xref: /openbmc/linux/drivers/mmc/core/mmc_test.c (revision d2c43ff1)
1 /*
2  *  Copyright 2007-2008 Pierre Ossman
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or (at
7  * your option) any later version.
8  */
9 
10 #include <linux/mmc/core.h>
11 #include <linux/mmc/card.h>
12 #include <linux/mmc/host.h>
13 #include <linux/mmc/mmc.h>
14 #include <linux/slab.h>
15 
16 #include <linux/scatterlist.h>
17 #include <linux/swap.h>		/* For nr_free_buffer_pages() */
18 #include <linux/list.h>
19 
20 #include <linux/debugfs.h>
21 #include <linux/uaccess.h>
22 #include <linux/seq_file.h>
23 #include <linux/module.h>
24 
25 #include "core.h"
26 #include "card.h"
27 #include "host.h"
28 #include "bus.h"
29 #include "mmc_ops.h"
30 
31 #define RESULT_OK		0
32 #define RESULT_FAIL		1
33 #define RESULT_UNSUP_HOST	2
34 #define RESULT_UNSUP_CARD	3
35 
36 #define BUFFER_ORDER		2
37 #define BUFFER_SIZE		(PAGE_SIZE << BUFFER_ORDER)
38 
39 #define TEST_ALIGN_END		8
40 
41 /*
42  * Limit the test area size to the maximum MMC HC erase group size.  Note that
43  * the maximum SD allocation unit size is just 4MiB.
44  */
45 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
46 
47 /**
48  * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
49  * @page: first page in the allocation
50  * @order: order of the number of pages allocated
51  */
52 struct mmc_test_pages {
53 	struct page *page;
54 	unsigned int order;
55 };
56 
57 /**
58  * struct mmc_test_mem - allocated memory.
59  * @arr: array of allocations
60  * @cnt: number of allocations
61  */
62 struct mmc_test_mem {
63 	struct mmc_test_pages *arr;
64 	unsigned int cnt;
65 };
66 
67 /**
68  * struct mmc_test_area - information for performance tests.
69  * @max_sz: test area size (in bytes)
70  * @dev_addr: address on card at which to do performance tests
71  * @max_tfr: maximum transfer size allowed by driver (in bytes)
72  * @max_segs: maximum segments allowed by driver in scatterlist @sg
73  * @max_seg_sz: maximum segment size allowed by driver
74  * @blocks: number of (512 byte) blocks currently mapped by @sg
75  * @sg_len: length of currently mapped scatterlist @sg
76  * @mem: allocated memory
77  * @sg: scatterlist
78  */
79 struct mmc_test_area {
80 	unsigned long max_sz;
81 	unsigned int dev_addr;
82 	unsigned int max_tfr;
83 	unsigned int max_segs;
84 	unsigned int max_seg_sz;
85 	unsigned int blocks;
86 	unsigned int sg_len;
87 	struct mmc_test_mem *mem;
88 	struct scatterlist *sg;
89 };
90 
91 /**
92  * struct mmc_test_transfer_result - transfer results for performance tests.
93  * @link: double-linked list
94  * @count: amount of group of sectors to check
95  * @sectors: amount of sectors to check in one group
96  * @ts: time values of transfer
97  * @rate: calculated transfer rate
98  * @iops: I/O operations per second (times 100)
99  */
100 struct mmc_test_transfer_result {
101 	struct list_head link;
102 	unsigned int count;
103 	unsigned int sectors;
104 	struct timespec ts;
105 	unsigned int rate;
106 	unsigned int iops;
107 };
108 
109 /**
110  * struct mmc_test_general_result - results for tests.
111  * @link: double-linked list
112  * @card: card under test
113  * @testcase: number of test case
114  * @result: result of test run
115  * @tr_lst: transfer measurements if any as mmc_test_transfer_result
116  */
117 struct mmc_test_general_result {
118 	struct list_head link;
119 	struct mmc_card *card;
120 	int testcase;
121 	int result;
122 	struct list_head tr_lst;
123 };
124 
125 /**
126  * struct mmc_test_dbgfs_file - debugfs related file.
127  * @link: double-linked list
128  * @card: card under test
129  * @file: file created under debugfs
130  */
131 struct mmc_test_dbgfs_file {
132 	struct list_head link;
133 	struct mmc_card *card;
134 	struct dentry *file;
135 };
136 
137 /**
138  * struct mmc_test_card - test information.
139  * @card: card under test
140  * @scratch: transfer buffer
141  * @buffer: transfer buffer
142  * @highmem: buffer for highmem tests
143  * @area: information for performance tests
144  * @gr: pointer to results of current testcase
145  */
146 struct mmc_test_card {
147 	struct mmc_card	*card;
148 
149 	u8		scratch[BUFFER_SIZE];
150 	u8		*buffer;
151 #ifdef CONFIG_HIGHMEM
152 	struct page	*highmem;
153 #endif
154 	struct mmc_test_area		area;
155 	struct mmc_test_general_result	*gr;
156 };
157 
158 enum mmc_test_prep_media {
159 	MMC_TEST_PREP_NONE = 0,
160 	MMC_TEST_PREP_WRITE_FULL = 1 << 0,
161 	MMC_TEST_PREP_ERASE = 1 << 1,
162 };
163 
164 struct mmc_test_multiple_rw {
165 	unsigned int *sg_len;
166 	unsigned int *bs;
167 	unsigned int len;
168 	unsigned int size;
169 	bool do_write;
170 	bool do_nonblock_req;
171 	enum mmc_test_prep_media prepare;
172 };
173 
174 struct mmc_test_async_req {
175 	struct mmc_async_req areq;
176 	struct mmc_test_card *test;
177 };
178 
179 /*******************************************************************/
180 /*  General helper functions                                       */
181 /*******************************************************************/
182 
183 /*
184  * Configure correct block size in card
185  */
186 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
187 {
188 	return mmc_set_blocklen(test->card, size);
189 }
190 
191 static bool mmc_test_card_cmd23(struct mmc_card *card)
192 {
193 	return mmc_card_mmc(card) ||
194 	       (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
195 }
196 
197 static void mmc_test_prepare_sbc(struct mmc_test_card *test,
198 				 struct mmc_request *mrq, unsigned int blocks)
199 {
200 	struct mmc_card *card = test->card;
201 
202 	if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
203 	    !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
204 	    (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
205 		mrq->sbc = NULL;
206 		return;
207 	}
208 
209 	mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
210 	mrq->sbc->arg = blocks;
211 	mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
212 }
213 
214 /*
215  * Fill in the mmc_request structure given a set of transfer parameters.
216  */
217 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
218 	struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
219 	unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
220 {
221 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
222 		return;
223 
224 	if (blocks > 1) {
225 		mrq->cmd->opcode = write ?
226 			MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
227 	} else {
228 		mrq->cmd->opcode = write ?
229 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
230 	}
231 
232 	mrq->cmd->arg = dev_addr;
233 	if (!mmc_card_blockaddr(test->card))
234 		mrq->cmd->arg <<= 9;
235 
236 	mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
237 
238 	if (blocks == 1)
239 		mrq->stop = NULL;
240 	else {
241 		mrq->stop->opcode = MMC_STOP_TRANSMISSION;
242 		mrq->stop->arg = 0;
243 		mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
244 	}
245 
246 	mrq->data->blksz = blksz;
247 	mrq->data->blocks = blocks;
248 	mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
249 	mrq->data->sg = sg;
250 	mrq->data->sg_len = sg_len;
251 
252 	mmc_test_prepare_sbc(test, mrq, blocks);
253 
254 	mmc_set_data_timeout(mrq->data, test->card);
255 }
256 
257 static int mmc_test_busy(struct mmc_command *cmd)
258 {
259 	return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
260 		(R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
261 }
262 
263 /*
264  * Wait for the card to finish the busy state
265  */
266 static int mmc_test_wait_busy(struct mmc_test_card *test)
267 {
268 	int ret, busy;
269 	struct mmc_command cmd = {};
270 
271 	busy = 0;
272 	do {
273 		memset(&cmd, 0, sizeof(struct mmc_command));
274 
275 		cmd.opcode = MMC_SEND_STATUS;
276 		cmd.arg = test->card->rca << 16;
277 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
278 
279 		ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
280 		if (ret)
281 			break;
282 
283 		if (!busy && mmc_test_busy(&cmd)) {
284 			busy = 1;
285 			if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
286 				pr_info("%s: Warning: Host did not wait for busy state to end.\n",
287 					mmc_hostname(test->card->host));
288 		}
289 	} while (mmc_test_busy(&cmd));
290 
291 	return ret;
292 }
293 
294 /*
295  * Transfer a single sector of kernel addressable data
296  */
297 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
298 	u8 *buffer, unsigned addr, unsigned blksz, int write)
299 {
300 	struct mmc_request mrq = {};
301 	struct mmc_command cmd = {};
302 	struct mmc_command stop = {};
303 	struct mmc_data data = {};
304 
305 	struct scatterlist sg;
306 
307 	mrq.cmd = &cmd;
308 	mrq.data = &data;
309 	mrq.stop = &stop;
310 
311 	sg_init_one(&sg, buffer, blksz);
312 
313 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
314 
315 	mmc_wait_for_req(test->card->host, &mrq);
316 
317 	if (cmd.error)
318 		return cmd.error;
319 	if (data.error)
320 		return data.error;
321 
322 	return mmc_test_wait_busy(test);
323 }
324 
325 static void mmc_test_free_mem(struct mmc_test_mem *mem)
326 {
327 	if (!mem)
328 		return;
329 	while (mem->cnt--)
330 		__free_pages(mem->arr[mem->cnt].page,
331 			     mem->arr[mem->cnt].order);
332 	kfree(mem->arr);
333 	kfree(mem);
334 }
335 
336 /*
337  * Allocate a lot of memory, preferably max_sz but at least min_sz.  In case
338  * there isn't much memory do not exceed 1/16th total lowmem pages.  Also do
339  * not exceed a maximum number of segments and try not to make segments much
340  * bigger than maximum segment size.
341  */
342 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
343 					       unsigned long max_sz,
344 					       unsigned int max_segs,
345 					       unsigned int max_seg_sz)
346 {
347 	unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
348 	unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
349 	unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
350 	unsigned long page_cnt = 0;
351 	unsigned long limit = nr_free_buffer_pages() >> 4;
352 	struct mmc_test_mem *mem;
353 
354 	if (max_page_cnt > limit)
355 		max_page_cnt = limit;
356 	if (min_page_cnt > max_page_cnt)
357 		min_page_cnt = max_page_cnt;
358 
359 	if (max_seg_page_cnt > max_page_cnt)
360 		max_seg_page_cnt = max_page_cnt;
361 
362 	if (max_segs > max_page_cnt)
363 		max_segs = max_page_cnt;
364 
365 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
366 	if (!mem)
367 		return NULL;
368 
369 	mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
370 	if (!mem->arr)
371 		goto out_free;
372 
373 	while (max_page_cnt) {
374 		struct page *page;
375 		unsigned int order;
376 		gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
377 				__GFP_NORETRY;
378 
379 		order = get_order(max_seg_page_cnt << PAGE_SHIFT);
380 		while (1) {
381 			page = alloc_pages(flags, order);
382 			if (page || !order)
383 				break;
384 			order -= 1;
385 		}
386 		if (!page) {
387 			if (page_cnt < min_page_cnt)
388 				goto out_free;
389 			break;
390 		}
391 		mem->arr[mem->cnt].page = page;
392 		mem->arr[mem->cnt].order = order;
393 		mem->cnt += 1;
394 		if (max_page_cnt <= (1UL << order))
395 			break;
396 		max_page_cnt -= 1UL << order;
397 		page_cnt += 1UL << order;
398 		if (mem->cnt >= max_segs) {
399 			if (page_cnt < min_page_cnt)
400 				goto out_free;
401 			break;
402 		}
403 	}
404 
405 	return mem;
406 
407 out_free:
408 	mmc_test_free_mem(mem);
409 	return NULL;
410 }
411 
412 /*
413  * Map memory into a scatterlist.  Optionally allow the same memory to be
414  * mapped more than once.
