xref: /openbmc/linux/drivers/mmc/core/mmc_test.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright 2007-2008 Pierre Ossman
4  */
5 
6 #include <linux/mmc/core.h>
7 #include <linux/mmc/card.h>
8 #include <linux/mmc/host.h>
9 #include <linux/mmc/mmc.h>
10 #include <linux/slab.h>
11 
12 #include <linux/scatterlist.h>
13 #include <linux/swap.h>		/* For nr_free_buffer_pages() */
14 #include <linux/list.h>
15 
16 #include <linux/debugfs.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/module.h>
20 
21 #include "core.h"
22 #include "card.h"
23 #include "host.h"
24 #include "bus.h"
25 #include "mmc_ops.h"
26 
27 #define RESULT_OK		0
28 #define RESULT_FAIL		1
29 #define RESULT_UNSUP_HOST	2
30 #define RESULT_UNSUP_CARD	3
31 
32 #define BUFFER_ORDER		2
33 #define BUFFER_SIZE		(PAGE_SIZE << BUFFER_ORDER)
34 
35 #define TEST_ALIGN_END		8
36 
37 /*
38  * Limit the test area size to the maximum MMC HC erase group size.  Note that
39  * the maximum SD allocation unit size is just 4MiB.
40  */
41 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
42 
43 /**
44  * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
45  * @page: first page in the allocation
46  * @order: order of the number of pages allocated
47  */
48 struct mmc_test_pages {
49 	struct page *page;
50 	unsigned int order;
51 };
52 
53 /**
54  * struct mmc_test_mem - allocated memory.
55  * @arr: array of allocations
56  * @cnt: number of allocations
57  */
58 struct mmc_test_mem {
59 	struct mmc_test_pages *arr;
60 	unsigned int cnt;
61 };
62 
63 /**
64  * struct mmc_test_area - information for performance tests.
65  * @max_sz: test area size (in bytes)
66  * @dev_addr: address on card at which to do performance tests
67  * @max_tfr: maximum transfer size allowed by driver (in bytes)
68  * @max_segs: maximum segments allowed by driver in scatterlist @sg
69  * @max_seg_sz: maximum segment size allowed by driver
70  * @blocks: number of (512 byte) blocks currently mapped by @sg
71  * @sg_len: length of currently mapped scatterlist @sg
72  * @mem: allocated memory
73  * @sg: scatterlist
74  * @sg_areq: scatterlist for non-blocking request
75  */
76 struct mmc_test_area {
77 	unsigned long max_sz;
78 	unsigned int dev_addr;
79 	unsigned int max_tfr;
80 	unsigned int max_segs;
81 	unsigned int max_seg_sz;
82 	unsigned int blocks;
83 	unsigned int sg_len;
84 	struct mmc_test_mem *mem;
85 	struct scatterlist *sg;
86 	struct scatterlist *sg_areq;
87 };
88 
89 /**
90  * struct mmc_test_transfer_result - transfer results for performance tests.
91  * @link: double-linked list
92  * @count: amount of group of sectors to check
93  * @sectors: amount of sectors to check in one group
94  * @ts: time values of transfer
95  * @rate: calculated transfer rate
96  * @iops: I/O operations per second (times 100)
97  */
98 struct mmc_test_transfer_result {
99 	struct list_head link;
100 	unsigned int count;
101 	unsigned int sectors;
102 	struct timespec64 ts;
103 	unsigned int rate;
104 	unsigned int iops;
105 };
106 
107 /**
108  * struct mmc_test_general_result - results for tests.
109  * @link: double-linked list
110  * @card: card under test
111  * @testcase: number of test case
112  * @result: result of test run
113  * @tr_lst: transfer measurements if any as mmc_test_transfer_result
114  */
115 struct mmc_test_general_result {
116 	struct list_head link;
117 	struct mmc_card *card;
118 	int testcase;
119 	int result;
120 	struct list_head tr_lst;
121 };
122 
123 /**
124  * struct mmc_test_dbgfs_file - debugfs related file.
125  * @link: double-linked list
126  * @card: card under test
127  * @file: file created under debugfs
128  */
129 struct mmc_test_dbgfs_file {
130 	struct list_head link;
131 	struct mmc_card *card;
132 	struct dentry *file;
133 };
134 
135 /**
136  * struct mmc_test_card - test information.
137  * @card: card under test
138  * @scratch: transfer buffer
139  * @buffer: transfer buffer
140  * @highmem: buffer for highmem tests
141  * @area: information for performance tests
142  * @gr: pointer to results of current testcase
143  */
144 struct mmc_test_card {
145 	struct mmc_card	*card;
146 
147 	u8		scratch[BUFFER_SIZE];
148 	u8		*buffer;
149 #ifdef CONFIG_HIGHMEM
150 	struct page	*highmem;
151 #endif
152 	struct mmc_test_area		area;
153 	struct mmc_test_general_result	*gr;
154 };
155 
156 enum mmc_test_prep_media {
157 	MMC_TEST_PREP_NONE = 0,
158 	MMC_TEST_PREP_WRITE_FULL = 1 << 0,
159 	MMC_TEST_PREP_ERASE = 1 << 1,
160 };
161 
162 struct mmc_test_multiple_rw {
163 	unsigned int *sg_len;
164 	unsigned int *bs;
165 	unsigned int len;
166 	unsigned int size;
167 	bool do_write;
168 	bool do_nonblock_req;
169 	enum mmc_test_prep_media prepare;
170 };
171 
172 /*******************************************************************/
173 /*  General helper functions                                       */
174 /*******************************************************************/
175 
176 /*
177  * Configure correct block size in card
178  */
179 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
180 {
181 	return mmc_set_blocklen(test->card, size);
182 }
183 
184 static bool mmc_test_card_cmd23(struct mmc_card *card)
185 {
186 	return mmc_card_mmc(card) ||
187 	       (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
188 }
189 
190 static void mmc_test_prepare_sbc(struct mmc_test_card *test,
191 				 struct mmc_request *mrq, unsigned int blocks)
192 {
193 	struct mmc_card *card = test->card;
194 
195 	if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
196 	    !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
197 	    (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
198 		mrq->sbc = NULL;
199 		return;
200 	}
201 
202 	mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
203 	mrq->sbc->arg = blocks;
204 	mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
205 }
206 
207 /*
208  * Fill in the mmc_request structure given a set of transfer parameters.
209  */
210 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
211 	struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
212 	unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
213 {
214 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
215 		return;
216 
217 	if (blocks > 1) {
218 		mrq->cmd->opcode = write ?
219 			MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
220 	} else {
221 		mrq->cmd->opcode = write ?
222 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
223 	}
224 
225 	mrq->cmd->arg = dev_addr;
226 	if (!mmc_card_blockaddr(test->card))
227 		mrq->cmd->arg <<= 9;
228 
229 	mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
230 
231 	if (blocks == 1)
232 		mrq->stop = NULL;
233 	else {
234 		mrq->stop->opcode = MMC_STOP_TRANSMISSION;
235 		mrq->stop->arg = 0;
236 		mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
237 	}
238 
239 	mrq->data->blksz = blksz;
240 	mrq->data->blocks = blocks;
241 	mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
242 	mrq->data->sg = sg;
243 	mrq->data->sg_len = sg_len;
244 
245 	mmc_test_prepare_sbc(test, mrq, blocks);
246 
247 	mmc_set_data_timeout(mrq->data, test->card);
248 }
249 
250 static int mmc_test_busy(struct mmc_command *cmd)
251 {
252 	return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
253 		(R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
254 }
255 
256 /*
257  * Wait for the card to finish the busy state
258  */
259 static int mmc_test_wait_busy(struct mmc_test_card *test)
260 {
261 	int ret, busy;
262 	struct mmc_command cmd = {};
263 
264 	busy = 0;
265 	do {
266 		memset(&cmd, 0, sizeof(struct mmc_command));
267 
268 		cmd.opcode = MMC_SEND_STATUS;
269 		cmd.arg = test->card->rca << 16;
270 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
271 
272 		ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
273 		if (ret)
274 			break;
275 
276 		if (!busy && mmc_test_busy(&cmd)) {
277 			busy = 1;
278 			if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
279 				pr_info("%s: Warning: Host did not wait for busy state to end.\n",
280 					mmc_hostname(test->card->host));
281 		}
282 	} while (mmc_test_busy(&cmd));
283 
284 	return ret;
285 }
286 
287 /*
288  * Transfer a single sector of kernel addressable data
289  */
290 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
291 	u8 *buffer, unsigned addr, unsigned blksz, int write)
292 {
293 	struct mmc_request mrq = {};
294 	struct mmc_command cmd = {};
295 	struct mmc_command stop = {};
296 	struct mmc_data data = {};
297 
298 	struct scatterlist sg;
299 
300 	mrq.cmd = &cmd;
301 	mrq.data = &data;
302 	mrq.stop = &stop;
303 
304 	sg_init_one(&sg, buffer, blksz);
305 
306 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
307 
308 	mmc_wait_for_req(test->card->host, &mrq);
309 
310 	if (cmd.error)
311 		return cmd.error;
312 	if (data.error)
313 		return data.error;
314 
315 	return mmc_test_wait_busy(test);
316 }
317 
318 static void mmc_test_free_mem(struct mmc_test_mem *mem)
319 {
320 	if (!mem)
321 		return;
322 	while (mem->cnt--)
323 		__free_pages(mem->arr[mem->cnt].page,
324 			     mem->arr[mem->cnt].order);
325 	kfree(mem->arr);
326 	kfree(mem);
327 }
328 
329 /*
330  * Allocate a lot of memory, preferably max_sz but at least min_sz.  In case
331  * there isn't much memory do not exceed 1/16th total lowmem pages.  Also do
332  * not exceed a maximum number of segments and try not to make segments much
333  * bigger than maximum segment size.
334  */
335 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
336 					       unsigned long max_sz,
337 					       unsigned int max_segs,
338 					       unsigned int max_seg_sz)
339 {
340 	unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
341 	unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
342 	unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
343 	unsigned long page_cnt = 0;
344 	unsigned long limit = nr_free_buffer_pages() >> 4;
345 	struct mmc_test_mem *mem;
346 
347 	if (max_page_cnt > limit)
348 		max_page_cnt = limit;
349 	if (min_page_cnt > max_page_cnt)
350 		min_page_cnt = max_page_cnt;
351 
352 	if (max_seg_page_cnt > max_page_cnt)
353 		max_seg_page_cnt = max_page_cnt;
354 
355 	if (max_segs > max_page_cnt)
356 		max_segs = max_page_cnt;
357 
358 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
359 	if (!mem)
360 		return NULL;
361 
362 	mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
363 	if (!mem->arr)
364 		goto out_free;
365 
366 	while (max_page_cnt) {
367 		struct page *page;
368 		unsigned int order;
369 		gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
370 				__GFP_NORETRY;
371 
372 		order = get_order(max_seg_page_cnt << PAGE_SHIFT);
373 		while (1) {
374 			page = alloc_pages(flags, order);
375 			if (page || !order)
376 				break;
377 			order -= 1;
378 		}
379 		if (!page) {
380 			if (page_cnt < min_page_cnt)
381 				goto out_free;
382 			break;
383 		}
384 		mem->arr[mem->cnt].page = page;
385 		mem->arr[mem->cnt].order = order;
386 		mem->cnt += 1;
387 		if (max_page_cnt <= (1UL << order))
388 			break;
389 		max_page_cnt -= 1UL << order;
390 		page_cnt += 1UL << order;
391 		if (mem->cnt >= max_segs) {
392 			if (page_cnt < min_page_cnt)
393 				goto out_free;
394 			break;
395 		}
396 	}
397 
398 	return mem;
399 
400 out_free:
401 	mmc_test_free_mem(mem);
402 	return NULL;
403 }
404 
405 /*
406  * Map memory into a scatterlist.  Optionally allow the same memory to be
407  * mapped more than once.
