xref: /openbmc/linux/drivers/mmc/core/mmc_test.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright 2007-2008 Pierre Ossman
4  */
5 
6 #include <linux/mmc/core.h>
7 #include <linux/mmc/card.h>
8 #include <linux/mmc/host.h>
9 #include <linux/mmc/mmc.h>
10 #include <linux/slab.h>
11 
12 #include <linux/scatterlist.h>
13 #include <linux/list.h>
14 
15 #include <linux/debugfs.h>
16 #include <linux/uaccess.h>
17 #include <linux/seq_file.h>
18 #include <linux/module.h>
19 
20 #include "core.h"
21 #include "card.h"
22 #include "host.h"
23 #include "bus.h"
24 #include "mmc_ops.h"
25 
26 #define RESULT_OK		0
27 #define RESULT_FAIL		1
28 #define RESULT_UNSUP_HOST	2
29 #define RESULT_UNSUP_CARD	3
30 
31 #define BUFFER_ORDER		2
32 #define BUFFER_SIZE		(PAGE_SIZE << BUFFER_ORDER)
33 
34 #define TEST_ALIGN_END		8
35 
36 /*
37  * Limit the test area size to the maximum MMC HC erase group size.  Note that
38  * the maximum SD allocation unit size is just 4MiB.
39  */
40 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
41 
42 /**
43  * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
44  * @page: first page in the allocation
45  * @order: order of the number of pages allocated
46  */
47 struct mmc_test_pages {
48 	struct page *page;
49 	unsigned int order;
50 };
51 
52 /**
53  * struct mmc_test_mem - allocated memory.
54  * @arr: array of allocations
55  * @cnt: number of allocations
56  */
57 struct mmc_test_mem {
58 	struct mmc_test_pages *arr;
59 	unsigned int cnt;
60 };
61 
62 /**
63  * struct mmc_test_area - information for performance tests.
64  * @max_sz: test area size (in bytes)
65  * @dev_addr: address on card at which to do performance tests
66  * @max_tfr: maximum transfer size allowed by driver (in bytes)
67  * @max_segs: maximum segments allowed by driver in scatterlist @sg
68  * @max_seg_sz: maximum segment size allowed by driver
69  * @blocks: number of (512 byte) blocks currently mapped by @sg
70  * @sg_len: length of currently mapped scatterlist @sg
71  * @mem: allocated memory
72  * @sg: scatterlist
73  * @sg_areq: scatterlist for non-blocking request
74  */
75 struct mmc_test_area {
76 	unsigned long max_sz;
77 	unsigned int dev_addr;
78 	unsigned int max_tfr;
79 	unsigned int max_segs;
80 	unsigned int max_seg_sz;
81 	unsigned int blocks;
82 	unsigned int sg_len;
83 	struct mmc_test_mem *mem;
84 	struct scatterlist *sg;
85 	struct scatterlist *sg_areq;
86 };
87 
88 /**
89  * struct mmc_test_transfer_result - transfer results for performance tests.
90  * @link: double-linked list
91  * @count: amount of group of sectors to check
92  * @sectors: amount of sectors to check in one group
93  * @ts: time values of transfer
94  * @rate: calculated transfer rate
95  * @iops: I/O operations per second (times 100)
96  */
97 struct mmc_test_transfer_result {
98 	struct list_head link;
99 	unsigned int count;
100 	unsigned int sectors;
101 	struct timespec64 ts;
102 	unsigned int rate;
103 	unsigned int iops;
104 };
105 
106 /**
107  * struct mmc_test_general_result - results for tests.
108  * @link: double-linked list
109  * @card: card under test
110  * @testcase: number of test case
111  * @result: result of test run
112  * @tr_lst: transfer measurements if any as mmc_test_transfer_result
113  */
114 struct mmc_test_general_result {
115 	struct list_head link;
116 	struct mmc_card *card;
117 	int testcase;
118 	int result;
119 	struct list_head tr_lst;
120 };
121 
122 /**
123  * struct mmc_test_dbgfs_file - debugfs related file.
124  * @link: double-linked list
125  * @card: card under test
126  * @file: file created under debugfs
127  */
128 struct mmc_test_dbgfs_file {
129 	struct list_head link;
130 	struct mmc_card *card;
131 	struct dentry *file;
132 };
133 
134 /**
135  * struct mmc_test_card - test information.