415  */
416 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
417 			   struct scatterlist *sglist, int repeat,
418 			   unsigned int max_segs, unsigned int max_seg_sz,
419 			   unsigned int *sg_len, int min_sg_len)
420 {
421 	struct scatterlist *sg = NULL;
422 	unsigned int i;
423 	unsigned long sz = size;
424 
425 	sg_init_table(sglist, max_segs);
426 	if (min_sg_len > max_segs)
427 		min_sg_len = max_segs;
428 
429 	*sg_len = 0;
430 	do {
431 		for (i = 0; i < mem->cnt; i++) {
432 			unsigned long len = PAGE_SIZE << mem->arr[i].order;
433 
434 			if (min_sg_len && (size / min_sg_len < len))
435 				len = ALIGN(size / min_sg_len, 512);
436 			if (len > sz)
437 				len = sz;
438 			if (len > max_seg_sz)
439 				len = max_seg_sz;
440 			if (sg)
441 				sg = sg_next(sg);
442 			else
443 				sg = sglist;
444 			if (!sg)
445 				return -EINVAL;
446 			sg_set_page(sg, mem->arr[i].page, len, 0);
447 			sz -= len;
448 			*sg_len += 1;
449 			if (!sz)
450 				break;
451 		}
452 	} while (sz && repeat);
453 
454 	if (sz)
455 		return -EINVAL;
456 
457 	if (sg)
458 		sg_mark_end(sg);
459 
460 	return 0;
461 }
462 
463 /*
464  * Map memory into a scatterlist so that no pages are contiguous.  Allow the
465  * same memory to be mapped more than once.
466  */
467 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
468 				       unsigned long sz,
469 				       struct scatterlist *sglist,
470 				       unsigned int max_segs,
471 				       unsigned int max_seg_sz,
472 				       unsigned int *sg_len)
473 {
474 	struct scatterlist *sg = NULL;
475 	unsigned int i = mem->cnt, cnt;
476 	unsigned long len;
477 	void *base, *addr, *last_addr = NULL;
478 
479 	sg_init_table(sglist, max_segs);
480 
481 	*sg_len = 0;
482 	while (sz) {
483 		base = page_address(mem->arr[--i].page);
484 		cnt = 1 << mem->arr[i].order;
485 		while (sz && cnt) {
486 			addr = base + PAGE_SIZE * --cnt;
487 			if (last_addr && last_addr + PAGE_SIZE == addr)
488 				continue;
489 			last_addr = addr;
490 			len = PAGE_SIZE;
491 			if (len > max_seg_sz)
492 				len = max_seg_sz;
493 			if (len > sz)
494 				len = sz;
495 			if (sg)
496 				sg = sg_next(sg);
497 			else
498 				sg = sglist;
499 			if (!sg)
500 				return -EINVAL;
501 			sg_set_page(sg, virt_to_page(addr), len, 0);
502 			sz -= len;
503 			*sg_len += 1;
504 		}
505 		if (i == 0)
506 			i = mem->cnt;
507 	}
508 
509 	if (sg)
510 		sg_mark_end(sg);
511 
512 	return 0;
513 }
514 
515 /*
516  * Calculate transfer rate in bytes per second.
517  */
518 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec *ts)
519 {
520 	uint64_t ns;
521 
522 	ns = ts->tv_sec;
523 	ns *= 1000000000;
524 	ns += ts->tv_nsec;
525 
526 	bytes *= 1000000000;
527 
528 	while (ns > UINT_MAX) {
529 		bytes >>= 1;
530 		ns >>= 1;
531 	}
532 
533 	if (!ns)
534 		return 0;
535 
536 	do_div(bytes, (uint32_t)ns);
537 
538 	return bytes;
539 }
540 
541 /*
542  * Save transfer results for future usage
543  */
544 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
545 	unsigned int count, unsigned int sectors, struct timespec ts,
546 	unsigned int rate, unsigned int iops)
547 {
548 	struct mmc_test_transfer_result *tr;
549 
550 	if (!test->gr)
551 		return;
552 
553 	tr = kmalloc(sizeof(*tr), GFP_KERNEL);
554 	if (!tr)
555 		return;
556 
557 	tr->count = count;
558 	tr->sectors = sectors;
559 	tr->ts = ts;
560 	tr->rate = rate;
561 	tr->iops = iops;
562 
563 	list_add_tail(&tr->link, &test->gr->tr_lst);
564 }
565 
566 /*
567  * Print the transfer rate.
568  */
569 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
570 				struct timespec *ts1, struct timespec *ts2)
571 {
572 	unsigned int rate, iops, sectors = bytes >> 9;
573 	struct timespec ts;
574 
575 	ts = timespec_sub(*ts2, *ts1);
576 
577 	rate = mmc_test_rate(bytes, &ts);
578 	iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
579 
580 	pr_info("%s: Transfer of %u sectors (%u%s KiB) took %lu.%09lu "
581 			 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
582 			 mmc_hostname(test->card->host), sectors, sectors >> 1,
583 			 (sectors & 1 ? ".5" : ""), (unsigned long)ts.tv_sec,
584 			 (unsigned long)ts.tv_nsec, rate / 1000, rate / 1024,
585 			 iops / 100, iops % 100);
586 
587 	mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
588 }
589 
590 /*
591  * Print the average transfer rate.
592  */
593 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
594 				    unsigned int count, struct timespec *ts1,
595 				    struct timespec *ts2)
596 {
597 	unsigned int rate, iops, sectors = bytes >> 9;
598 	uint64_t tot = bytes * count;
599 	struct timespec ts;
600 
601 	ts = timespec_sub(*ts2, *ts1);
602 
603 	rate = mmc_test_rate(tot, &ts);
604 	iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
605 
606 	pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
607 			 "%lu.%09lu seconds (%u kB/s, %u KiB/s, "
608 			 "%u.%02u IOPS, sg_len %d)\n",
609 			 mmc_hostname(test->card->host), count, sectors, count,
610 			 sectors >> 1, (sectors & 1 ? ".5" : ""),
611 			 (unsigned long)ts.tv_sec, (unsigned long)ts.tv_nsec,
612 			 rate / 1000, rate / 1024, iops / 100, iops % 100,
613 			 test->area.sg_len);
614 
615 	mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
616 }
617 
618 /*
619  * Return the card size in sectors.
620  */
621 static unsigned int mmc_test_capacity(struct mmc_card *card)
622 {
623 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
624 		return card->ext_csd.sectors;
625 	else
626 		return card->csd.capacity << (card->csd.read_blkbits - 9);
627 }
628 
629 /*******************************************************************/
630 /*  Test preparation and cleanup                                   */
631 /*******************************************************************/
632 
633 /*
634  * Fill the first couple of sectors of the card with known data
635  * so that bad reads/writes can be detected
636  */
637 static int __mmc_test_prepare(struct mmc_test_card *test, int write)
638 {
639 	int ret, i;
640 
641 	ret = mmc_test_set_blksize(test, 512);
642 	if (ret)
643 		return ret;
644 
645 	if (write)
646 		memset(test->buffer, 0xDF, 512);
647 	else {
648 		for (i = 0; i < 512; i++)
649 			test->buffer[i] = i;
650 	}
651 
652 	for (i = 0; i < BUFFER_SIZE / 512; i++) {
653 		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
654 		if (ret)
655 			return ret;
656 	}
657 
658 	return 0;
659 }
660 
661 static int mmc_test_prepare_write(struct mmc_test_card *test)
662 {
663 	return __mmc_test_prepare(test, 1);
664 }
665 
666 static int mmc_test_prepare_read(struct mmc_test_card *test)
667 {
668 	return __mmc_test_prepare(test, 0);
669 }
670 
671 static int mmc_test_cleanup(struct mmc_test_card *test)
672 {
673 	int ret, i;
674 
675 	ret = mmc_test_set_blksize(test, 512);
676 	if (ret)
677 		return ret;
678 
679 	memset(test->buffer, 0, 512);
680 
681 	for (i = 0; i < BUFFER_SIZE / 512; i++) {
682 		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
683 		if (ret)
684 			return ret;
685 	}
686 
687 	return 0;
688 }
689 
690 /*******************************************************************/
691 /*  Test execution helpers                                         */
692 /*******************************************************************/
693 
694 /*
695  * Modifies the mmc_request to perform the "short transfer" tests
696  */
697 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
698 	struct mmc_request *mrq, int write)
699 {
700 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
701 		return;
702 
703 	if (mrq->data->blocks > 1) {
704 		mrq->cmd->opcode = write ?
705 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
706 		mrq->stop = NULL;
707 	} else {
708 		mrq->cmd->opcode = MMC_SEND_STATUS;
709 		mrq->cmd->arg = test->card->rca << 16;
710 	}
711 }
712 
713 /*
714  * Checks that a normal transfer didn't have any errors
715  */
716 static int mmc_test_check_result(struct mmc_test_card *test,
717 				 struct mmc_request *mrq)
718 {
719 	int ret;
720 
721 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
722 		return -EINVAL;
723 
724 	ret = 0;
725 
726 	if (mrq->sbc && mrq->sbc->error)
727 		ret = mrq->sbc->error;
728 	if (!ret && mrq->cmd->error)
729 		ret = mrq->cmd->error;
730 	if (!ret && mrq->data->error)
731 		ret = mrq->data->error;
732 	if (!ret && mrq->stop && mrq->stop->error)
733 		ret = mrq->stop->error;
734 	if (!ret && mrq->data->bytes_xfered !=
735 		mrq->data->blocks * mrq->data->blksz)
736 		ret = RESULT_FAIL;
737 
738 	if (ret == -EINVAL)
739 		ret = RESULT_UNSUP_HOST;
740 
741 	return ret;
742 }
743 
744 static enum mmc_blk_status mmc_test_check_result_async(struct mmc_card *card,
745 				       struct mmc_async_req *areq)
746 {
747 	struct mmc_test_async_req *test_async =
748 		container_of(areq, struct mmc_test_async_req, areq);
749 	int ret;
750 
751 	mmc_test_wait_busy(test_async->test);
752 
753 	/*
754 	 * FIXME: this would earlier just casts a regular error code,
755 	 * either of the kernel type -ERRORCODE or the local test framework
756 	 * RESULT_* errorcode, into an enum mmc_blk_status and return as
757 	 * result check. Instead, convert it to some reasonable type by just
758 	 * returning either MMC_BLK_SUCCESS or MMC_BLK_CMD_ERR.
759 	 * If possible, a reasonable error code should be returned.