408  */
409 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
410 			   struct scatterlist *sglist, int repeat,
411 			   unsigned int max_segs, unsigned int max_seg_sz,
412 			   unsigned int *sg_len, int min_sg_len)
413 {
414 	struct scatterlist *sg = NULL;
415 	unsigned int i;
416 	unsigned long sz = size;
417 
418 	sg_init_table(sglist, max_segs);
419 	if (min_sg_len > max_segs)
420 		min_sg_len = max_segs;
421 
422 	*sg_len = 0;
423 	do {
424 		for (i = 0; i < mem->cnt; i++) {
425 			unsigned long len = PAGE_SIZE << mem->arr[i].order;
426 
427 			if (min_sg_len && (size / min_sg_len < len))
428 				len = ALIGN(size / min_sg_len, 512);
429 			if (len > sz)
430 				len = sz;
431 			if (len > max_seg_sz)
432 				len = max_seg_sz;
433 			if (sg)
434 				sg = sg_next(sg);
435 			else
436 				sg = sglist;
437 			if (!sg)
438 				return -EINVAL;
439 			sg_set_page(sg, mem->arr[i].page, len, 0);
440 			sz -= len;
441 			*sg_len += 1;
442 			if (!sz)
443 				break;
444 		}
445 	} while (sz && repeat);
446 
447 	if (sz)
448 		return -EINVAL;
449 
450 	if (sg)
451 		sg_mark_end(sg);
452 
453 	return 0;
454 }
455 
456 /*
457  * Map memory into a scatterlist so that no pages are contiguous.  Allow the
458  * same memory to be mapped more than once.
459  */
460 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
461 				       unsigned long sz,
462 				       struct scatterlist *sglist,
463 				       unsigned int max_segs,
464 				       unsigned int max_seg_sz,
465 				       unsigned int *sg_len)
466 {
467 	struct scatterlist *sg = NULL;
468 	unsigned int i = mem->cnt, cnt;
469 	unsigned long len;
470 	void *base, *addr, *last_addr = NULL;
471 
472 	sg_init_table(sglist, max_segs);
473 
474 	*sg_len = 0;
475 	while (sz) {
476 		base = page_address(mem->arr[--i].page);
477 		cnt = 1 << mem->arr[i].order;
478 		while (sz && cnt) {
479 			addr = base + PAGE_SIZE * --cnt;
480 			if (last_addr && last_addr + PAGE_SIZE == addr)
481 				continue;
482 			last_addr = addr;
483 			len = PAGE_SIZE;
484 			if (len > max_seg_sz)
485 				len = max_seg_sz;
486 			if (len > sz)
487 				len = sz;
488 			if (sg)
489 				sg = sg_next(sg);
490 			else
491 				sg = sglist;
492 			if (!sg)
493 				return -EINVAL;
494 			sg_set_page(sg, virt_to_page(addr), len, 0);
495 			sz -= len;
496 			*sg_len += 1;
497 		}
498 		if (i == 0)
499 			i = mem->cnt;
500 	}
501 
502 	if (sg)
503 		sg_mark_end(sg);
504 
505 	return 0;
506 }
507 
508 /*
509  * Calculate transfer rate in bytes per second.
510  */
511 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec64 *ts)
512 {
513 	uint64_t ns;
514 
515 	ns = timespec64_to_ns(ts);
516 	bytes *= 1000000000;
517 
518 	while (ns > UINT_MAX) {
519 		bytes >>= 1;
520 		ns >>= 1;
521 	}
522 
523 	if (!ns)
524 		return 0;
525 
526 	do_div(bytes, (uint32_t)ns);
527 
528 	return bytes;
529 }
530 
531 /*
532  * Save transfer results for future usage
533  */
534 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
535 	unsigned int count, unsigned int sectors, struct timespec64 ts,
536 	unsigned int rate, unsigned int iops)
537 {
538 	struct mmc_test_transfer_result *tr;
539 
540 	if (!test->gr)
541 		return;
542 
543 	tr = kmalloc(sizeof(*tr), GFP_KERNEL);
544 	if (!tr)
545 		return;
546 
547 	tr->count = count;
548 	tr->sectors = sectors;
549 	tr->ts = ts;
550 	tr->rate = rate;
551 	tr->iops = iops;
552 
553 	list_add_tail(&tr->link, &test->gr->tr_lst);
554 }
555 
556 /*
557  * Print the transfer rate.
558  */
559 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
560 				struct timespec64 *ts1, struct timespec64 *ts2)
561 {
562 	unsigned int rate, iops, sectors = bytes >> 9;
563 	struct timespec64 ts;
564 
565 	ts = timespec64_sub(*ts2, *ts1);
566 
567 	rate = mmc_test_rate(bytes, &ts);
568 	iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
569 
570 	pr_info("%s: Transfer of %u sectors (%u%s KiB) took %llu.%09u "
571 			 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
572 			 mmc_hostname(test->card->host), sectors, sectors >> 1,
573 			 (sectors & 1 ? ".5" : ""), (u64)ts.tv_sec,
574 			 (u32)ts.tv_nsec, rate / 1000, rate / 1024,
575 			 iops / 100, iops % 100);
576 
577 	mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
578 }
579 
580 /*
581  * Print the average transfer rate.
582  */
583 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
584 				    unsigned int count, struct timespec64 *ts1,
585 				    struct timespec64 *ts2)
586 {
587 	unsigned int rate, iops, sectors = bytes >> 9;
588 	uint64_t tot = bytes * count;
589 	struct timespec64 ts;
590 
591 	ts = timespec64_sub(*ts2, *ts1);
592 
593 	rate = mmc_test_rate(tot, &ts);
594 	iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
595 
596 	pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
597 			 "%llu.%09u seconds (%u kB/s, %u KiB/s, "
598 			 "%u.%02u IOPS, sg_len %d)\n",
599 			 mmc_hostname(test->card->host), count, sectors, count,
600 			 sectors >> 1, (sectors & 1 ? ".5" : ""),
601 			 (u64)ts.tv_sec, (u32)ts.tv_nsec,
602 			 rate / 1000, rate / 1024, iops / 100, iops % 100,
603 			 test->area.sg_len);
604 
605 	mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
606 }
607 
608 /*
609  * Return the card size in sectors.
610  */
611 static unsigned int mmc_test_capacity(struct mmc_card *card)
612 {
613 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
614 		return card->ext_csd.sectors;
615 	else
616 		return card->csd.capacity << (card->csd.read_blkbits - 9);
617 }
618 
619 /*******************************************************************/
620 /*  Test preparation and cleanup                                   */
621 /*******************************************************************/
622 
623 /*
624  * Fill the first couple of sectors of the card with known data
625  * so that bad reads/writes can be detected
626  */
627 static int __mmc_test_prepare(struct mmc_test_card *test, int write, int val)
628 {
629 	int ret, i;
630 
631 	ret = mmc_test_set_blksize(test, 512);
632 	if (ret)
633 		return ret;
634 
635 	if (write)
636 		memset(test->buffer, val, 512);
637 	else {
638 		for (i = 0; i < 512; i++)
639 			test->buffer[i] = i;
640 	}
641 
642 	for (i = 0; i < BUFFER_SIZE / 512; i++) {
643 		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
644 		if (ret)
645 			return ret;
646 	}
647 
648 	return 0;
649 }
650 
651 static int mmc_test_prepare_write(struct mmc_test_card *test)
652 {
653 	return __mmc_test_prepare(test, 1, 0xDF);
654 }
655 
656 static int mmc_test_prepare_read(struct mmc_test_card *test)
657 {
658 	return __mmc_test_prepare(test, 0, 0);
659 }
660 
661 static int mmc_test_cleanup(struct mmc_test_card *test)
662 {
663 	return __mmc_test_prepare(test, 1, 0);
664 }
665 
666 /*******************************************************************/
667 /*  Test execution helpers                                         */
668 /*******************************************************************/
669 
670 /*
671  * Modifies the mmc_request to perform the "short transfer" tests
672  */
673 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
674 	struct mmc_request *mrq, int write)
675 {
676 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
677 		return;
678 
679 	if (mrq->data->blocks > 1) {
680 		mrq->cmd->opcode = write ?
681 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
682 		mrq->stop = NULL;
683 	} else {
684 		mrq->cmd->opcode = MMC_SEND_STATUS;
685 		mrq->cmd->arg = test->card->rca << 16;
686 	}
687 }
688 
689 /*
690  * Checks that a normal transfer didn't have any errors
691  */
692 static int mmc_test_check_result(struct mmc_test_card *test,
693 				 struct mmc_request *mrq)
694 {
695 	int ret;
696 
697 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
698 		return -EINVAL;
699 
700 	ret = 0;
701 
702 	if (mrq->sbc && mrq->sbc->error)
703 		ret = mrq->sbc->error;
704 	if (!ret && mrq->cmd->error)
705 		ret = mrq->cmd->error;
706 	if (!ret && mrq->data->error)
707 		ret = mrq->data->error;
708 	if (!ret && mrq->stop && mrq->stop->error)
709 		ret = mrq->stop->error;
710 	if (!ret && mrq->data->bytes_xfered !=
711 		mrq->data->blocks * mrq->data->blksz)
712 		ret = RESULT_FAIL;
713 
714 	if (ret == -EINVAL)
715 		ret = RESULT_UNSUP_HOST;
716 
717 	return ret;
718 }
719 
720 /*
721  * Checks that a "short transfer" behaved as expected
722  */
723 static int mmc_test_check_broken_result(struct mmc_test_card *test,
724 	struct mmc_request *mrq)
725 {
726 	int ret;
727 
728 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
729 		return -EINVAL;
730 
731 	ret = 0;
732 
733 	if (!ret && mrq->cmd->error)
734 		ret = mrq->cmd->error;
735 	if (!ret && mrq->data->error == 0)
736 		ret = RESULT_FAIL;
737 	if (!ret && mrq->data->error != -ETIMEDOUT)
738 		ret = mrq->data->error;
739 	if (!ret && mrq->stop && mrq->stop->error)
740 		ret = mrq->stop->error;
741 	if (mrq->data->blocks > 1) {
742 		if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
743 			ret = RESULT_FAIL;
744 	} else {
745 		if (!ret && mrq->data->bytes_xfered > 0)
746 			ret = RESULT_FAIL;
747 	}
748 
749 	if (ret == -EINVAL)
750 		ret = RESULT_UNSUP_HOST;
751 
752 	return ret;
753 }
754 
755 struct mmc_test_req {
756 	struct mmc_request mrq;
757 	struct mmc_command sbc;
758 	struct mmc_command cmd;
759 	struct mmc_command stop;
760 	struct mmc_command status;
761 	struct mmc_data data;
762 };
763 
764 /*
765  * Tests nonblock transfer with certain parameters
766  */
767 static void mmc_test_req_reset(struct mmc_test_req *rq)
768 {
769 	memset(rq, 0, sizeof(struct mmc_test_req));
770 
771 	rq->mrq.cmd = &rq->cmd;
772 	rq->mrq.data = &rq->data;
773 	rq->mrq.stop = &rq->stop;
774 }
775 
776 static struct mmc_test_req *mmc_test_req_alloc(void)
777 {
778 	struct mmc_test_req *rq = kmalloc(sizeof(*rq), GFP_KERNEL);
779 
780 	if (rq)
781 		mmc_test_req_reset(rq);
782 
783 	return rq;
784 }
785 
786 static void mmc_test_wait_done(struct mmc_request *mrq)
787 {
788 	complete(&mrq->completion);
789 }
790 
791 static int mmc_test_start_areq(struct mmc_test_card *test,
792 			       struct mmc_request *mrq,
793 			       struct mmc_request *prev_mrq)
794 {
795 	struct mmc_host *host = test->card->host;
796 	int err = 0;
797 
798 	if (mrq) {
799 		init_completion(&mrq->completion);
800 		mrq->done = mmc_test_wait_done;
801 		mmc_pre_req(host, mrq);
802 	}
803 
804 	if (prev_mrq) {
805 		wait_for_completion(&prev_mrq->completion);
806 		err = mmc_test_wait_busy(test);
807 		if (!err)
808 			err = mmc_test_check_result(test, prev_mrq);
809 	}
810 
811 	if (!err && mrq) {
812 		err = mmc_start_request(host, mrq);
813 		if (err)
814 			mmc_retune_release(host);
815 	}
816 
817 	if (prev_mrq)
818 		mmc_post_req(host, prev_mrq, 0);
819 
820 	if (err && mrq)
821 		mmc_post_req(host, mrq, err);
822 
823 	return err;
824 }
825 
826 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
827 				      unsigned int dev_addr, int write,
828 				      int count)
829 {
830 	struct mmc_test_req *rq1, *rq2;
831 	struct mmc_request *mrq, *prev_mrq;
832 	int i;
833 	int ret = RESULT_OK;
834 	struct mmc_test_area *t = &test->area;
835 	struct scatterlist *sg = t->sg;
836 	struct scatterlist *sg_areq = t->sg_areq;
837 
838 	rq1 = mmc_test_req_alloc();
839 	rq2 = mmc_test_req_alloc();
840 	if (!rq1 || !rq2) {
841 		ret = RESULT_FAIL;
842 		goto err;
843 	}
844 
845 	mrq = &rq1->mrq;
846 	prev_mrq = NULL;
847 
848 	for (i = 0; i < count; i++) {
849 		mmc_test_req_reset(container_of(mrq, struct mmc_test_req, mrq));
850 		mmc_test_prepare_mrq(test, mrq, sg, t->sg_len, dev_addr,
851 				     t->blocks, 512, write);
852 		ret = mmc_test_start_areq(test, mrq, prev_mrq);
853 		if (ret)
854 			goto err;
855 
856 		if (!prev_mrq)
857 			prev_mrq = &rq2->mrq;
858 
859 		swap(mrq, prev_mrq);
860 		swap(sg, sg_areq);
861 		dev_addr += t->blocks;
862 	}
863 
864 	ret = mmc_test_start_areq(test, NULL, prev_mrq);
865 err:
866 	kfree(rq1);
867 	kfree(rq2);
868 	return ret;
869 }
870 
871 /*
872  * Tests a basic transfer with certain parameters
873  */
874 static int mmc_test_simple_transfer(struct mmc_test_card *test,
875 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
876 	unsigned blocks, unsigned blksz, int write)
877 {
878 	struct mmc_request mrq = {};
879 	struct mmc_command cmd = {};
880 	struct mmc_command stop = {};
881 	struct mmc_data data = {};
882 
883 	mrq.cmd = &cmd;
884 	mrq.data = &data;
885 	mrq.stop = &stop;
886 
887 	mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
888 		blocks, blksz, write);
889 
890 	mmc_wait_for_req(test->card->host, &mrq);
891 
892 	mmc_test_wait_busy(test);
893 
894 	return mmc_test_check_result(test, &mrq);
