xref: /openbmc/linux/drivers/mmc/core/mmc_test.c (revision c2cd9d04)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright 2007-2008 Pierre Ossman
4  */
5 
6 #include <linux/mmc/core.h>
7 #include <linux/mmc/card.h>
8 #include <linux/mmc/host.h>
9 #include <linux/mmc/mmc.h>
10 #include <linux/slab.h>
11 
12 #include <linux/scatterlist.h>
13 #include <linux/swap.h>		/* For nr_free_buffer_pages() */
14 #include <linux/list.h>
15 
16 #include <linux/debugfs.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/module.h>
20 
21 #include "core.h"
22 #include "card.h"
23 #include "host.h"
24 #include "bus.h"
25 #include "mmc_ops.h"
26 
27 #define RESULT_OK		0
28 #define RESULT_FAIL		1
29 #define RESULT_UNSUP_HOST	2
30 #define RESULT_UNSUP_CARD	3
31 
32 #define BUFFER_ORDER		2
33 #define BUFFER_SIZE		(PAGE_SIZE << BUFFER_ORDER)
34 
35 #define TEST_ALIGN_END		8
36 
37 /*
38  * Limit the test area size to the maximum MMC HC erase group size.  Note that
39  * the maximum SD allocation unit size is just 4MiB.
40  */
41 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
42 
43 /**
44  * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
45  * @page: first page in the allocation
46  * @order: order of the number of pages allocated
47  */
48 struct mmc_test_pages {
49 	struct page *page;
50 	unsigned int order;
51 };
52 
53 /**
54  * struct mmc_test_mem - allocated memory.
55  * @arr: array of allocations
56  * @cnt: number of allocations
57  */
58 struct mmc_test_mem {
59 	struct mmc_test_pages *arr;
60 	unsigned int cnt;
61 };
62 
63 /**
64  * struct mmc_test_area - information for performance tests.
65  * @max_sz: test area size (in bytes)
66  * @dev_addr: address on card at which to do performance tests
67  * @max_tfr: maximum transfer size allowed by driver (in bytes)
68  * @max_segs: maximum segments allowed by driver in scatterlist @sg
69  * @max_seg_sz: maximum segment size allowed by driver
70  * @blocks: number of (512 byte) blocks currently mapped by @sg
71  * @sg_len: length of currently mapped scatterlist @sg
72  * @mem: allocated memory
73  * @sg: scatterlist
74  */
75 struct mmc_test_area {
76 	unsigned long max_sz;
77 	unsigned int dev_addr;
78 	unsigned int max_tfr;
79 	unsigned int max_segs;
80 	unsigned int max_seg_sz;
81 	unsigned int blocks;
82 	unsigned int sg_len;
83 	struct mmc_test_mem *mem;
84 	struct scatterlist *sg;
85 };
86 
87 /**
88  * struct mmc_test_transfer_result - transfer results for performance tests.
89  * @link: double-linked list
90  * @count: amount of group of sectors to check
91  * @sectors: amount of sectors to check in one group
92  * @ts: time values of transfer
93  * @rate: calculated transfer rate
94  * @iops: I/O operations per second (times 100)
95  */
96 struct mmc_test_transfer_result {
97 	struct list_head link;
98 	unsigned int count;
99 	unsigned int sectors;
100 	struct timespec64 ts;
101 	unsigned int rate;
102 	unsigned int iops;
103 };
104 
105 /**
106  * struct mmc_test_general_result - results for tests.
107  * @link: double-linked list
108  * @card: card under test
109  * @testcase: number of test case
110  * @result: result of test run
111  * @tr_lst: transfer measurements if any as mmc_test_transfer_result
112  */
113 struct mmc_test_general_result {
114 	struct list_head link;
115 	struct mmc_card *card;
116 	int testcase;
117 	int result;
118 	struct list_head tr_lst;
119 };
120 
121 /**
122  * struct mmc_test_dbgfs_file - debugfs related file.
123  * @link: double-linked list
124  * @card: card under test
125  * @file: file created under debugfs
126  */
127 struct mmc_test_dbgfs_file {
128 	struct list_head link;
129 	struct mmc_card *card;
130 	struct dentry *file;
131 };
132 
133 /**
134  * struct mmc_test_card - test information.
135  * @card: card under test
136  * @scratch: transfer buffer
137  * @buffer: transfer buffer
138  * @highmem: buffer for highmem tests
139  * @area: information for performance tests
140  * @gr: pointer to results of current testcase
141  */
142 struct mmc_test_card {
143 	struct mmc_card	*card;
144 
145 	u8		scratch[BUFFER_SIZE];
146 	u8		*buffer;
147 #ifdef CONFIG_HIGHMEM
148 	struct page	*highmem;
149 #endif
150 	struct mmc_test_area		area;
151 	struct mmc_test_general_result	*gr;
152 };
153 
154 enum mmc_test_prep_media {
155 	MMC_TEST_PREP_NONE = 0,
156 	MMC_TEST_PREP_WRITE_FULL = 1 << 0,
157 	MMC_TEST_PREP_ERASE = 1 << 1,
158 };
159 
160 struct mmc_test_multiple_rw {
161 	unsigned int *sg_len;
162 	unsigned int *bs;
163 	unsigned int len;
164 	unsigned int size;
165 	bool do_write;
166 	bool do_nonblock_req;
167 	enum mmc_test_prep_media prepare;
168 };
169 
170 /*******************************************************************/
171 /*  General helper functions                                       */
172 /*******************************************************************/
173 
174 /*
175  * Configure correct block size in card
176  */
177 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
178 {
179 	return mmc_set_blocklen(test->card, size);
180 }
181 
182 static bool mmc_test_card_cmd23(struct mmc_card *card)
183 {
184 	return mmc_card_mmc(card) ||
185 	       (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
186 }
187 
188 static void mmc_test_prepare_sbc(struct mmc_test_card *test,
189 				 struct mmc_request *mrq, unsigned int blocks)
190 {
191 	struct mmc_card *card = test->card;
192 
193 	if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
194 	    !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
195 	    (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
196 		mrq->sbc = NULL;
197 		return;
198 	}
199 
200 	mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
201 	mrq->sbc->arg = blocks;
202 	mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
203 }
204 
205 /*
206  * Fill in the mmc_request structure given a set of transfer parameters.
207  */
208 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
209 	struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
210 	unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
211 {
212 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
213 		return;
214 
215 	if (blocks > 1) {
216 		mrq->cmd->opcode = write ?
217 			MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
218 	} else {
219 		mrq->cmd->opcode = write ?
220 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
221 	}
222 
223 	mrq->cmd->arg = dev_addr;
224 	if (!mmc_card_blockaddr(test->card))
225 		mrq->cmd->arg <<= 9;
226 
227 	mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
228 
229 	if (blocks == 1)
230 		mrq->stop = NULL;
231 	else {
232 		mrq->stop->opcode = MMC_STOP_TRANSMISSION;
233 		mrq->stop->arg = 0;
234 		mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
235 	}
236 
237 	mrq->data->blksz = blksz;
238 	mrq->data->blocks = blocks;
239 	mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
240 	mrq->data->sg = sg;
241 	mrq->data->sg_len = sg_len;
242 
243 	mmc_test_prepare_sbc(test, mrq, blocks);
244 
245 	mmc_set_data_timeout(mrq->data, test->card);
246 }
247 
248 static int mmc_test_busy(struct mmc_command *cmd)
249 {
250 	return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
251 		(R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
252 }
253 
254 /*
255  * Wait for the card to finish the busy state
256  */
257 static int mmc_test_wait_busy(struct mmc_test_card *test)
258 {
259 	int ret, busy;
260 	struct mmc_command cmd = {};
261 
262 	busy = 0;
263 	do {
264 		memset(&cmd, 0, sizeof(struct mmc_command));
265 
266 		cmd.opcode = MMC_SEND_STATUS;
267 		cmd.arg = test->card->rca << 16;
268 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
269 
270 		ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
271 		if (ret)
272 			break;
273 
274 		if (!busy && mmc_test_busy(&cmd)) {
275 			busy = 1;
276 			if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
277 				pr_info("%s: Warning: Host did not wait for busy state to end.\n",
278 					mmc_hostname(test->card->host));
279 		}
280 	} while (mmc_test_busy(&cmd));
281 
282 	return ret;
283 }
284 
285 /*
286  * Transfer a single sector of kernel addressable data
287  */
288 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
289 	u8 *buffer, unsigned addr, unsigned blksz, int write)
290 {
291 	struct mmc_request mrq = {};
292 	struct mmc_command cmd = {};
293 	struct mmc_command stop = {};
294 	struct mmc_data data = {};
295 
296 	struct scatterlist sg;
297 
298 	mrq.cmd = &cmd;
299 	mrq.data = &data;
300 	mrq.stop = &stop;
301 
302 	sg_init_one(&sg, buffer, blksz);
303 
304 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
305 
306 	mmc_wait_for_req(test->card->host, &mrq);
307 
308 	if (cmd.error)
309 		return cmd.error;
310 	if (data.error)
311 		return data.error;
312 
313 	return mmc_test_wait_busy(test);
314 }
315 
316 static void mmc_test_free_mem(struct mmc_test_mem *mem)
317 {
318 	if (!mem)
319 		return;
320 	while (mem->cnt--)
321 		__free_pages(mem->arr[mem->cnt].page,
322 			     mem->arr[mem->cnt].order);
323 	kfree(mem->arr);
324 	kfree(mem);
325 }
326 
327 /*
328  * Allocate a lot of memory, preferably max_sz but at least min_sz.  In case
329  * there isn't much memory do not exceed 1/16th total lowmem pages.  Also do
330  * not exceed a maximum number of segments and try not to make segments much
331  * bigger than maximum segment size.
332  */
333 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
334 					       unsigned long max_sz,
335 					       unsigned int max_segs,
336 					       unsigned int max_seg_sz)
337 {
338 	unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
339 	unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
340 	unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
341 	unsigned long page_cnt = 0;
342 	unsigned long limit = nr_free_buffer_pages() >> 4;
343 	struct mmc_test_mem *mem;
344 
345 	if (max_page_cnt > limit)
346 		max_page_cnt = limit;
347 	if (min_page_cnt > max_page_cnt)
348 		min_page_cnt = max_page_cnt;
349 
350 	if (max_seg_page_cnt > max_page_cnt)
351 		max_seg_page_cnt = max_page_cnt;
352 
353 	if (max_segs > max_page_cnt)
354 		max_segs = max_page_cnt;
355 
356 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
357 	if (!mem)
358 		return NULL;
359 
360 	mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
361 	if (!mem->arr)
362 		goto out_free;
363 
364 	while (max_page_cnt) {
365 		struct page *page;
366 		unsigned int order;
367 		gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
368 				__GFP_NORETRY;
369 
370 		order = get_order(max_seg_page_cnt << PAGE_SHIFT);
371 		while (1) {
372 			page = alloc_pages(flags, order);
373 			if (page || !order)
374 				break;
375 			order -= 1;
376 		}
377 		if (!page) {
378 			if (page_cnt < min_page_cnt)
379 				goto out_free;
380 			break;
381 		}
382 		mem->arr[mem->cnt].page = page;
383 		mem->arr[mem->cnt].order = order;
384 		mem->cnt += 1;
385 		if (max_page_cnt <= (1UL << order))
386 			break;
387 		max_page_cnt -= 1UL << order;
388 		page_cnt += 1UL << order;
389 		if (mem->cnt >= max_segs) {
390 			if (page_cnt < min_page_cnt)
391 				goto out_free;
392 			break;
393 		}
394 	}
395 
396 	return mem;
397 
398 out_free:
399 	mmc_test_free_mem(mem);
400 	return NULL;
401 }
402 
403 /*
404  * Map memory into a scatterlist.  Optionally allow the same memory to be
405  * mapped more than once.