760 	 */
761 	ret = mmc_test_check_result(test_async->test, areq->mrq);
762 	if (ret)
763 		return MMC_BLK_CMD_ERR;
764 
765 	return MMC_BLK_SUCCESS;
766 }
767 
768 /*
769  * Checks that a "short transfer" behaved as expected
770  */
771 static int mmc_test_check_broken_result(struct mmc_test_card *test,
772 	struct mmc_request *mrq)
773 {
774 	int ret;
775 
776 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
777 		return -EINVAL;
778 
779 	ret = 0;
780 
781 	if (!ret && mrq->cmd->error)
782 		ret = mrq->cmd->error;
783 	if (!ret && mrq->data->error == 0)
784 		ret = RESULT_FAIL;
785 	if (!ret && mrq->data->error != -ETIMEDOUT)
786 		ret = mrq->data->error;
787 	if (!ret && mrq->stop && mrq->stop->error)
788 		ret = mrq->stop->error;
789 	if (mrq->data->blocks > 1) {
790 		if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
791 			ret = RESULT_FAIL;
792 	} else {
793 		if (!ret && mrq->data->bytes_xfered > 0)
794 			ret = RESULT_FAIL;
795 	}
796 
797 	if (ret == -EINVAL)
798 		ret = RESULT_UNSUP_HOST;
799 
800 	return ret;
801 }
802 
803 /*
804  * Tests nonblock transfer with certain parameters
805  */
806 static void mmc_test_nonblock_reset(struct mmc_request *mrq,
807 				    struct mmc_command *cmd,
808 				    struct mmc_command *stop,
809 				    struct mmc_data *data)
810 {
811 	memset(mrq, 0, sizeof(struct mmc_request));
812 	memset(cmd, 0, sizeof(struct mmc_command));
813 	memset(data, 0, sizeof(struct mmc_data));
814 	memset(stop, 0, sizeof(struct mmc_command));
815 
816 	mrq->cmd = cmd;
817 	mrq->data = data;
818 	mrq->stop = stop;
819 }
820 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
821 				      struct scatterlist *sg, unsigned sg_len,
822 				      unsigned dev_addr, unsigned blocks,
823 				      unsigned blksz, int write, int count)
824 {
825 	struct mmc_request mrq1;
826 	struct mmc_command cmd1;
827 	struct mmc_command stop1;
828 	struct mmc_data data1;
829 
830 	struct mmc_request mrq2;
831 	struct mmc_command cmd2;
832 	struct mmc_command stop2;
833 	struct mmc_data data2;
834 
835 	struct mmc_test_async_req test_areq[2];
836 	struct mmc_async_req *done_areq;
837 	struct mmc_async_req *cur_areq = &test_areq[0].areq;
838 	struct mmc_async_req *other_areq = &test_areq[1].areq;
839 	enum mmc_blk_status status;
840 	int i;
841 	int ret = RESULT_OK;
842 
843 	test_areq[0].test = test;
844 	test_areq[1].test = test;
845 
846 	mmc_test_nonblock_reset(&mrq1, &cmd1, &stop1, &data1);
847 	mmc_test_nonblock_reset(&mrq2, &cmd2, &stop2, &data2);
848 
849 	cur_areq->mrq = &mrq1;
850 	cur_areq->err_check = mmc_test_check_result_async;
851 	other_areq->mrq = &mrq2;
852 	other_areq->err_check = mmc_test_check_result_async;
853 
854 	for (i = 0; i < count; i++) {
855 		mmc_test_prepare_mrq(test, cur_areq->mrq, sg, sg_len, dev_addr,
856 				     blocks, blksz, write);
857 		done_areq = mmc_start_areq(test->card->host, cur_areq, &status);
858 
859 		if (status != MMC_BLK_SUCCESS || (!done_areq && i > 0)) {
860 			ret = RESULT_FAIL;
861 			goto err;
862 		}
863 
864 		if (done_areq) {
865 			if (done_areq->mrq == &mrq2)
866 				mmc_test_nonblock_reset(&mrq2, &cmd2,
867 							&stop2, &data2);
868 			else
869 				mmc_test_nonblock_reset(&mrq1, &cmd1,
870 							&stop1, &data1);
871 		}
872 		swap(cur_areq, other_areq);
873 		dev_addr += blocks;
874 	}
875 
876 	done_areq = mmc_start_areq(test->card->host, NULL, &status);
877 	if (status != MMC_BLK_SUCCESS)
878 		ret = RESULT_FAIL;
879 
880 	return ret;
881 err:
882 	return ret;
883 }
884 
885 /*
886  * Tests a basic transfer with certain parameters
887  */
888 static int mmc_test_simple_transfer(struct mmc_test_card *test,
889 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
890 	unsigned blocks, unsigned blksz, int write)
891 {
892 	struct mmc_request mrq = {};
893 	struct mmc_command cmd = {};
894 	struct mmc_command stop = {};
895 	struct mmc_data data = {};
896 
897 	mrq.cmd = &cmd;
898 	mrq.data = &data;
899 	mrq.stop = &stop;
900 
901 	mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
902 		blocks, blksz, write);
903 
904 	mmc_wait_for_req(test->card->host, &mrq);
905 
906 	mmc_test_wait_busy(test);
907 
908 	return mmc_test_check_result(test, &mrq);
909 }
910 
911 /*
912  * Tests a transfer where the card will fail completely or partly
913  */
914 static int mmc_test_broken_transfer(struct mmc_test_card *test,
915 	unsigned blocks, unsigned blksz, int write)
916 {
917 	struct mmc_request mrq = {};
918 	struct mmc_command cmd = {};
919 	struct mmc_command stop = {};
920 	struct mmc_data data = {};
921 
922 	struct scatterlist sg;
923 
924 	mrq.cmd = &cmd;
925 	mrq.data = &data;
926 	mrq.stop = &stop;
927 
928 	sg_init_one(&sg, test->buffer, blocks * blksz);
929 
930 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
931 	mmc_test_prepare_broken_mrq(test, &mrq, write);
932 
933 	mmc_wait_for_req(test->card->host, &mrq);
934 
935 	mmc_test_wait_busy(test);
936 
937 	return mmc_test_check_broken_result(test, &mrq);
938 }
939 
940 /*
941  * Does a complete transfer test where data is also validated
942  *
943  * Note: mmc_test_prepare() must have been done before this call
944  */
945 static int mmc_test_transfer(struct mmc_test_card *test,
946 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
947 	unsigned blocks, unsigned blksz, int write)
948 {
949 	int ret, i;
950 	unsigned long flags;
951 
952 	if (write) {
953 		for (i = 0; i < blocks * blksz; i++)
954 			test->scratch[i] = i;
955 	} else {
956 		memset(test->scratch, 0, BUFFER_SIZE);
957 	}
958 	local_irq_save(flags);
959 	sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
960 	local_irq_restore(flags);
961 
962 	ret = mmc_test_set_blksize(test, blksz);
963 	if (ret)
964 		return ret;
965 
966 	ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
967 		blocks, blksz, write);
968 	if (ret)
969 		return ret;
970 
971 	if (write) {
972 		int sectors;
973 
974 		ret = mmc_test_set_blksize(test, 512);
975 		if (ret)
976 			return ret;
977 
978 		sectors = (blocks * blksz + 511) / 512;
979 		if ((sectors * 512) == (blocks * blksz))
980 			sectors++;
981 
982 		if ((sectors * 512) > BUFFER_SIZE)
983 			return -EINVAL;
984 
985 		memset(test->buffer, 0, sectors * 512);
986 
987 		for (i = 0; i < sectors; i++) {
988 			ret = mmc_test_buffer_transfer(test,
989 				test->buffer + i * 512,
990 				dev_addr + i, 512, 0);
991 			if (ret)
992 				return ret;
993 		}
994 
995 		for (i = 0; i < blocks * blksz; i++) {
996 			if (test->buffer[i] != (u8)i)
997 				return RESULT_FAIL;
998 		}
999 
1000 		for (; i < sectors * 512; i++) {
1001 			if (test->buffer[i] != 0xDF)
1002 				return RESULT_FAIL;
1003 		}
1004 	} else {
1005 		local_irq_save(flags);
1006 		sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
1007 		local_irq_restore(flags);
1008 		for (i = 0; i < blocks * blksz; i++) {
1009 			if (test->scratch[i] != (u8)i)
1010 				return RESULT_FAIL;
1011 		}
1012 	}
1013 
1014 	return 0;
1015 }
1016 
1017 /*******************************************************************/
1018 /*  Tests                                                          */
1019 /*******************************************************************/
1020 
1021 struct mmc_test_case {
1022 	const char *name;
1023 
1024 	int (*prepare)(struct mmc_test_card *);
1025 	int (*run)(struct mmc_test_card *);
1026 	int (*cleanup)(struct mmc_test_card *);
1027 };
1028 
1029 static int mmc_test_basic_write(struct mmc_test_card *test)
1030 {
1031 	int ret;
1032 	struct scatterlist sg;
1033 
1034 	ret = mmc_test_set_blksize(test, 512);
1035 	if (ret)
1036 		return ret;
1037 
1038 	sg_init_one(&sg, test->buffer, 512);
1039 
1040 	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1041 }
1042 
1043 static int mmc_test_basic_read(struct mmc_test_card *test)
1044 {
1045 	int ret;
1046 	struct scatterlist sg;
1047 
1048 	ret = mmc_test_set_blksize(test, 512);
1049 	if (ret)
1050 		return ret;
1051 
1052 	sg_init_one(&sg, test->buffer, 512);
1053 
1054 	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1055 }
1056 
1057 static int mmc_test_verify_write(struct mmc_test_card *test)
1058 {
1059 	struct scatterlist sg;
1060 
1061 	sg_init_one(&sg, test->buffer, 512);
1062 
1063 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1064 }
1065 
1066 static int mmc_test_verify_read(struct mmc_test_card *test)
1067 {
1068 	struct scatterlist sg;
1069 
1070 	sg_init_one(&sg, test->buffer, 512);
1071 
1072 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1073 }
1074 
1075 static int mmc_test_multi_write(struct mmc_test_card *test)
1076 {
1077 	unsigned int size;
1078 	struct scatterlist sg;
1079 
1080 	if (test->card->host->max_blk_count == 1)
1081 		return RESULT_UNSUP_HOST;
1082 
1083 	size = PAGE_SIZE * 2;
1084 	size = min(size, test->card->host->max_req_size);
1085 	size = min(size, test->card->host->max_seg_size);
1086 	size = min(size, test->card->host->max_blk_count * 512);
1087 
1088 	if (size < 1024)
1089 		return RESULT_UNSUP_HOST;
1090 
1091 	sg_init_one(&sg, test->buffer, size);
1092 
1093 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1094 }
1095 
1096 static int mmc_test_multi_read(struct mmc_test_card *test)
1097 {
1098 	unsigned int size;
1099 	struct scatterlist sg;
1100 
1101 	if (test->card->host->max_blk_count == 1)
1102 		return RESULT_UNSUP_HOST;
1103 
1104 	size = PAGE_SIZE * 2;
1105 	size = min(size, test->card->host->max_req_size);
1106 	size = min(size, test->card->host->max_seg_size);
1107 	size = min(size, test->card->host->max_blk_count * 512);
1108 
1109 	if (size < 1024)
1110 		return RESULT_UNSUP_HOST;
1111 
1112 	sg_init_one(&sg, test->buffer, size);
1113 
1114 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1115 }
1116 
1117 static int mmc_test_pow2_write(struct mmc_test_card *test)
1118 {
1119 	int ret, i;
1120 	struct scatterlist sg;
1121 
1122 	if (!test->card->csd.write_partial)
1123 		return RESULT_UNSUP_CARD;
1124 
1125 	for (i = 1; i < 512; i <<= 1) {
1126 		sg_init_one(&sg, test->buffer, i);
1127 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1128 		if (ret)
1129 			return ret;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static int mmc_test_pow2_read(struct mmc_test_card *test)
1136 {
1137 	int ret, i;
1138 	struct scatterlist sg;
1139 
1140 	if (!test->card->csd.read_partial)
1141 		return RESULT_UNSUP_CARD;
1142 
1143 	for (i = 1; i < 512; i <<= 1) {
1144 		sg_init_one(&sg, test->buffer, i);
1145 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1146 		if (ret)
1147 			return ret;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static int mmc_test_weird_write(struct mmc_test_card *test)
1154 {
1155 	int ret, i;
1156 	struct scatterlist sg;
1157 
1158 	if (!test->card->csd.write_partial)
1159 		return RESULT_UNSUP_CARD;
1160 
1161 	for (i = 3; i < 512; i += 7) {
1162 		sg_init_one(&sg, test->buffer, i);
1163 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1164 		if (ret)
1165 			return ret;
1166 	}
1167 
1168 	return 0;
1169 }
1170 
1171 static int mmc_test_weird_read(struct mmc_test_card *test)
1172 {
1173 	int ret, i;
1174 	struct scatterlist sg;
1175 
1176 	if (!test->card->csd.read_partial)
1177 		return RESULT_UNSUP_CARD;
1178 
1179 	for (i = 3; i < 512; i += 7) {
1180 		sg_init_one(&sg, test->buffer, i);
1181 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1182 		if (ret)
1183 			return ret;
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 static int mmc_test_align_write(struct mmc_test_card *test)
1190 {
1191 	int ret, i;
1192 	struct scatterlist sg;
1193 
1194 	for (i = 1; i < TEST_ALIGN_END; i++) {
1195 		sg_init_one(&sg, test->buffer + i, 512);
1196 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1197 		if (ret)
1198 			return ret;
1199 	}
1200 
1201 	return 0;
1202 }
1203 
1204 static int mmc_test_align_read(struct mmc_test_card *test)
1205 {
1206 	int ret, i;
1207 	struct scatterlist sg;
1208 
1209 	for (i = 1; i < TEST_ALIGN_END; i++) {
1210 		sg_init_one(&sg, test->buffer + i, 512);
1211 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1212 		if (ret)
1213 			return ret;
1214 	}
1215 
1216 	return 0;
1217 }
1218 
1219 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1220 {
1221 	int ret, i;
1222 	unsigned int size;
1223 	struct scatterlist sg;
1224 
1225 	if (test->card->host->max_blk_count == 1)
1226 		return RESULT_UNSUP_HOST;
1227 
1228 	size = PAGE_SIZE * 2;
1229 	size = min(size, test->card->host->max_req_size);
1230 	size = min(size, test->card->host->max_seg_size);
1231 	size = min(size, test->card->host->max_blk_count * 512);
1232 
1233 	if (size < 1024)
1234 		return RESULT_UNSUP_HOST;
1235 
1236 	for (i = 1; i < TEST_ALIGN_END; i++) {
1237 		sg_init_one(&sg, test->buffer + i, size);
1238 		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1239 		if (ret)
1240 			return ret;
1241 	}
1242 
1243 	return 0;
1244 }
1245 
1246 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1247 {
1248 	int ret, i;
1249 	unsigned int size;
1250 	struct scatterlist sg;
1251 
1252 	if (test->card->host->max_blk_count == 1)
1253 		return RESULT_UNSUP_HOST;
1254 
1255 	size = PAGE_SIZE * 2;
1256 	size = min(size, test->card->host->max_req_size);
1257 	size = min(size, test->card->host->max_seg_size);
1258 	size = min(size, test->card->host->max_blk_count * 512);
1259 
1260 	if (size < 1024)
1261 		return RESULT_UNSUP_HOST;
1262 
1263 	for (i = 1; i < TEST_ALIGN_END; i++) {
1264 		sg_init_one(&sg, test->buffer + i, size);
1265 		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1266 		if (ret)
1267 			return ret;
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1274 {
1275 	int ret;
1276 
1277 	ret = mmc_test_set_blksize(test, 512);
1278 	if (ret)
1279 		return ret;
1280 
1281 	return mmc_test_broken_transfer(test, 1, 512, 1);
1282 }
1283 
1284 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1285 {
1286 	int ret;
1287 
1288 	ret = mmc_test_set_blksize(test, 512);
1289 	if (ret)
1290 		return ret;
1291 
1292 	return mmc_test_broken_transfer(test, 1, 512, 0);
1293 }
1294 
1295 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1296 {
1297 	int ret;
1298 
1299 	if (test->card->host->max_blk_count == 1)
1300 		return RESULT_UNSUP_HOST;
1301 
1302 	ret = mmc_test_set_blksize(test, 512);
1303 	if (ret)
1304 		return ret;
1305 
1306 	return mmc_test_broken_transfer(test, 2, 512, 1);
1307 }
1308 
1309 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1310 {
1311 	int ret;
1312 
1313 	if (test->card->host->max_blk_count == 1)
1314 		return RESULT_UNSUP_HOST;
1315 
1316 	ret = mmc_test_set_blksize(test, 512);
1317 	if (ret)
1318 		return ret;
1319 
1320 	return mmc_test_broken_transfer(test, 2, 512, 0);
1321 }
1322 
1323 #ifdef CONFIG_HIGHMEM
1324 
1325 static int mmc_test_write_high(struct mmc_test_card *test)
1326 {
1327 	struct scatterlist sg;
1328 
1329 	sg_init_table(&sg, 1);
1330 	sg_set_page(&sg, test->highmem, 512, 0);
1331 
1332 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1333 }
1334 
1335 static int mmc_test_read_high(struct mmc_test_card *test)
1336 {
1337 	struct scatterlist sg;
1338 
1339 	sg_init_table(&sg, 1);
1340 	sg_set_page(&sg, test->highmem, 512, 0);
1341 
1342 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1343 }
1344 
1345 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1346 {
1347 	unsigned int size;
1348 	struct scatterlist sg;
1349 
1350 	if (test->card->host->max_blk_count == 1)
1351 		return RESULT_UNSUP_HOST;
1352 
1353 	size = PAGE_SIZE * 2;
1354 	size = min(size, test->card->host->max_req_size);
1355 	size = min(size, test->card->host->max_seg_size);
1356 	size = min(size, test->card->host->max_blk_count * 512);
1357 
1358 	if (size < 1024)
1359 		return RESULT_UNSUP_HOST;
1360 
1361 	sg_init_table(&sg, 1);
1362 	sg_set_page(&sg, test->highmem, size, 0);
1363 
1364 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1365 }
1366 
1367 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1368 {
1369 	unsigned int size;
1370 	struct scatterlist sg;
1371 
1372 	if (test->card->host->max_blk_count == 1)
1373 		return RESULT_UNSUP_HOST;
1374 
1375 	size = PAGE_SIZE * 2;
1376 	size = min(size, test->card->host->max_req_size);
1377 	size = min(size, test->card->host->max_seg_size);
1378 	size = min(size, test->card->host->max_blk_count * 512);
1379 
1380 	if (size < 1024)
1381 		return RESULT_UNSUP_HOST;
1382 
1383 	sg_init_table(&sg, 1);
1384 	sg_set_page(&sg, test->highmem, size, 0);
1385 
1386 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1387 }
1388 
1389 #else
1390 
1391 static int mmc_test_no_highmem(struct mmc_test_card *test)
1392 {
1393 	pr_info("%s: Highmem not configured - test skipped\n",
1394 	       mmc_hostname(test->card->host));
1395 	return 0;
1396 }
1397 
1398 #endif /* CONFIG_HIGHMEM */
1399 
1400 /*
1401  * Map sz bytes so that it can be transferred.