895 }
896 
897 /*
898  * Tests a transfer where the card will fail completely or partly
899  */
900 static int mmc_test_broken_transfer(struct mmc_test_card *test,
901 	unsigned blocks, unsigned blksz, int write)
902 {
903 	struct mmc_request mrq = {};
904 	struct mmc_command cmd = {};
905 	struct mmc_command stop = {};
906 	struct mmc_data data = {};
907 
908 	struct scatterlist sg;
909 
910 	mrq.cmd = &cmd;
911 	mrq.data = &data;
912 	mrq.stop = &stop;
913 
914 	sg_init_one(&sg, test->buffer, blocks * blksz);
915 
916 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
917 	mmc_test_prepare_broken_mrq(test, &mrq, write);
918 
919 	mmc_wait_for_req(test->card->host, &mrq);
920 
921 	mmc_test_wait_busy(test);
922 
923 	return mmc_test_check_broken_result(test, &mrq);
924 }
925 
926 /*
927  * Does a complete transfer test where data is also validated
928  *
929  * Note: mmc_test_prepare() must have been done before this call
930  */
931 static int mmc_test_transfer(struct mmc_test_card *test,
932 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
933 	unsigned blocks, unsigned blksz, int write)
934 {
935 	int ret, i;
936 	unsigned long flags;
937 
938 	if (write) {
939 		for (i = 0; i < blocks * blksz; i++)
940 			test->scratch[i] = i;
941 	} else {
942 		memset(test->scratch, 0, BUFFER_SIZE);
943 	}
944 	local_irq_save(flags);
945 	sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
946 	local_irq_restore(flags);
947 
948 	ret = mmc_test_set_blksize(test, blksz);
949 	if (ret)
950 		return ret;
951 
952 	ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
953 		blocks, blksz, write);
954 	if (ret)
955 		return ret;
956 
957 	if (write) {
958 		int sectors;
959 
960 		ret = mmc_test_set_blksize(test, 512);
961 		if (ret)
962 			return ret;
963 
964 		sectors = (blocks * blksz + 511) / 512;
965 		if ((sectors * 512) == (blocks * blksz))
966 			sectors++;
967 
968 		if ((sectors * 512) > BUFFER_SIZE)
969 			return -EINVAL;
970 
971 		memset(test->buffer, 0, sectors * 512);
972 
973 		for (i = 0; i < sectors; i++) {
974 			ret = mmc_test_buffer_transfer(test,
975 				test->buffer + i * 512,
976 				dev_addr + i, 512, 0);
977 			if (ret)
978 				return ret;
979 		}
980 
981 		for (i = 0; i < blocks * blksz; i++) {
982 			if (test->buffer[i] != (u8)i)
983 				return RESULT_FAIL;
984 		}
985 
986 		for (; i < sectors * 512; i++) {
987 			if (test->buffer[i] != 0xDF)
988 				return RESULT_FAIL;
989 		}
990 	} else {
991 		local_irq_save(flags);
992 		sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
993 		local_irq_restore(flags);
994 		for (i = 0; i < blocks * blksz; i++) {
995 			if (test->scratch[i] != (u8)i)
996 				return RESULT_FAIL;
997 		}
998 	}
999 
1000 	return 0;
1001 }
1002 
1003 /*******************************************************************/
1004 /*  Tests                                                          */
1005 /*******************************************************************/
1006 
1007 struct mmc_test_case {
1008 	const char *name;
1009 
1010 	int (*prepare)(struct mmc_test_card *);
1011 	int (*run)(struct mmc_test_card *);
1012 	int (*cleanup)(struct mmc_test_card *);
1013 };
1014 
1015 static int mmc_test_basic_write(struct mmc_test_card *test)
1016 {
1017 	int ret;
1018 	struct scatterlist sg;
1019 
1020 	ret = mmc_test_set_blksize(test, 512);
1021 	if (ret)
1022 		return ret;
1023 
1024 	sg_init_one(&sg, test->buffer, 512);
1025 
1026 	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1027 }
1028 
1029 static int mmc_test_basic_read(struct mmc_test_card *test)
1030 {
1031 	int ret;
1032 	struct scatterlist sg;
1033 
1034 	ret = mmc_test_set_blksize(test, 512);
1035 	if (ret)
1036 		return ret;
1037 
1038 	sg_init_one(&sg, test->buffer, 512);
1039 
1040 	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1041 }
1042 
1043 static int mmc_test_verify_write(struct mmc_test_card *test)
1044 {
1045 	struct scatterlist sg;
1046 
1047 	sg_init_one(&sg, test->buffer, 512);
1048 
1049 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1050 }
1051 
1052 static int mmc_test_verify_read(struct mmc_test_card *test)
1053 {
1054 	struct scatterlist sg;
1055 
1056 	sg_init_one(&sg, test->buffer, 512);
1057 
1058 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1059 }
1060 
1061 static int mmc_test_multi_write(struct mmc_test_card *test)
1062 {
1063 	unsigned int size;
1064 	struct scatterlist sg;
1065 
1066 	if (test->card->host->max_blk_count == 1)
1067 		return RESULT_UNSUP_HOST;
1068 
1069 	size = PAGE_SIZE * 2;
1070 	size = min(size, test->card->host->max_req_size);
1071 	size = min(size, test->card->host->max_seg_size);
1072 	size = min(size, test->card->host->max_blk_count * 512);
1073 
1074 	if (size < 1024)
1075 		return RESULT_UNSUP_HOST;
1076 
1077 	sg_init_one(&sg, test->buffer, size);
1078 
1079 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1080 }
1081 
1082 static int mmc_test_multi_read(struct mmc_test_card *test)
1083 {
1084 	unsigned int size;
1085 	struct scatterlist sg;
1086 
1087 	if (test->card->host->max_blk_count == 1)
1088 		return RESULT_UNSUP_HOST;
1089 
1090 	size = PAGE_SIZE * 2;
1091 	size = min(size, test->card->host->max_req_size);
1092 	size = min(size, test->card->host->max_seg_size);
1093 	size = min(size, test->card->host->max_blk_count * 512);
1094 
1095 	if (size < 1024)
1096 		return RESULT_UNSUP_HOST;
1097 
1098 	sg_init_one(&sg, test->buffer, size);
1099 
1100 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1101 }
1102 
1103 static int mmc_test_pow2_write(struct mmc_test_card *test)
1104 {
1105 	int ret, i;
1106 	struct scatterlist sg;
1107 
1108 	if (!test->card->csd.write_partial)
1109 		return RESULT_UNSUP_CARD;
1110 
1111 	for (i = 1; i < 512; i <<= 1) {
1112 		sg_init_one(&sg, test->buffer, i);
1113 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1114 		if (ret)
1115 			return ret;
1116 	}
1117 
1118 	return 0;
1119 }
1120 
1121 static int mmc_test_pow2_read(struct mmc_test_card *test)
1122 {
1123 	int ret, i;
1124 	struct scatterlist sg;
1125 
1126 	if (!test->card->csd.read_partial)
1127 		return RESULT_UNSUP_CARD;
1128 
1129 	for (i = 1; i < 512; i <<= 1) {
1130 		sg_init_one(&sg, test->buffer, i);
1131 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1132 		if (ret)
1133 			return ret;
1134 	}
1135 
1136 	return 0;
1137 }
1138 
1139 static int mmc_test_weird_write(struct mmc_test_card *test)
1140 {
1141 	int ret, i;
1142 	struct scatterlist sg;
1143 
1144 	if (!test->card->csd.write_partial)
1145 		return RESULT_UNSUP_CARD;
1146 
1147 	for (i = 3; i < 512; i += 7) {
1148 		sg_init_one(&sg, test->buffer, i);
1149 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1150 		if (ret)
1151 			return ret;
1152 	}
1153 
1154 	return 0;
1155 }
1156 
1157 static int mmc_test_weird_read(struct mmc_test_card *test)
1158 {
1159 	int ret, i;
1160 	struct scatterlist sg;
1161 
1162 	if (!test->card->csd.read_partial)
1163 		return RESULT_UNSUP_CARD;
1164 
1165 	for (i = 3; i < 512; i += 7) {
1166 		sg_init_one(&sg, test->buffer, i);
1167 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1168 		if (ret)
1169 			return ret;
1170 	}
1171 
1172 	return 0;
1173 }
1174 
1175 static int mmc_test_align_write(struct mmc_test_card *test)
1176 {
1177 	int ret, i;
1178 	struct scatterlist sg;
1179 
1180 	for (i = 1; i < TEST_ALIGN_END; i++) {
1181 		sg_init_one(&sg, test->buffer + i, 512);
1182 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1183 		if (ret)
1184 			return ret;
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 static int mmc_test_align_read(struct mmc_test_card *test)
1191 {
1192 	int ret, i;
1193 	struct scatterlist sg;
1194 
1195 	for (i = 1; i < TEST_ALIGN_END; i++) {
1196 		sg_init_one(&sg, test->buffer + i, 512);
1197 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1198 		if (ret)
1199 			return ret;
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1206 {
1207 	int ret, i;
1208 	unsigned int size;
1209 	struct scatterlist sg;
1210 
1211 	if (test->card->host->max_blk_count == 1)
1212 		return RESULT_UNSUP_HOST;
1213 
1214 	size = PAGE_SIZE * 2;
1215 	size = min(size, test->card->host->max_req_size);
1216 	size = min(size, test->card->host->max_seg_size);
1217 	size = min(size, test->card->host->max_blk_count * 512);
1218 
1219 	if (size < 1024)
1220 		return RESULT_UNSUP_HOST;
1221 
1222 	for (i = 1; i < TEST_ALIGN_END; i++) {
1223 		sg_init_one(&sg, test->buffer + i, size);
1224 		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1225 		if (ret)
1226 			return ret;
1227 	}
1228 
1229 	return 0;
1230 }
1231 
1232 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1233 {
1234 	int ret, i;
1235 	unsigned int size;
1236 	struct scatterlist sg;
1237 
1238 	if (test->card->host->max_blk_count == 1)
1239 		return RESULT_UNSUP_HOST;
1240 
1241 	size = PAGE_SIZE * 2;
1242 	size = min(size, test->card->host->max_req_size);
1243 	size = min(size, test->card->host->max_seg_size);
1244 	size = min(size, test->card->host->max_blk_count * 512);
1245 
1246 	if (size < 1024)
1247 		return RESULT_UNSUP_HOST;
1248 
1249 	for (i = 1; i < TEST_ALIGN_END; i++) {
1250 		sg_init_one(&sg, test->buffer + i, size);
1251 		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1252 		if (ret)
1253 			return ret;
1254 	}
1255 
1256 	return 0;
1257 }
1258 
1259 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1260 {
1261 	int ret;
1262 
1263 	ret = mmc_test_set_blksize(test, 512);
1264 	if (ret)
1265 		return ret;
1266 
1267 	return mmc_test_broken_transfer(test, 1, 512, 1);
1268 }
1269 
1270 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1271 {
1272 	int ret;
1273 
1274 	ret = mmc_test_set_blksize(test, 512);
1275 	if (ret)
1276 		return ret;
1277 
1278 	return mmc_test_broken_transfer(test, 1, 512, 0);
1279 }
1280 
1281 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1282 {
1283 	int ret;
1284 
1285 	if (test->card->host->max_blk_count == 1)
1286 		return RESULT_UNSUP_HOST;
1287 
1288 	ret = mmc_test_set_blksize(test, 512);
1289 	if (ret)
1290 		return ret;
1291 
1292 	return mmc_test_broken_transfer(test, 2, 512, 1);
1293 }
1294 
1295 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1296 {
1297 	int ret;
1298 
1299 	if (test->card->host->max_blk_count == 1)
1300 		return RESULT_UNSUP_HOST;
1301 
1302 	ret = mmc_test_set_blksize(test, 512);
1303 	if (ret)
1304 		return ret;
1305 
1306 	return mmc_test_broken_transfer(test, 2, 512, 0);
1307 }
1308 
1309 #ifdef CONFIG_HIGHMEM
1310 
1311 static int mmc_test_write_high(struct mmc_test_card *test)
1312 {
1313 	struct scatterlist sg;
1314 
1315 	sg_init_table(&sg, 1);
1316 	sg_set_page(&sg, test->highmem, 512, 0);
1317 
1318 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1319 }
1320 
1321 static int mmc_test_read_high(struct mmc_test_card *test)
1322 {
1323 	struct scatterlist sg;
1324 
1325 	sg_init_table(&sg, 1);
1326 	sg_set_page(&sg, test->highmem, 512, 0);
1327 
1328 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1329 }
1330 
1331 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1332 {
1333 	unsigned int size;
1334 	struct scatterlist sg;
1335 
1336 	if (test->card->host->max_blk_count == 1)
1337 		return RESULT_UNSUP_HOST;
1338 
1339 	size = PAGE_SIZE * 2;
1340 	size = min(size, test->card->host->max_req_size);
1341 	size = min(size, test->card->host->max_seg_size);
1342 	size = min(size, test->card->host->max_blk_count * 512);
1343 
1344 	if (size < 1024)
1345 		return RESULT_UNSUP_HOST;
1346 
1347 	sg_init_table(&sg, 1);
1348 	sg_set_page(&sg, test->highmem, size, 0);
1349 
1350 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1351 }
1352 
1353 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1354 {
1355 	unsigned int size;
1356 	struct scatterlist sg;
1357 
1358 	if (test->card->host->max_blk_count == 1)
1359 		return RESULT_UNSUP_HOST;
1360 
1361 	size = PAGE_SIZE * 2;
1362 	size = min(size, test->card->host->max_req_size);
1363 	size = min(size, test->card->host->max_seg_size);
1364 	size = min(size, test->card->host->max_blk_count * 512);
1365 
1366 	if (size < 1024)
1367 		return RESULT_UNSUP_HOST;
1368 
1369 	sg_init_table(&sg, 1);
1370 	sg_set_page(&sg, test->highmem, size, 0);
1371 
1372 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1373 }
1374 
1375 #else
1376 
1377 static int mmc_test_no_highmem(struct mmc_test_card *test)
1378 {
1379 	pr_info("%s: Highmem not configured - test skipped\n",
1380 	       mmc_hostname(test->card->host));
1381 	return 0;
1382 }
1383 
1384 #endif /* CONFIG_HIGHMEM */
1385 
1386 /*
1387  * Map sz bytes so that it can be transferred.