406  */
407 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
408 			   struct scatterlist *sglist, int repeat,
409 			   unsigned int max_segs, unsigned int max_seg_sz,
410 			   unsigned int *sg_len, int min_sg_len)
411 {
412 	struct scatterlist *sg = NULL;
413 	unsigned int i;
414 	unsigned long sz = size;
415 
416 	sg_init_table(sglist, max_segs);
417 	if (min_sg_len > max_segs)
418 		min_sg_len = max_segs;
419 
420 	*sg_len = 0;
421 	do {
422 		for (i = 0; i < mem->cnt; i++) {
423 			unsigned long len = PAGE_SIZE << mem->arr[i].order;
424 
425 			if (min_sg_len && (size / min_sg_len < len))
426 				len = ALIGN(size / min_sg_len, 512);
427 			if (len > sz)
428 				len = sz;
429 			if (len > max_seg_sz)
430 				len = max_seg_sz;
431 			if (sg)
432 				sg = sg_next(sg);
433 			else
434 				sg = sglist;
435 			if (!sg)
436 				return -EINVAL;
437 			sg_set_page(sg, mem->arr[i].page, len, 0);
438 			sz -= len;
439 			*sg_len += 1;
440 			if (!sz)
441 				break;
442 		}
443 	} while (sz && repeat);
444 
445 	if (sz)
446 		return -EINVAL;
447 
448 	if (sg)
449 		sg_mark_end(sg);
450 
451 	return 0;
452 }
453 
454 /*
455  * Map memory into a scatterlist so that no pages are contiguous.  Allow the
456  * same memory to be mapped more than once.
457  */
458 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
459 				       unsigned long sz,
460 				       struct scatterlist *sglist,
461 				       unsigned int max_segs,
462 				       unsigned int max_seg_sz,
463 				       unsigned int *sg_len)
464 {
465 	struct scatterlist *sg = NULL;
466 	unsigned int i = mem->cnt, cnt;
467 	unsigned long len;
468 	void *base, *addr, *last_addr = NULL;
469 
470 	sg_init_table(sglist, max_segs);
471 
472 	*sg_len = 0;
473 	while (sz) {
474 		base = page_address(mem->arr[--i].page);
475 		cnt = 1 << mem->arr[i].order;
476 		while (sz && cnt) {
477 			addr = base + PAGE_SIZE * --cnt;
478 			if (last_addr && last_addr + PAGE_SIZE == addr)
479 				continue;
480 			last_addr = addr;
481 			len = PAGE_SIZE;
482 			if (len > max_seg_sz)
483 				len = max_seg_sz;
484 			if (len > sz)
485 				len = sz;
486 			if (sg)
487 				sg = sg_next(sg);
488 			else
489 				sg = sglist;
490 			if (!sg)
491 				return -EINVAL;
492 			sg_set_page(sg, virt_to_page(addr), len, 0);
493 			sz -= len;
494 			*sg_len += 1;
495 		}
496 		if (i == 0)
497 			i = mem->cnt;
498 	}
499 
500 	if (sg)
501 		sg_mark_end(sg);
502 
503 	return 0;
504 }
505 
506 /*
507  * Calculate transfer rate in bytes per second.
508  */
509 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec64 *ts)
510 {
511 	uint64_t ns;
512 
513 	ns = timespec64_to_ns(ts);
514 	bytes *= 1000000000;
515 
516 	while (ns > UINT_MAX) {
517 		bytes >>= 1;
518 		ns >>= 1;
519 	}
520 
521 	if (!ns)
522 		return 0;
523 
524 	do_div(bytes, (uint32_t)ns);
525 
526 	return bytes;
527 }
528 
529 /*
530  * Save transfer results for future usage
531  */
532 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
533 	unsigned int count, unsigned int sectors, struct timespec64 ts,
534 	unsigned int rate, unsigned int iops)
535 {
536 	struct mmc_test_transfer_result *tr;
537 
538 	if (!test->gr)
539 		return;
540 
541 	tr = kmalloc(sizeof(*tr), GFP_KERNEL);
542 	if (!tr)
543 		return;
544 
545 	tr->count = count;
546 	tr->sectors = sectors;
547 	tr->ts = ts;
548 	tr->rate = rate;
549 	tr->iops = iops;
550 
551 	list_add_tail(&tr->link, &test->gr->tr_lst);
552 }
553 
554 /*
555  * Print the transfer rate.
556  */
557 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
558 				struct timespec64 *ts1, struct timespec64 *ts2)
559 {
560 	unsigned int rate, iops, sectors = bytes >> 9;
561 	struct timespec64 ts;
562 
563 	ts = timespec64_sub(*ts2, *ts1);
564 
565 	rate = mmc_test_rate(bytes, &ts);
566 	iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
567 
568 	pr_info("%s: Transfer of %u sectors (%u%s KiB) took %llu.%09u "
569 			 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
570 			 mmc_hostname(test->card->host), sectors, sectors >> 1,
571 			 (sectors & 1 ? ".5" : ""), (u64)ts.tv_sec,
572 			 (u32)ts.tv_nsec, rate / 1000, rate / 1024,
573 			 iops / 100, iops % 100);
574 
575 	mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
576 }
577 
578 /*
579  * Print the average transfer rate.
580  */
581 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
582 				    unsigned int count, struct timespec64 *ts1,
583 				    struct timespec64 *ts2)
584 {
585 	unsigned int rate, iops, sectors = bytes >> 9;
586 	uint64_t tot = bytes * count;
587 	struct timespec64 ts;
588 
589 	ts = timespec64_sub(*ts2, *ts1);
590 
591 	rate = mmc_test_rate(tot, &ts);
592 	iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
593 
594 	pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
595 			 "%llu.%09u seconds (%u kB/s, %u KiB/s, "
596 			 "%u.%02u IOPS, sg_len %d)\n",
597 			 mmc_hostname(test->card->host), count, sectors, count,
598 			 sectors >> 1, (sectors & 1 ? ".5" : ""),
599 			 (u64)ts.tv_sec, (u32)ts.tv_nsec,
600 			 rate / 1000, rate / 1024, iops / 100, iops % 100,
601 			 test->area.sg_len);
602 
603 	mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
604 }
605 
606 /*
607  * Return the card size in sectors.
608  */
609 static unsigned int mmc_test_capacity(struct mmc_card *card)
610 {
611 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
612 		return card->ext_csd.sectors;
613 	else
614 		return card->csd.capacity << (card->csd.read_blkbits - 9);
615 }
616 
617 /*******************************************************************/
618 /*  Test preparation and cleanup                                   */
619 /*******************************************************************/
620 
621 /*
622  * Fill the first couple of sectors of the card with known data
623  * so that bad reads/writes can be detected
624  */
625 static int __mmc_test_prepare(struct mmc_test_card *test, int write)
626 {
627 	int ret, i;
628 
629 	ret = mmc_test_set_blksize(test, 512);
630 	if (ret)
631 		return ret;
632 
633 	if (write)
634 		memset(test->buffer, 0xDF, 512);
635 	else {
636 		for (i = 0; i < 512; i++)
637 			test->buffer[i] = i;
638 	}
639 
640 	for (i = 0; i < BUFFER_SIZE / 512; i++) {
641 		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
642 		if (ret)
643 			return ret;
644 	}
645 
646 	return 0;
647 }
648 
649 static int mmc_test_prepare_write(struct mmc_test_card *test)
650 {
651 	return __mmc_test_prepare(test, 1);
652 }
653 
654 static int mmc_test_prepare_read(struct mmc_test_card *test)
655 {
656 	return __mmc_test_prepare(test, 0);
657 }
658 
659 static int mmc_test_cleanup(struct mmc_test_card *test)
660 {
661 	int ret, i;
662 
663 	ret = mmc_test_set_blksize(test, 512);
664 	if (ret)
665 		return ret;
666 
667 	memset(test->buffer, 0, 512);
668 
669 	for (i = 0; i < BUFFER_SIZE / 512; i++) {
670 		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
671 		if (ret)
672 			return ret;
673 	}
674 
675 	return 0;
676 }
677 
678 /*******************************************************************/
679 /*  Test execution helpers                                         */
680 /*******************************************************************/
681 
682 /*
683  * Modifies the mmc_request to perform the "short transfer" tests
684  */
685 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
686 	struct mmc_request *mrq, int write)
687 {
688 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
689 		return;
690 
691 	if (mrq->data->blocks > 1) {
692 		mrq->cmd->opcode = write ?
693 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
694 		mrq->stop = NULL;
695 	} else {
696 		mrq->cmd->opcode = MMC_SEND_STATUS;
697 		mrq->cmd->arg = test->card->rca << 16;
698 	}
699 }
700 
701 /*
702  * Checks that a normal transfer didn't have any errors
703  */
704 static int mmc_test_check_result(struct mmc_test_card *test,
705 				 struct mmc_request *mrq)
706 {
707 	int ret;
708 
709 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
710 		return -EINVAL;
711 
712 	ret = 0;
713 
714 	if (mrq->sbc && mrq->sbc->error)
715 		ret = mrq->sbc->error;
716 	if (!ret && mrq->cmd->error)
717 		ret = mrq->cmd->error;
718 	if (!ret && mrq->data->error)
719 		ret = mrq->data->error;
720 	if (!ret && mrq->stop && mrq->stop->error)
721 		ret = mrq->stop->error;
722 	if (!ret && mrq->data->bytes_xfered !=
723 		mrq->data->blocks * mrq->data->blksz)
724 		ret = RESULT_FAIL;
725 
726 	if (ret == -EINVAL)
727 		ret = RESULT_UNSUP_HOST;
728 
729 	return ret;
730 }
731 
732 /*
733  * Checks that a "short transfer" behaved as expected
734  */
735 static int mmc_test_check_broken_result(struct mmc_test_card *test,
736 	struct mmc_request *mrq)
737 {
738 	int ret;
739 
740 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
741 		return -EINVAL;
742 
743 	ret = 0;
744 
745 	if (!ret && mrq->cmd->error)
746 		ret = mrq->cmd->error;
747 	if (!ret && mrq->data->error == 0)
748 		ret = RESULT_FAIL;
749 	if (!ret && mrq->data->error != -ETIMEDOUT)
750 		ret = mrq->data->error;
751 	if (!ret && mrq->stop && mrq->stop->error)
752 		ret = mrq->stop->error;
753 	if (mrq->data->blocks > 1) {
754 		if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
755 			ret = RESULT_FAIL;
756 	} else {
757 		if (!ret && mrq->data->bytes_xfered > 0)
758 			ret = RESULT_FAIL;
759 	}
760 
761 	if (ret == -EINVAL)
762 		ret = RESULT_UNSUP_HOST;
763 
764 	return ret;
765 }
766 
767 struct mmc_test_req {
768 	struct mmc_request mrq;
769 	struct mmc_command sbc;
770 	struct mmc_command cmd;
771 	struct mmc_command stop;
772 	struct mmc_command status;
773 	struct mmc_data data;
774 };
775 
776 /*
777  * Tests nonblock transfer with certain parameters
778  */
779 static void mmc_test_req_reset(struct mmc_test_req *rq)
780 {
781 	memset(rq, 0, sizeof(struct mmc_test_req));
782 
783 	rq->mrq.cmd = &rq->cmd;
784 	rq->mrq.data = &rq->data;
785 	rq->mrq.stop = &rq->stop;
786 }
787 
788 static struct mmc_test_req *mmc_test_req_alloc(void)
789 {
790 	struct mmc_test_req *rq = kmalloc(sizeof(*rq), GFP_KERNEL);
791 
792 	if (rq)
793 		mmc_test_req_reset(rq);
794 
795 	return rq;
796 }
797 
798 static void mmc_test_wait_done(struct mmc_request *mrq)
799 {
800 	complete(&mrq->completion);
801 }
802 
803 static int mmc_test_start_areq(struct mmc_test_card *test,
804 			       struct mmc_request *mrq,
805 			       struct mmc_request *prev_mrq)
806 {
807 	struct mmc_host *host = test->card->host;
808 	int err = 0;
809 
810 	if (mrq) {
811 		init_completion(&mrq->completion);
812 		mrq->done = mmc_test_wait_done;
813 		mmc_pre_req(host, mrq);
814 	}
815 
816 	if (prev_mrq) {
817 		wait_for_completion(&prev_mrq->completion);
818 		err = mmc_test_wait_busy(test);
819 		if (!err)
820 			err = mmc_test_check_result(test, prev_mrq);
821 	}
822 
823 	if (!err && mrq) {
824 		err = mmc_start_request(host, mrq);
825 		if (err)
826 			mmc_retune_release(host);
827 	}
828 
829 	if (prev_mrq)
830 		mmc_post_req(host, prev_mrq, 0);
831 
832 	if (err && mrq)
833 		mmc_post_req(host, mrq, err);
834 
835 	return err;
836 }
837 
838 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
839 				      struct scatterlist *sg, unsigned sg_len,
840 				      unsigned dev_addr, unsigned blocks,
841 				      unsigned blksz, int write, int count)
842 {
843 	struct mmc_test_req *rq1, *rq2;
844 	struct mmc_request *mrq, *prev_mrq;
845 	int i;
846 	int ret = RESULT_OK;
847 
848 	rq1 = mmc_test_req_alloc();
849 	rq2 = mmc_test_req_alloc();
850 	if (!rq1 || !rq2) {
851 		ret = RESULT_FAIL;
852 		goto err;
853 	}
854 
855 	mrq = &rq1->mrq;
856 	prev_mrq = NULL;
857 
858 	for (i = 0; i < count; i++) {
859 		mmc_test_req_reset(container_of(mrq, struct mmc_test_req, mrq));
860 		mmc_test_prepare_mrq(test, mrq, sg, sg_len, dev_addr, blocks,
861 				     blksz, write);
862 		ret = mmc_test_start_areq(test, mrq, prev_mrq);
863 		if (ret)
864 			goto err;
865 
866 		if (!prev_mrq)
867 			prev_mrq = &rq2->mrq;
868 
869 		swap(mrq, prev_mrq);
870 		dev_addr += blocks;
871 	}
872 
873 	ret = mmc_test_start_areq(test, NULL, prev_mrq);
874 err:
875 	kfree(rq1);
876 	kfree(rq2);
877 	return ret;
878 }
879 
880 /*
881  * Tests a basic transfer with certain parameters
882  */
883 static int mmc_test_simple_transfer(struct mmc_test_card *test,
884 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
885 	unsigned blocks, unsigned blksz, int write)
886 {
887 	struct mmc_request mrq = {};
888 	struct mmc_command cmd = {};
889 	struct mmc_command stop = {};
890 	struct mmc_data data = {};
891 
892 	mrq.cmd = &cmd;
893 	mrq.data = &data;
894 	mrq.stop = &stop;
895 
896 	mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
897 		blocks, blksz, write);
898 