136  * @card: card under test
137  * @scratch: transfer buffer
138  * @buffer: transfer buffer
139  * @highmem: buffer for highmem tests
140  * @area: information for performance tests
141  * @gr: pointer to results of current testcase
142  */
143 struct mmc_test_card {
144 	struct mmc_card	*card;
145 
146 	u8		scratch[BUFFER_SIZE];
147 	u8		*buffer;
148 #ifdef CONFIG_HIGHMEM
149 	struct page	*highmem;
150 #endif
151 	struct mmc_test_area		area;
152 	struct mmc_test_general_result	*gr;
153 };
154 
155 enum mmc_test_prep_media {
156 	MMC_TEST_PREP_NONE = 0,
157 	MMC_TEST_PREP_WRITE_FULL = 1 << 0,
158 	MMC_TEST_PREP_ERASE = 1 << 1,
159 };
160 
161 struct mmc_test_multiple_rw {
162 	unsigned int *sg_len;
163 	unsigned int *bs;
164 	unsigned int len;
165 	unsigned int size;
166 	bool do_write;
167 	bool do_nonblock_req;
168 	enum mmc_test_prep_media prepare;
169 };
170 
171 /*******************************************************************/
172 /*  General helper functions                                       */
173 /*******************************************************************/
174 
175 /*
176  * Configure correct block size in card
177  */
178 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
179 {
180 	return mmc_set_blocklen(test->card, size);
181 }
182 
183 static bool mmc_test_card_cmd23(struct mmc_card *card)
184 {
185 	return mmc_card_mmc(card) ||
186 	       (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
187 }
188 
189 static void mmc_test_prepare_sbc(struct mmc_test_card *test,
190 				 struct mmc_request *mrq, unsigned int blocks)
191 {
192 	struct mmc_card *card = test->card;
193 
194 	if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
195 	    !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
196 	    (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
197 		mrq->sbc = NULL;
198 		return;
199 	}
200 
201 	mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
202 	mrq->sbc->arg = blocks;
203 	mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
204 }
205 
206 /*
207  * Fill in the mmc_request structure given a set of transfer parameters.
208  */
209 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
210 	struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
211 	unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
212 {
213 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
214 		return;
215 
216 	if (blocks > 1) {
217 		mrq->cmd->opcode = write ?
218 			MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
219 	} else {
220 		mrq->cmd->opcode = write ?
221 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
222 	}
223 
224 	mrq->cmd->arg = dev_addr;
225 	if (!mmc_card_blockaddr(test->card))
226 		mrq->cmd->arg <<= 9;
227 
228 	mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
229 
230 	if (blocks == 1)
231 		mrq->stop = NULL;
232 	else {
233 		mrq->stop->opcode = MMC_STOP_TRANSMISSION;
234 		mrq->stop->arg = 0;
235 		mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
236 	}
237 
238 	mrq->data->blksz = blksz;
239 	mrq->data->blocks = blocks;
240 	mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
241 	mrq->data->sg = sg;
242 	mrq->data->sg_len = sg_len;
243 
244 	mmc_test_prepare_sbc(test, mrq, blocks);
245 
246 	mmc_set_data_timeout(mrq->data, test->card);
247 }
248 
249 static int mmc_test_busy(struct mmc_command *cmd)
250 {
251 	return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
252 		(R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
253 }
254 
255 /*
256  * Wait for the card to finish the busy state
257  */
258 static int mmc_test_wait_busy(struct mmc_test_card *test)
259 {
260 	int ret, busy;
261 	struct mmc_command cmd = {};
262 
263 	busy = 0;
264 	do {
265 		memset(&cmd, 0, sizeof(struct mmc_command));
266 
267 		cmd.opcode = MMC_SEND_STATUS;
268 		cmd.arg = test->card->rca << 16;
269 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
270 
271 		ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
272 		if (ret)
273 			break;
274 
275 		if (!busy && mmc_test_busy(&cmd)) {
276 			busy = 1;
277 			if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
278 				pr_info("%s: Warning: Host did not wait for busy state to end.\n",
279 					mmc_hostname(test->card->host));
280 		}
281 	} while (mmc_test_busy(&cmd));
282 
283 	return ret;
284 }
285 
286 /*
287  * Transfer a single sector of kernel addressable data
288  */
289 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
290 	u8 *buffer, unsigned addr, unsigned blksz, int write)
291 {
292 	struct mmc_request mrq = {};
293 	struct mmc_command cmd = {};
294 	struct mmc_command stop = {};
295 	struct mmc_data data = {};
296 
297 	struct scatterlist sg;
298 
299 	mrq.cmd = &cmd;
300 	mrq.data = &data;
301 	mrq.stop = &stop;
302 
303 	sg_init_one(&sg, buffer, blksz);
304 
305 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
306 
307 	mmc_wait_for_req(test->card->host, &mrq);
308 
309 	if (cmd.error)
310 		return cmd.error;
311 	if (data.error)
312 		return data.error;
313 
314 	return mmc_test_wait_busy(test);
315 }
316 
317 static void mmc_test_free_mem(struct mmc_test_mem *mem)
318 {
319 	if (!mem)
320 		return;
321 	while (mem->cnt--)
322 		__free_pages(mem->arr[mem->cnt].page,
323 			     mem->arr[mem->cnt].order);
324 	kfree(mem->arr);
325 	kfree(mem);
326 }
327 
328 /*
329  * Allocate a lot of memory, preferably max_sz but at least min_sz.  In case
330  * there isn't much memory do not exceed 1/16th total lowmem pages.  Also do
331  * not exceed a maximum number of segments and try not to make segments much
332  * bigger than maximum segment size.