1388  */
1389 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1390 			     int max_scatter, int min_sg_len, bool nonblock)
1391 {
1392 	struct mmc_test_area *t = &test->area;
1393 	int err;
1394 	unsigned int sg_len = 0;
1395 
1396 	t->blocks = sz >> 9;
1397 
1398 	if (max_scatter) {
1399 		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1400 						  t->max_segs, t->max_seg_sz,
1401 				       &t->sg_len);
1402 	} else {
1403 		err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1404 				      t->max_seg_sz, &t->sg_len, min_sg_len);
1405 	}
1406 
1407 	if (err || !nonblock)
1408 		goto err;
1409 
1410 	if (max_scatter) {
1411 		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg_areq,
1412 						  t->max_segs, t->max_seg_sz,
1413 						  &sg_len);
1414 	} else {
1415 		err = mmc_test_map_sg(t->mem, sz, t->sg_areq, 1, t->max_segs,
1416 				      t->max_seg_sz, &sg_len, min_sg_len);
1417 	}
1418 	if (!err && sg_len != t->sg_len)
1419 		err = -EINVAL;
1420 
1421 err:
1422 	if (err)
1423 		pr_info("%s: Failed to map sg list\n",
1424 		       mmc_hostname(test->card->host));
1425 	return err;
1426 }
1427 
1428 /*
1429  * Transfer bytes mapped by mmc_test_area_map().
1430  */
1431 static int mmc_test_area_transfer(struct mmc_test_card *test,
1432 				  unsigned int dev_addr, int write)
1433 {
1434 	struct mmc_test_area *t = &test->area;
1435 
1436 	return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1437 					t->blocks, 512, write);
1438 }
1439 
1440 /*
1441  * Map and transfer bytes for multiple transfers.
1442  */
1443 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1444 				unsigned int dev_addr, int write,
1445 				int max_scatter, int timed, int count,
1446 				bool nonblock, int min_sg_len)
1447 {
1448 	struct timespec64 ts1, ts2;
1449 	int ret = 0;
1450 	int i;
1451 
1452 	/*
1453 	 * In the case of a maximally scattered transfer, the maximum transfer
1454 	 * size is further limited by using PAGE_SIZE segments.
1455 	 */
1456 	if (max_scatter) {
1457 		struct mmc_test_area *t = &test->area;
1458 		unsigned long max_tfr;
1459 
1460 		if (t->max_seg_sz >= PAGE_SIZE)
1461 			max_tfr = t->max_segs * PAGE_SIZE;
1462 		else
1463 			max_tfr = t->max_segs * t->max_seg_sz;
1464 		if (sz > max_tfr)
1465 			sz = max_tfr;
1466 	}
1467 
1468 	ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len, nonblock);
1469 	if (ret)
1470 		return ret;
1471 
1472 	if (timed)
1473 		ktime_get_ts64(&ts1);
1474 	if (nonblock)
1475 		ret = mmc_test_nonblock_transfer(test, dev_addr, write, count);
1476 	else
1477 		for (i = 0; i < count && ret == 0; i++) {
1478 			ret = mmc_test_area_transfer(test, dev_addr, write);
1479 			dev_addr += sz >> 9;
1480 		}
1481 
1482 	if (ret)
1483 		return ret;
1484 
1485 	if (timed)
1486 		ktime_get_ts64(&ts2);
1487 
1488 	if (timed)
1489 		mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1490 
1491 	return 0;
1492 }
1493 
1494 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1495 			    unsigned int dev_addr, int write, int max_scatter,
1496 			    int timed)
1497 {
1498 	return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1499 				    timed, 1, false, 0);
1500 }
1501 
1502 /*
1503  * Write the test area entirely.
1504  */
1505 static int mmc_test_area_fill(struct mmc_test_card *test)
1506 {
1507 	struct mmc_test_area *t = &test->area;
1508 
1509 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1510 }
1511 
1512 /*
1513  * Erase the test area entirely.
1514  */
1515 static int mmc_test_area_erase(struct mmc_test_card *test)
1516 {
1517 	struct mmc_test_area *t = &test->area;
1518 
1519 	if (!mmc_can_erase(test->card))
1520 		return 0;
1521 
1522 	return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1523 			 MMC_ERASE_ARG);
1524 }
1525 
1526 /*
1527  * Cleanup struct mmc_test_area.
1528  */
1529 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1530 {
1531 	struct mmc_test_area *t = &test->area;
1532 
1533 	kfree(t->sg);
1534 	kfree(t->sg_areq);
1535 	mmc_test_free_mem(t->mem);
1536 
1537 	return 0;
1538 }
1539 
1540 /*
1541  * Initialize an area for testing large transfers.  The test area is set to the
1542  * middle of the card because cards may have different characteristics at the
1543  * front (for FAT file system optimization).  Optionally, the area is erased
1544  * (if the card supports it) which may improve write performance.  Optionally,
1545  * the area is filled with data for subsequent read tests.
1546  */
1547 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1548 {
1549 	struct mmc_test_area *t = &test->area;
1550 	unsigned long min_sz = 64 * 1024, sz;
1551 	int ret;
1552 
1553 	ret = mmc_test_set_blksize(test, 512);
1554 	if (ret)
1555 		return ret;
1556 
1557 	/* Make the test area size about 4MiB */
1558 	sz = (unsigned long)test->card->pref_erase << 9;
1559 	t->max_sz = sz;
1560 	while (t->max_sz < 4 * 1024 * 1024)
1561 		t->max_sz += sz;
1562 	while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1563 		t->max_sz -= sz;
1564 
1565 	t->max_segs = test->card->host->max_segs;
1566 	t->max_seg_sz = test->card->host->max_seg_size;
1567 	t->max_seg_sz -= t->max_seg_sz % 512;
1568 
1569 	t->max_tfr = t->max_sz;
1570 	if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1571 		t->max_tfr = test->card->host->max_blk_count << 9;
1572 	if (t->max_tfr > test->card->host->max_req_size)
1573 		t->max_tfr = test->card->host->max_req_size;
1574 	if (t->max_tfr / t->max_seg_sz > t->max_segs)
1575 		t->max_tfr = t->max_segs * t->max_seg_sz;
1576 
1577 	/*
1578 	 * Try to allocate enough memory for a max. sized transfer.  Less is OK
1579 	 * because the same memory can be mapped into the scatterlist more than
1580 	 * once.  Also, take into account the limits imposed on scatterlist
1581 	 * segments by the host driver.
1582 	 */
1583 	t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1584 				    t->max_seg_sz);
1585 	if (!t->mem)
1586 		return -ENOMEM;
1587 
1588 	t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1589 	if (!t->sg) {
1590 		ret = -ENOMEM;
1591 		goto out_free;
1592 	}
1593 
1594 	t->sg_areq = kmalloc_array(t->max_segs, sizeof(*t->sg_areq),
1595 				   GFP_KERNEL);
1596 	if (!t->sg_areq) {
1597 		ret = -ENOMEM;
1598 		goto out_free;
1599 	}
1600 
1601 	t->dev_addr = mmc_test_capacity(test->card) / 2;
1602 	t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1603 
1604 	if (erase) {
1605 		ret = mmc_test_area_erase(test);
1606 		if (ret)
1607 			goto out_free;
1608 	}
1609 
1610 	if (fill) {
1611 		ret = mmc_test_area_fill(test);
1612 		if (ret)
1613 			goto out_free;
1614 	}
1615 
1616 	return 0;
1617 
1618 out_free:
1619 	mmc_test_area_cleanup(test);
1620 	return ret;
1621 }
1622 
1623 /*
1624  * Prepare for large transfers.  Do not erase the test area.
1625  */
1626 static int mmc_test_area_prepare(struct mmc_test_card *test)
1627 {
1628 	return mmc_test_area_init(test, 0, 0);
1629 }
1630 
1631 /*
1632  * Prepare for large transfers.  Do erase the test area.
1633  */
1634 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1635 {
1636 	return mmc_test_area_init(test, 1, 0);
1637 }
1638 
1639 /*
1640  * Prepare for large transfers.  Erase and fill the test area.
1641  */
1642 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1643 {
1644 	return mmc_test_area_init(test, 1, 1);
1645 }
1646 
1647 /*
1648  * Test best-case performance.  Best-case performance is expected from
1649  * a single large transfer.
1650  *
1651  * An additional option (max_scatter) allows the measurement of the same
1652  * transfer but with no contiguous pages in the scatter list.  This tests
1653  * the efficiency of DMA to handle scattered pages.
1654  */
1655 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1656 				     int max_scatter)
1657 {
1658 	struct mmc_test_area *t = &test->area;
1659 
1660 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1661 				max_scatter, 1);
1662 }
1663 
1664 /*
1665  * Best-case read performance.
1666  */
1667 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1668 {
1669 	return mmc_test_best_performance(test, 0, 0);
1670 }
1671 
1672 /*
1673  * Best-case write performance.
1674  */
1675 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1676 {
1677 	return mmc_test_best_performance(test, 1, 0);
1678 }
1679 
1680 /*
1681  * Best-case read performance into scattered pages.
1682  */
1683 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1684 {
1685 	return mmc_test_best_performance(test, 0, 1);
1686 }
1687 
1688 /*
1689  * Best-case write performance from scattered pages.