899 	mmc_wait_for_req(test->card->host, &mrq);
900 
901 	mmc_test_wait_busy(test);
902 
903 	return mmc_test_check_result(test, &mrq);
904 }
905 
906 /*
907  * Tests a transfer where the card will fail completely or partly
908  */
909 static int mmc_test_broken_transfer(struct mmc_test_card *test,
910 	unsigned blocks, unsigned blksz, int write)
911 {
912 	struct mmc_request mrq = {};
913 	struct mmc_command cmd = {};
914 	struct mmc_command stop = {};
915 	struct mmc_data data = {};
916 
917 	struct scatterlist sg;
918 
919 	mrq.cmd = &cmd;
920 	mrq.data = &data;
921 	mrq.stop = &stop;
922 
923 	sg_init_one(&sg, test->buffer, blocks * blksz);
924 
925 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
926 	mmc_test_prepare_broken_mrq(test, &mrq, write);
927 
928 	mmc_wait_for_req(test->card->host, &mrq);
929 
930 	mmc_test_wait_busy(test);
931 
932 	return mmc_test_check_broken_result(test, &mrq);
933 }
934 
935 /*
936  * Does a complete transfer test where data is also validated
937  *
938  * Note: mmc_test_prepare() must have been done before this call
939  */
940 static int mmc_test_transfer(struct mmc_test_card *test,
941 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
942 	unsigned blocks, unsigned blksz, int write)
943 {
944 	int ret, i;
945 	unsigned long flags;
946 
947 	if (write) {
948 		for (i = 0; i < blocks * blksz; i++)
949 			test->scratch[i] = i;
950 	} else {
951 		memset(test->scratch, 0, BUFFER_SIZE);
952 	}
953 	local_irq_save(flags);
954 	sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
955 	local_irq_restore(flags);
956 
957 	ret = mmc_test_set_blksize(test, blksz);
958 	if (ret)
959 		return ret;
960 
961 	ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
962 		blocks, blksz, write);
963 	if (ret)
964 		return ret;
965 
966 	if (write) {
967 		int sectors;
968 
969 		ret = mmc_test_set_blksize(test, 512);
970 		if (ret)
971 			return ret;
972 
973 		sectors = (blocks * blksz + 511) / 512;
974 		if ((sectors * 512) == (blocks * blksz))
975 			sectors++;
976 
977 		if ((sectors * 512) > BUFFER_SIZE)
978 			return -EINVAL;
979 
980 		memset(test->buffer, 0, sectors * 512);
981 
982 		for (i = 0; i < sectors; i++) {
983 			ret = mmc_test_buffer_transfer(test,
984 				test->buffer + i * 512,
985 				dev_addr + i, 512, 0);
986 			if (ret)
987 				return ret;
988 		}
989 
990 		for (i = 0; i < blocks * blksz; i++) {
991 			if (test->buffer[i] != (u8)i)
992 				return RESULT_FAIL;
993 		}
994 
995 		for (; i < sectors * 512; i++) {
996 			if (test->buffer[i] != 0xDF)
997 				return RESULT_FAIL;
998 		}
999 	} else {
1000 		local_irq_save(flags);
1001 		sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
1002 		local_irq_restore(flags);
1003 		for (i = 0; i < blocks * blksz; i++) {
1004 			if (test->scratch[i] != (u8)i)
1005 				return RESULT_FAIL;
1006 		}
1007 	}
1008 
1009 	return 0;
1010 }
1011 
1012 /*******************************************************************/
1013 /*  Tests                                                          */
1014 /*******************************************************************/
1015 
1016 struct mmc_test_case {
1017 	const char *name;
1018 
1019 	int (*prepare)(struct mmc_test_card *);
1020 	int (*run)(struct mmc_test_card *);
1021 	int (*cleanup)(struct mmc_test_card *);
1022 };
1023 
1024 static int mmc_test_basic_write(struct mmc_test_card *test)
1025 {
1026 	int ret;
1027 	struct scatterlist sg;
1028 
1029 	ret = mmc_test_set_blksize(test, 512);
1030 	if (ret)
1031 		return ret;
1032 
1033 	sg_init_one(&sg, test->buffer, 512);
1034 
1035 	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1036 }
1037 
1038 static int mmc_test_basic_read(struct mmc_test_card *test)
1039 {
1040 	int ret;
1041 	struct scatterlist sg;
1042 
1043 	ret = mmc_test_set_blksize(test, 512);
1044 	if (ret)
1045 		return ret;
1046 
1047 	sg_init_one(&sg, test->buffer, 512);
1048 
1049 	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1050 }
1051 
1052 static int mmc_test_verify_write(struct mmc_test_card *test)
1053 {
1054 	struct scatterlist sg;
1055 
1056 	sg_init_one(&sg, test->buffer, 512);
1057 
1058 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1059 }
1060 
1061 static int mmc_test_verify_read(struct mmc_test_card *test)
1062 {
1063 	struct scatterlist sg;
1064 
1065 	sg_init_one(&sg, test->buffer, 512);
1066 
1067 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1068 }
1069 
1070 static int mmc_test_multi_write(struct mmc_test_card *test)
1071 {
1072 	unsigned int size;
1073 	struct scatterlist sg;
1074 
1075 	if (test->card->host->max_blk_count == 1)
1076 		return RESULT_UNSUP_HOST;
1077 
1078 	size = PAGE_SIZE * 2;
1079 	size = min(size, test->card->host->max_req_size);
1080 	size = min(size, test->card->host->max_seg_size);
1081 	size = min(size, test->card->host->max_blk_count * 512);
1082 
1083 	if (size < 1024)
1084 		return RESULT_UNSUP_HOST;
1085 
1086 	sg_init_one(&sg, test->buffer, size);
1087 
1088 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1089 }
1090 
1091 static int mmc_test_multi_read(struct mmc_test_card *test)
1092 {
1093 	unsigned int size;
1094 	struct scatterlist sg;
1095 
1096 	if (test->card->host->max_blk_count == 1)
1097 		return RESULT_UNSUP_HOST;
1098 
1099 	size = PAGE_SIZE * 2;
1100 	size = min(size, test->card->host->max_req_size);
1101 	size = min(size, test->card->host->max_seg_size);
1102 	size = min(size, test->card->host->max_blk_count * 512);
1103 
1104 	if (size < 1024)
1105 		return RESULT_UNSUP_HOST;
1106 
1107 	sg_init_one(&sg, test->buffer, size);
1108 
1109 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1110 }
1111 
1112 static int mmc_test_pow2_write(struct mmc_test_card *test)
1113 {
1114 	int ret, i;
1115 	struct scatterlist sg;
1116 
1117 	if (!test->card->csd.write_partial)
1118 		return RESULT_UNSUP_CARD;
1119 
1120 	for (i = 1; i < 512; i <<= 1) {
1121 		sg_init_one(&sg, test->buffer, i);
1122 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1123 		if (ret)
1124 			return ret;
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 static int mmc_test_pow2_read(struct mmc_test_card *test)
1131 {
1132 	int ret, i;
1133 	struct scatterlist sg;
1134 
1135 	if (!test->card->csd.read_partial)
1136 		return RESULT_UNSUP_CARD;
1137 
1138 	for (i = 1; i < 512; i <<= 1) {
1139 		sg_init_one(&sg, test->buffer, i);
1140 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1141 		if (ret)
1142 			return ret;
1143 	}
1144 
1145 	return 0;
1146 }
1147 
1148 static int mmc_test_weird_write(struct mmc_test_card *test)
1149 {
1150 	int ret, i;
1151 	struct scatterlist sg;
1152 
1153 	if (!test->card->csd.write_partial)
1154 		return RESULT_UNSUP_CARD;
1155 
1156 	for (i = 3; i < 512; i += 7) {
1157 		sg_init_one(&sg, test->buffer, i);
1158 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1159 		if (ret)
1160 			return ret;
1161 	}
1162 
1163 	return 0;
1164 }
1165 
1166 static int mmc_test_weird_read(struct mmc_test_card *test)
1167 {
1168 	int ret, i;
1169 	struct scatterlist sg;
1170 
1171 	if (!test->card->csd.read_partial)
1172 		return RESULT_UNSUP_CARD;
1173 
1174 	for (i = 3; i < 512; i += 7) {
1175 		sg_init_one(&sg, test->buffer, i);
1176 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1177 		if (ret)
1178 			return ret;
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 static int mmc_test_align_write(struct mmc_test_card *test)
1185 {
1186 	int ret, i;
1187 	struct scatterlist sg;
1188 
1189 	for (i = 1; i < TEST_ALIGN_END; i++) {
1190 		sg_init_one(&sg, test->buffer + i, 512);
1191 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1192 		if (ret)
1193 			return ret;
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 static int mmc_test_align_read(struct mmc_test_card *test)
1200 {
1201 	int ret, i;
1202 	struct scatterlist sg;
1203 
1204 	for (i = 1; i < TEST_ALIGN_END; i++) {
1205 		sg_init_one(&sg, test->buffer + i, 512);
1206 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1207 		if (ret)
1208 			return ret;
1209 	}
1210 
1211 	return 0;
1212 }
1213 
1214 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1215 {
1216 	int ret, i;
1217 	unsigned int size;
1218 	struct scatterlist sg;
1219 
1220 	if (test->card->host->max_blk_count == 1)
1221 		return RESULT_UNSUP_HOST;
1222 
1223 	size = PAGE_SIZE * 2;
1224 	size = min(size, test->card->host->max_req_size);
1225 	size = min(size, test->card->host->max_seg_size);
1226 	size = min(size, test->card->host->max_blk_count * 512);
1227 
1228 	if (size < 1024)
1229 		return RESULT_UNSUP_HOST;
1230 
1231 	for (i = 1; i < TEST_ALIGN_END; i++) {
1232 		sg_init_one(&sg, test->buffer + i, size);
1233 		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1234 		if (ret)
1235 			return ret;
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1242 {
1243 	int ret, i;
1244 	unsigned int size;
1245 	struct scatterlist sg;
1246 
1247 	if (test->card->host->max_blk_count == 1)
1248 		return RESULT_UNSUP_HOST;
1249 
1250 	size = PAGE_SIZE * 2;
1251 	size = min(size, test->card->host->max_req_size);
1252 	size = min(size, test->card->host->max_seg_size);
1253 	size = min(size, test->card->host->max_blk_count * 512);
1254 
1255 	if (size < 1024)
1256 		return RESULT_UNSUP_HOST;
1257 
1258 	for (i = 1; i < TEST_ALIGN_END; i++) {
1259 		sg_init_one(&sg, test->buffer + i, size);
1260 		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1261 		if (ret)
1262 			return ret;
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1269 {
1270 	int ret;
1271 
1272 	ret = mmc_test_set_blksize(test, 512);
1273 	if (ret)
1274 		return ret;
1275 
1276 	return mmc_test_broken_transfer(test, 1, 512, 1);
1277 }
1278 
1279 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1280 {
1281 	int ret;
1282 
1283 	ret = mmc_test_set_blksize(test, 512);
1284 	if (ret)
1285 		return ret;
1286 
1287 	return mmc_test_broken_transfer(test, 1, 512, 0);
1288 }
1289 
1290 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1291 {
1292 	int ret;
1293 
1294 	if (test->card->host->max_blk_count == 1)
1295 		return RESULT_UNSUP_HOST;
1296 
1297 	ret = mmc_test_set_blksize(test, 512);
1298 	if (ret)
1299 		return ret;
1300 
1301 	return mmc_test_broken_transfer(test, 2, 512, 1);
1302 }
1303 
1304 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1305 {
1306 	int ret;
1307 
1308 	if (test->card->host->max_blk_count == 1)
1309 		return RESULT_UNSUP_HOST;
1310 
1311 	ret = mmc_test_set_blksize(test, 512);
1312 	if (ret)
1313 		return ret;
1314 
1315 	return mmc_test_broken_transfer(test, 2, 512, 0);
1316 }
1317 
1318 #ifdef CONFIG_HIGHMEM
1319 
1320 static int mmc_test_write_high(struct mmc_test_card *test)
1321 {
1322 	struct scatterlist sg;
1323 
1324 	sg_init_table(&sg, 1);
1325 	sg_set_page(&sg, test->highmem, 512, 0);
1326 
1327 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1328 }
1329 
1330 static int mmc_test_read_high(struct mmc_test_card *test)
1331 {
1332 	struct scatterlist sg;
1333 
1334 	sg_init_table(&sg, 1);
1335 	sg_set_page(&sg, test->highmem, 512, 0);
1336 
1337 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1338 }
1339 
1340 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1341 {
1342 	unsigned int size;
1343 	struct scatterlist sg;
1344 
1345 	if (test->card->host->max_blk_count == 1)
1346 		return RESULT_UNSUP_HOST;
1347 
1348 	size = PAGE_SIZE * 2;
1349 	size = min(size, test->card->host->max_req_size);
1350 	size = min(size, test->card->host->max_seg_size);
1351 	size = min(size, test->card->host->max_blk_count * 512);
1352 
1353 	if (size < 1024)
1354 		return RESULT_UNSUP_HOST;
1355 
1356 	sg_init_table(&sg, 1);
1357 	sg_set_page(&sg, test->highmem, size, 0);
1358 
1359 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1360 }
1361 
1362 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1363 {
1364 	unsigned int size;
1365 	struct scatterlist sg;
1366 
1367 	if (test->card->host->max_blk_count == 1)
1368 		return RESULT_UNSUP_HOST;
1369 
1370 	size = PAGE_SIZE * 2;
1371 	size = min(size, test->card->host->max_req_size);
1372 	size = min(size, test->card->host->max_seg_size);
1373 	size = min(size, test->card->host->max_blk_count * 512);
1374 
1375 	if (size < 1024)
1376 		return RESULT_UNSUP_HOST;
1377 
1378 	sg_init_table(&sg, 1);
1379 	sg_set_page(&sg, test->highmem, size, 0);
1380 
1381 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1382 }
1383 
1384 #else
1385 
1386 static int mmc_test_no_highmem(struct mmc_test_card *test)
1387 {
1388 	pr_info("%s: Highmem not configured - test skipped\n",
1389 	       mmc_hostname(test->card->host));
1390 	return 0;
1391 }
1392 
1393 #endif /* CONFIG_HIGHMEM */
1394 
1395 /*
1396  * Map sz bytes so that it can be transferred.