333  */
334 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
335 					       unsigned long max_sz,
336 					       unsigned int max_segs,
337 					       unsigned int max_seg_sz)
338 {
339 	unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
340 	unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
341 	unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
342 	unsigned long page_cnt = 0;
343 	unsigned long limit = nr_free_buffer_pages() >> 4;
344 	struct mmc_test_mem *mem;
345 
346 	if (max_page_cnt > limit)
347 		max_page_cnt = limit;
348 	if (min_page_cnt > max_page_cnt)
349 		min_page_cnt = max_page_cnt;
350 
351 	if (max_seg_page_cnt > max_page_cnt)
352 		max_seg_page_cnt = max_page_cnt;
353 
354 	if (max_segs > max_page_cnt)
355 		max_segs = max_page_cnt;
356 
357 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
358 	if (!mem)
359 		return NULL;
360 
361 	mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
362 	if (!mem->arr)
363 		goto out_free;
364 
365 	while (max_page_cnt) {
366 		struct page *page;
367 		unsigned int order;
368 		gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
369 				__GFP_NORETRY;
370 
371 		order = get_order(max_seg_page_cnt << PAGE_SHIFT);
372 		while (1) {
373 			page = alloc_pages(flags, order);
374 			if (page || !order)
375 				break;
376 			order -= 1;
377 		}
378 		if (!page) {
379 			if (page_cnt < min_page_cnt)
380 				goto out_free;
381 			break;
382 		}
383 		mem->arr[mem->cnt].page = page;
384 		mem->arr[mem->cnt].order = order;
385 		mem->cnt += 1;
386 		if (max_page_cnt <= (1UL << order))
387 			break;
388 		max_page_cnt -= 1UL << order;
389 		page_cnt += 1UL << order;
390 		if (mem->cnt >= max_segs) {
391 			if (page_cnt < min_page_cnt)
392 				goto out_free;
393 			break;
394 		}
395 	}
396 
397 	return mem;
398 
399 out_free:
400 	mmc_test_free_mem(mem);
401 	return NULL;
402 }
403 
404 /*
405  * Map memory into a scatterlist.  Optionally allow the same memory to be
406  * mapped more than once.
407  */
408 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
409 			   struct scatterlist *sglist, int repeat,
410 			   unsigned int max_segs, unsigned int max_seg_sz,
411 			   unsigned int *sg_len, int min_sg_len)
412 {
413 	struct scatterlist *sg = NULL;
414 	unsigned int i;
415 	unsigned long sz = size;
416 
417 	sg_init_table(sglist, max_segs);
418 	if (min_sg_len > max_segs)
419 		min_sg_len = max_segs;
420 
421 	*sg_len = 0;
422 	do {
423 		for (i = 0; i < mem->cnt; i++) {
424 			unsigned long len = PAGE_SIZE << mem->arr[i].order;
425 
426 			if (min_sg_len && (size / min_sg_len < len))
427 				len = ALIGN(size / min_sg_len, 512);
428 			if (len > sz)
429 				len = sz;
430 			if (len > max_seg_sz)
431 				len = max_seg_sz;
432 			if (sg)
433 				sg = sg_next(sg);
434 			else
435 				sg = sglist;
436 			if (!sg)
437 				return -EINVAL;
438 			sg_set_page(sg, mem->arr[i].page, len, 0);
439 			sz -= len;
440 			*sg_len += 1;
441 			if (!sz)
442 				break;
443 		}
444 	} while (sz && repeat);
445 
446 	if (sz)
447 		return -EINVAL;
448 
449 	if (sg)
450 		sg_mark_end(sg);
451 
452 	return 0;
453 }
454 
455 /*
456  * Map memory into a scatterlist so that no pages are contiguous.  Allow the
457  * same memory to be mapped more than once.
458  */
459 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
460 				       unsigned long sz,
461 				       struct scatterlist *sglist,
462 				       unsigned int max_segs,
463 				       unsigned int max_seg_sz,
464 				       unsigned int *sg_len)
465 {
466 	struct scatterlist *sg = NULL;
467 	unsigned int i = mem->cnt, cnt;
468 	unsigned long len;
469 	void *base, *addr, *last_addr = NULL;
470 
471 	sg_init_table(sglist, max_segs);
472 
473 	*sg_len = 0;
474 	while (sz) {
475 		base = page_address(mem->arr[--i].page);
476 		cnt = 1 << mem->arr[i].order;
477 		while (sz && cnt) {
478 			addr = base + PAGE_SIZE * --cnt;
479 			if (last_addr && last_addr + PAGE_SIZE == addr)
480 				continue;
481 			last_addr = addr;
482 			len = PAGE_SIZE;
483 			if (len > max_seg_sz)
484 				len = max_seg_sz;
485 			if (len > sz)
486 				len = sz;
487 			if (sg)
488 				sg = sg_next(sg);
489 			else
490 				sg = sglist;
491 			if (!sg)
492 				return -EINVAL;
493 			sg_set_page(sg, virt_to_page(addr), len, 0);
494 			sz -= len;
495 			*sg_len += 1;
496 		}
497 		if (i == 0)
498 			i = mem->cnt;
499 	}
500 
501 	if (sg)
502 		sg_mark_end(sg);
503 
504 	return 0;
505 }
506 
507 /*
508  * Calculate transfer rate in bytes per second.