1690  */
1691 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1692 {
1693 	return mmc_test_best_performance(test, 1, 1);
1694 }
1695 
1696 /*
1697  * Single read performance by transfer size.
1698  */
1699 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1700 {
1701 	struct mmc_test_area *t = &test->area;
1702 	unsigned long sz;
1703 	unsigned int dev_addr;
1704 	int ret;
1705 
1706 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1707 		dev_addr = t->dev_addr + (sz >> 9);
1708 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1709 		if (ret)
1710 			return ret;
1711 	}
1712 	sz = t->max_tfr;
1713 	dev_addr = t->dev_addr;
1714 	return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1715 }
1716 
1717 /*
1718  * Single write performance by transfer size.
1719  */
1720 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1721 {
1722 	struct mmc_test_area *t = &test->area;
1723 	unsigned long sz;
1724 	unsigned int dev_addr;
1725 	int ret;
1726 
1727 	ret = mmc_test_area_erase(test);
1728 	if (ret)
1729 		return ret;
1730 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1731 		dev_addr = t->dev_addr + (sz >> 9);
1732 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1733 		if (ret)
1734 			return ret;
1735 	}
1736 	ret = mmc_test_area_erase(test);
1737 	if (ret)
1738 		return ret;
1739 	sz = t->max_tfr;
1740 	dev_addr = t->dev_addr;
1741 	return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1742 }
1743 
1744 /*
1745  * Single trim performance by transfer size.
1746  */
1747 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1748 {
1749 	struct mmc_test_area *t = &test->area;
1750 	unsigned long sz;
1751 	unsigned int dev_addr;
1752 	struct timespec64 ts1, ts2;
1753 	int ret;
1754 
1755 	if (!mmc_can_trim(test->card))
1756 		return RESULT_UNSUP_CARD;
1757 
1758 	if (!mmc_can_erase(test->card))
1759 		return RESULT_UNSUP_HOST;
1760 
1761 	for (sz = 512; sz < t->max_sz; sz <<= 1) {
1762 		dev_addr = t->dev_addr + (sz >> 9);
1763 		ktime_get_ts64(&ts1);
1764 		ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1765 		if (ret)
1766 			return ret;
1767 		ktime_get_ts64(&ts2);
1768 		mmc_test_print_rate(test, sz, &ts1, &ts2);
1769 	}
1770 	dev_addr = t->dev_addr;
1771 	ktime_get_ts64(&ts1);
1772 	ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1773 	if (ret)
1774 		return ret;
1775 	ktime_get_ts64(&ts2);
1776 	mmc_test_print_rate(test, sz, &ts1, &ts2);
1777 	return 0;
1778 }
1779 
1780 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1781 {
1782 	struct mmc_test_area *t = &test->area;
1783 	unsigned int dev_addr, i, cnt;
1784 	struct timespec64 ts1, ts2;
1785 	int ret;
1786 
1787 	cnt = t->max_sz / sz;
1788 	dev_addr = t->dev_addr;
1789 	ktime_get_ts64(&ts1);
1790 	for (i = 0; i < cnt; i++) {
1791 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1792 		if (ret)
1793 			return ret;
1794 		dev_addr += (sz >> 9);
1795 	}
1796 	ktime_get_ts64(&ts2);
1797 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1798 	return 0;
1799 }
1800 
1801 /*
1802  * Consecutive read performance by transfer size.
1803  */
1804 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1805 {
1806 	struct mmc_test_area *t = &test->area;
1807 	unsigned long sz;
1808 	int ret;
1809 
1810 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1811 		ret = mmc_test_seq_read_perf(test, sz);
1812 		if (ret)
1813 			return ret;
1814 	}
1815 	sz = t->max_tfr;
1816 	return mmc_test_seq_read_perf(test, sz);
1817 }
1818 
1819 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1820 {
1821 	struct mmc_test_area *t = &test->area;
1822 	unsigned int dev_addr, i, cnt;
1823 	struct timespec64 ts1, ts2;
1824 	int ret;
1825 
1826 	ret = mmc_test_area_erase(test);
1827 	if (ret)
1828 		return ret;
1829 	cnt = t->max_sz / sz;
1830 	dev_addr = t->dev_addr;
1831 	ktime_get_ts64(&ts1);
1832 	for (i = 0; i < cnt; i++) {
1833 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1834 		if (ret)
1835 			return ret;
1836 		dev_addr += (sz >> 9);
1837 	}
1838 	ktime_get_ts64(&ts2);
1839 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1840 	return 0;
1841 }
1842 
1843 /*
1844  * Consecutive write performance by transfer size.
1845  */
1846 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1847 {
1848 	struct mmc_test_area *t = &test->area;
1849 	unsigned long sz;
1850 	int ret;
1851 
1852 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1853 		ret = mmc_test_seq_write_perf(test, sz);
1854 		if (ret)
1855 			return ret;
1856 	}
1857 	sz = t->max_tfr;
1858 	return mmc_test_seq_write_perf(test, sz);
1859 }
1860 
1861 /*
1862  * Consecutive trim performance by transfer size.
1863  */
1864 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1865 {
1866 	struct mmc_test_area *t = &test->area;
1867 	unsigned long sz;
1868 	unsigned int dev_addr, i, cnt;
1869 	struct timespec64 ts1, ts2;
1870 	int ret;
1871 
1872 	if (!mmc_can_trim(test->card))
1873 		return RESULT_UNSUP_CARD;
1874 
1875 	if (!mmc_can_erase(test->card))
1876 		return RESULT_UNSUP_HOST;
1877 
1878 	for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1879 		ret = mmc_test_area_erase(test);
1880 		if (ret)
1881 			return ret;
1882 		ret = mmc_test_area_fill(test);
1883 		if (ret)
1884 			return ret;
1885 		cnt = t->max_sz / sz;
1886 		dev_addr = t->dev_addr;
1887 		ktime_get_ts64(&ts1);
1888 		for (i = 0; i < cnt; i++) {
1889 			ret = mmc_erase(test->card, dev_addr, sz >> 9,
1890 					MMC_TRIM_ARG);
1891 			if (ret)
1892 				return ret;
1893 			dev_addr += (sz >> 9);
1894 		}
1895 		ktime_get_ts64(&ts2);
1896 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1897 	}
1898 	return 0;
1899 }
1900 
1901 static unsigned int rnd_next = 1;
1902 
1903 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1904 {
1905 	uint64_t r;
1906 
1907 	rnd_next = rnd_next * 1103515245 + 12345;
1908 	r = (rnd_next >> 16) & 0x7fff;
1909 	return (r * rnd_cnt) >> 15;
1910 }
1911 
1912 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1913 			     unsigned long sz)
1914 {
1915 	unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1916 	unsigned int ssz;
1917 	struct timespec64 ts1, ts2, ts;
1918 	int ret;
1919 
1920 	ssz = sz >> 9;
1921 
1922 	rnd_addr = mmc_test_capacity(test->card) / 4;
1923 	range1 = rnd_addr / test->card->pref_erase;
1924 	range2 = range1 / ssz;
1925 
1926 	ktime_get_ts64(&ts1);
1927 	for (cnt = 0; cnt < UINT_MAX; cnt++) {
1928 		ktime_get_ts64(&ts2);
1929 		ts = timespec64_sub(ts2, ts1);
1930 		if (ts.tv_sec >= 10)
1931 			break;
1932 		ea = mmc_test_rnd_num(range1);
1933 		if (ea == last_ea)
1934 			ea -= 1;
1935 		last_ea = ea;
1936 		dev_addr = rnd_addr + test->card->pref_erase * ea +
1937 			   ssz * mmc_test_rnd_num(range2);
1938 		ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1939 		if (ret)
1940 			return ret;
1941 	}
1942 	if (print)
1943 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1944 	return 0;
1945 }
1946 
1947 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1948 {
1949 	struct mmc_test_area *t = &test->area;
1950 	unsigned int next;
1951 	unsigned long sz;
1952 	int ret;
1953 
1954 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1955 		/*
1956 		 * When writing, try to get more consistent results by running
1957 		 * the test twice with exactly the same I/O but outputting the
1958 		 * results only for the 2nd run.
1959 		 */
1960 		if (write) {
1961 			next = rnd_next;
1962 			ret = mmc_test_rnd_perf(test, write, 0, sz);
1963 			if (ret)
1964 				return ret;
1965 			rnd_next = next;
1966 		}
1967 		ret = mmc_test_rnd_perf(test, write, 1, sz);
1968 		if (ret)
1969 			return ret;
1970 	}
1971 	sz = t->max_tfr;
1972 	if (write) {
1973 		next = rnd_next;
1974 		ret = mmc_test_rnd_perf(test, write, 0, sz);
1975 		if (ret)
1976 			return ret;
1977 		rnd_next = next;
1978 	}
1979 	return mmc_test_rnd_perf(test, write, 1, sz);
1980 }
1981 
1982 /*
1983  * Random read performance by transfer size.
1984  */
1985 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1986 {
1987 	return mmc_test_random_perf(test, 0);
1988 }
1989 
1990 /*
1991  * Random write performance by transfer size.
1992  */
1993 static int mmc_test_random_write_perf(struct mmc_test_card *test)
1994 {
1995 	return mmc_test_random_perf(test, 1);
1996 }
1997 
1998 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
1999 			     unsigned int tot_sz, int max_scatter)
2000 {
2001 	struct mmc_test_area *t = &test->area;
2002 	unsigned int dev_addr, i, cnt, sz, ssz;
2003 	struct timespec64 ts1, ts2;
2004 	int ret;
2005 
2006 	sz = t->max_tfr;
2007 
2008 	/*
2009 	 * In the case of a maximally scattered transfer, the maximum transfer
2010 	 * size is further limited by using PAGE_SIZE segments.
2011 	 */
2012 	if (max_scatter) {
2013 		unsigned long max_tfr;
2014 
2015 		if (t->max_seg_sz >= PAGE_SIZE)
2016 			max_tfr = t->max_segs * PAGE_SIZE;
2017 		else
2018 			max_tfr = t->max_segs * t->max_seg_sz;
2019 		if (sz > max_tfr)
2020 			sz = max_tfr;
2021 	}
2022 
2023 	ssz = sz >> 9;
2024 	dev_addr = mmc_test_capacity(test->card) / 4;
2025 	if (tot_sz > dev_addr << 9)
2026 		tot_sz = dev_addr << 9;
2027 	cnt = tot_sz / sz;
2028 	dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2029 
2030 	ktime_get_ts64(&ts1);
2031 	for (i = 0; i < cnt; i++) {
2032 		ret = mmc_test_area_io(test, sz, dev_addr, write,
2033 				       max_scatter, 0);
2034 		if (ret)
2035 			return ret;
2036 		dev_addr += ssz;
2037 	}
2038 	ktime_get_ts64(&ts2);
2039 
2040 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2041 
2042 	return 0;
2043 }
2044 
2045 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2046 {
2047 	int ret, i;
2048 
2049 	for (i = 0; i < 10; i++) {
2050 		ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2051 		if (ret)
2052 			return ret;
2053 	}
2054 	for (i = 0; i < 5; i++) {
2055 		ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2056 		if (ret)
2057 			return ret;
2058 	}
2059 	for (i = 0; i < 3; i++) {
2060 		ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2061 		if (ret)
2062 			return ret;
2063 	}
2064 
2065 	return ret;
2066 }
2067 
2068 /*
2069  * Large sequential read performance.
2070  */
2071 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2072 {
2073 	return mmc_test_large_seq_perf(test, 0);
2074 }
2075 
2076 /*
2077  * Large sequential write performance.