1397  */
1398 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1399 			     int max_scatter, int min_sg_len)
1400 {
1401 	struct mmc_test_area *t = &test->area;
1402 	int err;
1403 
1404 	t->blocks = sz >> 9;
1405 
1406 	if (max_scatter) {
1407 		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1408 						  t->max_segs, t->max_seg_sz,
1409 				       &t->sg_len);
1410 	} else {
1411 		err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1412 				      t->max_seg_sz, &t->sg_len, min_sg_len);
1413 	}
1414 	if (err)
1415 		pr_info("%s: Failed to map sg list\n",
1416 		       mmc_hostname(test->card->host));
1417 	return err;
1418 }
1419 
1420 /*
1421  * Transfer bytes mapped by mmc_test_area_map().
1422  */
1423 static int mmc_test_area_transfer(struct mmc_test_card *test,
1424 				  unsigned int dev_addr, int write)
1425 {
1426 	struct mmc_test_area *t = &test->area;
1427 
1428 	return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1429 					t->blocks, 512, write);
1430 }
1431 
1432 /*
1433  * Map and transfer bytes for multiple transfers.
1434  */
1435 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1436 				unsigned int dev_addr, int write,
1437 				int max_scatter, int timed, int count,
1438 				bool nonblock, int min_sg_len)
1439 {
1440 	struct timespec64 ts1, ts2;
1441 	int ret = 0;
1442 	int i;
1443 	struct mmc_test_area *t = &test->area;
1444 
1445 	/*
1446 	 * In the case of a maximally scattered transfer, the maximum transfer
1447 	 * size is further limited by using PAGE_SIZE segments.
1448 	 */
1449 	if (max_scatter) {
1450 		struct mmc_test_area *t = &test->area;
1451 		unsigned long max_tfr;
1452 
1453 		if (t->max_seg_sz >= PAGE_SIZE)
1454 			max_tfr = t->max_segs * PAGE_SIZE;
1455 		else
1456 			max_tfr = t->max_segs * t->max_seg_sz;
1457 		if (sz > max_tfr)
1458 			sz = max_tfr;
1459 	}
1460 
1461 	ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len);
1462 	if (ret)
1463 		return ret;
1464 
1465 	if (timed)
1466 		ktime_get_ts64(&ts1);
1467 	if (nonblock)
1468 		ret = mmc_test_nonblock_transfer(test, t->sg, t->sg_len,
1469 				 dev_addr, t->blocks, 512, write, count);
1470 	else
1471 		for (i = 0; i < count && ret == 0; i++) {
1472 			ret = mmc_test_area_transfer(test, dev_addr, write);
1473 			dev_addr += sz >> 9;
1474 		}
1475 
1476 	if (ret)
1477 		return ret;
1478 
1479 	if (timed)
1480 		ktime_get_ts64(&ts2);
1481 
1482 	if (timed)
1483 		mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1484 
1485 	return 0;
1486 }
1487 
1488 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1489 			    unsigned int dev_addr, int write, int max_scatter,
1490 			    int timed)
1491 {
1492 	return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1493 				    timed, 1, false, 0);
1494 }
1495 
1496 /*
1497  * Write the test area entirely.
1498  */
1499 static int mmc_test_area_fill(struct mmc_test_card *test)
1500 {
1501 	struct mmc_test_area *t = &test->area;
1502 
1503 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1504 }
1505 
1506 /*
1507  * Erase the test area entirely.
1508  */
1509 static int mmc_test_area_erase(struct mmc_test_card *test)
1510 {
1511 	struct mmc_test_area *t = &test->area;
1512 
1513 	if (!mmc_can_erase(test->card))
1514 		return 0;
1515 
1516 	return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1517 			 MMC_ERASE_ARG);
1518 }
1519 
1520 /*
1521  * Cleanup struct mmc_test_area.
1522  */
1523 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1524 {
1525 	struct mmc_test_area *t = &test->area;
1526 
1527 	kfree(t->sg);
1528 	mmc_test_free_mem(t->mem);
1529 
1530 	return 0;
1531 }
1532 
1533 /*
1534  * Initialize an area for testing large transfers.  The test area is set to the
1535  * middle of the card because cards may have different characteristics at the
1536  * front (for FAT file system optimization).  Optionally, the area is erased
1537  * (if the card supports it) which may improve write performance.  Optionally,
1538  * the area is filled with data for subsequent read tests.
1539  */
1540 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1541 {
1542 	struct mmc_test_area *t = &test->area;
1543 	unsigned long min_sz = 64 * 1024, sz;
1544 	int ret;
1545 
1546 	ret = mmc_test_set_blksize(test, 512);
1547 	if (ret)
1548 		return ret;
1549 
1550 	/* Make the test area size about 4MiB */
1551 	sz = (unsigned long)test->card->pref_erase << 9;
1552 	t->max_sz = sz;
1553 	while (t->max_sz < 4 * 1024 * 1024)
1554 		t->max_sz += sz;
1555 	while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1556 		t->max_sz -= sz;
1557 
1558 	t->max_segs = test->card->host->max_segs;
1559 	t->max_seg_sz = test->card->host->max_seg_size;
1560 	t->max_seg_sz -= t->max_seg_sz % 512;
1561 
1562 	t->max_tfr = t->max_sz;
1563 	if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1564 		t->max_tfr = test->card->host->max_blk_count << 9;
1565 	if (t->max_tfr > test->card->host->max_req_size)
1566 		t->max_tfr = test->card->host->max_req_size;
1567 	if (t->max_tfr / t->max_seg_sz > t->max_segs)
1568 		t->max_tfr = t->max_segs * t->max_seg_sz;
1569 
1570 	/*
1571 	 * Try to allocate enough memory for a max. sized transfer.  Less is OK
1572 	 * because the same memory can be mapped into the scatterlist more than
1573 	 * once.  Also, take into account the limits imposed on scatterlist
1574 	 * segments by the host driver.
1575 	 */
1576 	t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1577 				    t->max_seg_sz);
1578 	if (!t->mem)
1579 		return -ENOMEM;
1580 
1581 	t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1582 	if (!t->sg) {
1583 		ret = -ENOMEM;
1584 		goto out_free;
1585 	}
1586 
1587 	t->dev_addr = mmc_test_capacity(test->card) / 2;
1588 	t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1589 
1590 	if (erase) {
1591 		ret = mmc_test_area_erase(test);
1592 		if (ret)
1593 			goto out_free;
1594 	}
1595 
1596 	if (fill) {
1597 		ret = mmc_test_area_fill(test);
1598 		if (ret)
1599 			goto out_free;
1600 	}
1601 
1602 	return 0;
1603 
1604 out_free:
1605 	mmc_test_area_cleanup(test);
1606 	return ret;
1607 }
1608 
1609 /*
1610  * Prepare for large transfers.  Do not erase the test area.
1611  */
1612 static int mmc_test_area_prepare(struct mmc_test_card *test)
1613 {
1614 	return mmc_test_area_init(test, 0, 0);
1615 }
1616 
1617 /*
1618  * Prepare for large transfers.  Do erase the test area.
1619  */
1620 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1621 {
1622 	return mmc_test_area_init(test, 1, 0);
1623 }
1624 
1625 /*
1626  * Prepare for large transfers.  Erase and fill the test area.
1627  */
1628 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1629 {
1630 	return mmc_test_area_init(test, 1, 1);
1631 }
1632 
1633 /*
1634  * Test best-case performance.  Best-case performance is expected from
1635  * a single large transfer.
1636  *
1637  * An additional option (max_scatter) allows the measurement of the same
1638  * transfer but with no contiguous pages in the scatter list.  This tests
1639  * the efficiency of DMA to handle scattered pages.
1640  */
1641 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1642 				     int max_scatter)
1643 {
1644 	struct mmc_test_area *t = &test->area;
1645 
1646 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1647 				max_scatter, 1);
1648 }
1649 
1650 /*
1651  * Best-case read performance.
1652  */
1653 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1654 {
1655 	return mmc_test_best_performance(test, 0, 0);
1656 }
1657 
1658 /*
1659  * Best-case write performance.
1660  */
1661 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1662 {
1663 	return mmc_test_best_performance(test, 1, 0);
1664 }
1665 
1666 /*
1667  * Best-case read performance into scattered pages.
1668  */
1669 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1670 {
1671 	return mmc_test_best_performance(test, 0, 1);
1672 }
1673 
1674 /*
1675  * Best-case write performance from scattered pages.
1676  */
1677 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1678 {
1679 	return mmc_test_best_performance(test, 1, 1);
1680 }
1681 
1682 /*
1683  * Single read performance by transfer size.
1684  */
1685 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1686 {
1687 	struct mmc_test_area *t = &test->area;
1688 	unsigned long sz;
1689 	unsigned int dev_addr;
1690 	int ret;
1691 
1692 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1693 		dev_addr = t->dev_addr + (sz >> 9);
1694 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1695 		if (ret)
1696 			return ret;
1697 	}
1698 	sz = t->max_tfr;
1699 	dev_addr = t->dev_addr;
1700 	return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1701 }
1702 
1703 /*
1704  * Single write performance by transfer size.