1402  */
1403 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1404 			     int max_scatter, int min_sg_len)
1405 {
1406 	struct mmc_test_area *t = &test->area;
1407 	int err;
1408 
1409 	t->blocks = sz >> 9;
1410 
1411 	if (max_scatter) {
1412 		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1413 						  t->max_segs, t->max_seg_sz,
1414 				       &t->sg_len);
1415 	} else {
1416 		err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1417 				      t->max_seg_sz, &t->sg_len, min_sg_len);
1418 	}
1419 	if (err)
1420 		pr_info("%s: Failed to map sg list\n",
1421 		       mmc_hostname(test->card->host));
1422 	return err;
1423 }
1424 
1425 /*
1426  * Transfer bytes mapped by mmc_test_area_map().
1427  */
1428 static int mmc_test_area_transfer(struct mmc_test_card *test,
1429 				  unsigned int dev_addr, int write)
1430 {
1431 	struct mmc_test_area *t = &test->area;
1432 
1433 	return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1434 					t->blocks, 512, write);
1435 }
1436 
1437 /*
1438  * Map and transfer bytes for multiple transfers.
1439  */
1440 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1441 				unsigned int dev_addr, int write,
1442 				int max_scatter, int timed, int count,
1443 				bool nonblock, int min_sg_len)
1444 {
1445 	struct timespec ts1, ts2;
1446 	int ret = 0;
1447 	int i;
1448 	struct mmc_test_area *t = &test->area;
1449 
1450 	/*
1451 	 * In the case of a maximally scattered transfer, the maximum transfer
1452 	 * size is further limited by using PAGE_SIZE segments.
1453 	 */
1454 	if (max_scatter) {
1455 		struct mmc_test_area *t = &test->area;
1456 		unsigned long max_tfr;
1457 
1458 		if (t->max_seg_sz >= PAGE_SIZE)
1459 			max_tfr = t->max_segs * PAGE_SIZE;
1460 		else
1461 			max_tfr = t->max_segs * t->max_seg_sz;
1462 		if (sz > max_tfr)
1463 			sz = max_tfr;
1464 	}
1465 
1466 	ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len);
1467 	if (ret)
1468 		return ret;
1469 
1470 	if (timed)
1471 		getnstimeofday(&ts1);
1472 	if (nonblock)
1473 		ret = mmc_test_nonblock_transfer(test, t->sg, t->sg_len,
1474 				 dev_addr, t->blocks, 512, write, count);
1475 	else
1476 		for (i = 0; i < count && ret == 0; i++) {
1477 			ret = mmc_test_area_transfer(test, dev_addr, write);
1478 			dev_addr += sz >> 9;
1479 		}
1480 
1481 	if (ret)
1482 		return ret;
1483 
1484 	if (timed)
1485 		getnstimeofday(&ts2);
1486 
1487 	if (timed)
1488 		mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1489 
1490 	return 0;
1491 }
1492 
1493 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1494 			    unsigned int dev_addr, int write, int max_scatter,
1495 			    int timed)
1496 {
1497 	return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1498 				    timed, 1, false, 0);
1499 }
1500 
1501 /*
1502  * Write the test area entirely.
1503  */
1504 static int mmc_test_area_fill(struct mmc_test_card *test)
1505 {
1506 	struct mmc_test_area *t = &test->area;
1507 
1508 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1509 }
1510 
1511 /*
1512  * Erase the test area entirely.
1513  */
1514 static int mmc_test_area_erase(struct mmc_test_card *test)
1515 {
1516 	struct mmc_test_area *t = &test->area;
1517 
1518 	if (!mmc_can_erase(test->card))
1519 		return 0;
1520 
1521 	return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1522 			 MMC_ERASE_ARG);
1523 }
1524 
1525 /*
1526  * Cleanup struct mmc_test_area.
1527  */
1528 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1529 {
1530 	struct mmc_test_area *t = &test->area;
1531 
1532 	kfree(t->sg);
1533 	mmc_test_free_mem(t->mem);
1534 
1535 	return 0;
1536 }
1537 
1538 /*
1539  * Initialize an area for testing large transfers.  The test area is set to the
1540  * middle of the card because cards may have different characteristics at the
1541  * front (for FAT file system optimization).  Optionally, the area is erased
1542  * (if the card supports it) which may improve write performance.  Optionally,
1543  * the area is filled with data for subsequent read tests.
1544  */
1545 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1546 {
1547 	struct mmc_test_area *t = &test->area;
1548 	unsigned long min_sz = 64 * 1024, sz;
1549 	int ret;
1550 
1551 	ret = mmc_test_set_blksize(test, 512);
1552 	if (ret)
1553 		return ret;
1554 
1555 	/* Make the test area size about 4MiB */
1556 	sz = (unsigned long)test->card->pref_erase << 9;
1557 	t->max_sz = sz;
1558 	while (t->max_sz < 4 * 1024 * 1024)
1559 		t->max_sz += sz;
1560 	while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1561 		t->max_sz -= sz;
1562 
1563 	t->max_segs = test->card->host->max_segs;
1564 	t->max_seg_sz = test->card->host->max_seg_size;
1565 	t->max_seg_sz -= t->max_seg_sz % 512;
1566 
1567 	t->max_tfr = t->max_sz;
1568 	if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1569 		t->max_tfr = test->card->host->max_blk_count << 9;
1570 	if (t->max_tfr > test->card->host->max_req_size)
1571 		t->max_tfr = test->card->host->max_req_size;
1572 	if (t->max_tfr / t->max_seg_sz > t->max_segs)
1573 		t->max_tfr = t->max_segs * t->max_seg_sz;
1574 
1575 	/*
1576 	 * Try to allocate enough memory for a max. sized transfer.  Less is OK
1577 	 * because the same memory can be mapped into the scatterlist more than
1578 	 * once.  Also, take into account the limits imposed on scatterlist
1579 	 * segments by the host driver.
1580 	 */
1581 	t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1582 				    t->max_seg_sz);
1583 	if (!t->mem)
1584 		return -ENOMEM;
1585 
1586 	t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1587 	if (!t->sg) {
1588 		ret = -ENOMEM;
1589 		goto out_free;
1590 	}
1591 
1592 	t->dev_addr = mmc_test_capacity(test->card) / 2;
1593 	t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1594 
1595 	if (erase) {
1596 		ret = mmc_test_area_erase(test);
1597 		if (ret)
1598 			goto out_free;
1599 	}
1600 
1601 	if (fill) {
1602 		ret = mmc_test_area_fill(test);
1603 		if (ret)
1604 			goto out_free;
1605 	}
1606 
1607 	return 0;
1608 
1609 out_free:
1610 	mmc_test_area_cleanup(test);
1611 	return ret;
1612 }
1613 
1614 /*
1615  * Prepare for large transfers.  Do not erase the test area.
1616  */
1617 static int mmc_test_area_prepare(struct mmc_test_card *test)
1618 {
1619 	return mmc_test_area_init(test, 0, 0);
1620 }
1621 
1622 /*
1623  * Prepare for large transfers.  Do erase the test area.
1624  */
1625 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1626 {
1627 	return mmc_test_area_init(test, 1, 0);
1628 }
1629 
1630 /*
1631  * Prepare for large transfers.  Erase and fill the test area.
1632  */
1633 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1634 {
1635 	return mmc_test_area_init(test, 1, 1);
1636 }
1637 
1638 /*
1639  * Test best-case performance.  Best-case performance is expected from
1640  * a single large transfer.
1641  *
1642  * An additional option (max_scatter) allows the measurement of the same
1643  * transfer but with no contiguous pages in the scatter list.  This tests
1644  * the efficiency of DMA to handle scattered pages.
1645  */
1646 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1647 				     int max_scatter)
1648 {
1649 	struct mmc_test_area *t = &test->area;
1650 
1651 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1652 				max_scatter, 1);
1653 }
1654 
1655 /*
1656  * Best-case read performance.
1657  */
1658 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1659 {
1660 	return mmc_test_best_performance(test, 0, 0);
1661 }
1662 
1663 /*
1664  * Best-case write performance.
1665  */
1666 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1667 {
1668 	return mmc_test_best_performance(test, 1, 0);
1669 }
1670 
1671 /*
1672  * Best-case read performance into scattered pages.
1673  */
1674 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1675 {
1676 	return mmc_test_best_performance(test, 0, 1);
1677 }
1678 
1679 /*
1680  * Best-case write performance from scattered pages.
1681  */
1682 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1683 {
1684 	return mmc_test_best_performance(test, 1, 1);
1685 }
1686 
1687 /*
1688  * Single read performance by transfer size.
1689  */
1690 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1691 {
1692 	struct mmc_test_area *t = &test->area;
1693 	unsigned long sz;
1694 	unsigned int dev_addr;
1695 	int ret;
1696 
1697 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1698 		dev_addr = t->dev_addr + (sz >> 9);
1699 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1700 		if (ret)
1701 			return ret;
1702 	}
1703 	sz = t->max_tfr;
1704 	dev_addr = t->dev_addr;
1705 	return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1706 }
1707 
1708 /*
1709  * Single write performance by transfer size.
