limit = BLK_BOUNCE_HIGH; 354 unsigned block_size = 512; 355 356 if (mmc_dev(host)->dma_mask && *mmc_dev(host)->dma_mask) 357 limit = (u64)dma_max_pfn(mmc_dev(host)) << PAGE_SHIFT; 358 359 blk_queue_flag_set(QUEUE_FLAG_NONROT, mq->queue); 360 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, mq->queue); 361 if (mmc_can_erase(card)) 362 mmc_queue_setup_discard(mq->queue, card); 363 364 blk_queue_bounce_limit(mq->queue, limit); 365 blk_queue_max_hw_sectors(mq->queue, 366 min(host->max_blk_count, host->max_req_size / 512)); 367 blk_queue_max_segments(mq->queue, host->max_segs); 368 369 if (mmc_card_mmc(card)) 370 block_size = card->ext_csd.data_sector_size; 371 372 blk_queue_logical_block_size(mq->queue, block_size); 373 blk_queue_max_segment_size(mq->queue, 374 round_down(host->max_seg_size, block_size)); 375 376 dma_set_max_seg_size(mmc_dev(host), queue_max_segment_size(mq->queue)); 377 378 INIT_WORK(&mq->recovery_work, mmc_mq_recovery_handler); 379 INIT_WORK(&mq->complete_work, mmc_blk_mq_complete_work); 380 381 mutex_init(&mq->complete_lock); 382 383 init_waitqueue_head(&mq->wait); 384 } 385 386 /* Set queue depth to get a reasonable value for q->nr_requests */ 387 #define MMC_QUEUE_DEPTH 64 388 389 /** 390 * mmc_init_queue - initialise a queue structure. 391 * @mq: mmc queue 392 * @card: mmc card to attach this queue 393 * 394 * Initialise a MMC card request queue. 395 */ 396 int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card) 397 { 398 struct mmc_host *host = card->host; 399 int ret; 400 401 mq->card = card; 402 mq->use_cqe = host->cqe_enabled; 403 404 spin_lock_init(&mq->lock); 405 406 memset(&mq->tag_set, 0, sizeof(mq->tag_set)); 407 mq->tag_set.ops = &mmc_mq_ops; 408 /* 409 * The queue depth for CQE must match the hardware because the request 410 * tag is used to index the hardware queue. 411 */ 412 if (mq->use_cqe) 413 mq->tag_set.queue_depth = 414 min_t(int, card->ext_csd.cmdq_depth, host->cqe_qdepth); 415 else 416 mq->tag_set.queue_depth = MMC_QUEUE_DEPTH; 417 mq->tag_set.numa_node = NUMA_NO_NODE; 418 mq->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 419 mq->tag_set.nr_hw_queues = 1; 420 mq->tag_set.cmd_size = sizeof(struct mmc_queue_req); 421 mq->tag_set.driver_data = mq; 422 423 ret = blk_mq_alloc_tag_set(&mq->tag_set); 424 if (ret) 425 return ret; 426 427 mq->queue = blk_mq_init_queue(&mq->tag_set); 428 if (IS_ERR(mq->queue)) { 429 ret = PTR_ERR(mq->queue); 430 goto free_tag_set; 431 } 432 433 mq->queue->queuedata = mq; 434 blk_queue_rq_timeout(mq->queue, 60 * HZ); 435 436 mmc_setup_queue(mq, card); 437 return 0; 438 439 free_tag_set: 440 blk_mq_free_tag_set(&mq->tag_set); 441 return ret; 442 } 443 444 void mmc_queue_suspend(struct mmc_queue *mq) 445 { 446 blk_mq_quiesce_queue(mq->queue); 447 448 /* 449 * The host remains claimed while there are outstanding requests, so 450 * simply claiming and releasing here ensures there are none. 451 */ 452 mmc_claim_host(mq->card->host); 453 mmc_release_host(mq->card->host); 454 } 455 456 void mmc_queue_resume(struct mmc_queue *mq) 457 { 458 blk_mq_unquiesce_queue(mq->queue); 459 } 460 461 void mmc_cleanup_queue(struct mmc_queue *mq) 462 { 463 struct request_queue *q = mq->queue; 464 465 /* 466 * The legacy code handled the possibility of being suspended, 467 * so do that here too. 468 */ 469 if (blk_queue_quiesced(q)) 470 blk_mq_unquiesce_queue(q); 471 472 blk_cleanup_queue(q); 473 blk_mq_free_tag_set(&mq->tag_set); 474 475 /* 476 * A request can be completed before the next request, potentially 477 * leaving a complete_work with nothing to do. Such a work item might 478 * still be queued at this point. Flush it. 479 */ 480 flush_work(&mq->complete_work); 481 482 mq->card = NULL; 483 } 484 485 /* 486 * Prepare the sg list(s) to be handed of to the host driver 487 */ 488 unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq) 489 { 490 struct request *req = mmc_queue_req_to_req(mqrq); 491 492 return blk_rq_map_sg(mq->queue, req, mqrq->sg); 493 } 494