509  */
510 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec64 *ts)
511 {
512 	uint64_t ns;
513 
514 	ns = timespec64_to_ns(ts);
515 	bytes *= 1000000000;
516 
517 	while (ns > UINT_MAX) {
518 		bytes >>= 1;
519 		ns >>= 1;
520 	}
521 
522 	if (!ns)
523 		return 0;
524 
525 	do_div(bytes, (uint32_t)ns);
526 
527 	return bytes;
528 }
529 
530 /*
531  * Save transfer results for future usage
532  */
533 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
534 	unsigned int count, unsigned int sectors, struct timespec64 ts,
535 	unsigned int rate, unsigned int iops)
536 {
537 	struct mmc_test_transfer_result *tr;
538 
539 	if (!test->gr)
540 		return;
541 
542 	tr = kmalloc(sizeof(*tr), GFP_KERNEL);
543 	if (!tr)
544 		return;
545 
546 	tr->count = count;
547 	tr->sectors = sectors;
548 	tr->ts = ts;
549 	tr->rate = rate;
550 	tr->iops = iops;
551 
552 	list_add_tail(&tr->link, &test->gr->tr_lst);
553 }
554 
555 /*
556  * Print the transfer rate.
557  */
558 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
559 				struct timespec64 *ts1, struct timespec64 *ts2)
560 {
561 	unsigned int rate, iops, sectors = bytes >> 9;
562 	struct timespec64 ts;
563 
564 	ts = timespec64_sub(*ts2, *ts1);
565 
566 	rate = mmc_test_rate(bytes, &ts);
567 	iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
568 
569 	pr_info("%s: Transfer of %u sectors (%u%s KiB) took %llu.%09u "
570 			 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
571 			 mmc_hostname(test->card->host), sectors, sectors >> 1,
572 			 (sectors & 1 ? ".5" : ""), (u64)ts.tv_sec,
573 			 (u32)ts.tv_nsec, rate / 1000, rate / 1024,
574 			 iops / 100, iops % 100);
575 
576 	mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
577 }
578 
579 /*
580  * Print the average transfer rate.
581  */
582 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
583 				    unsigned int count, struct timespec64 *ts1,
584 				    struct timespec64 *ts2)
585 {
586 	unsigned int rate, iops, sectors = bytes >> 9;
587 	uint64_t tot = bytes * count;
588 	struct timespec64 ts;
589 
590 	ts = timespec64_sub(*ts2, *ts1);
591 
592 	rate = mmc_test_rate(tot, &ts);
593 	iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
594 
595 	pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
596 			 "%llu.%09u seconds (%u kB/s, %u KiB/s, "
597 			 "%u.%02u IOPS, sg_len %d)\n",
598 			 mmc_hostname(test->card->host), count, sectors, count,
599 			 sectors >> 1, (sectors & 1 ? ".5" : ""),
600 			 (u64)ts.tv_sec, (u32)ts.tv_nsec,
601 			 rate / 1000, rate / 1024, iops / 100, iops % 100,
602 			 test->area.sg_len);
603 
604 	mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
605 }
606 
607 /*
608  * Return the card size in sectors.
609  */
610 static unsigned int mmc_test_capacity(struct mmc_card *card)
611 {
612 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
613 		return card->ext_csd.sectors;
614 	else
615 		return card->csd.capacity << (card->csd.read_blkbits - 9);
616 }
617 
618 /*******************************************************************/
619 /*  Test preparation and cleanup                                   */
620 /*******************************************************************/
621 
622 /*
623  * Fill the first couple of sectors of the card with known data
624  * so that bad reads/writes can be detected
625  */
626 static int __mmc_test_prepare(struct mmc_test_card *test, int write, int val)
627 {
628 	int ret, i;
629 
630 	ret = mmc_test_set_blksize(test, 512);
631 	if (ret)
632 		return ret;
633 
634 	if (write)
635 		memset(test->buffer, val, 512);
636 	else {
637 		for (i = 0; i < 512; i++)
638 			test->buffer[i] = i;
639 	}
640 
641 	for (i = 0; i < BUFFER_SIZE / 512; i++) {
642 		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
643 		if (ret)
644 			return ret;
645 	}
646 
647 	return 0;
648 }
649 
650 static int mmc_test_prepare_write(struct mmc_test_card *test)
651 {
652 	return __mmc_test_prepare(test, 1, 0xDF);
653 }
654 
655 static int mmc_test_prepare_read(struct mmc_test_card *test)
656 {
657 	return __mmc_test_prepare(test, 0, 0);
658 }
659 
660 static int mmc_test_cleanup(struct mmc_test_card *test)
661 {
662 	return __mmc_test_prepare(test, 1, 0);
663 }
664 
665 /*******************************************************************/
666 /*  Test execution helpers                                         */
667 /*******************************************************************/
668 
669 /*
670  * Modifies the mmc_request to perform the "short transfer" tests
671  */
672 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
673 	struct mmc_request *mrq, int write)
674 {
675 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
676 		return;
677 
678 	if (mrq->data->blocks > 1) {
679 		mrq->cmd->opcode = write ?