1710  */
1711 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1712 {
1713 	struct mmc_test_area *t = &test->area;
1714 	unsigned long sz;
1715 	unsigned int dev_addr;
1716 	int ret;
1717 
1718 	ret = mmc_test_area_erase(test);
1719 	if (ret)
1720 		return ret;
1721 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1722 		dev_addr = t->dev_addr + (sz >> 9);
1723 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1724 		if (ret)
1725 			return ret;
1726 	}
1727 	ret = mmc_test_area_erase(test);
1728 	if (ret)
1729 		return ret;
1730 	sz = t->max_tfr;
1731 	dev_addr = t->dev_addr;
1732 	return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1733 }
1734 
1735 /*
1736  * Single trim performance by transfer size.
1737  */
1738 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1739 {
1740 	struct mmc_test_area *t = &test->area;
1741 	unsigned long sz;
1742 	unsigned int dev_addr;
1743 	struct timespec ts1, ts2;
1744 	int ret;
1745 
1746 	if (!mmc_can_trim(test->card))
1747 		return RESULT_UNSUP_CARD;
1748 
1749 	if (!mmc_can_erase(test->card))
1750 		return RESULT_UNSUP_HOST;
1751 
1752 	for (sz = 512; sz < t->max_sz; sz <<= 1) {
1753 		dev_addr = t->dev_addr + (sz >> 9);
1754 		getnstimeofday(&ts1);
1755 		ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1756 		if (ret)
1757 			return ret;
1758 		getnstimeofday(&ts2);
1759 		mmc_test_print_rate(test, sz, &ts1, &ts2);
1760 	}
1761 	dev_addr = t->dev_addr;
1762 	getnstimeofday(&ts1);
1763 	ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1764 	if (ret)
1765 		return ret;
1766 	getnstimeofday(&ts2);
1767 	mmc_test_print_rate(test, sz, &ts1, &ts2);
1768 	return 0;
1769 }
1770 
1771 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1772 {
1773 	struct mmc_test_area *t = &test->area;
1774 	unsigned int dev_addr, i, cnt;
1775 	struct timespec ts1, ts2;
1776 	int ret;
1777 
1778 	cnt = t->max_sz / sz;
1779 	dev_addr = t->dev_addr;
1780 	getnstimeofday(&ts1);
1781 	for (i = 0; i < cnt; i++) {
1782 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1783 		if (ret)
1784 			return ret;
1785 		dev_addr += (sz >> 9);
1786 	}
1787 	getnstimeofday(&ts2);
1788 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1789 	return 0;
1790 }
1791 
1792 /*
1793  * Consecutive read performance by transfer size.
1794  */
1795 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1796 {
1797 	struct mmc_test_area *t = &test->area;
1798 	unsigned long sz;
1799 	int ret;
1800 
1801 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1802 		ret = mmc_test_seq_read_perf(test, sz);
1803 		if (ret)
1804 			return ret;
1805 	}
1806 	sz = t->max_tfr;
1807 	return mmc_test_seq_read_perf(test, sz);
1808 }
1809 
1810 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1811 {
1812 	struct mmc_test_area *t = &test->area;
1813 	unsigned int dev_addr, i, cnt;
1814 	struct timespec ts1, ts2;
1815 	int ret;
1816 
1817 	ret = mmc_test_area_erase(test);
1818 	if (ret)
1819 		return ret;
1820 	cnt = t->max_sz / sz;
1821 	dev_addr = t->dev_addr;
1822 	getnstimeofday(&ts1);
1823 	for (i = 0; i < cnt; i++) {
1824 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1825 		if (ret)
1826 			return ret;
1827 		dev_addr += (sz >> 9);
1828 	}
1829 	getnstimeofday(&ts2);
1830 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1831 	return 0;
1832 }
1833 
1834 /*
1835  * Consecutive write performance by transfer size.
1836  */
1837 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1838 {
1839 	struct mmc_test_area *t = &test->area;
1840 	unsigned long sz;
1841 	int ret;
1842 
1843 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1844 		ret = mmc_test_seq_write_perf(test, sz);
1845 		if (ret)
1846 			return ret;
1847 	}
1848 	sz = t->max_tfr;
1849 	return mmc_test_seq_write_perf(test, sz);
1850 }
1851 
1852 /*
1853  * Consecutive trim performance by transfer size.
1854  */
1855 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1856 {
1857 	struct mmc_test_area *t = &test->area;
1858 	unsigned long sz;
1859 	unsigned int dev_addr, i, cnt;
1860 	struct timespec ts1, ts2;
1861 	int ret;
1862 
1863 	if (!mmc_can_trim(test->card))
1864 		return RESULT_UNSUP_CARD;
1865 
1866 	if (!mmc_can_erase(test->card))
1867 		return RESULT_UNSUP_HOST;
1868 
1869 	for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1870 		ret = mmc_test_area_erase(test);
1871 		if (ret)
1872 			return ret;
1873 		ret = mmc_test_area_fill(test);
1874 		if (ret)
1875 			return ret;
1876 		cnt = t->max_sz / sz;
1877 		dev_addr = t->dev_addr;
1878 		getnstimeofday(&ts1);
1879 		for (i = 0; i < cnt; i++) {
1880 			ret = mmc_erase(test->card, dev_addr, sz >> 9,
1881 					MMC_TRIM_ARG);
1882 			if (ret)
1883 				return ret;
1884 			dev_addr += (sz >> 9);
1885 		}
1886 		getnstimeofday(&ts2);
1887 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1888 	}
1889 	return 0;
1890 }
1891 
1892 static unsigned int rnd_next = 1;
1893 
1894 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1895 {
1896 	uint64_t r;
1897 
1898 	rnd_next = rnd_next * 1103515245 + 12345;
1899 	r = (rnd_next >> 16) & 0x7fff;
1900 	return (r * rnd_cnt) >> 15;
1901 }
1902 
1903 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1904 			     unsigned long sz)
1905 {
1906 	unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1907 	unsigned int ssz;
1908 	struct timespec ts1, ts2, ts;
1909 	int ret;
1910 
1911 	ssz = sz >> 9;
1912 
1913 	rnd_addr = mmc_test_capacity(test->card) / 4;
1914 	range1 = rnd_addr / test->card->pref_erase;
1915 	range2 = range1 / ssz;
1916 
1917 	getnstimeofday(&ts1);
1918 	for (cnt = 0; cnt < UINT_MAX; cnt++) {
1919 		getnstimeofday(&ts2);
1920 		ts = timespec_sub(ts2, ts1);
1921 		if (ts.tv_sec >= 10)
1922 			break;
1923 		ea = mmc_test_rnd_num(range1);
1924 		if (ea == last_ea)
1925 			ea -= 1;
1926 		last_ea = ea;
1927 		dev_addr = rnd_addr + test->card->pref_erase * ea +
1928 			   ssz * mmc_test_rnd_num(range2);
1929 		ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1930 		if (ret)
1931 			return ret;
1932 	}
1933 	if (print)
1934 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1935 	return 0;
1936 }
1937 
1938 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1939 {
1940 	struct mmc_test_area *t = &test->area;
1941 	unsigned int next;
1942 	unsigned long sz;
1943 	int ret;
1944 
1945 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1946 		/*
1947 		 * When writing, try to get more consistent results by running
1948 		 * the test twice with exactly the same I/O but outputting the
1949 		 * results only for the 2nd run.
1950 		 */
1951 		if (write) {
1952 			next = rnd_next;
1953 			ret = mmc_test_rnd_perf(test, write, 0, sz);
1954 			if (ret)
1955 				return ret;
1956 			rnd_next = next;
1957 		}
1958 		ret = mmc_test_rnd_perf(test, write, 1, sz);
1959 		if (ret)
1960 			return ret;
1961 	}
1962 	sz = t->max_tfr;
1963 	if (write) {
1964 		next = rnd_next;
1965 		ret = mmc_test_rnd_perf(test, write, 0, sz);
1966 		if (ret)
1967 			return ret;
1968 		rnd_next = next;
1969 	}
1970 	return mmc_test_rnd_perf(test, write, 1, sz);
1971 }
1972 
1973 /*
1974  * Random read performance by transfer size.
1975  */
1976 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1977 {
1978 	return mmc_test_random_perf(test, 0);
1979 }
1980 
1981 /*
1982  * Random write performance by transfer size.
1983  */
1984 static int mmc_test_random_write_perf(struct mmc_test_card *test)
1985 {
1986 	return mmc_test_random_perf(test, 1);
1987 }
1988 
1989 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
1990 			     unsigned int tot_sz, int max_scatter)
1991 {
1992 	struct mmc_test_area *t = &test->area;
1993 	unsigned int dev_addr, i, cnt, sz, ssz;
1994 	struct timespec ts1, ts2;
1995 	int ret;
1996 
1997 	sz = t->max_tfr;
1998 
1999 	/*
2000 	 * In the case of a maximally scattered transfer, the maximum transfer
2001 	 * size is further limited by using PAGE_SIZE segments.
2002 	 */
2003 	if (max_scatter) {
2004 		unsigned long max_tfr;
2005 
2006 		if (t->max_seg_sz >= PAGE_SIZE)
2007 			max_tfr = t->max_segs * PAGE_SIZE;
2008 		else
2009 			max_tfr = t->max_segs * t->max_seg_sz;
2010 		if (sz > max_tfr)
2011 			sz = max_tfr;
2012 	}
2013 
2014 	ssz = sz >> 9;
2015 	dev_addr = mmc_test_capacity(test->card) / 4;
2016 	if (tot_sz > dev_addr << 9)
2017 		tot_sz = dev_addr << 9;
2018 	cnt = tot_sz / sz;
2019 	dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2020 
2021 	getnstimeofday(&ts1);
2022 	for (i = 0; i < cnt; i++) {
2023 		ret = mmc_test_area_io(test, sz, dev_addr, write,
2024 				       max_scatter, 0);
2025 		if (ret)
2026 			return ret;
2027 		dev_addr += ssz;
2028 	}
2029 	getnstimeofday(&ts2);
2030 
2031 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2032 
2033 	return 0;
2034 }
2035 
2036 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2037 {
2038 	int ret, i;
2039 
2040 	for (i = 0; i < 10; i++) {
2041 		ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2042 		if (ret)
2043 			return ret;
2044 	}
2045 	for (i = 0; i < 5; i++) {
2046 		ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2047 		if (ret)
2048 			return ret;
2049 	}
2050 	for (i = 0; i < 3; i++) {
2051 		ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2052 		if (ret)
2053 			return ret;
2054 	}
2055 
2056 	return ret;
2057 }
2058 
2059 /*
2060  * Large sequential read performance.
2061  */
2062 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2063 {
2064 	return mmc_test_large_seq_perf(test, 0);
2065 }
2066 
2067 /*
2068  * Large sequential write performance.