1705  */
1706 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1707 {
1708 	struct mmc_test_area *t = &test->area;
1709 	unsigned long sz;
1710 	unsigned int dev_addr;
1711 	int ret;
1712 
1713 	ret = mmc_test_area_erase(test);
1714 	if (ret)
1715 		return ret;
1716 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1717 		dev_addr = t->dev_addr + (sz >> 9);
1718 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1719 		if (ret)
1720 			return ret;
1721 	}
1722 	ret = mmc_test_area_erase(test);
1723 	if (ret)
1724 		return ret;
1725 	sz = t->max_tfr;
1726 	dev_addr = t->dev_addr;
1727 	return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1728 }
1729 
1730 /*
1731  * Single trim performance by transfer size.
1732  */
1733 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1734 {
1735 	struct mmc_test_area *t = &test->area;
1736 	unsigned long sz;
1737 	unsigned int dev_addr;
1738 	struct timespec64 ts1, ts2;
1739 	int ret;
1740 
1741 	if (!mmc_can_trim(test->card))
1742 		return RESULT_UNSUP_CARD;
1743 
1744 	if (!mmc_can_erase(test->card))
1745 		return RESULT_UNSUP_HOST;
1746 
1747 	for (sz = 512; sz < t->max_sz; sz <<= 1) {
1748 		dev_addr = t->dev_addr + (sz >> 9);
1749 		ktime_get_ts64(&ts1);
1750 		ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1751 		if (ret)
1752 			return ret;
1753 		ktime_get_ts64(&ts2);
1754 		mmc_test_print_rate(test, sz, &ts1, &ts2);
1755 	}
1756 	dev_addr = t->dev_addr;
1757 	ktime_get_ts64(&ts1);
1758 	ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1759 	if (ret)
1760 		return ret;
1761 	ktime_get_ts64(&ts2);
1762 	mmc_test_print_rate(test, sz, &ts1, &ts2);
1763 	return 0;
1764 }
1765 
1766 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1767 {
1768 	struct mmc_test_area *t = &test->area;
1769 	unsigned int dev_addr, i, cnt;
1770 	struct timespec64 ts1, ts2;
1771 	int ret;
1772 
1773 	cnt = t->max_sz / sz;
1774 	dev_addr = t->dev_addr;
1775 	ktime_get_ts64(&ts1);
1776 	for (i = 0; i < cnt; i++) {
1777 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1778 		if (ret)
1779 			return ret;
1780 		dev_addr += (sz >> 9);
1781 	}
1782 	ktime_get_ts64(&ts2);
1783 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1784 	return 0;
1785 }
1786 
1787 /*
1788  * Consecutive read performance by transfer size.
1789  */
1790 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1791 {
1792 	struct mmc_test_area *t = &test->area;
1793 	unsigned long sz;
1794 	int ret;
1795 
1796 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1797 		ret = mmc_test_seq_read_perf(test, sz);
1798 		if (ret)
1799 			return ret;
1800 	}
1801 	sz = t->max_tfr;
1802 	return mmc_test_seq_read_perf(test, sz);
1803 }
1804 
1805 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1806 {
1807 	struct mmc_test_area *t = &test->area;
1808 	unsigned int dev_addr, i, cnt;
1809 	struct timespec64 ts1, ts2;
1810 	int ret;
1811 
1812 	ret = mmc_test_area_erase(test);
1813 	if (ret)
1814 		return ret;
1815 	cnt = t->max_sz / sz;
1816 	dev_addr = t->dev_addr;
1817 	ktime_get_ts64(&ts1);
1818 	for (i = 0; i < cnt; i++) {
1819 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1820 		if (ret)
1821 			return ret;
1822 		dev_addr += (sz >> 9);
1823 	}
1824 	ktime_get_ts64(&ts2);
1825 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1826 	return 0;
1827 }
1828 
1829 /*
1830  * Consecutive write performance by transfer size.
1831  */
1832 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1833 {
1834 	struct mmc_test_area *t = &test->area;
1835 	unsigned long sz;
1836 	int ret;
1837 
1838 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1839 		ret = mmc_test_seq_write_perf(test, sz);
1840 		if (ret)
1841 			return ret;
1842 	}
1843 	sz = t->max_tfr;
1844 	return mmc_test_seq_write_perf(test, sz);
1845 }
1846 
1847 /*
1848  * Consecutive trim performance by transfer size.
1849  */
1850 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1851 {
1852 	struct mmc_test_area *t = &test->area;
1853 	unsigned long sz;
1854 	unsigned int dev_addr, i, cnt;
1855 	struct timespec64 ts1, ts2;
1856 	int ret;
1857 
1858 	if (!mmc_can_trim(test->card))
1859 		return RESULT_UNSUP_CARD;
1860 
1861 	if (!mmc_can_erase(test->card))
1862 		return RESULT_UNSUP_HOST;
1863 
1864 	for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1865 		ret = mmc_test_area_erase(test);
1866 		if (ret)
1867 			return ret;
1868 		ret = mmc_test_area_fill(test);
1869 		if (ret)
1870 			return ret;
1871 		cnt = t->max_sz / sz;
1872 		dev_addr = t->dev_addr;
1873 		ktime_get_ts64(&ts1);
1874 		for (i = 0; i < cnt; i++) {
1875 			ret = mmc_erase(test->card, dev_addr, sz >> 9,
1876 					MMC_TRIM_ARG);
1877 			if (ret)
1878 				return ret;
1879 			dev_addr += (sz >> 9);
1880 		}
1881 		ktime_get_ts64(&ts2);
1882 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1883 	}
1884 	return 0;
1885 }
1886 
1887 static unsigned int rnd_next = 1;
1888 
1889 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1890 {
1891 	uint64_t r;
1892 
1893 	rnd_next = rnd_next * 1103515245 + 12345;
1894 	r = (rnd_next >> 16) & 0x7fff;
1895 	return (r * rnd_cnt) >> 15;
1896 }
1897 
1898 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1899 			     unsigned long sz)
1900 {
1901 	unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1902 	unsigned int ssz;
1903 	struct timespec64 ts1, ts2, ts;
1904 	int ret;
1905 
1906 	ssz = sz >> 9;
1907 
1908 	rnd_addr = mmc_test_capacity(test->card) / 4;
1909 	range1 = rnd_addr / test->card->pref_erase;
1910 	range2 = range1 / ssz;
1911 
1912 	ktime_get_ts64(&ts1);
1913 	for (cnt = 0; cnt < UINT_MAX; cnt++) {
1914 		ktime_get_ts64(&ts2);
1915 		ts = timespec64_sub(ts2, ts1);
1916 		if (ts.tv_sec >= 10)
1917 			break;
1918 		ea = mmc_test_rnd_num(range1);
1919 		if (ea == last_ea)
1920 			ea -= 1;
1921 		last_ea = ea;
1922 		dev_addr = rnd_addr + test->card->pref_erase * ea +
1923 			   ssz * mmc_test_rnd_num(range2);
1924 		ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1925 		if (ret)
1926 			return ret;
1927 	}
1928 	if (print)
1929 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1930 	return 0;
1931 }
1932 
1933 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1934 {
1935 	struct mmc_test_area *t = &test->area;
1936 	unsigned int next;
1937 	unsigned long sz;
1938 	int ret;
1939 
1940 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1941 		/*
1942 		 * When writing, try to get more consistent results by running
1943 		 * the test twice with exactly the same I/O but outputting the
1944 		 * results only for the 2nd run.
1945 		 */
1946 		if (write) {
1947 			next = rnd_next;
1948 			ret = mmc_test_rnd_perf(test, write, 0, sz);
1949 			if (ret)
1950 				return ret;
1951 			rnd_next = next;
1952 		}
1953 		ret = mmc_test_rnd_perf(test, write, 1, sz);
1954 		if (ret)
1955 			return ret;
1956 	}
1957 	sz = t->max_tfr;
1958 	if (write) {
1959 		next = rnd_next;
1960 		ret = mmc_test_rnd_perf(test, write, 0, sz);
1961 		if (ret)
1962 			return ret;
1963 		rnd_next = next;
1964 	}
1965 	return mmc_test_rnd_perf(test, write, 1, sz);
1966 }
1967 
1968 /*
1969  * Random read performance by transfer size.
1970  */
1971 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1972 {
1973 	return mmc_test_random_perf(test, 0);
1974 }
1975 
1976 /*
1977  * Random write performance by transfer size.
1978  */
1979 static int mmc_test_random_write_perf(struct mmc_test_card *test)
1980 {
1981 	return mmc_test_random_perf(test, 1);
1982 }
1983 
1984 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
1985 			     unsigned int tot_sz, int max_scatter)
1986 {
1987 	struct mmc_test_area *t = &test->area;
1988 	unsigned int dev_addr, i, cnt, sz, ssz;
1989 	struct timespec64 ts1, ts2;
1990 	int ret;
1991 
1992 	sz = t->max_tfr;
1993 
1994 	/*
1995 	 * In the case of a maximally scattered transfer, the maximum transfer
1996 	 * size is further limited by using PAGE_SIZE segments.
1997 	 */
1998 	if (max_scatter) {
1999 		unsigned long max_tfr;
2000 
2001 		if (t->max_seg_sz >= PAGE_SIZE)
2002 			max_tfr = t->max_segs * PAGE_SIZE;
2003 		else
2004 			max_tfr = t->max_segs * t->max_seg_sz;
2005 		if (sz > max_tfr)
2006 			sz = max_tfr;
2007 	}
2008 
2009 	ssz = sz >> 9;
2010 	dev_addr = mmc_test_capacity(test->card) / 4;
2011 	if (tot_sz > dev_addr << 9)
2012 		tot_sz = dev_addr << 9;
2013 	cnt = tot_sz / sz;
2014 	dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2015 
2016 	ktime_get_ts64(&ts1);
2017 	for (i = 0; i < cnt; i++) {
2018 		ret = mmc_test_area_io(test, sz, dev_addr, write,
2019 				       max_scatter, 0);
2020 		if (ret)
2021 			return ret;
2022 		dev_addr += ssz;
2023 	}
2024 	ktime_get_ts64(&ts2);
2025 
2026 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2027 
2028 	return 0;
2029 }
2030 
2031 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2032 {
2033 	int ret, i;
2034 
2035 	for (i = 0; i < 10; i++) {
2036 		ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2037 		if (ret)
2038 			return ret;
2039 	}
2040 	for (i = 0; i < 5; i++) {
2041 		ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2042 		if (ret)
2043 			return ret;
2044 	}
2045 	for (i = 0; i < 3; i++) {
2046 		ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2047 		if (ret)
2048 			return ret;
2049 	}
2050 
2051 	return ret;
2052 }
2053 
2054 /*
2055  * Large sequential read performance.
2056  */
2057 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2058 {
2059 	return mmc_test_large_seq_perf(test, 0);
2060 }
2061 
2062 /*
2063  * Large sequential write performance.