680 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
681 		mrq->stop = NULL;
682 	} else {
683 		mrq->cmd->opcode = MMC_SEND_STATUS;
684 		mrq->cmd->arg = test->card->rca << 16;
685 	}
686 }
687 
688 /*
689  * Checks that a normal transfer didn't have any errors
690  */
691 static int mmc_test_check_result(struct mmc_test_card *test,
692 				 struct mmc_request *mrq)
693 {
694 	int ret;
695 
696 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
697 		return -EINVAL;
698 
699 	ret = 0;
700 
701 	if (mrq->sbc && mrq->sbc->error)
702 		ret = mrq->sbc->error;
703 	if (!ret && mrq->cmd->error)
704 		ret = mrq->cmd->error;
705 	if (!ret && mrq->data->error)
706 		ret = mrq->data->error;
707 	if (!ret && mrq->stop && mrq->stop->error)
708 		ret = mrq->stop->error;
709 	if (!ret && mrq->data->bytes_xfered !=
710 		mrq->data->blocks * mrq->data->blksz)
711 		ret = RESULT_FAIL;
712 
713 	if (ret == -EINVAL)
714 		ret = RESULT_UNSUP_HOST;
715 
716 	return ret;
717 }
718 
719 /*
720  * Checks that a "short transfer" behaved as expected
721  */
722 static int mmc_test_check_broken_result(struct mmc_test_card *test,
723 	struct mmc_request *mrq)
724 {
725 	int ret;
726 
727 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
728 		return -EINVAL;
729 
730 	ret = 0;
731 
732 	if (!ret && mrq->cmd->error)
733 		ret = mrq->cmd->error;
734 	if (!ret && mrq->data->error == 0)
735 		ret = RESULT_FAIL;
736 	if (!ret && mrq->data->error != -ETIMEDOUT)
737 		ret = mrq->data->error;
738 	if (!ret && mrq->stop && mrq->stop->error)
739 		ret = mrq->stop->error;
740 	if (mrq->data->blocks > 1) {
741 		if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
742 			ret = RESULT_FAIL;
743 	} else {
744 		if (!ret && mrq->data->bytes_xfered > 0)
745 			ret = RESULT_FAIL;
746 	}
747 
748 	if (ret == -EINVAL)
749 		ret = RESULT_UNSUP_HOST;
750 
751 	return ret;
752 }
753 
754 struct mmc_test_req {
755 	struct mmc_request mrq;
756 	struct mmc_command sbc;
757 	struct mmc_command cmd;
758 	struct mmc_command stop;
759 	struct mmc_command status;
760 	struct mmc_data data;
761 };
762 
763 /*
764  * Tests nonblock transfer with certain parameters
765  */
766 static void mmc_test_req_reset(struct mmc_test_req *rq)
767 {
768 	memset(rq, 0, sizeof(struct mmc_test_req));
769 
770 	rq->mrq.cmd = &rq->cmd;
771 	rq->mrq.data = &rq->data;
772 	rq->mrq.stop = &rq->stop;
773 }
774 
775 static struct mmc_test_req *mmc_test_req_alloc(void)
776 {
777 	struct mmc_test_req *rq = kmalloc(sizeof(*rq), GFP_KERNEL);
778 
779 	if (rq)
780 		mmc_test_req_reset(rq);
781 
782 	return rq;
783 }
784 
785 static void mmc_test_wait_done(struct mmc_request *mrq)
786 {
787 	complete(&mrq->completion);
788 }
789 
790 static int mmc_test_start_areq(struct mmc_test_card *test,
791 			       struct mmc_request *mrq,
792 			       struct mmc_request *prev_mrq)
793 {
794 	struct mmc_host *host = test->card->host;
795 	int err = 0;
796 
797 	if (mrq) {
798 		init_completion(&mrq->completion);
799 		mrq->done = mmc_test_wait_done;
800 		mmc_pre_req(host, mrq);
801 	}
802 
803 	if (prev_mrq) {
804 		wait_for_completion(&prev_mrq->completion);
805 		err = mmc_test_wait_busy(test);
806 		if (!err)
807 			err = mmc_test_check_result(test, prev_mrq);
808 	}
809 
810 	if (!err && mrq) {
811 		err = mmc_start_request(host, mrq);
812 		if (err)
813 			mmc_retune_release(host);
814 	}
815 
816 	if (prev_mrq)
817 		mmc_post_req(host, prev_mrq, 0);
818 
819 	if (err && mrq)
820 		mmc_post_req(host, mrq, err);
821 
822 	return err;
823 }
824 
825 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
826 				      unsigned int dev_addr, int write,
827 				      int count)
828 {
829 	struct mmc_test_req *rq1, *rq2;
830 	struct mmc_request *mrq, *prev_mrq;
831 	int i;
832 	int ret = RESULT_OK;
833 	struct mmc_test_area *t = &test->area;
834 	struct scatterlist *sg = t->sg;
835 	struct scatterlist *sg_areq = t->sg_areq;
836 
837 	rq1 = mmc_test_req_alloc();
838 	rq2 = mmc_test_req_alloc();
839 	if (!rq1 || !rq2) {
840 		ret = RESULT_FAIL;
841 		goto err;
842 	}
843 
844 	mrq = &rq1->mrq;
845 	prev_mrq = NULL;
846 
847 	for (i = 0; i < count; i++) {
848 		mmc_test_req_reset(container_of(mrq, struct mmc_test_req, mrq));
849 		mmc_test_prepare_mrq(test, mrq, sg, t->sg_len, dev_addr,
850 				     t->blocks, 512, write);
851 		ret = mmc_test_start_areq(test, mrq, prev_mrq);
852 		if (ret)
853 			goto err;
854 
855 		if (!prev_mrq)
856 			prev_mrq = &rq2->mrq;
857 
858 		swap(mrq, prev_mrq);
859 		swap(sg, sg_areq);
860 		dev_addr += t->blocks;
861 	}