2069  */
2070 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2071 {
2072 	return mmc_test_large_seq_perf(test, 1);
2073 }
2074 
2075 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2076 				struct mmc_test_multiple_rw *tdata,
2077 				unsigned int reqsize, unsigned int size,
2078 				int min_sg_len)
2079 {
2080 	unsigned int dev_addr;
2081 	struct mmc_test_area *t = &test->area;
2082 	int ret = 0;
2083 
2084 	/* Set up test area */
2085 	if (size > mmc_test_capacity(test->card) / 2 * 512)
2086 		size = mmc_test_capacity(test->card) / 2 * 512;
2087 	if (reqsize > t->max_tfr)
2088 		reqsize = t->max_tfr;
2089 	dev_addr = mmc_test_capacity(test->card) / 4;
2090 	if ((dev_addr & 0xffff0000))
2091 		dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2092 	else
2093 		dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2094 	if (!dev_addr)
2095 		goto err;
2096 
2097 	if (reqsize > size)
2098 		return 0;
2099 
2100 	/* prepare test area */
2101 	if (mmc_can_erase(test->card) &&
2102 	    tdata->prepare & MMC_TEST_PREP_ERASE) {
2103 		ret = mmc_erase(test->card, dev_addr,
2104 				size / 512, MMC_SECURE_ERASE_ARG);
2105 		if (ret)
2106 			ret = mmc_erase(test->card, dev_addr,
2107 					size / 512, MMC_ERASE_ARG);
2108 		if (ret)
2109 			goto err;
2110 	}
2111 
2112 	/* Run test */
2113 	ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2114 				   tdata->do_write, 0, 1, size / reqsize,
2115 				   tdata->do_nonblock_req, min_sg_len);
2116 	if (ret)
2117 		goto err;
2118 
2119 	return ret;
2120  err:
2121 	pr_info("[%s] error\n", __func__);
2122 	return ret;
2123 }
2124 
2125 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2126 				     struct mmc_test_multiple_rw *rw)
2127 {
2128 	int ret = 0;
2129 	int i;
2130 	void *pre_req = test->card->host->ops->pre_req;
2131 	void *post_req = test->card->host->ops->post_req;
2132 
2133 	if (rw->do_nonblock_req &&
2134 	    ((!pre_req && post_req) || (pre_req && !post_req))) {
2135 		pr_info("error: only one of pre/post is defined\n");
2136 		return -EINVAL;
2137 	}
2138 
2139 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2140 		ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2141 		if (ret)
2142 			break;
2143 	}
2144 	return ret;
2145 }
2146 
2147 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2148 				       struct mmc_test_multiple_rw *rw)
2149 {
2150 	int ret = 0;
2151 	int i;
2152 
2153 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2154 		ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2155 					   rw->sg_len[i]);
2156 		if (ret)
2157 			break;
2158 	}
2159 	return ret;
2160 }
2161 
2162 /*
2163  * Multiple blocking write 4k to 4 MB chunks
2164  */
2165 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2166 {
2167 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2168 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2169 	struct mmc_test_multiple_rw test_data = {
2170 		.bs = bs,
2171 		.size = TEST_AREA_MAX_SIZE,
2172 		.len = ARRAY_SIZE(bs),
2173 		.do_write = true,
2174 		.do_nonblock_req = false,
2175 		.prepare = MMC_TEST_PREP_ERASE,
2176 	};
2177 
2178 	return mmc_test_rw_multiple_size(test, &test_data);
2179 };
2180 
2181 /*
2182  * Multiple non-blocking write 4k to 4 MB chunks
2183  */
2184 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2185 {
2186 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2187 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2188 	struct mmc_test_multiple_rw test_data = {
2189 		.bs = bs,
2190 		.size = TEST_AREA_MAX_SIZE,
2191 		.len = ARRAY_SIZE(bs),
2192 		.do_write = true,
2193 		.do_nonblock_req = true,
2194 		.prepare = MMC_TEST_PREP_ERASE,
2195 	};
2196 
2197 	return mmc_test_rw_multiple_size(test, &test_data);
2198 }
2199 
2200 /*
2201  * Multiple blocking read 4k to 4 MB chunks
2202  */
2203 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2204 {
2205 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2206 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2207 	struct mmc_test_multiple_rw test_data = {
2208 		.bs = bs,
2209 		.size = TEST_AREA_MAX_SIZE,
2210 		.len = ARRAY_SIZE(bs),
2211 		.do_write = false,
2212 		.do_nonblock_req = false,
2213 		.prepare = MMC_TEST_PREP_NONE,
2214 	};
2215 
2216 	return mmc_test_rw_multiple_size(test, &test_data);
2217 }
2218 
2219 /*
2220  * Multiple non-blocking read 4k to 4 MB chunks
2221  */
2222 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2223 {
2224 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2225 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2226 	struct mmc_test_multiple_rw test_data = {
2227 		.bs = bs,
2228 		.size = TEST_AREA_MAX_SIZE,
2229 		.len = ARRAY_SIZE(bs),
2230 		.do_write = false,
2231 		.do_nonblock_req = true,
2232 		.prepare = MMC_TEST_PREP_NONE,
2233 	};
2234 
2235 	return mmc_test_rw_multiple_size(test, &test_data);
2236 }
2237 
2238 /*
2239  * Multiple blocking write 1 to 512 sg elements
2240  */
2241 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2242 {
2243 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2244 				 1 << 7, 1 << 8, 1 << 9};
2245 	struct mmc_test_multiple_rw test_data = {
2246 		.sg_len = sg_len,
2247 		.size = TEST_AREA_MAX_SIZE,
2248 		.len = ARRAY_SIZE(sg_len),
2249 		.do_write = true,
2250 		.do_nonblock_req = false,
2251 		.prepare = MMC_TEST_PREP_ERASE,
2252 	};
2253 
2254 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2255 };
2256 
2257 /*
2258  * Multiple non-blocking write 1 to 512 sg elements
2259  */
2260 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2261 {
2262 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2263 				 1 << 7, 1 << 8, 1 << 9};
2264 	struct mmc_test_multiple_rw test_data = {
2265 		.sg_len = sg_len,
2266 		.size = TEST_AREA_MAX_SIZE,
2267 		.len = ARRAY_SIZE(sg_len),
2268 		.do_write = true,
2269 		.do_nonblock_req = true,
2270 		.prepare = MMC_TEST_PREP_ERASE,
2271 	};
2272 
2273 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2274 }
2275 
2276 /*
2277  * Multiple blocking read 1 to 512 sg elements
2278  */
2279 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2280 {
2281 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2282 				 1 << 7, 1 << 8, 1 << 9};
2283 	struct mmc_test_multiple_rw test_data = {
2284 		.sg_len = sg_len,
2285 		.size = TEST_AREA_MAX_SIZE,
2286 		.len = ARRAY_SIZE(sg_len),
2287 		.do_write = false,
2288 		.do_nonblock_req = false,
2289 		.prepare = MMC_TEST_PREP_NONE,
2290 	};
2291 
2292 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2293 }
2294 
2295 /*
2296  * Multiple non-blocking read 1 to 512 sg elements
2297  */
2298 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2299 {
2300 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2301 				 1 << 7, 1 << 8, 1 << 9};
2302 	struct mmc_test_multiple_rw test_data = {
2303 		.sg_len = sg_len,
2304 		.size = TEST_AREA_MAX_SIZE,
2305 		.len = ARRAY_SIZE(sg_len),
2306 		.do_write = false,
2307 		.do_nonblock_req = true,
2308 		.prepare = MMC_TEST_PREP_NONE,
2309 	};
2310 
2311 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2312 }
2313 
2314 /*
2315  * eMMC hardware reset.
2316  */
2317 static int mmc_test_reset(struct mmc_test_card *test)
2318 {
2319 	struct mmc_card *card = test->card;
2320 	struct mmc_host *host = card->host;
2321 	int err;
2322 
2323 	err = mmc_hw_reset(host);
2324 	if (!err)
2325 		return RESULT_OK;
2326 	else if (err == -EOPNOTSUPP)
2327 		return RESULT_UNSUP_HOST;
2328 
2329 	return RESULT_FAIL;
2330 }
2331 
2332 struct mmc_test_req {
2333 	struct mmc_request mrq;
2334 	struct mmc_command sbc;
2335 	struct mmc_command cmd;
2336 	struct mmc_command stop;
2337 	struct mmc_command status;
2338 	struct mmc_data data;
2339 };
2340 
2341 static struct mmc_test_req *mmc_test_req_alloc(void)
2342 {
2343 	struct mmc_test_req *rq = kzalloc(sizeof(*rq), GFP_KERNEL);
2344 
2345 	if (rq) {
2346 		rq->mrq.cmd = &rq->cmd;
2347 		rq->mrq.data = &rq->data;
2348 		rq->mrq.stop = &rq->stop;
2349 	}
2350 
2351 	return rq;
2352 }
2353 
2354 static int mmc_test_send_status(struct mmc_test_card *test,
2355 				struct mmc_command *cmd)
2356 {
2357 	memset(cmd, 0, sizeof(*cmd));
2358 
2359 	cmd->opcode = MMC_SEND_STATUS;
2360 	if (!mmc_host_is_spi(test->card->host))
2361 		cmd->arg = test->card->rca << 16;
2362 	cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2363 
2364 	return mmc_wait_for_cmd(test->card->host, cmd, 0);
2365 }
2366 
2367 static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2368 				     unsigned int dev_addr, int use_sbc,
2369 				     int repeat_cmd, int write, int use_areq)
2370 {
2371 	struct mmc_test_req *rq = mmc_test_req_alloc();
2372 	struct mmc_host *host = test->card->host;
2373 	struct mmc_test_area *t = &test->area;
2374 	struct mmc_test_async_req test_areq = { .test = test };
2375 	struct mmc_request *mrq;
2376 	unsigned long timeout;
2377 	bool expired = false;
2378 	enum mmc_blk_status blkstat = MMC_BLK_SUCCESS;
2379 	int ret = 0, cmd_ret;
2380 	u32 status = 0;
2381 	int count = 0;
2382 
2383 	if (!rq)
2384 		return -ENOMEM;
2385 
2386 	mrq = &rq->mrq;
2387 	if (use_sbc)
2388 		mrq->sbc = &rq->sbc;
2389 	mrq->cap_cmd_during_tfr = true;
2390 
2391 	test_areq.areq.mrq = mrq;
2392 	test_areq.areq.err_check = mmc_test_check_result_async;
2393 
2394 	mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2395 			     512, write);
2396 
2397 	if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2398 		ret =  mmc_host_cmd23(host) ?
2399 		       RESULT_UNSUP_CARD :
2400 		       RESULT_UNSUP_HOST;
2401 		goto out_free;
2402 	}
2403 
2404 	/* Start ongoing data request */
2405 	if (use_areq) {
2406 		mmc_start_areq(host, &test_areq.areq, &blkstat);
2407 		if (blkstat != MMC_BLK_SUCCESS) {
2408 			ret = RESULT_FAIL;
2409 			goto out_free;
2410 		}
2411 	} else {
2412 		mmc_wait_for_req(host, mrq);
2413 	}
2414 
2415 	timeout = jiffies + msecs_to_jiffies(3000);
2416 	do {
2417 		count += 1;
2418 
2419 		/* Send status command while data transfer in progress */
2420 		cmd_ret = mmc_test_send_status(test, &rq->status);
2421 		if (cmd_ret)
2422 			break;
2423 
2424 		status = rq->status.resp[0];
2425 		if (status & R1_ERROR) {
2426 			cmd_ret = -EIO;
2427 			break;
2428 		}
2429 
2430 		if (mmc_is_req_done(host, mrq))
2431 			break;
2432 
2433 		expired = time_after(jiffies, timeout);
2434 		if (expired) {
2435 			pr_info("%s: timeout waiting for Tran state status %#x\n",
2436 				mmc_hostname(host), status);
2437 			cmd_ret = -ETIMEDOUT;
2438 			break;
2439 		}
2440 	} while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2441 
2442 	/* Wait for data request to complete */
2443 	if (use_areq) {
2444 		mmc_start_areq(host, NULL, &blkstat);
2445 		if (blkstat != MMC_BLK_SUCCESS)
2446 			ret = RESULT_FAIL;
2447 	} else {
2448 		mmc_wait_for_req_done(test->card->host, mrq);
2449 	}
2450 
2451 	/*
2452 	 * For cap_cmd_during_tfr request, upper layer must send stop if
2453 	 * required.
2454 	 */
2455 	if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2456 		if (ret)
2457 			mmc_wait_for_cmd(host, mrq->data->stop, 0);
2458 		else
2459 			ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2460 	}
2461 
2462 	if (ret)
2463 		goto out_free;
2464 
2465 	if (cmd_ret) {
2466 		pr_info("%s: Send Status failed: status %#x, error %d\n",
2467 			mmc_hostname(test->card->host), status, cmd_ret);
2468 	}
2469 
2470 	ret = mmc_test_check_result(test, mrq);
2471 	if (ret)
2472 		goto out_free;
2473 
2474 	ret = mmc_test_wait_busy(test);
2475 	if (ret)
2476 		goto out_free;
2477 
2478 	if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2479 		pr_info("%s: %d commands completed during transfer of %u blocks\n",
2480 			mmc_hostname(test->card->host), count, t->blocks);
2481 
2482 	if (cmd_ret)
2483 		ret = cmd_ret;
2484 out_free:
2485 	kfree(rq);
2486 
2487 	return ret;
2488 }
2489 
2490 static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2491 				      unsigned long sz, int use_sbc, int write,
2492 				      int use_areq)
2493 {
2494 	struct mmc_test_area *t = &test->area;
2495 	int ret;
2496 
2497 	if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2498 		return RESULT_UNSUP_HOST;
2499 
2500 	ret = mmc_test_area_map(test, sz, 0, 0);
2501 	if (ret)
2502 		return ret;
2503 
2504 	ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2505 					use_areq);
2506 	if (ret)
2507 		return ret;
2508 
2509 	return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2510 					 use_areq);
2511 }
2512 
2513 static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2514 				    int write, int use_areq)
2515 {
2516 	struct mmc_test_area *t = &test->area;
2517 	unsigned long sz;
2518 	int ret;
2519 
2520 	for (sz = 512; sz <= t->max_tfr; sz += 512) {
2521 		ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2522 						 use_areq);
2523 		if (ret)
2524 			return ret;
2525 	}
2526 	return 0;
2527 }
2528 
2529 /*
2530  * Commands during read - no Set Block Count (CMD23).
2531  */
2532 static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2533 {
2534 	return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2535 }
2536 
2537 /*
2538  * Commands during write - no Set Block Count (CMD23).
2539  */
2540 static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2541 {
2542 	return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2543 }
2544 
2545 /*
2546  * Commands during read - use Set Block Count (CMD23).