2078  */
2079 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2080 {
2081 	return mmc_test_large_seq_perf(test, 1);
2082 }
2083 
2084 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2085 				struct mmc_test_multiple_rw *tdata,
2086 				unsigned int reqsize, unsigned int size,
2087 				int min_sg_len)
2088 {
2089 	unsigned int dev_addr;
2090 	struct mmc_test_area *t = &test->area;
2091 	int ret = 0;
2092 
2093 	/* Set up test area */
2094 	if (size > mmc_test_capacity(test->card) / 2 * 512)
2095 		size = mmc_test_capacity(test->card) / 2 * 512;
2096 	if (reqsize > t->max_tfr)
2097 		reqsize = t->max_tfr;
2098 	dev_addr = mmc_test_capacity(test->card) / 4;
2099 	if ((dev_addr & 0xffff0000))
2100 		dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2101 	else
2102 		dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2103 	if (!dev_addr)
2104 		goto err;
2105 
2106 	if (reqsize > size)
2107 		return 0;
2108 
2109 	/* prepare test area */
2110 	if (mmc_can_erase(test->card) &&
2111 	    tdata->prepare & MMC_TEST_PREP_ERASE) {
2112 		ret = mmc_erase(test->card, dev_addr,
2113 				size / 512, test->card->erase_arg);
2114 		if (ret)
2115 			ret = mmc_erase(test->card, dev_addr,
2116 					size / 512, MMC_ERASE_ARG);
2117 		if (ret)
2118 			goto err;
2119 	}
2120 
2121 	/* Run test */
2122 	ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2123 				   tdata->do_write, 0, 1, size / reqsize,
2124 				   tdata->do_nonblock_req, min_sg_len);
2125 	if (ret)
2126 		goto err;
2127 
2128 	return ret;
2129  err:
2130 	pr_info("[%s] error\n", __func__);
2131 	return ret;
2132 }
2133 
2134 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2135 				     struct mmc_test_multiple_rw *rw)
2136 {
2137 	int ret = 0;
2138 	int i;
2139 	void *pre_req = test->card->host->ops->pre_req;
2140 	void *post_req = test->card->host->ops->post_req;
2141 
2142 	if (rw->do_nonblock_req &&
2143 	    ((!pre_req && post_req) || (pre_req && !post_req))) {
2144 		pr_info("error: only one of pre/post is defined\n");
2145 		return -EINVAL;
2146 	}
2147 
2148 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2149 		ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2150 		if (ret)
2151 			break;
2152 	}
2153 	return ret;
2154 }
2155 
2156 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2157 				       struct mmc_test_multiple_rw *rw)
2158 {
2159 	int ret = 0;
2160 	int i;
2161 
2162 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2163 		ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2164 					   rw->sg_len[i]);
2165 		if (ret)
2166 			break;
2167 	}
2168 	return ret;
2169 }
2170 
2171 /*
2172  * Multiple blocking write 4k to 4 MB chunks
2173  */
2174 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2175 {
2176 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2177 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2178 	struct mmc_test_multiple_rw test_data = {
2179 		.bs = bs,
2180 		.size = TEST_AREA_MAX_SIZE,
2181 		.len = ARRAY_SIZE(bs),
2182 		.do_write = true,
2183 		.do_nonblock_req = false,
2184 		.prepare = MMC_TEST_PREP_ERASE,
2185 	};
2186 
2187 	return mmc_test_rw_multiple_size(test, &test_data);
2188 };
2189 
2190 /*
2191  * Multiple non-blocking write 4k to 4 MB chunks
2192  */
2193 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2194 {
2195 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2196 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2197 	struct mmc_test_multiple_rw test_data = {
2198 		.bs = bs,
2199 		.size = TEST_AREA_MAX_SIZE,
2200 		.len = ARRAY_SIZE(bs),
2201 		.do_write = true,
2202 		.do_nonblock_req = true,
2203 		.prepare = MMC_TEST_PREP_ERASE,
2204 	};
2205 
2206 	return mmc_test_rw_multiple_size(test, &test_data);
2207 }
2208 
2209 /*
2210  * Multiple blocking read 4k to 4 MB chunks
2211  */
2212 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2213 {
2214 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2215 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2216 	struct mmc_test_multiple_rw test_data = {
2217 		.bs = bs,
2218 		.size = TEST_AREA_MAX_SIZE,
2219 		.len = ARRAY_SIZE(bs),
2220 		.do_write = false,
2221 		.do_nonblock_req = false,
2222 		.prepare = MMC_TEST_PREP_NONE,
2223 	};
2224 
2225 	return mmc_test_rw_multiple_size(test, &test_data);
2226 }
2227 
2228 /*
2229  * Multiple non-blocking read 4k to 4 MB chunks
2230  */
2231 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2232 {
2233 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2234 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2235 	struct mmc_test_multiple_rw test_data = {
2236 		.bs = bs,
2237 		.size = TEST_AREA_MAX_SIZE,
2238 		.len = ARRAY_SIZE(bs),
2239 		.do_write = false,
2240 		.do_nonblock_req = true,
2241 		.prepare = MMC_TEST_PREP_NONE,
2242 	};
2243 
2244 	return mmc_test_rw_multiple_size(test, &test_data);
2245 }
2246 
2247 /*
2248  * Multiple blocking write 1 to 512 sg elements
2249  */
2250 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2251 {
2252 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2253 				 1 << 7, 1 << 8, 1 << 9};
2254 	struct mmc_test_multiple_rw test_data = {
2255 		.sg_len = sg_len,
2256 		.size = TEST_AREA_MAX_SIZE,
2257 		.len = ARRAY_SIZE(sg_len),
2258 		.do_write = true,
2259 		.do_nonblock_req = false,
2260 		.prepare = MMC_TEST_PREP_ERASE,
2261 	};
2262 
2263 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2264 };
2265 
2266 /*
2267  * Multiple non-blocking write 1 to 512 sg elements
2268  */
2269 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2270 {
2271 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2272 				 1 << 7, 1 << 8, 1 << 9};
2273 	struct mmc_test_multiple_rw test_data = {
2274 		.sg_len = sg_len,
2275 		.size = TEST_AREA_MAX_SIZE,
2276 		.len = ARRAY_SIZE(sg_len),
2277 		.do_write = true,
2278 		.do_nonblock_req = true,
2279 		.prepare = MMC_TEST_PREP_ERASE,
2280 	};
2281 
2282 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2283 }
2284 
2285 /*
2286  * Multiple blocking read 1 to 512 sg elements
2287  */
2288 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2289 {
2290 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2291 				 1 << 7, 1 << 8, 1 << 9};
2292 	struct mmc_test_multiple_rw test_data = {
2293 		.sg_len = sg_len,
2294 		.size = TEST_AREA_MAX_SIZE,
2295 		.len = ARRAY_SIZE(sg_len),
2296 		.do_write = false,
2297 		.do_nonblock_req = false,
2298 		.prepare = MMC_TEST_PREP_NONE,
2299 	};
2300 
2301 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2302 }
2303 
2304 /*
2305  * Multiple non-blocking read 1 to 512 sg elements
2306  */
2307 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2308 {
2309 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2310 				 1 << 7, 1 << 8, 1 << 9};
2311 	struct mmc_test_multiple_rw test_data = {
2312 		.sg_len = sg_len,
2313 		.size = TEST_AREA_MAX_SIZE,
2314 		.len = ARRAY_SIZE(sg_len),
2315 		.do_write = false,
2316 		.do_nonblock_req = true,
2317 		.prepare = MMC_TEST_PREP_NONE,
2318 	};
2319 
2320 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2321 }
2322 
2323 /*
2324  * eMMC hardware reset.
2325  */
2326 static int mmc_test_reset(struct mmc_test_card *test)
2327 {
2328 	struct mmc_card *card = test->card;
2329 	struct mmc_host *host = card->host;
2330 	int err;
2331 
2332 	err = mmc_hw_reset(host);
2333 	if (!err) {
2334 		/*
2335 		 * Reset will re-enable the card's command queue, but tests
2336 		 * expect it to be disabled.
2337 		 */
2338 		if (card->ext_csd.cmdq_en)
2339 			mmc_cmdq_disable(card);
2340 		return RESULT_OK;
2341 	} else if (err == -EOPNOTSUPP) {
2342 		return RESULT_UNSUP_HOST;
2343 	}
2344 
2345 	return RESULT_FAIL;
2346 }
2347 
2348 static int mmc_test_send_status(struct mmc_test_card *test,
2349 				struct mmc_command *cmd)
2350 {
2351 	memset(cmd, 0, sizeof(*cmd));
2352 
2353 	cmd->opcode = MMC_SEND_STATUS;
2354 	if (!mmc_host_is_spi(test->card->host))
2355 		cmd->arg = test->card->rca << 16;
2356 	cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2357 
2358 	return mmc_wait_for_cmd(test->card->host, cmd, 0);
2359 }
2360 
2361 static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2362 				     unsigned int dev_addr, int use_sbc,
2363 				     int repeat_cmd, int write, int use_areq)
2364 {
2365 	struct mmc_test_req *rq = mmc_test_req_alloc();
2366 	struct mmc_host *host = test->card->host;
2367 	struct mmc_test_area *t = &test->area;
2368 	struct mmc_request *mrq;
2369 	unsigned long timeout;
2370 	bool expired = false;
2371 	int ret = 0, cmd_ret;
2372 	u32 status = 0;
2373 	int count = 0;
2374 
2375 	if (!rq)
2376 		return -ENOMEM;
2377 
2378 	mrq = &rq->mrq;
2379 	if (use_sbc)
2380 		mrq->sbc = &rq->sbc;
2381 	mrq->cap_cmd_during_tfr = true;
2382 
2383 	mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2384 			     512, write);
2385 
2386 	if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2387 		ret =  mmc_host_cmd23(host) ?
2388 		       RESULT_UNSUP_CARD :
2389 		       RESULT_UNSUP_HOST;
2390 		goto out_free;
2391 	}
2392 
2393 	/* Start ongoing data request */
2394 	if (use_areq) {
2395 		ret = mmc_test_start_areq(test, mrq, NULL);
2396 		if (ret)
2397 			goto out_free;
2398 	} else {
2399 		mmc_wait_for_req(host, mrq);
2400 	}
2401 
2402 	timeout = jiffies + msecs_to_jiffies(3000);
2403 	do {
2404 		count += 1;
2405 
2406 		/* Send status command while data transfer in progress */
2407 		cmd_ret = mmc_test_send_status(test, &rq->status);
2408 		if (cmd_ret)
2409 			break;
2410 
2411 		status = rq->status.resp[0];
2412 		if (status & R1_ERROR) {
2413 			cmd_ret = -EIO;
2414 			break;
2415 		}
2416 
2417 		if (mmc_is_req_done(host, mrq))
2418 			break;
2419 
2420 		expired = time_after(jiffies, timeout);
2421 		if (expired) {
2422 			pr_info("%s: timeout waiting for Tran state status %#x\n",
2423 				mmc_hostname(host), status);
2424 			cmd_ret = -ETIMEDOUT;
2425 			break;
2426 		}
2427 	} while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2428 
2429 	/* Wait for data request to complete */
2430 	if (use_areq) {
2431 		ret = mmc_test_start_areq(test, NULL, mrq);
2432 	} else {
2433 		mmc_wait_for_req_done(test->card->host, mrq);
2434 	}
2435 
2436 	/*
2437 	 * For cap_cmd_during_tfr request, upper layer must send stop if
2438 	 * required.
2439 	 */
2440 	if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2441 		if (ret)
2442 			mmc_wait_for_cmd(host, mrq->data->stop, 0);
2443 		else
2444 			ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2445 	}
2446 
2447 	if (ret)
2448 		goto out_free;
2449 
2450 	if (cmd_ret) {
2451 		pr_info("%s: Send Status failed: status %#x, error %d\n",
2452 			mmc_hostname(test->card->host), status, cmd_ret);
2453 	}
2454 
2455 	ret = mmc_test_check_result(test, mrq);
2456 	if (ret)
2457 		goto out_free;
2458 
2459 	ret = mmc_test_wait_busy(test);
2460 	if (ret)
2461 		goto out_free;
2462 
2463 	if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2464 		pr_info("%s: %d commands completed during transfer of %u blocks\n",
2465 			mmc_hostname(test->card->host), count, t->blocks);
2466 
2467 	if (cmd_ret)
2468 		ret = cmd_ret;
2469 out_free:
2470 	kfree(rq);
2471 
2472 	return ret;
2473 }
2474 
2475 static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2476 				      unsigned long sz, int use_sbc, int write,
2477 				      int use_areq)
2478 {
2479 	struct mmc_test_area *t = &test->area;
2480 	int ret;
2481 
2482 	if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2483 		return RESULT_UNSUP_HOST;
2484 
2485 	ret = mmc_test_area_map(test, sz, 0, 0, use_areq);
2486 	if (ret)
2487 		return ret;
2488 
2489 	ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2490 					use_areq);
2491 	if (ret)
2492 		return ret;
2493 
2494 	return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2495 					 use_areq);
2496 }
2497 
2498 static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2499 				    int write, int use_areq)
2500 {
2501 	struct mmc_test_area *t = &test->area;
2502 	unsigned long sz;
2503 	int ret;
2504 
2505 	for (sz = 512; sz <= t->max_tfr; sz += 512) {
2506 		ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2507 						 use_areq);
2508 		if (ret)
2509 			return ret;
2510 	}
2511 	return 0;
2512 }
2513 
2514 /*
2515  * Commands during read - no Set Block Count (CMD23).