862 
863 	ret = mmc_test_start_areq(test, NULL, prev_mrq);
864 err:
865 	kfree(rq1);
866 	kfree(rq2);
867 	return ret;
868 }
869 
870 /*
871  * Tests a basic transfer with certain parameters
872  */
873 static int mmc_test_simple_transfer(struct mmc_test_card *test,
874 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
875 	unsigned blocks, unsigned blksz, int write)
876 {
877 	struct mmc_request mrq = {};
878 	struct mmc_command cmd = {};
879 	struct mmc_command stop = {};
880 	struct mmc_data data = {};
881 
882 	mrq.cmd = &cmd;
883 	mrq.data = &data;
884 	mrq.stop = &stop;
885 
886 	mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
887 		blocks, blksz, write);
888 
889 	mmc_wait_for_req(test->card->host, &mrq);
890 
891 	mmc_test_wait_busy(test);
892 
893 	return mmc_test_check_result(test, &mrq);
894 }
895 
896 /*
897  * Tests a transfer where the card will fail completely or partly
898  */
899 static int mmc_test_broken_transfer(struct mmc_test_card *test,
900 	unsigned blocks, unsigned blksz, int write)
901 {
902 	struct mmc_request mrq = {};
903 	struct mmc_command cmd = {};
904 	struct mmc_command stop = {};
905 	struct mmc_data data = {};
906 
907 	struct scatterlist sg;
908 
909 	mrq.cmd = &cmd;
910 	mrq.data = &data;
911 	mrq.stop = &stop;
912 
913 	sg_init_one(&sg, test->buffer, blocks * blksz);
914 
915 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
916 	mmc_test_prepare_broken_mrq(test, &mrq, write);
917 
918 	mmc_wait_for_req(test->card->host, &mrq);
919 
920 	mmc_test_wait_busy(test);
921 
922 	return mmc_test_check_broken_result(test, &mrq);
923 }
924 
925 /*
926  * Does a complete transfer test where data is also validated
927  *
928  * Note: mmc_test_prepare() must have been done before this call
929  */
930 static int mmc_test_transfer(struct mmc_test_card *test,
931 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
932 	unsigned blocks, unsigned blksz, int write)
933 {
934 	int ret, i;
935 	unsigned long flags;
936 
937 	if (write) {
938 		for (i = 0; i < blocks * blksz; i++)
939 			test->scratch[i] = i;
940 	} else {
941 		memset(test->scratch, 0, BUFFER_SIZE);
942 	}
943 	local_irq_save(flags);
944 	sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
945 	local_irq_restore(flags);
946 
947 	ret = mmc_test_set_blksize(test, blksz);
948 	if (ret)
949 		return ret;
950 
951 	ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
952 		blocks, blksz, write);
953 	if (ret)
954 		return ret;
955 
956 	if (write) {
957 		int sectors;
958 
959 		ret = mmc_test_set_blksize(test, 512);
960 		if (ret)
961 			return ret;
962 
963 		sectors = (blocks * blksz + 511) / 512;
964 		if ((sectors * 512) == (blocks * blksz))
965 			sectors++;
966 
967 		if ((sectors * 512) > BUFFER_SIZE)
968 			return -EINVAL;
969 
970 		memset(test->buffer, 0, sectors * 512);
971 
972 		for (i = 0; i < sectors; i++) {
973 			ret = mmc_test_buffer_transfer(test,
974 				test->buffer + i * 512,
975 				dev_addr + i, 512, 0);
976 			if (ret)
977 				return ret;
978 		}
979 
980 		for (i = 0; i < blocks * blksz; i++) {
981 			if (test->buffer[i] != (u8)i)
982 				return RESULT_FAIL;
983 		}
984 
985 		for (; i < sectors * 512; i++) {
986 			if (test->buffer[i] != 0xDF)
987 				return RESULT_FAIL;
988 		}
989 	} else {
990 		local_irq_save(flags);
991 		sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
992 		local_irq_restore(flags);
993 		for (i = 0; i < blocks * blksz; i++) {
994 			if (test->scratch[i] != (u8)i)
995 				return RESULT_FAIL;
996 		}
997 	}
998 
999 	return 0;
1000 }
1001 
1002 /*******************************************************************/
1003 /*  Tests                                                          */
1004 /*******************************************************************/
1005 
1006 struct mmc_test_case {
1007 	const char *name;
1008 
1009 	int (*prepare)(struct mmc_test_card *);
1010 	int (*run)(struct mmc_test_card *);
1011 	int (*cleanup)(struct mmc_test_card *);
1012 };
1013 
1014 static int mmc_test_basic_write(struct mmc_test_card *test)
1015 {
1016 	int ret;
1017 	struct scatterlist sg;
1018 
1019 	ret = mmc_test_set_blksize(test, 512);
1020 	if (ret)
1021 		return ret;
1022 
1023 	sg_init_one(&sg, test->buffer, 512);
1024 
1025 	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1026 }
1027 
1028 static int mmc_test_basic_read(struct mmc_test_card *test)
1029 {
1030 	int ret;
1031 	struct scatterlist sg;
1032 
1033 	ret = mmc_test_set_blksize(test, 512);
1034 	if (ret)
1035 		return ret;
1036 