2064  */
2065 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2066 {
2067 	return mmc_test_large_seq_perf(test, 1);
2068 }
2069 
2070 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2071 				struct mmc_test_multiple_rw *tdata,
2072 				unsigned int reqsize, unsigned int size,
2073 				int min_sg_len)
2074 {
2075 	unsigned int dev_addr;
2076 	struct mmc_test_area *t = &test->area;
2077 	int ret = 0;
2078 
2079 	/* Set up test area */
2080 	if (size > mmc_test_capacity(test->card) / 2 * 512)
2081 		size = mmc_test_capacity(test->card) / 2 * 512;
2082 	if (reqsize > t->max_tfr)
2083 		reqsize = t->max_tfr;
2084 	dev_addr = mmc_test_capacity(test->card) / 4;
2085 	if ((dev_addr & 0xffff0000))
2086 		dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2087 	else
2088 		dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2089 	if (!dev_addr)
2090 		goto err;
2091 
2092 	if (reqsize > size)
2093 		return 0;
2094 
2095 	/* prepare test area */
2096 	if (mmc_can_erase(test->card) &&
2097 	    tdata->prepare & MMC_TEST_PREP_ERASE) {
2098 		ret = mmc_erase(test->card, dev_addr,
2099 				size / 512, MMC_SECURE_ERASE_ARG);
2100 		if (ret)
2101 			ret = mmc_erase(test->card, dev_addr,
2102 					size / 512, MMC_ERASE_ARG);
2103 		if (ret)
2104 			goto err;
2105 	}
2106 
2107 	/* Run test */
2108 	ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2109 				   tdata->do_write, 0, 1, size / reqsize,
2110 				   tdata->do_nonblock_req, min_sg_len);
2111 	if (ret)
2112 		goto err;
2113 
2114 	return ret;
2115  err:
2116 	pr_info("[%s] error\n", __func__);
2117 	return ret;
2118 }
2119 
2120 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2121 				     struct mmc_test_multiple_rw *rw)
2122 {
2123 	int ret = 0;
2124 	int i;
2125 	void *pre_req = test->card->host->ops->pre_req;
2126 	void *post_req = test->card->host->ops->post_req;
2127 
2128 	if (rw->do_nonblock_req &&
2129 	    ((!pre_req && post_req) || (pre_req && !post_req))) {
2130 		pr_info("error: only one of pre/post is defined\n");
2131 		return -EINVAL;
2132 	}
2133 
2134 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2135 		ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2136 		if (ret)
2137 			break;
2138 	}
2139 	return ret;
2140 }
2141 
2142 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2143 				       struct mmc_test_multiple_rw *rw)
2144 {
2145 	int ret = 0;
2146 	int i;
2147 
2148 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2149 		ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2150 					   rw->sg_len[i]);
2151 		if (ret)
2152 			break;
2153 	}
2154 	return ret;
2155 }
2156 
2157 /*
2158  * Multiple blocking write 4k to 4 MB chunks
2159  */
2160 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2161 {
2162 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2163 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2164 	struct mmc_test_multiple_rw test_data = {
2165 		.bs = bs,
2166 		.size = TEST_AREA_MAX_SIZE,
2167 		.len = ARRAY_SIZE(bs),
2168 		.do_write = true,
2169 		.do_nonblock_req = false,
2170 		.prepare = MMC_TEST_PREP_ERASE,
2171 	};
2172 
2173 	return mmc_test_rw_multiple_size(test, &test_data);
2174 };
2175 
2176 /*
2177  * Multiple non-blocking write 4k to 4 MB chunks
2178  */
2179 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2180 {
2181 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2182 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2183 	struct mmc_test_multiple_rw test_data = {
2184 		.bs = bs,
2185 		.size = TEST_AREA_MAX_SIZE,
2186 		.len = ARRAY_SIZE(bs),
2187 		.do_write = true,
2188 		.do_nonblock_req = true,
2189 		.prepare = MMC_TEST_PREP_ERASE,
2190 	};
2191 
2192 	return mmc_test_rw_multiple_size(test, &test_data);
2193 }
2194 
2195 /*
2196  * Multiple blocking read 4k to 4 MB chunks
2197  */
2198 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2199 {
2200 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2201 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2202 	struct mmc_test_multiple_rw test_data = {
2203 		.bs = bs,
2204 		.size = TEST_AREA_MAX_SIZE,
2205 		.len = ARRAY_SIZE(bs),
2206 		.do_write = false,
2207 		.do_nonblock_req = false,
2208 		.prepare = MMC_TEST_PREP_NONE,
2209 	};
2210 
2211 	return mmc_test_rw_multiple_size(test, &test_data);
2212 }
2213 
2214 /*
2215  * Multiple non-blocking read 4k to 4 MB chunks
2216  */
2217 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2218 {
2219 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2220 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2221 	struct mmc_test_multiple_rw test_data = {
2222 		.bs = bs,
2223 		.size = TEST_AREA_MAX_SIZE,
2224 		.len = ARRAY_SIZE(bs),
2225 		.do_write = false,
2226 		.do_nonblock_req = true,
2227 		.prepare = MMC_TEST_PREP_NONE,
2228 	};
2229 
2230 	return mmc_test_rw_multiple_size(test, &test_data);
2231 }
2232 
2233 /*
2234  * Multiple blocking write 1 to 512 sg elements
2235  */
2236 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2237 {
2238 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2239 				 1 << 7, 1 << 8, 1 << 9};
2240 	struct mmc_test_multiple_rw test_data = {
2241 		.sg_len = sg_len,
2242 		.size = TEST_AREA_MAX_SIZE,
2243 		.len = ARRAY_SIZE(sg_len),
2244 		.do_write = true,
2245 		.do_nonblock_req = false,
2246 		.prepare = MMC_TEST_PREP_ERASE,
2247 	};
2248 
2249 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2250 };
2251 
2252 /*
2253  * Multiple non-blocking write 1 to 512 sg elements
2254  */
2255 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2256 {
2257 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2258 				 1 << 7, 1 << 8, 1 << 9};
2259 	struct mmc_test_multiple_rw test_data = {
2260 		.sg_len = sg_len,
2261 		.size = TEST_AREA_MAX_SIZE,
2262 		.len = ARRAY_SIZE(sg_len),
2263 		.do_write = true,
2264 		.do_nonblock_req = true,
2265 		.prepare = MMC_TEST_PREP_ERASE,
2266 	};
2267 
2268 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2269 }
2270 
2271 /*
2272  * Multiple blocking read 1 to 512 sg elements
2273  */
2274 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2275 {
2276 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2277 				 1 << 7, 1 << 8, 1 << 9};
2278 	struct mmc_test_multiple_rw test_data = {
2279 		.sg_len = sg_len,
2280 		.size = TEST_AREA_MAX_SIZE,
2281 		.len = ARRAY_SIZE(sg_len),
2282 		.do_write = false,
2283 		.do_nonblock_req = false,
2284 		.prepare = MMC_TEST_PREP_NONE,
2285 	};
2286 
2287 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2288 }
2289 
2290 /*
2291  * Multiple non-blocking read 1 to 512 sg elements
2292  */
2293 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2294 {
2295 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2296 				 1 << 7, 1 << 8, 1 << 9};
2297 	struct mmc_test_multiple_rw test_data = {
2298 		.sg_len = sg_len,
2299 		.size = TEST_AREA_MAX_SIZE,
2300 		.len = ARRAY_SIZE(sg_len),
2301 		.do_write = false,
2302 		.do_nonblock_req = true,
2303 		.prepare = MMC_TEST_PREP_NONE,
2304 	};
2305 
2306 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2307 }
2308 
2309 /*
2310  * eMMC hardware reset.
2311  */
2312 static int mmc_test_reset(struct mmc_test_card *test)
2313 {
2314 	struct mmc_card *card = test->card;
2315 	struct mmc_host *host = card->host;
2316 	int err;
2317 
2318 	err = mmc_hw_reset(host);
2319 	if (!err) {
2320 		/*
2321 		 * Reset will re-enable the card's command queue, but tests
2322 		 * expect it to be disabled.
2323 		 */
2324 		if (card->ext_csd.cmdq_en)
2325 			mmc_cmdq_disable(card);
2326 		return RESULT_OK;
2327 	} else if (err == -EOPNOTSUPP) {
2328 		return RESULT_UNSUP_HOST;
2329 	}
2330 
2331 	return RESULT_FAIL;
2332 }
2333 
2334 static int mmc_test_send_status(struct mmc_test_card *test,
2335 				struct mmc_command *cmd)
2336 {
2337 	memset(cmd, 0, sizeof(*cmd));
2338 
2339 	cmd->opcode = MMC_SEND_STATUS;
2340 	if (!mmc_host_is_spi(test->card->host))
2341 		cmd->arg = test->card->rca << 16;
2342 	cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2343 
2344 	return mmc_wait_for_cmd(test->card->host, cmd, 0);
2345 }
2346 
2347 static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2348 				     unsigned int dev_addr, int use_sbc,
2349 				     int repeat_cmd, int write, int use_areq)
2350 {
2351 	struct mmc_test_req *rq = mmc_test_req_alloc();
2352 	struct mmc_host *host = test->card->host;
2353 	struct mmc_test_area *t = &test->area;
2354 	struct mmc_request *mrq;
2355 	unsigned long timeout;
2356 	bool expired = false;
2357 	int ret = 0, cmd_ret;
2358 	u32 status = 0;
2359 	int count = 0;
2360 
2361 	if (!rq)
2362 		return -ENOMEM;
2363 
2364 	mrq = &rq->mrq;
2365 	if (use_sbc)
2366 		mrq->sbc = &rq->sbc;
2367 	mrq->cap_cmd_during_tfr = true;
2368 
2369 	mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2370 			     512, write);
2371 
2372 	if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2373 		ret =  mmc_host_cmd23(host) ?
2374 		       RESULT_UNSUP_CARD :
2375 		       RESULT_UNSUP_HOST;
2376 		goto out_free;
2377 	}
2378 
2379 	/* Start ongoing data request */
2380 	if (use_areq) {
2381 		ret = mmc_test_start_areq(test, mrq, NULL);
2382 		if (ret)
2383 			goto out_free;
2384 	} else {
2385 		mmc_wait_for_req(host, mrq);
2386 	}
2387 
2388 	timeout = jiffies + msecs_to_jiffies(3000);
2389 	do {
2390 		count += 1;
2391 
2392 		/* Send status command while data transfer in progress */
2393 		cmd_ret = mmc_test_send_status(test, &rq->status);
2394 		if (cmd_ret)
2395 			break;
2396 
2397 		status = rq->status.resp[0];
2398 		if (status & R1_ERROR) {
2399 			cmd_ret = -EIO;
2400 			break;
2401 		}
2402 
2403 		if (mmc_is_req_done(host, mrq))
2404 			break;
2405 
2406 		expired = time_after(jiffies, timeout);
2407 		if (expired) {
2408 			pr_info("%s: timeout waiting for Tran state status %#x\n",
2409 				mmc_hostname(host), status);
2410 			cmd_ret = -ETIMEDOUT;
2411 			break;
2412 		}
2413 	} while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2414 
2415 	/* Wait for data request to complete */
2416 	if (use_areq) {
2417 		ret = mmc_test_start_areq(test, NULL, mrq);
2418 	} else {
2419 		mmc_wait_for_req_done(test->card->host, mrq);
2420 	}
2421 
2422 	/*
2423 	 * For cap_cmd_during_tfr request, upper layer must send stop if
2424 	 * required.
2425 	 */
2426 	if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2427 		if (ret)
2428 			mmc_wait_for_cmd(host, mrq->data->stop, 0);
2429 		else
2430 			ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2431 	}
2432 
2433 	if (ret)
2434 		goto out_free;
2435 
2436 	if (cmd_ret) {
2437 		pr_info("%s: Send Status failed: status %#x, error %d\n",
2438 			mmc_hostname(test->card->host), status, cmd_ret);
2439 	}
2440 
2441 	ret = mmc_test_check_result(test, mrq);
2442 	if (ret)
2443 		goto out_free;
2444 
2445 	ret = mmc_test_wait_busy(test);
2446 	if (ret)
2447 		goto out_free;
2448 
2449 	if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2450 		pr_info("%s: %d commands completed during transfer of %u blocks\n",
2451 			mmc_hostname(test->card->host), count, t->blocks);
2452 
2453 	if (cmd_ret)
2454 		ret = cmd_ret;
2455 out_free:
2456 	kfree(rq);
2457 
2458 	return ret;
2459 }
2460 
2461 static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2462 				      unsigned long sz, int use_sbc, int write,
2463 				      int use_areq)
2464 {
2465 	struct mmc_test_area *t = &test->area;
2466 	int ret;
2467 
2468 	if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2469 		return RESULT_UNSUP_HOST;
2470 
2471 	ret = mmc_test_area_map(test, sz, 0, 0);
2472 	if (ret)
2473 		return ret;
2474 
2475 	ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2476 					use_areq);
2477 	if (ret)
2478 		return ret;
2479 
2480 	return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2481 					 use_areq);
2482 }
2483 
2484 static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2485 				    int write, int use_areq)
2486 {
2487 	struct mmc_test_area *t = &test->area;
2488 	unsigned long sz;
2489 	int ret;
2490 
2491 	for (sz = 512; sz <= t->max_tfr; sz += 512) {
2492 		ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2493 						 use_areq);
2494 		if (ret)
2495 			return ret;
2496 	}
2497 	return 0;
2498 }
2499 
2500 /*
2501  * Commands during read - no Set Block Count (CMD23).
2502  */
2503 static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2504 {
2505 	return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2506 }
2507 
2508 /*
2509  * Commands during write - no Set Block Count (CMD23).
2510  */
2511 static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2512 {
2513 	return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2514 }
2515 
2516 /*
2517  * Commands during read - use Set Block Count (CMD23).
2518  */
2519 static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2520 {
2521 	return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2522 }
2523 
2524 /*
2525  * Commands during write - use Set Block Count (CMD23).
2526  */
2527 static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2528 {
2529 	return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2530 }
2531 
2532 /*
2533  * Commands during non-blocking read - use Set Block Count (CMD23).