2516  */
2517 static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2518 {
2519 	return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2520 }
2521 
2522 /*
2523  * Commands during write - no Set Block Count (CMD23).
2524  */
2525 static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2526 {
2527 	return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2528 }
2529 
2530 /*
2531  * Commands during read - use Set Block Count (CMD23).
2532  */
2533 static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2534 {
2535 	return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2536 }
2537 
2538 /*
2539  * Commands during write - use Set Block Count (CMD23).
2540  */
2541 static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2542 {
2543 	return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2544 }
2545 
2546 /*
2547  * Commands during non-blocking read - use Set Block Count (CMD23).
2548  */
2549 static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2550 {
2551 	return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2552 }
2553 
2554 /*
2555  * Commands during non-blocking write - use Set Block Count (CMD23).
2556  */
2557 static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2558 {
2559 	return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2560 }
2561 
2562 static const struct mmc_test_case mmc_test_cases[] = {
2563 	{
2564 		.name = "Basic write (no data verification)",
2565 		.run = mmc_test_basic_write,
2566 	},
2567 
2568 	{
2569 		.name = "Basic read (no data verification)",
2570 		.run = mmc_test_basic_read,
2571 	},
2572 
2573 	{
2574 		.name = "Basic write (with data verification)",
2575 		.prepare = mmc_test_prepare_write,
2576 		.run = mmc_test_verify_write,
2577 		.cleanup = mmc_test_cleanup,
2578 	},
2579 
2580 	{
2581 		.name = "Basic read (with data verification)",
2582 		.prepare = mmc_test_prepare_read,
2583 		.run = mmc_test_verify_read,
2584 		.cleanup = mmc_test_cleanup,
2585 	},
2586 
2587 	{
2588 		.name = "Multi-block write",
2589 		.prepare = mmc_test_prepare_write,
2590 		.run = mmc_test_multi_write,
2591 		.cleanup = mmc_test_cleanup,
2592 	},
2593 
2594 	{
2595 		.name = "Multi-block read",
2596 		.prepare = mmc_test_prepare_read,
2597 		.run = mmc_test_multi_read,
2598 		.cleanup = mmc_test_cleanup,
2599 	},
2600 
2601 	{
2602 		.name = "Power of two block writes",
2603 		.prepare = mmc_test_prepare_write,
2604 		.run = mmc_test_pow2_write,
2605 		.cleanup = mmc_test_cleanup,
2606 	},
2607 
2608 	{
2609 		.name = "Power of two block reads",
2610 		.prepare = mmc_test_prepare_read,
2611 		.run = mmc_test_pow2_read,
2612 		.cleanup = mmc_test_cleanup,
2613 	},
2614 
2615 	{
2616 		.name = "Weird sized block writes",
2617 		.prepare = mmc_test_prepare_write,
2618 		.run = mmc_test_weird_write,
2619 		.cleanup = mmc_test_cleanup,
2620 	},
2621 
2622 	{
2623 		.name = "Weird sized block reads",
2624 		.prepare = mmc_test_prepare_read,
2625 		.run = mmc_test_weird_read,
2626 		.cleanup = mmc_test_cleanup,
2627 	},
2628 
2629 	{
2630 		.name = "Badly aligned write",
2631 		.prepare = mmc_test_prepare_write,
2632 		.run = mmc_test_align_write,
2633 		.cleanup = mmc_test_cleanup,
2634 	},
2635 
2636 	{
2637 		.name = "Badly aligned read",
2638 		.prepare = mmc_test_prepare_read,
2639 		.run = mmc_test_align_read,
2640 		.cleanup = mmc_test_cleanup,
2641 	},
2642 
2643 	{
2644 		.name = "Badly aligned multi-block write",
2645 		.prepare = mmc_test_prepare_write,
2646 		.run = mmc_test_align_multi_write,
2647 		.cleanup = mmc_test_cleanup,
2648 	},
2649 
2650 	{
2651 		.name = "Badly aligned multi-block read",
2652 		.prepare = mmc_test_prepare_read,
2653 		.run = mmc_test_align_multi_read,
2654 		.cleanup = mmc_test_cleanup,
2655 	},
2656 
2657 	{
2658 		.name = "Proper xfer_size at write (start failure)",
2659 		.run = mmc_test_xfersize_write,
2660 	},
2661 
2662 	{
2663 		.name = "Proper xfer_size at read (start failure)",
2664 		.run = mmc_test_xfersize_read,
2665 	},
2666 
2667 	{
2668 		.name = "Proper xfer_size at write (midway failure)",
2669 		.run = mmc_test_multi_xfersize_write,
2670 	},
2671 
2672 	{
2673 		.name = "Proper xfer_size at read (midway failure)",
2674 		.run = mmc_test_multi_xfersize_read,
2675 	},
2676 
2677 #ifdef CONFIG_HIGHMEM
2678 
2679 	{
2680 		.name = "Highmem write",
2681 		.prepare = mmc_test_prepare_write,
2682 		.run = mmc_test_write_high,
2683 		.cleanup = mmc_test_cleanup,
2684 	},
2685 
2686 	{
2687 		.name = "Highmem read",
2688 		.prepare = mmc_test_prepare_read,
2689 		.run = mmc_test_read_high,
2690 		.cleanup = mmc_test_cleanup,
2691 	},
2692 
2693 	{
2694 		.name = "Multi-block highmem write",
2695 		.prepare = mmc_test_prepare_write,
2696 		.run = mmc_test_multi_write_high,
2697 		.cleanup = mmc_test_cleanup,
2698 	},
2699 
2700 	{
2701 		.name = "Multi-block highmem read",
2702 		.prepare = mmc_test_prepare_read,
2703 		.run = mmc_test_multi_read_high,
2704 		.cleanup = mmc_test_cleanup,
2705 	},
2706 
2707 #else
2708 
2709 	{
2710 		.name = "Highmem write",
2711 		.run = mmc_test_no_highmem,
2712 	},
2713 
2714 	{
2715 		.name = "Highmem read",
2716 		.run = mmc_test_no_highmem,
2717 	},
2718 
2719 	{
2720 		.name = "Multi-block highmem write",
2721 		.run = mmc_test_no_highmem,
2722 	},
2723 
2724 	{
2725 		.name = "Multi-block highmem read",
2726 		.run = mmc_test_no_highmem,
2727 	},
2728 
2729 #endif /* CONFIG_HIGHMEM */
2730 
2731 	{
2732 		.name = "Best-case read performance",
2733 		.prepare = mmc_test_area_prepare_fill,
2734 		.run = mmc_test_best_read_performance,
2735 		.cleanup = mmc_test_area_cleanup,
2736 	},
2737 
2738 	{
2739 		.name = "Best-case write performance",
2740 		.prepare = mmc_test_area_prepare_erase,
2741 		.run = mmc_test_best_write_performance,
2742 		.cleanup = mmc_test_area_cleanup,
2743 	},
2744 
2745 	{
2746 		.name = "Best-case read performance into scattered pages",
2747 		.prepare = mmc_test_area_prepare_fill,
2748 		.run = mmc_test_best_read_perf_max_scatter,
2749 		.cleanup = mmc_test_area_cleanup,
2750 	},
2751 
2752 	{
2753 		.name = "Best-case write performance from scattered pages",
2754 		.prepare = mmc_test_area_prepare_erase,
2755 		.run = mmc_test_best_write_perf_max_scatter,
2756 		.cleanup = mmc_test_area_cleanup,
2757 	},
2758 
2759 	{
2760 		.name = "Single read performance by transfer size",
2761 		.prepare = mmc_test_area_prepare_fill,
2762 		.run = mmc_test_profile_read_perf,
2763 		.cleanup = mmc_test_area_cleanup,
2764 	},
2765 
2766 	{
2767 		.name = "Single write performance by transfer size",
2768 		.prepare = mmc_test_area_prepare,
2769 		.run = mmc_test_profile_write_perf,
2770 		.cleanup = mmc_test_area_cleanup,
2771 	},
2772 
2773 	{
2774 		.name = "Single trim performance by transfer size",
2775 		.prepare = mmc_test_area_prepare_fill,
2776 		.run = mmc_test_profile_trim_perf,
2777 		.cleanup = mmc_test_area_cleanup,
2778 	},
2779 
2780 	{
2781 		.name = "Consecutive read performance by transfer size",
2782 		.prepare = mmc_test_area_prepare_fill,
2783 		.run = mmc_test_profile_seq_read_perf,
2784 		.cleanup = mmc_test_area_cleanup,
2785 	},
2786 
2787 	{
2788 		.name = "Consecutive write performance by transfer size",
2789 		.prepare = mmc_test_area_prepare,
2790 		.run = mmc_test_profile_seq_write_perf,
2791 		.cleanup = mmc_test_area_cleanup,
2792 	},
2793 
2794 	{
2795 		.name = "Consecutive trim performance by transfer size",
2796 		.prepare = mmc_test_area_prepare,
2797 		.run = mmc_test_profile_seq_trim_perf,
2798 		.cleanup = mmc_test_area_cleanup,
2799 	},
2800 
2801 	{
2802 		.name = "Random read performance by transfer size",
2803 		.prepare = mmc_test_area_prepare,
2804 		.run = mmc_test_random_read_perf,
2805 		.cleanup = mmc_test_area_cleanup,
2806 	},
2807 
2808 	{
2809 		.name = "Random write performance by transfer size",
2810 		.prepare = mmc_test_area_prepare,
2811 		.run = mmc_test_random_write_perf,
2812 		.cleanup = mmc_test_area_cleanup,
2813 	},
2814 
2815 	{
2816 		.name = "Large sequential read into scattered pages",
2817 		.prepare = mmc_test_area_prepare,
2818 		.run = mmc_test_large_seq_read_perf,
2819 		.cleanup = mmc_test_area_cleanup,
2820 	},
2821 
2822 	{
2823 		.name = "Large sequential write from scattered pages",
2824 		.prepare = mmc_test_area_prepare,
2825 		.run = mmc_test_large_seq_write_perf,
2826 		.cleanup = mmc_test_area_cleanup,
2827 	},
2828 
2829 	{
2830 		.name = "Write performance with blocking req 4k to 4MB",
2831 		.prepare = mmc_test_area_prepare,
2832 		.run = mmc_test_profile_mult_write_blocking_perf,
2833 		.cleanup = mmc_test_area_cleanup,
2834 	},
2835 
2836 	{
2837 		.name = "Write performance with non-blocking req 4k to 4MB",
2838 		.prepare = mmc_test_area_prepare,
2839 		.run = mmc_test_profile_mult_write_nonblock_perf,
2840 		.cleanup = mmc_test_area_cleanup,
2841 	},
2842 
2843 	{
2844 		.name = "Read performance with blocking req 4k to 4MB",
2845 		.prepare = mmc_test_area_prepare,
2846 		.run = mmc_test_profile_mult_read_blocking_perf,
2847 		.cleanup = mmc_test_area_cleanup,
2848 	},
2849 
2850 	{
2851 		.name = "Read performance with non-blocking req 4k to 4MB",
2852 		.prepare = mmc_test_area_prepare,
2853 		.run = mmc_test_profile_mult_read_nonblock_perf,
2854 		.cleanup = mmc_test_area_cleanup,
2855 	},
2856 
2857 	{
2858 		.name = "Write performance blocking req 1 to 512 sg elems",
2859 		.prepare = mmc_test_area_prepare,
2860 		.run = mmc_test_profile_sglen_wr_blocking_perf,
2861 		.cleanup = mmc_test_area_cleanup,
2862 	},
2863 
2864 	{
2865 		.name = "Write performance non-blocking req 1 to 512 sg elems",
2866 		.prepare = mmc_test_area_prepare,
2867 		.run = mmc_test_profile_sglen_wr_nonblock_perf,
2868 		.cleanup = mmc_test_area_cleanup,
2869 	},
2870 
2871 	{
2872 		.name = "Read performance blocking req 1 to 512 sg elems",
2873 		.prepare = mmc_test_area_prepare,
2874 		.run = mmc_test_profile_sglen_r_blocking_perf,
2875 		.cleanup = mmc_test_area_cleanup,
2876 	},
2877 
2878 	{
2879 		.name = "Read performance non-blocking req 1 to 512 sg elems",
2880 		.prepare = mmc_test_area_prepare,
2881 		.run = mmc_test_profile_sglen_r_nonblock_perf,
2882 		.cleanup = mmc_test_area_cleanup,
2883 	},
2884 
2885 	{
2886 		.name = "Reset test",
2887 		.run = mmc_test_reset,
2888 	},
2889 
2890 	{
2891 		.name = "Commands during read - no Set Block Count (CMD23)",
2892 		.prepare = mmc_test_area_prepare,
2893 		.run = mmc_test_cmds_during_read,
2894 		.cleanup = mmc_test_area_cleanup,
2895 	},
2896 
2897 	{
2898 		.name = "Commands during write - no Set Block Count (CMD23)",
2899 		.prepare = mmc_test_area_prepare,
2900 		.run = mmc_test_cmds_during_write,
2901 		.cleanup = mmc_test_area_cleanup,
2902 	},
2903 
2904 	{
2905 		.name = "Commands during read - use Set Block Count (CMD23)",
2906 		.prepare = mmc_test_area_prepare,
2907 		.run = mmc_test_cmds_during_read_cmd23,
2908 		.cleanup = mmc_test_area_cleanup,
2909 	},
2910 
2911 	{
2912 		.name = "Commands during write - use Set Block Count (CMD23)",
2913 		.prepare = mmc_test_area_prepare,
2914 		.run = mmc_test_cmds_during_write_cmd23,
2915 		.cleanup = mmc_test_area_cleanup,
2916 	},
2917 
2918 	{
2919 		.name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2920 		.prepare = mmc_test_area_prepare,
2921 		.run = mmc_test_cmds_during_read_cmd23_nonblock,
2922 		.cleanup = mmc_test_area_cleanup,
2923 	},
2924 
2925 	{
2926 		.name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2927 		.prepare = mmc_test_area_prepare,
2928 		.run = mmc_test_cmds_during_write_cmd23_nonblock,
2929 		.cleanup = mmc_test_area_cleanup,
2930 	},
2931 };
2932 
2933 static DEFINE_MUTEX(mmc_test_lock);
2934 
2935 static LIST_HEAD(mmc_test_result);
2936 
2937 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2938 {
2939 	int i, ret;
2940 
2941 	pr_info("%s: Starting tests of card %s...\n",
2942 		mmc_hostname(test->card->host), mmc_card_id(test->card));
2943 
2944 	mmc_claim_host(test->card->host);
2945 
2946 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2947 		struct mmc_test_general_result *gr;
2948 
2949 		if (testcase && ((i + 1) != testcase))
2950 			continue;
2951 
2952 		pr_info("%s: Test case %d. %s...\n",
2953 			mmc_hostname(test->card->host), i + 1,
2954 			mmc_test_cases[i].name);
2955 
2956 		if (mmc_test_cases[i].prepare) {
2957 			ret = mmc_test_cases[i].prepare(test);
2958 			if (ret) {
2959 				pr_info("%s: Result: Prepare stage failed! (%d)\n",
2960 					mmc_hostname(test->card->host),
2961 					ret);
2962 				continue;
2963 			}
2964 		}
2965 
2966 		gr = kzalloc(sizeof(*gr), GFP_KERNEL);
2967 		if (gr) {
2968 			INIT_LIST_HEAD(&gr->tr_lst);
2969 
2970 			/* Assign data what we know already */
2971 			gr->card = test->card;
2972 			gr->testcase = i;
2973 
2974 			/* Append container to global one */
2975 			list_add_tail(&gr->link, &mmc_test_result);
2976 
2977 			/*
2978 			 * Save the pointer to created container in our private
2979 			 * structure.