1037 	sg_init_one(&sg, test->buffer, 512);
1038 
1039 	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1040 }
1041 
1042 static int mmc_test_verify_write(struct mmc_test_card *test)
1043 {
1044 	struct scatterlist sg;
1045 
1046 	sg_init_one(&sg, test->buffer, 512);
1047 
1048 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1049 }
1050 
1051 static int mmc_test_verify_read(struct mmc_test_card *test)
1052 {
1053 	struct scatterlist sg;
1054 
1055 	sg_init_one(&sg, test->buffer, 512);
1056 
1057 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1058 }
1059 
1060 static int mmc_test_multi_write(struct mmc_test_card *test)
1061 {
1062 	unsigned int size;
1063 	struct scatterlist sg;
1064 
1065 	if (test->card->host->max_blk_count == 1)
1066 		return RESULT_UNSUP_HOST;
1067 
1068 	size = PAGE_SIZE * 2;
1069 	size = min(size, test->card->host->max_req_size);
1070 	size = min(size, test->card->host->max_seg_size);
1071 	size = min(size, test->card->host->max_blk_count * 512);
1072 
1073 	if (size < 1024)
1074 		return RESULT_UNSUP_HOST;
1075 
1076 	sg_init_one(&sg, test->buffer, size);
1077 
1078 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1079 }
1080 
1081 static int mmc_test_multi_read(struct mmc_test_card *test)
1082 {
1083 	unsigned int size;
1084 	struct scatterlist sg;
1085 
1086 	if (test->card->host->max_blk_count == 1)
1087 		return RESULT_UNSUP_HOST;
1088 
1089 	size = PAGE_SIZE * 2;
1090 	size = min(size, test->card->host->max_req_size);
1091 	size = min(size, test->card->host->max_seg_size);
1092 	size = min(size, test->card->host->max_blk_count * 512);
1093 
1094 	if (size < 1024)
1095 		return RESULT_UNSUP_HOST;
1096 
1097 	sg_init_one(&sg, test->buffer, size);
1098 
1099 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1100 }
1101 
1102 static int mmc_test_pow2_write(struct mmc_test_card *test)
1103 {
1104 	int ret, i;
1105 	struct scatterlist sg;
1106 
1107 	if (!test->card->csd.write_partial)
1108 		return RESULT_UNSUP_CARD;
1109 
1110 	for (i = 1; i < 512; i <<= 1) {
1111 		sg_init_one(&sg, test->buffer, i);
1112 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1113 		if (ret)
1114 			return ret;
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 static int mmc_test_pow2_read(struct mmc_test_card *test)
1121 {
1122 	int ret, i;
1123 	struct scatterlist sg;
1124 
1125 	if (!test->card->csd.read_partial)
1126 		return RESULT_UNSUP_CARD;
1127 
1128 	for (i = 1; i < 512; i <<= 1) {
1129 		sg_init_one(&sg, test->buffer, i);
1130 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1131 		if (ret)
1132 			return ret;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 static int mmc_test_weird_write(struct mmc_test_card *test)
1139 {
1140 	int ret, i;
1141 	struct scatterlist sg;
1142 
1143 	if (!test->card->csd.write_partial)
1144 		return RESULT_UNSUP_CARD;
1145 
1146 	for (i = 3; i < 512; i += 7) {
1147 		sg_init_one(&sg, test->buffer, i);
1148 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1149 		if (ret)
1150 			return ret;
1151 	}
1152 
1153 	return 0;
1154 }
1155 
1156 static int mmc_test_weird_read(struct mmc_test_card *test)
1157 {
1158 	int ret, i;
1159 	struct scatterlist sg;
1160 
1161 	if (!test->card->csd.read_partial)
1162 		return RESULT_UNSUP_CARD;
1163 
1164 	for (i = 3; i < 512; i += 7) {
1165 		sg_init_one(&sg, test->buffer, i);
1166 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1167 		if (ret)
1168 			return ret;
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 static int mmc_test_align_write(struct mmc_test_card *test)
1175 {
1176 	int ret, i;
1177 	struct scatterlist sg;
1178 
1179 	for (i = 1; i < TEST_ALIGN_END; i++) {
1180 		sg_init_one(&sg, test->buffer + i, 512);
1181 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1182 		if (ret)
1183 			return ret;
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 static int mmc_test_align_read(struct mmc_test_card *test)
1190 {
1191 	int ret, i;
1192 	struct scatterlist sg;
1193 
1194 	for (i = 1; i < TEST_ALIGN_END; i++) {
1195 		sg_init_one(&sg, test->buffer + i, 512);
1196 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1197 		if (ret)
1198 			return ret;
1199 	}
1200 
1201 	return 0;
1202 }
1203 
1204 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1205 {
1206 	int ret, i;
1207 	unsigned int size;
1208 	struct scatterlist sg;
1209 
1210 	if (test->card->host->max_blk_count == 1)
1211 		return RESULT_UNSUP_HOST;
1212 
1213 	size = PAGE_SIZE * 2;
1214 	size = min(size, test->card->host->max_req_size);
1215 	size = min(size, test->card->host->max_seg_size);