2534  */
2535 static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2536 {
2537 	return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2538 }
2539 
2540 /*
2541  * Commands during non-blocking write - use Set Block Count (CMD23).
2542  */
2543 static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2544 {
2545 	return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2546 }
2547 
2548 static const struct mmc_test_case mmc_test_cases[] = {
2549 	{
2550 		.name = "Basic write (no data verification)",
2551 		.run = mmc_test_basic_write,
2552 	},
2553 
2554 	{
2555 		.name = "Basic read (no data verification)",
2556 		.run = mmc_test_basic_read,
2557 	},
2558 
2559 	{
2560 		.name = "Basic write (with data verification)",
2561 		.prepare = mmc_test_prepare_write,
2562 		.run = mmc_test_verify_write,
2563 		.cleanup = mmc_test_cleanup,
2564 	},
2565 
2566 	{
2567 		.name = "Basic read (with data verification)",
2568 		.prepare = mmc_test_prepare_read,
2569 		.run = mmc_test_verify_read,
2570 		.cleanup = mmc_test_cleanup,
2571 	},
2572 
2573 	{
2574 		.name = "Multi-block write",
2575 		.prepare = mmc_test_prepare_write,
2576 		.run = mmc_test_multi_write,
2577 		.cleanup = mmc_test_cleanup,
2578 	},
2579 
2580 	{
2581 		.name = "Multi-block read",
2582 		.prepare = mmc_test_prepare_read,
2583 		.run = mmc_test_multi_read,
2584 		.cleanup = mmc_test_cleanup,
2585 	},
2586 
2587 	{
2588 		.name = "Power of two block writes",
2589 		.prepare = mmc_test_prepare_write,
2590 		.run = mmc_test_pow2_write,
2591 		.cleanup = mmc_test_cleanup,
2592 	},
2593 
2594 	{
2595 		.name = "Power of two block reads",
2596 		.prepare = mmc_test_prepare_read,
2597 		.run = mmc_test_pow2_read,
2598 		.cleanup = mmc_test_cleanup,
2599 	},
2600 
2601 	{
2602 		.name = "Weird sized block writes",
2603 		.prepare = mmc_test_prepare_write,
2604 		.run = mmc_test_weird_write,
2605 		.cleanup = mmc_test_cleanup,
2606 	},
2607 
2608 	{
2609 		.name = "Weird sized block reads",
2610 		.prepare = mmc_test_prepare_read,
2611 		.run = mmc_test_weird_read,
2612 		.cleanup = mmc_test_cleanup,
2613 	},
2614 
2615 	{
2616 		.name = "Badly aligned write",
2617 		.prepare = mmc_test_prepare_write,
2618 		.run = mmc_test_align_write,
2619 		.cleanup = mmc_test_cleanup,
2620 	},
2621 
2622 	{
2623 		.name = "Badly aligned read",
2624 		.prepare = mmc_test_prepare_read,
2625 		.run = mmc_test_align_read,
2626 		.cleanup = mmc_test_cleanup,
2627 	},
2628 
2629 	{
2630 		.name = "Badly aligned multi-block write",
2631 		.prepare = mmc_test_prepare_write,
2632 		.run = mmc_test_align_multi_write,
2633 		.cleanup = mmc_test_cleanup,
2634 	},
2635 
2636 	{
2637 		.name = "Badly aligned multi-block read",
2638 		.prepare = mmc_test_prepare_read,
2639 		.run = mmc_test_align_multi_read,
2640 		.cleanup = mmc_test_cleanup,
2641 	},
2642 
2643 	{
2644 		.name = "Correct xfer_size at write (start failure)",
2645 		.run = mmc_test_xfersize_write,
2646 	},
2647 
2648 	{
2649 		.name = "Correct xfer_size at read (start failure)",
2650 		.run = mmc_test_xfersize_read,
2651 	},
2652 
2653 	{
2654 		.name = "Correct xfer_size at write (midway failure)",
2655 		.run = mmc_test_multi_xfersize_write,
2656 	},
2657 
2658 	{
2659 		.name = "Correct xfer_size at read (midway failure)",
2660 		.run = mmc_test_multi_xfersize_read,
2661 	},
2662 
2663 #ifdef CONFIG_HIGHMEM
2664 
2665 	{
2666 		.name = "Highmem write",
2667 		.prepare = mmc_test_prepare_write,
2668 		.run = mmc_test_write_high,
2669 		.cleanup = mmc_test_cleanup,
2670 	},
2671 
2672 	{
2673 		.name = "Highmem read",
2674 		.prepare = mmc_test_prepare_read,
2675 		.run = mmc_test_read_high,
2676 		.cleanup = mmc_test_cleanup,
2677 	},
2678 
2679 	{
2680 		.name = "Multi-block highmem write",
2681 		.prepare = mmc_test_prepare_write,
2682 		.run = mmc_test_multi_write_high,
2683 		.cleanup = mmc_test_cleanup,
2684 	},
2685 
2686 	{
2687 		.name = "Multi-block highmem read",
2688 		.prepare = mmc_test_prepare_read,
2689 		.run = mmc_test_multi_read_high,
2690 		.cleanup = mmc_test_cleanup,
2691 	},
2692 
2693 #else
2694 
2695 	{
2696 		.name = "Highmem write",
2697 		.run = mmc_test_no_highmem,
2698 	},
2699 
2700 	{
2701 		.name = "Highmem read",
2702 		.run = mmc_test_no_highmem,
2703 	},
2704 
2705 	{
2706 		.name = "Multi-block highmem write",
2707 		.run = mmc_test_no_highmem,
2708 	},
2709 
2710 	{
2711 		.name = "Multi-block highmem read",
2712 		.run = mmc_test_no_highmem,
2713 	},
2714 
2715 #endif /* CONFIG_HIGHMEM */
2716 
2717 	{
2718 		.name = "Best-case read performance",
2719 		.prepare = mmc_test_area_prepare_fill,
2720 		.run = mmc_test_best_read_performance,
2721 		.cleanup = mmc_test_area_cleanup,
2722 	},
2723 
2724 	{
2725 		.name = "Best-case write performance",
2726 		.prepare = mmc_test_area_prepare_erase,
2727 		.run = mmc_test_best_write_performance,
2728 		.cleanup = mmc_test_area_cleanup,
2729 	},
2730 
2731 	{
2732 		.name = "Best-case read performance into scattered pages",
2733 		.prepare = mmc_test_area_prepare_fill,
2734 		.run = mmc_test_best_read_perf_max_scatter,
2735 		.cleanup = mmc_test_area_cleanup,
2736 	},
2737 
2738 	{
2739 		.name = "Best-case write performance from scattered pages",
2740 		.prepare = mmc_test_area_prepare_erase,
2741 		.run = mmc_test_best_write_perf_max_scatter,
2742 		.cleanup = mmc_test_area_cleanup,
2743 	},
2744 
2745 	{
2746 		.name = "Single read performance by transfer size",
2747 		.prepare = mmc_test_area_prepare_fill,
2748 		.run = mmc_test_profile_read_perf,
2749 		.cleanup = mmc_test_area_cleanup,
2750 	},
2751 
2752 	{
2753 		.name = "Single write performance by transfer size",
2754 		.prepare = mmc_test_area_prepare,
2755 		.run = mmc_test_profile_write_perf,
2756 		.cleanup = mmc_test_area_cleanup,
2757 	},
2758 
2759 	{
2760 		.name = "Single trim performance by transfer size",
2761 		.prepare = mmc_test_area_prepare_fill,
2762 		.run = mmc_test_profile_trim_perf,
2763 		.cleanup = mmc_test_area_cleanup,
2764 	},
2765 
2766 	{
2767 		.name = "Consecutive read performance by transfer size",
2768 		.prepare = mmc_test_area_prepare_fill,
2769 		.run = mmc_test_profile_seq_read_perf,
2770 		.cleanup = mmc_test_area_cleanup,
2771 	},
2772 
2773 	{
2774 		.name = "Consecutive write performance by transfer size",
2775 		.prepare = mmc_test_area_prepare,
2776 		.run = mmc_test_profile_seq_write_perf,
2777 		.cleanup = mmc_test_area_cleanup,
2778 	},
2779 
2780 	{
2781 		.name = "Consecutive trim performance by transfer size",
2782 		.prepare = mmc_test_area_prepare,
2783 		.run = mmc_test_profile_seq_trim_perf,
2784 		.cleanup = mmc_test_area_cleanup,
2785 	},
2786 
2787 	{
2788 		.name = "Random read performance by transfer size",
2789 		.prepare = mmc_test_area_prepare,
2790 		.run = mmc_test_random_read_perf,
2791 		.cleanup = mmc_test_area_cleanup,
2792 	},
2793 
2794 	{
2795 		.name = "Random write performance by transfer size",
2796 		.prepare = mmc_test_area_prepare,
2797 		.run = mmc_test_random_write_perf,
2798 		.cleanup = mmc_test_area_cleanup,
2799 	},
2800 
2801 	{
2802 		.name = "Large sequential read into scattered pages",
2803 		.prepare = mmc_test_area_prepare,
2804 		.run = mmc_test_large_seq_read_perf,
2805 		.cleanup = mmc_test_area_cleanup,
2806 	},
2807 
2808 	{
2809 		.name = "Large sequential write from scattered pages",
2810 		.prepare = mmc_test_area_prepare,
2811 		.run = mmc_test_large_seq_write_perf,
2812 		.cleanup = mmc_test_area_cleanup,
2813 	},
2814 
2815 	{
2816 		.name = "Write performance with blocking req 4k to 4MB",
2817 		.prepare = mmc_test_area_prepare,
2818 		.run = mmc_test_profile_mult_write_blocking_perf,
2819 		.cleanup = mmc_test_area_cleanup,
2820 	},
2821 
2822 	{
2823 		.name = "Write performance with non-blocking req 4k to 4MB",
2824 		.prepare = mmc_test_area_prepare,
2825 		.run = mmc_test_profile_mult_write_nonblock_perf,
2826 		.cleanup = mmc_test_area_cleanup,
2827 	},
2828 
2829 	{
2830 		.name = "Read performance with blocking req 4k to 4MB",
2831 		.prepare = mmc_test_area_prepare,
2832 		.run = mmc_test_profile_mult_read_blocking_perf,
2833 		.cleanup = mmc_test_area_cleanup,
2834 	},
2835 
2836 	{
2837 		.name = "Read performance with non-blocking req 4k to 4MB",
2838 		.prepare = mmc_test_area_prepare,
2839 		.run = mmc_test_profile_mult_read_nonblock_perf,
2840 		.cleanup = mmc_test_area_cleanup,
2841 	},
2842 
2843 	{
2844 		.name = "Write performance blocking req 1 to 512 sg elems",
2845 		.prepare = mmc_test_area_prepare,
2846 		.run = mmc_test_profile_sglen_wr_blocking_perf,
2847 		.cleanup = mmc_test_area_cleanup,
2848 	},
2849 
2850 	{
2851 		.name = "Write performance non-blocking req 1 to 512 sg elems",
2852 		.prepare = mmc_test_area_prepare,
2853 		.run = mmc_test_profile_sglen_wr_nonblock_perf,
2854 		.cleanup = mmc_test_area_cleanup,
2855 	},
2856 
2857 	{
2858 		.name = "Read performance blocking req 1 to 512 sg elems",
2859 		.prepare = mmc_test_area_prepare,
2860 		.run = mmc_test_profile_sglen_r_blocking_perf,
2861 		.cleanup = mmc_test_area_cleanup,
2862 	},
2863 
2864 	{
2865 		.name = "Read performance non-blocking req 1 to 512 sg elems",
2866 		.prepare = mmc_test_area_prepare,
2867 		.run = mmc_test_profile_sglen_r_nonblock_perf,
2868 		.cleanup = mmc_test_area_cleanup,
2869 	},
2870 
2871 	{
2872 		.name = "Reset test",
2873 		.run = mmc_test_reset,
2874 	},
2875 
2876 	{
2877 		.name = "Commands during read - no Set Block Count (CMD23)",
2878 		.prepare = mmc_test_area_prepare,
2879 		.run = mmc_test_cmds_during_read,
2880 		.cleanup = mmc_test_area_cleanup,
2881 	},
2882 
2883 	{
2884 		.name = "Commands during write - no Set Block Count (CMD23)",
2885 		.prepare = mmc_test_area_prepare,
2886 		.run = mmc_test_cmds_during_write,
2887 		.cleanup = mmc_test_area_cleanup,
2888 	},
2889 
2890 	{
2891 		.name = "Commands during read - use Set Block Count (CMD23)",
2892 		.prepare = mmc_test_area_prepare,
2893 		.run = mmc_test_cmds_during_read_cmd23,
2894 		.cleanup = mmc_test_area_cleanup,
2895 	},
2896 
2897 	{
2898 		.name = "Commands during write - use Set Block Count (CMD23)",
2899 		.prepare = mmc_test_area_prepare,
2900 		.run = mmc_test_cmds_during_write_cmd23,
2901 		.cleanup = mmc_test_area_cleanup,
2902 	},
2903 
2904 	{
2905 		.name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2906 		.prepare = mmc_test_area_prepare,
2907 		.run = mmc_test_cmds_during_read_cmd23_nonblock,
2908 		.cleanup = mmc_test_area_cleanup,
2909 	},
2910 
2911 	{
2912 		.name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2913 		.prepare = mmc_test_area_prepare,
2914 		.run = mmc_test_cmds_during_write_cmd23_nonblock,
2915 		.cleanup = mmc_test_area_cleanup,
2916 	},
2917 };
2918 
2919 static DEFINE_MUTEX(mmc_test_lock);
2920 
2921 static LIST_HEAD(mmc_test_result);
2922 
2923 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2924 {
2925 	int i, ret;
2926 
2927 	pr_info("%s: Starting tests of card %s...\n",
2928 		mmc_hostname(test->card->host), mmc_card_id(test->card));
2929 
2930 	mmc_claim_host(test->card->host);
2931 
2932 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2933 		struct mmc_test_general_result *gr;
2934 
2935 		if (testcase && ((i + 1) != testcase))
2936 			continue;
2937 
2938 		pr_info("%s: Test case %d. %s...\n",
2939 			mmc_hostname(test->card->host), i + 1,
2940 			mmc_test_cases[i].name);
2941 
2942 		if (mmc_test_cases[i].prepare) {
2943 			ret = mmc_test_cases[i].prepare(test);
2944 			if (ret) {
2945 				pr_info("%s: Result: Prepare stage failed! (%d)\n",
2946 					mmc_hostname(test->card->host),
2947 					ret);
2948 				continue;
2949 			}
2950 		}
2951 
2952 		gr = kzalloc(sizeof(*gr), GFP_KERNEL);
2953 		if (gr) {
2954 			INIT_LIST_HEAD(&gr->tr_lst);
2955 
2956 			/* Assign data what we know already */
2957 			gr->card = test->card;
2958 			gr->testcase = i;
2959 
2960 			/* Append container to global one */
2961 			list_add_tail(&gr->link, &mmc_test_result);
2962 
2963 			/*
2964 			 * Save the pointer to created container in our private
2965 			 * structure.