2547  */
2548 static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2549 {
2550 	return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2551 }
2552 
2553 /*
2554  * Commands during write - use Set Block Count (CMD23).
2555  */
2556 static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2557 {
2558 	return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2559 }
2560 
2561 /*
2562  * Commands during non-blocking read - use Set Block Count (CMD23).
2563  */
2564 static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2565 {
2566 	return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2567 }
2568 
2569 /*
2570  * Commands during non-blocking write - use Set Block Count (CMD23).
2571  */
2572 static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2573 {
2574 	return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2575 }
2576 
2577 static const struct mmc_test_case mmc_test_cases[] = {
2578 	{
2579 		.name = "Basic write (no data verification)",
2580 		.run = mmc_test_basic_write,
2581 	},
2582 
2583 	{
2584 		.name = "Basic read (no data verification)",
2585 		.run = mmc_test_basic_read,
2586 	},
2587 
2588 	{
2589 		.name = "Basic write (with data verification)",
2590 		.prepare = mmc_test_prepare_write,
2591 		.run = mmc_test_verify_write,
2592 		.cleanup = mmc_test_cleanup,
2593 	},
2594 
2595 	{
2596 		.name = "Basic read (with data verification)",
2597 		.prepare = mmc_test_prepare_read,
2598 		.run = mmc_test_verify_read,
2599 		.cleanup = mmc_test_cleanup,
2600 	},
2601 
2602 	{
2603 		.name = "Multi-block write",
2604 		.prepare = mmc_test_prepare_write,
2605 		.run = mmc_test_multi_write,
2606 		.cleanup = mmc_test_cleanup,
2607 	},
2608 
2609 	{
2610 		.name = "Multi-block read",
2611 		.prepare = mmc_test_prepare_read,
2612 		.run = mmc_test_multi_read,
2613 		.cleanup = mmc_test_cleanup,
2614 	},
2615 
2616 	{
2617 		.name = "Power of two block writes",
2618 		.prepare = mmc_test_prepare_write,
2619 		.run = mmc_test_pow2_write,
2620 		.cleanup = mmc_test_cleanup,
2621 	},
2622 
2623 	{
2624 		.name = "Power of two block reads",
2625 		.prepare = mmc_test_prepare_read,
2626 		.run = mmc_test_pow2_read,
2627 		.cleanup = mmc_test_cleanup,
2628 	},
2629 
2630 	{
2631 		.name = "Weird sized block writes",
2632 		.prepare = mmc_test_prepare_write,
2633 		.run = mmc_test_weird_write,
2634 		.cleanup = mmc_test_cleanup,
2635 	},
2636 
2637 	{
2638 		.name = "Weird sized block reads",
2639 		.prepare = mmc_test_prepare_read,
2640 		.run = mmc_test_weird_read,
2641 		.cleanup = mmc_test_cleanup,
2642 	},
2643 
2644 	{
2645 		.name = "Badly aligned write",
2646 		.prepare = mmc_test_prepare_write,
2647 		.run = mmc_test_align_write,
2648 		.cleanup = mmc_test_cleanup,
2649 	},
2650 
2651 	{
2652 		.name = "Badly aligned read",
2653 		.prepare = mmc_test_prepare_read,
2654 		.run = mmc_test_align_read,
2655 		.cleanup = mmc_test_cleanup,
2656 	},
2657 
2658 	{
2659 		.name = "Badly aligned multi-block write",
2660 		.prepare = mmc_test_prepare_write,
2661 		.run = mmc_test_align_multi_write,
2662 		.cleanup = mmc_test_cleanup,
2663 	},
2664 
2665 	{
2666 		.name = "Badly aligned multi-block read",
2667 		.prepare = mmc_test_prepare_read,
2668 		.run = mmc_test_align_multi_read,
2669 		.cleanup = mmc_test_cleanup,
2670 	},
2671 
2672 	{
2673 		.name = "Correct xfer_size at write (start failure)",
2674 		.run = mmc_test_xfersize_write,
2675 	},
2676 
2677 	{
2678 		.name = "Correct xfer_size at read (start failure)",
2679 		.run = mmc_test_xfersize_read,
2680 	},
2681 
2682 	{
2683 		.name = "Correct xfer_size at write (midway failure)",
2684 		.run = mmc_test_multi_xfersize_write,
2685 	},
2686 
2687 	{
2688 		.name = "Correct xfer_size at read (midway failure)",
2689 		.run = mmc_test_multi_xfersize_read,
2690 	},
2691 
2692 #ifdef CONFIG_HIGHMEM
2693 
2694 	{
2695 		.name = "Highmem write",
2696 		.prepare = mmc_test_prepare_write,
2697 		.run = mmc_test_write_high,
2698 		.cleanup = mmc_test_cleanup,
2699 	},
2700 
2701 	{
2702 		.name = "Highmem read",
2703 		.prepare = mmc_test_prepare_read,
2704 		.run = mmc_test_read_high,
2705 		.cleanup = mmc_test_cleanup,
2706 	},
2707 
2708 	{
2709 		.name = "Multi-block highmem write",
2710 		.prepare = mmc_test_prepare_write,
2711 		.run = mmc_test_multi_write_high,
2712 		.cleanup = mmc_test_cleanup,
2713 	},
2714 
2715 	{
2716 		.name = "Multi-block highmem read",
2717 		.prepare = mmc_test_prepare_read,
2718 		.run = mmc_test_multi_read_high,
2719 		.cleanup = mmc_test_cleanup,
2720 	},
2721 
2722 #else
2723 
2724 	{
2725 		.name = "Highmem write",
2726 		.run = mmc_test_no_highmem,
2727 	},
2728 
2729 	{
2730 		.name = "Highmem read",
2731 		.run = mmc_test_no_highmem,
2732 	},
2733 
2734 	{
2735 		.name = "Multi-block highmem write",
2736 		.run = mmc_test_no_highmem,
2737 	},
2738 
2739 	{
2740 		.name = "Multi-block highmem read",
2741 		.run = mmc_test_no_highmem,
2742 	},
2743 
2744 #endif /* CONFIG_HIGHMEM */
2745 
2746 	{
2747 		.name = "Best-case read performance",
2748 		.prepare = mmc_test_area_prepare_fill,
2749 		.run = mmc_test_best_read_performance,
2750 		.cleanup = mmc_test_area_cleanup,
2751 	},
2752 
2753 	{
2754 		.name = "Best-case write performance",
2755 		.prepare = mmc_test_area_prepare_erase,
2756 		.run = mmc_test_best_write_performance,
2757 		.cleanup = mmc_test_area_cleanup,
2758 	},
2759 
2760 	{
2761 		.name = "Best-case read performance into scattered pages",
2762 		.prepare = mmc_test_area_prepare_fill,
2763 		.run = mmc_test_best_read_perf_max_scatter,
2764 		.cleanup = mmc_test_area_cleanup,
2765 	},
2766 
2767 	{
2768 		.name = "Best-case write performance from scattered pages",
2769 		.prepare = mmc_test_area_prepare_erase,
2770 		.run = mmc_test_best_write_perf_max_scatter,
2771 		.cleanup = mmc_test_area_cleanup,
2772 	},
2773 
2774 	{
2775 		.name = "Single read performance by transfer size",
2776 		.prepare = mmc_test_area_prepare_fill,
2777 		.run = mmc_test_profile_read_perf,
2778 		.cleanup = mmc_test_area_cleanup,
2779 	},
2780 
2781 	{
2782 		.name = "Single write performance by transfer size",
2783 		.prepare = mmc_test_area_prepare,
2784 		.run = mmc_test_profile_write_perf,
2785 		.cleanup = mmc_test_area_cleanup,
2786 	},
2787 
2788 	{
2789 		.name = "Single trim performance by transfer size",
2790 		.prepare = mmc_test_area_prepare_fill,
2791 		.run = mmc_test_profile_trim_perf,
2792 		.cleanup = mmc_test_area_cleanup,
2793 	},
2794 
2795 	{
2796 		.name = "Consecutive read performance by transfer size",
2797 		.prepare = mmc_test_area_prepare_fill,
2798 		.run = mmc_test_profile_seq_read_perf,
2799 		.cleanup = mmc_test_area_cleanup,
2800 	},
2801 
2802 	{
2803 		.name = "Consecutive write performance by transfer size",
2804 		.prepare = mmc_test_area_prepare,
2805 		.run = mmc_test_profile_seq_write_perf,
2806 		.cleanup = mmc_test_area_cleanup,
2807 	},
2808 
2809 	{
2810 		.name = "Consecutive trim performance by transfer size",
2811 		.prepare = mmc_test_area_prepare,
2812 		.run = mmc_test_profile_seq_trim_perf,
2813 		.cleanup = mmc_test_area_cleanup,
2814 	},
2815 
2816 	{
2817 		.name = "Random read performance by transfer size",
2818 		.prepare = mmc_test_area_prepare,
2819 		.run = mmc_test_random_read_perf,
2820 		.cleanup = mmc_test_area_cleanup,
2821 	},
2822 
2823 	{
2824 		.name = "Random write performance by transfer size",
2825 		.prepare = mmc_test_area_prepare,
2826 		.run = mmc_test_random_write_perf,
2827 		.cleanup = mmc_test_area_cleanup,
2828 	},
2829 
2830 	{
2831 		.name = "Large sequential read into scattered pages",
2832 		.prepare = mmc_test_area_prepare,
2833 		.run = mmc_test_large_seq_read_perf,
2834 		.cleanup = mmc_test_area_cleanup,
2835 	},
2836 
2837 	{
2838 		.name = "Large sequential write from scattered pages",
2839 		.prepare = mmc_test_area_prepare,
2840 		.run = mmc_test_large_seq_write_perf,
2841 		.cleanup = mmc_test_area_cleanup,
2842 	},
2843 
2844 	{
2845 		.name = "Write performance with blocking req 4k to 4MB",
2846 		.prepare = mmc_test_area_prepare,
2847 		.run = mmc_test_profile_mult_write_blocking_perf,
2848 		.cleanup = mmc_test_area_cleanup,
2849 	},
2850 
2851 	{
2852 		.name = "Write performance with non-blocking req 4k to 4MB",
2853 		.prepare = mmc_test_area_prepare,
2854 		.run = mmc_test_profile_mult_write_nonblock_perf,
2855 		.cleanup = mmc_test_area_cleanup,
2856 	},
2857 
2858 	{
2859 		.name = "Read performance with blocking req 4k to 4MB",
2860 		.prepare = mmc_test_area_prepare,
2861 		.run = mmc_test_profile_mult_read_blocking_perf,
2862 		.cleanup = mmc_test_area_cleanup,
2863 	},
2864 
2865 	{
2866 		.name = "Read performance with non-blocking req 4k to 4MB",
2867 		.prepare = mmc_test_area_prepare,
2868 		.run = mmc_test_profile_mult_read_nonblock_perf,
2869 		.cleanup = mmc_test_area_cleanup,
2870 	},
2871 
2872 	{
2873 		.name = "Write performance blocking req 1 to 512 sg elems",
2874 		.prepare = mmc_test_area_prepare,
2875 		.run = mmc_test_profile_sglen_wr_blocking_perf,
2876 		.cleanup = mmc_test_area_cleanup,
2877 	},
2878 
2879 	{
2880 		.name = "Write performance non-blocking req 1 to 512 sg elems",
2881 		.prepare = mmc_test_area_prepare,
2882 		.run = mmc_test_profile_sglen_wr_nonblock_perf,
2883 		.cleanup = mmc_test_area_cleanup,
2884 	},
2885 
2886 	{
2887 		.name = "Read performance blocking req 1 to 512 sg elems",
2888 		.prepare = mmc_test_area_prepare,
2889 		.run = mmc_test_profile_sglen_r_blocking_perf,
2890 		.cleanup = mmc_test_area_cleanup,
2891 	},
2892 
2893 	{
2894 		.name = "Read performance non-blocking req 1 to 512 sg elems",
2895 		.prepare = mmc_test_area_prepare,
2896 		.run = mmc_test_profile_sglen_r_nonblock_perf,
2897 		.cleanup = mmc_test_area_cleanup,
2898 	},
2899 
2900 	{
2901 		.name = "Reset test",
2902 		.run = mmc_test_reset,
2903 	},
2904 
2905 	{
2906 		.name = "Commands during read - no Set Block Count (CMD23)",
2907 		.prepare = mmc_test_area_prepare,
2908 		.run = mmc_test_cmds_during_read,
2909 		.cleanup = mmc_test_area_cleanup,
2910 	},
2911 
2912 	{
2913 		.name = "Commands during write - no Set Block Count (CMD23)",
2914 		.prepare = mmc_test_area_prepare,
2915 		.run = mmc_test_cmds_during_write,
2916 		.cleanup = mmc_test_area_cleanup,
2917 	},
2918 
2919 	{
2920 		.name = "Commands during read - use Set Block Count (CMD23)",
2921 		.prepare = mmc_test_area_prepare,
2922 		.run = mmc_test_cmds_during_read_cmd23,
2923 		.cleanup = mmc_test_area_cleanup,
2924 	},
2925 
2926 	{
2927 		.name = "Commands during write - use Set Block Count (CMD23)",
2928 		.prepare = mmc_test_area_prepare,
2929 		.run = mmc_test_cmds_during_write_cmd23,
2930 		.cleanup = mmc_test_area_cleanup,
2931 	},
2932 
2933 	{
2934 		.name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2935 		.prepare = mmc_test_area_prepare,
2936 		.run = mmc_test_cmds_during_read_cmd23_nonblock,
2937 		.cleanup = mmc_test_area_cleanup,
2938 	},
2939 
2940 	{
2941 		.name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2942 		.prepare = mmc_test_area_prepare,
2943 		.run = mmc_test_cmds_during_write_cmd23_nonblock,
2944 		.cleanup = mmc_test_area_cleanup,
2945 	},
2946 };
2947 
2948 static DEFINE_MUTEX(mmc_test_lock);
2949 
2950 static LIST_HEAD(mmc_test_result);
2951 
2952 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2953 {
2954 	int i, ret;
2955 
2956 	pr_info("%s: Starting tests of card %s...\n",
2957 		mmc_hostname(test->card->host), mmc_card_id(test->card));
2958 
2959 	mmc_claim_host(test->card->host);
2960 
2961 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2962 		struct mmc_test_general_result *gr;
2963 
2964 		if (testcase && ((i + 1) != testcase))
2965 			continue;
2966 
2967 		pr_info("%s: Test case %d. %s...\n",
2968 			mmc_hostname(test->card->host), i + 1,
2969 			mmc_test_cases[i].name);
2970 
2971 		if (mmc_test_cases[i].prepare) {
2972 			ret = mmc_test_cases[i].prepare(test);
2973 			if (ret) {
2974 				pr_info("%s: Result: Prepare stage failed! (%d)\n",
2975 					mmc_hostname(test->card->host),
2976 					ret);
2977 				continue;
2978 			}
2979 		}
2980 
2981 		gr = kzalloc(sizeof(*gr), GFP_KERNEL);
2982 		if (gr) {
2983 			INIT_LIST_HEAD(&gr->tr_lst);
2984 
2985 			/* Assign data what we know already */
2986 			gr->card = test->card;
2987 			gr->testcase = i;
2988 
2989 			/* Append container to global one */
2990 			list_add_tail(&gr->link, &mmc_test_result);
2991 
2992 			/*
2993 			 * Save the pointer to created container in our private
2994 			 * structure.