2980 			 */
2981 			test->gr = gr;
2982 		}
2983 
2984 		ret = mmc_test_cases[i].run(test);
2985 		switch (ret) {
2986 		case RESULT_OK:
2987 			pr_info("%s: Result: OK\n",
2988 				mmc_hostname(test->card->host));
2989 			break;
2990 		case RESULT_FAIL:
2991 			pr_info("%s: Result: FAILED\n",
2992 				mmc_hostname(test->card->host));
2993 			break;
2994 		case RESULT_UNSUP_HOST:
2995 			pr_info("%s: Result: UNSUPPORTED (by host)\n",
2996 				mmc_hostname(test->card->host));
2997 			break;
2998 		case RESULT_UNSUP_CARD:
2999 			pr_info("%s: Result: UNSUPPORTED (by card)\n",
3000 				mmc_hostname(test->card->host));
3001 			break;
3002 		default:
3003 			pr_info("%s: Result: ERROR (%d)\n",
3004 				mmc_hostname(test->card->host), ret);
3005 		}
3006 
3007 		/* Save the result */
3008 		if (gr)
3009 			gr->result = ret;
3010 
3011 		if (mmc_test_cases[i].cleanup) {
3012 			ret = mmc_test_cases[i].cleanup(test);
3013 			if (ret) {
3014 				pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
3015 					mmc_hostname(test->card->host),
3016 					ret);
3017 			}
3018 		}
3019 	}
3020 
3021 	mmc_release_host(test->card->host);
3022 
3023 	pr_info("%s: Tests completed.\n",
3024 		mmc_hostname(test->card->host));
3025 }
3026 
3027 static void mmc_test_free_result(struct mmc_card *card)
3028 {
3029 	struct mmc_test_general_result *gr, *grs;
3030 
3031 	mutex_lock(&mmc_test_lock);
3032 
3033 	list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3034 		struct mmc_test_transfer_result *tr, *trs;
3035 
3036 		if (card && gr->card != card)
3037 			continue;
3038 
3039 		list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3040 			list_del(&tr->link);
3041 			kfree(tr);
3042 		}
3043 
3044 		list_del(&gr->link);
3045 		kfree(gr);
3046 	}
3047 
3048 	mutex_unlock(&mmc_test_lock);
3049 }
3050 
3051 static LIST_HEAD(mmc_test_file_test);
3052 
3053 static int mtf_test_show(struct seq_file *sf, void *data)
3054 {
3055 	struct mmc_card *card = (struct mmc_card *)sf->private;
3056 	struct mmc_test_general_result *gr;
3057 
3058 	mutex_lock(&mmc_test_lock);
3059 
3060 	list_for_each_entry(gr, &mmc_test_result, link) {
3061 		struct mmc_test_transfer_result *tr;
3062 
3063 		if (gr->card != card)
3064 			continue;
3065 
3066 		seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3067 
3068 		list_for_each_entry(tr, &gr->tr_lst, link) {
3069 			seq_printf(sf, "%u %d %llu.%09u %u %u.%02u\n",
3070 				tr->count, tr->sectors,
3071 				(u64)tr->ts.tv_sec, (u32)tr->ts.tv_nsec,
3072 				tr->rate, tr->iops / 100, tr->iops % 100);
3073 		}
3074 	}
3075 
3076 	mutex_unlock(&mmc_test_lock);
3077 
3078 	return 0;
3079 }
3080 
3081 static int mtf_test_open(struct inode *inode, struct file *file)
3082 {
3083 	return single_open(file, mtf_test_show, inode->i_private);
3084 }
3085 
3086 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3087 	size_t count, loff_t *pos)
3088 {
3089 	struct seq_file *sf = (struct seq_file *)file->private_data;
3090 	struct mmc_card *card = (struct mmc_card *)sf->private;
3091 	struct mmc_test_card *test;
3092 	long testcase;
3093 	int ret;
3094 
3095 	ret = kstrtol_from_user(buf, count, 10, &testcase);
3096 	if (ret)
3097 		return ret;
3098 
3099 	test = kzalloc(sizeof(*test), GFP_KERNEL);
3100 	if (!test)
3101 		return -ENOMEM;
3102 
3103 	/*
3104 	 * Remove all test cases associated with given card. Thus we have only
3105 	 * actual data of the last run.
3106 	 */
3107 	mmc_test_free_result(card);
3108 
3109 	test->card = card;
3110 
3111 	test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3112 #ifdef CONFIG_HIGHMEM
3113 	test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3114 #endif
3115 
3116 #ifdef CONFIG_HIGHMEM
3117 	if (test->buffer && test->highmem) {
3118 #else
3119 	if (test->buffer) {
3120 #endif
3121 		mutex_lock(&mmc_test_lock);
3122 		mmc_test_run(test, testcase);
3123 		mutex_unlock(&mmc_test_lock);
3124 	}
3125 
3126 #ifdef CONFIG_HIGHMEM
3127 	__free_pages(test->highmem, BUFFER_ORDER);
3128 #endif
3129 	kfree(test->buffer);
3130 	kfree(test);
3131 
3132 	return count;
3133 }
3134 
3135 static const struct file_operations mmc_test_fops_test = {
3136 	.open		= mtf_test_open,
3137 	.read		= seq_read,
3138 	.write		= mtf_test_write,
3139 	.llseek		= seq_lseek,
3140 	.release	= single_release,
3141 };
3142 
3143 static int mtf_testlist_show(struct seq_file *sf, void *data)
3144 {
3145 	int i;
3146 
3147 	mutex_lock(&mmc_test_lock);
3148 
3149 	seq_puts(sf, "0:\tRun all tests\n");
3150 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3151 		seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3152 
3153 	mutex_unlock(&mmc_test_lock);
3154 
3155 	return 0;
3156 }
3157 
3158 DEFINE_SHOW_ATTRIBUTE(mtf_testlist);
3159 
3160 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3161 {
3162 	struct mmc_test_dbgfs_file *df, *dfs;
3163 
3164 	mutex_lock(&mmc_test_lock);
3165 
3166 	list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3167 		if (card && df->card != card)
3168 			continue;
3169 		debugfs_remove(df->file);
3170 		list_del(&df->link);
3171 		kfree(df);
3172 	}
3173 
3174 	mutex_unlock(&mmc_test_lock);
3175 }
3176 
3177 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3178 	const char *name, umode_t mode, const struct file_operations *fops)
3179 {
3180 	struct dentry *file = NULL;
3181 	struct mmc_test_dbgfs_file *df;
3182 
3183 	if (card->debugfs_root)
3184 		debugfs_create_file(name, mode, card->debugfs_root, card, fops);
3185 
3186 	df = kmalloc(sizeof(*df), GFP_KERNEL);
3187 	if (!df) {
3188 		debugfs_remove(file);
3189 		return -ENOMEM;
3190 	}
3191 
3192 	df->card = card;
3193 	df->file = file;
3194 
3195 	list_add(&df->link, &mmc_test_file_test);
3196 	return 0;
3197 }
3198 
3199 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3200 {
3201 	int ret;
3202 
3203 	mutex_lock(&mmc_test_lock);
3204 
3205 	ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3206 		&mmc_test_fops_test);
3207 	if (ret)
3208 		goto err;
3209 
3210 	ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3211 		&mtf_testlist_fops);
3212 	if (ret)
3213 		goto err;
3214 
3215 err:
3216 	mutex_unlock(&mmc_test_lock);
3217 
3218 	return ret;
3219 }
3220 
3221 static int mmc_test_probe(struct mmc_card *card)
3222 {
3223 	int ret;
3224 
3225 	if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3226 		return -ENODEV;
3227 
3228 	ret = mmc_test_register_dbgfs_file(card);
3229 	if (ret)
3230 		return ret;
3231 
3232 	if (card->ext_csd.cmdq_en) {
3233 		mmc_claim_host(card->host);
3234 		ret = mmc_cmdq_disable(card);
3235 		mmc_release_host(card->host);
3236 		if (ret)
3237 			return ret;
3238 	}
3239 
3240 	dev_info(&card->dev, "Card claimed for testing.\n");
3241 
3242 	return 0;
3243 }
3244 
3245 static void mmc_test_remove(struct mmc_card *card)
3246 {
3247 	if (card->reenable_cmdq) {
3248 		mmc_claim_host(card->host);
3249 		mmc_cmdq_enable(card);
3250 		mmc_release_host(card->host);
3251 	}
3252 	mmc_test_free_result(card);
3253 	mmc_test_free_dbgfs_file(card);
3254 }
3255 
3256 static struct mmc_driver mmc_driver = {
3257 	.drv		= {
3258 		.name	= "mmc_test",
3259 	},
3260 	.probe		= mmc_test_probe,
3261 	.remove		= mmc_test_remove,
3262 };
3263 
3264 static int __init mmc_test_init(void)
3265 {
3266 	return mmc_register_driver(&mmc_driver);
3267 }
3268 
3269 static void __exit mmc_test_exit(void)
3270 {
3271 	/* Clear stalled data if card is still plugged */
3272 	mmc_test_free_result(NULL);
3273 	mmc_test_free_dbgfs_file(NULL);
3274 
3275 	mmc_unregister_driver(&mmc_driver);
3276 }
3277 
3278 module_init(mmc_test_init);
3279 module_exit(mmc_test_exit);
3280 
3281 MODULE_LICENSE("GPL");
3282 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3283 MODULE_AUTHOR("Pierre Ossman");
3284