2966 			 */
2967 			test->gr = gr;
2968 		}
2969 
2970 		ret = mmc_test_cases[i].run(test);
2971 		switch (ret) {
2972 		case RESULT_OK:
2973 			pr_info("%s: Result: OK\n",
2974 				mmc_hostname(test->card->host));
2975 			break;
2976 		case RESULT_FAIL:
2977 			pr_info("%s: Result: FAILED\n",
2978 				mmc_hostname(test->card->host));
2979 			break;
2980 		case RESULT_UNSUP_HOST:
2981 			pr_info("%s: Result: UNSUPPORTED (by host)\n",
2982 				mmc_hostname(test->card->host));
2983 			break;
2984 		case RESULT_UNSUP_CARD:
2985 			pr_info("%s: Result: UNSUPPORTED (by card)\n",
2986 				mmc_hostname(test->card->host));
2987 			break;
2988 		default:
2989 			pr_info("%s: Result: ERROR (%d)\n",
2990 				mmc_hostname(test->card->host), ret);
2991 		}
2992 
2993 		/* Save the result */
2994 		if (gr)
2995 			gr->result = ret;
2996 
2997 		if (mmc_test_cases[i].cleanup) {
2998 			ret = mmc_test_cases[i].cleanup(test);
2999 			if (ret) {
3000 				pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
3001 					mmc_hostname(test->card->host),
3002 					ret);
3003 			}
3004 		}
3005 	}
3006 
3007 	mmc_release_host(test->card->host);
3008 
3009 	pr_info("%s: Tests completed.\n",
3010 		mmc_hostname(test->card->host));
3011 }
3012 
3013 static void mmc_test_free_result(struct mmc_card *card)
3014 {
3015 	struct mmc_test_general_result *gr, *grs;
3016 
3017 	mutex_lock(&mmc_test_lock);
3018 
3019 	list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3020 		struct mmc_test_transfer_result *tr, *trs;
3021 
3022 		if (card && gr->card != card)
3023 			continue;
3024 
3025 		list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3026 			list_del(&tr->link);
3027 			kfree(tr);
3028 		}
3029 
3030 		list_del(&gr->link);
3031 		kfree(gr);
3032 	}
3033 
3034 	mutex_unlock(&mmc_test_lock);
3035 }
3036 
3037 static LIST_HEAD(mmc_test_file_test);
3038 
3039 static int mtf_test_show(struct seq_file *sf, void *data)
3040 {
3041 	struct mmc_card *card = (struct mmc_card *)sf->private;
3042 	struct mmc_test_general_result *gr;
3043 
3044 	mutex_lock(&mmc_test_lock);
3045 
3046 	list_for_each_entry(gr, &mmc_test_result, link) {
3047 		struct mmc_test_transfer_result *tr;
3048 
3049 		if (gr->card != card)
3050 			continue;
3051 
3052 		seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3053 
3054 		list_for_each_entry(tr, &gr->tr_lst, link) {
3055 			seq_printf(sf, "%u %d %llu.%09u %u %u.%02u\n",
3056 				tr->count, tr->sectors,
3057 				(u64)tr->ts.tv_sec, (u32)tr->ts.tv_nsec,
3058 				tr->rate, tr->iops / 100, tr->iops % 100);
3059 		}
3060 	}
3061 
3062 	mutex_unlock(&mmc_test_lock);
3063 
3064 	return 0;
3065 }
3066 
3067 static int mtf_test_open(struct inode *inode, struct file *file)
3068 {
3069 	return single_open(file, mtf_test_show, inode->i_private);
3070 }
3071 
3072 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3073 	size_t count, loff_t *pos)
3074 {
3075 	struct seq_file *sf = (struct seq_file *)file->private_data;
3076 	struct mmc_card *card = (struct mmc_card *)sf->private;
3077 	struct mmc_test_card *test;
3078 	long testcase;
3079 	int ret;
3080 
3081 	ret = kstrtol_from_user(buf, count, 10, &testcase);
3082 	if (ret)
3083 		return ret;
3084 
3085 	test = kzalloc(sizeof(*test), GFP_KERNEL);
3086 	if (!test)
3087 		return -ENOMEM;
3088 
3089 	/*
3090 	 * Remove all test cases associated with given card. Thus we have only
3091 	 * actual data of the last run.
3092 	 */
3093 	mmc_test_free_result(card);
3094 
3095 	test->card = card;
3096 
3097 	test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3098 #ifdef CONFIG_HIGHMEM
3099 	test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3100 #endif
3101 
3102 #ifdef CONFIG_HIGHMEM
3103 	if (test->buffer && test->highmem) {
3104 #else
3105 	if (test->buffer) {
3106 #endif
3107 		mutex_lock(&mmc_test_lock);
3108 		mmc_test_run(test, testcase);
3109 		mutex_unlock(&mmc_test_lock);
3110 	}
3111 
3112 #ifdef CONFIG_HIGHMEM
3113 	__free_pages(test->highmem, BUFFER_ORDER);
3114 #endif
3115 	kfree(test->buffer);
3116 	kfree(test);
3117 
3118 	return count;
3119 }
3120 
3121 static const struct file_operations mmc_test_fops_test = {
3122 	.open		= mtf_test_open,
3123 	.read		= seq_read,
3124 	.write		= mtf_test_write,
3125 	.llseek		= seq_lseek,
3126 	.release	= single_release,
3127 };
3128 
3129 static int mtf_testlist_show(struct seq_file *sf, void *data)
3130 {
3131 	int i;
3132 
3133 	mutex_lock(&mmc_test_lock);
3134 
3135 	seq_puts(sf, "0:\tRun all tests\n");
3136 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3137 		seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3138 
3139 	mutex_unlock(&mmc_test_lock);
3140 
3141 	return 0;
3142 }
3143 
3144 DEFINE_SHOW_ATTRIBUTE(mtf_testlist);
3145 
3146 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3147 {
3148 	struct mmc_test_dbgfs_file *df, *dfs;
3149 
3150 	mutex_lock(&mmc_test_lock);
3151 
3152 	list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3153 		if (card && df->card != card)
3154 			continue;
3155 		debugfs_remove(df->file);
3156 		list_del(&df->link);
3157 		kfree(df);
3158 	}
3159 
3160 	mutex_unlock(&mmc_test_lock);
3161 }
3162 
3163 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3164 	const char *name, umode_t mode, const struct file_operations *fops)
3165 {
3166 	struct dentry *file = NULL;
3167 	struct mmc_test_dbgfs_file *df;
3168 
3169 	if (card->debugfs_root)
3170 		file = debugfs_create_file(name, mode, card->debugfs_root,
3171 			card, fops);
3172 
3173 	if (IS_ERR_OR_NULL(file)) {
3174 		dev_err(&card->dev,
3175 			"Can't create %s. Perhaps debugfs is disabled.\n",
3176 			name);
3177 		return -ENODEV;
3178 	}
3179 
3180 	df = kmalloc(sizeof(*df), GFP_KERNEL);
3181 	if (!df) {
3182 		debugfs_remove(file);
3183 		return -ENOMEM;
3184 	}
3185 
3186 	df->card = card;
3187 	df->file = file;
3188 
3189 	list_add(&df->link, &mmc_test_file_test);
3190 	return 0;
3191 }
3192 
3193 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3194 {
3195 	int ret;
3196 
3197 	mutex_lock(&mmc_test_lock);
3198 
3199 	ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3200 		&mmc_test_fops_test);
3201 	if (ret)
3202 		goto err;
3203 
3204 	ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3205 		&mtf_testlist_fops);
3206 	if (ret)
3207 		goto err;
3208 
3209 err:
3210 	mutex_unlock(&mmc_test_lock);
3211 
3212 	return ret;
3213 }
3214 
3215 static int mmc_test_probe(struct mmc_card *card)
3216 {
3217 	int ret;
3218 
3219 	if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3220 		return -ENODEV;
3221 
3222 	ret = mmc_test_register_dbgfs_file(card);
3223 	if (ret)
3224 		return ret;
3225 
3226 	if (card->ext_csd.cmdq_en) {
3227 		mmc_claim_host(card->host);
3228 		ret = mmc_cmdq_disable(card);
3229 		mmc_release_host(card->host);
3230 		if (ret)
3231 			return ret;
3232 	}
3233 
3234 	dev_info(&card->dev, "Card claimed for testing.\n");
3235 
3236 	return 0;
3237 }
3238 
3239 static void mmc_test_remove(struct mmc_card *card)
3240 {
3241 	if (card->reenable_cmdq) {
3242 		mmc_claim_host(card->host);
3243 		mmc_cmdq_enable(card);
3244 		mmc_release_host(card->host);
3245 	}
3246 	mmc_test_free_result(card);
3247 	mmc_test_free_dbgfs_file(card);
3248 }
3249 
3250 static void mmc_test_shutdown(struct mmc_card *card)
3251 {
3252 }
3253 
3254 static struct mmc_driver mmc_driver = {
3255 	.drv		= {
3256 		.name	= "mmc_test",
3257 	},
3258 	.probe		= mmc_test_probe,
3259 	.remove		= mmc_test_remove,
3260 	.shutdown	= mmc_test_shutdown,
3261 };
3262 
3263 static int __init mmc_test_init(void)
3264 {
3265 	return mmc_register_driver(&mmc_driver);
3266 }
3267 
3268 static void __exit mmc_test_exit(void)
3269 {
3270 	/* Clear stalled data if card is still plugged */
3271 	mmc_test_free_result(NULL);
3272 	mmc_test_free_dbgfs_file(NULL);
3273 
3274 	mmc_unregister_driver(&mmc_driver);
3275 }
3276 
3277 module_init(mmc_test_init);
3278 module_exit(mmc_test_exit);
3279 
3280 MODULE_LICENSE("GPL");
3281 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3282 MODULE_AUTHOR("Pierre Ossman");
3283