2995 			 */
2996 			test->gr = gr;
2997 		}
2998 
2999 		ret = mmc_test_cases[i].run(test);
3000 		switch (ret) {
3001 		case RESULT_OK:
3002 			pr_info("%s: Result: OK\n",
3003 				mmc_hostname(test->card->host));
3004 			break;
3005 		case RESULT_FAIL:
3006 			pr_info("%s: Result: FAILED\n",
3007 				mmc_hostname(test->card->host));
3008 			break;
3009 		case RESULT_UNSUP_HOST:
3010 			pr_info("%s: Result: UNSUPPORTED (by host)\n",
3011 				mmc_hostname(test->card->host));
3012 			break;
3013 		case RESULT_UNSUP_CARD:
3014 			pr_info("%s: Result: UNSUPPORTED (by card)\n",
3015 				mmc_hostname(test->card->host));
3016 			break;
3017 		default:
3018 			pr_info("%s: Result: ERROR (%d)\n",
3019 				mmc_hostname(test->card->host), ret);
3020 		}
3021 
3022 		/* Save the result */
3023 		if (gr)
3024 			gr->result = ret;
3025 
3026 		if (mmc_test_cases[i].cleanup) {
3027 			ret = mmc_test_cases[i].cleanup(test);
3028 			if (ret) {
3029 				pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
3030 					mmc_hostname(test->card->host),
3031 					ret);
3032 			}
3033 		}
3034 	}
3035 
3036 	mmc_release_host(test->card->host);
3037 
3038 	pr_info("%s: Tests completed.\n",
3039 		mmc_hostname(test->card->host));
3040 }
3041 
3042 static void mmc_test_free_result(struct mmc_card *card)
3043 {
3044 	struct mmc_test_general_result *gr, *grs;
3045 
3046 	mutex_lock(&mmc_test_lock);
3047 
3048 	list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3049 		struct mmc_test_transfer_result *tr, *trs;
3050 
3051 		if (card && gr->card != card)
3052 			continue;
3053 
3054 		list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3055 			list_del(&tr->link);
3056 			kfree(tr);
3057 		}
3058 
3059 		list_del(&gr->link);
3060 		kfree(gr);
3061 	}
3062 
3063 	mutex_unlock(&mmc_test_lock);
3064 }
3065 
3066 static LIST_HEAD(mmc_test_file_test);
3067 
3068 static int mtf_test_show(struct seq_file *sf, void *data)
3069 {
3070 	struct mmc_card *card = (struct mmc_card *)sf->private;
3071 	struct mmc_test_general_result *gr;
3072 
3073 	mutex_lock(&mmc_test_lock);
3074 
3075 	list_for_each_entry(gr, &mmc_test_result, link) {
3076 		struct mmc_test_transfer_result *tr;
3077 
3078 		if (gr->card != card)
3079 			continue;
3080 
3081 		seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3082 
3083 		list_for_each_entry(tr, &gr->tr_lst, link) {
3084 			seq_printf(sf, "%u %d %lu.%09lu %u %u.%02u\n",
3085 				tr->count, tr->sectors,
3086 				(unsigned long)tr->ts.tv_sec,
3087 				(unsigned long)tr->ts.tv_nsec,
3088 				tr->rate, tr->iops / 100, tr->iops % 100);
3089 		}
3090 	}
3091 
3092 	mutex_unlock(&mmc_test_lock);
3093 
3094 	return 0;
3095 }
3096 
3097 static int mtf_test_open(struct inode *inode, struct file *file)
3098 {
3099 	return single_open(file, mtf_test_show, inode->i_private);
3100 }
3101 
3102 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3103 	size_t count, loff_t *pos)
3104 {
3105 	struct seq_file *sf = (struct seq_file *)file->private_data;
3106 	struct mmc_card *card = (struct mmc_card *)sf->private;
3107 	struct mmc_test_card *test;
3108 	long testcase;
3109 	int ret;
3110 
3111 	ret = kstrtol_from_user(buf, count, 10, &testcase);
3112 	if (ret)
3113 		return ret;
3114 
3115 	test = kzalloc(sizeof(*test), GFP_KERNEL);
3116 	if (!test)
3117 		return -ENOMEM;
3118 
3119 	/*
3120 	 * Remove all test cases associated with given card. Thus we have only
3121 	 * actual data of the last run.
3122 	 */
3123 	mmc_test_free_result(card);
3124 
3125 	test->card = card;
3126 
3127 	test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3128 #ifdef CONFIG_HIGHMEM
3129 	test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3130 #endif
3131 
3132 #ifdef CONFIG_HIGHMEM
3133 	if (test->buffer && test->highmem) {
3134 #else
3135 	if (test->buffer) {
3136 #endif
3137 		mutex_lock(&mmc_test_lock);
3138 		mmc_test_run(test, testcase);
3139 		mutex_unlock(&mmc_test_lock);
3140 	}
3141 
3142 #ifdef CONFIG_HIGHMEM
3143 	__free_pages(test->highmem, BUFFER_ORDER);
3144 #endif
3145 	kfree(test->buffer);
3146 	kfree(test);
3147 
3148 	return count;
3149 }
3150 
3151 static const struct file_operations mmc_test_fops_test = {
3152 	.open		= mtf_test_open,
3153 	.read		= seq_read,
3154 	.write		= mtf_test_write,
3155 	.llseek		= seq_lseek,
3156 	.release	= single_release,
3157 };
3158 
3159 static int mtf_testlist_show(struct seq_file *sf, void *data)
3160 {
3161 	int i;
3162 
3163 	mutex_lock(&mmc_test_lock);
3164 
3165 	seq_puts(sf, "0:\tRun all tests\n");
3166 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3167 		seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3168 
3169 	mutex_unlock(&mmc_test_lock);
3170 
3171 	return 0;
3172 }
3173 
3174 static int mtf_testlist_open(struct inode *inode, struct file *file)
3175 {
3176 	return single_open(file, mtf_testlist_show, inode->i_private);
3177 }
3178 
3179 static const struct file_operations mmc_test_fops_testlist = {
3180 	.open		= mtf_testlist_open,
3181 	.read		= seq_read,
3182 	.llseek		= seq_lseek,
3183 	.release	= single_release,
3184 };
3185 
3186 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3187 {
3188 	struct mmc_test_dbgfs_file *df, *dfs;
3189 
3190 	mutex_lock(&mmc_test_lock);
3191 
3192 	list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3193 		if (card && df->card != card)
3194 			continue;
3195 		debugfs_remove(df->file);
3196 		list_del(&df->link);
3197 		kfree(df);
3198 	}
3199 
3200 	mutex_unlock(&mmc_test_lock);
3201 }
3202 
3203 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3204 	const char *name, umode_t mode, const struct file_operations *fops)
3205 {
3206 	struct dentry *file = NULL;
3207 	struct mmc_test_dbgfs_file *df;
3208 
3209 	if (card->debugfs_root)
3210 		file = debugfs_create_file(name, mode, card->debugfs_root,
3211 			card, fops);
3212 
3213 	if (IS_ERR_OR_NULL(file)) {
3214 		dev_err(&card->dev,
3215 			"Can't create %s. Perhaps debugfs is disabled.\n",
3216 			name);
3217 		return -ENODEV;
3218 	}
3219 
3220 	df = kmalloc(sizeof(*df), GFP_KERNEL);
3221 	if (!df) {
3222 		debugfs_remove(file);
3223 		return -ENOMEM;
3224 	}
3225 
3226 	df->card = card;
3227 	df->file = file;
3228 
3229 	list_add(&df->link, &mmc_test_file_test);
3230 	return 0;
3231 }
3232 
3233 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3234 {
3235 	int ret;
3236 
3237 	mutex_lock(&mmc_test_lock);
3238 
3239 	ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3240 		&mmc_test_fops_test);
3241 	if (ret)
3242 		goto err;
3243 
3244 	ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3245 		&mmc_test_fops_testlist);
3246 	if (ret)
3247 		goto err;
3248 
3249 err:
3250 	mutex_unlock(&mmc_test_lock);
3251 
3252 	return ret;
3253 }
3254 
3255 static int mmc_test_probe(struct mmc_card *card)
3256 {
3257 	int ret;
3258 
3259 	if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3260 		return -ENODEV;
3261 
3262 	ret = mmc_test_register_dbgfs_file(card);
3263 	if (ret)
3264 		return ret;
3265 
3266 	if (card->ext_csd.cmdq_en) {
3267 		mmc_claim_host(card->host);
3268 		ret = mmc_cmdq_disable(card);
3269 		mmc_release_host(card->host);
3270 		if (ret)
3271 			return ret;
3272 	}
3273 
3274 	dev_info(&card->dev, "Card claimed for testing.\n");
3275 
3276 	return 0;
3277 }
3278 
3279 static void mmc_test_remove(struct mmc_card *card)
3280 {
3281 	if (card->reenable_cmdq) {
3282 		mmc_claim_host(card->host);
3283 		mmc_cmdq_enable(card);
3284 		mmc_release_host(card->host);
3285 	}
3286 	mmc_test_free_result(card);
3287 	mmc_test_free_dbgfs_file(card);
3288 }
3289 
3290 static void mmc_test_shutdown(struct mmc_card *card)
3291 {
3292 }
3293 
3294 static struct mmc_driver mmc_driver = {
3295 	.drv		= {
3296 		.name	= "mmc_test",
3297 	},
3298 	.probe		= mmc_test_probe,
3299 	.remove		= mmc_test_remove,
3300 	.shutdown	= mmc_test_shutdown,
3301 };
3302 
3303 static int __init mmc_test_init(void)
3304 {
3305 	return mmc_register_driver(&mmc_driver);
3306 }
3307 
3308 static void __exit mmc_test_exit(void)
3309 {
3310 	/* Clear stalled data if card is still plugged */
3311 	mmc_test_free_result(NULL);
3312 	mmc_test_free_dbgfs_file(NULL);
3313 
3314 	mmc_unregister_driver(&mmc_driver);
3315 }
3316 
3317 module_init(mmc_test_init);
3318 module_exit(mmc_test_exit);
3319 
3320 MODULE_LICENSE("GPL");
3321 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3322 MODULE_AUTHOR("Pierre Ossman");
3323