1216 	size = min(size, test->card->host->max_blk_count * 512);
1217 
1218 	if (size < 1024)
1219 		return RESULT_UNSUP_HOST;
1220 
1221 	for (i = 1; i < TEST_ALIGN_END; i++) {
1222 		sg_init_one(&sg, test->buffer + i, size);
1223 		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1224 		if (ret)
1225 			return ret;
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1232 {
1233 	int ret, i;
1234 	unsigned int size;
1235 	struct scatterlist sg;
1236 
1237 	if (test->card->host->max_blk_count == 1)
1238 		return RESULT_UNSUP_HOST;
1239 
1240 	size = PAGE_SIZE * 2;
1241 	size = min(size, test->card->host->max_req_size);
1242 	size = min(size, test->card->host->max_seg_size);
1243 	size = min(size, test->card->host->max_blk_count * 512);
1244 
1245 	if (size < 1024)
1246 		return RESULT_UNSUP_HOST;
1247 
1248 	for (i = 1; i < TEST_ALIGN_END; i++) {
1249 		sg_init_one(&sg, test->buffer + i, size);
1250 		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1251 		if (ret)
1252 			return ret;
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1259 {
1260 	int ret;
1261 
1262 	ret = mmc_test_set_blksize(test, 512);
1263 	if (ret)
1264 		return ret;
1265 
1266 	return mmc_test_broken_transfer(test, 1, 512, 1);
1267 }
1268 
1269 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1270 {
1271 	int ret;
1272 
1273 	ret = mmc_test_set_blksize(test, 512);
1274 	if (ret)
1275 		return ret;
1276 
1277 	return mmc_test_broken_transfer(test, 1, 512, 0);
1278 }
1279 
1280 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1281 {
1282 	int ret;
1283 
1284 	if (test->card->host->max_blk_count == 1)
1285 		return RESULT_UNSUP_HOST;
1286 
1287 	ret = mmc_test_set_blksize(test, 512);
1288 	if (ret)
1289 		return ret;
1290 
1291 	return mmc_test_broken_transfer(test, 2, 512, 1);
1292 }
1293 
1294 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1295 {
1296 	int ret;
1297 
1298 	if (test->card->host->max_blk_count == 1)
1299 		return RESULT_UNSUP_HOST;
1300 
1301 	ret = mmc_test_set_blksize(test, 512);
1302 	if (ret)
1303 		return ret;
1304 
1305 	return mmc_test_broken_transfer(test, 2, 512, 0);
1306 }
1307 
1308 #ifdef CONFIG_HIGHMEM
1309 
1310 static int mmc_test_write_high(struct mmc_test_card *test)
1311 {
1312 	struct scatterlist sg;
1313 
1314 	sg_init_table(&sg, 1);
1315 	sg_set_page(&sg, test->highmem, 512, 0);
1316 
1317 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1318 }
1319 
1320 static int mmc_test_read_high(struct mmc_test_card *test)
1321 {
1322 	struct scatterlist sg;
1323 
1324 	sg_init_table(&sg, 1);
1325 	sg_set_page(&sg, test->highmem, 512, 0);
1326 
1327 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1328 }
1329 
1330 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1331 {
1332 	unsigned int size;
1333 	struct scatterlist sg;
1334 
1335 	if (test->card->host->max_blk_count == 1)
1336 		return RESULT_UNSUP_HOST;
1337 
1338 	size = PAGE_SIZE * 2;
1339 	size = min(size, test->card->host->max_req_size);
1340 	size = min(size, test->card->host->max_seg_size);
1341 	size = min(size, test->card->host->max_blk_count * 512);
1342 
1343 	if (size < 1024)
1344 		return RESULT_UNSUP_HOST;
1345 
1346 	sg_init_table(&sg, 1);
1347 	sg_set_page(&sg, test->highmem, size, 0);
1348 
1349 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1350 }
1351 
1352 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1353 {
1354 	unsigned int size;
1355 	struct scatterlist sg;
1356 
1357 	if (test->card->host->max_blk_count == 1)
1358 		return RESULT_UNSUP_HOST;
1359 
1360 	size = PAGE_SIZE * 2;
1361 	size = min(size, test->card->host->max_req_size);
1362 	size = min(size, test->card->host->max_seg_size);
1363 	size = min(size, test->card->host->max_blk_count * 512);
1364 
1365 	if (size < 1024)
1366 		return RESULT_UNSUP_HOST;
1367 
1368 	sg_init_table(&sg, 1);
1369 	sg_set_page(&sg, test->highmem, size, 0);
1370 
1371 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1372 }
1373 
1374 #else
1375 
1376 static int mmc_test_no_highmem(struct mmc_test_card *test)
1377 {
1378 	pr_info("%s: Highmem not configured - test skipped\n",
1379 	       mmc_hostname(test->card->host));
1380 	return 0;
1381 }
1382 
1383 #endif /* CONFIG_HIGHMEM */
1384 
1385 /*
1386  * Map sz bytes so that it can be transferred.
1387  */
1388 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1389 			     int max_scatter, int min_sg_len, bool nonblock)
1390 {
1391 	struct mmc_test_area *t = &test->area;
1392 	int err;
1393 	unsigned int sg_len = 0;
1394 
1395 	t->blocks = sz >> 9;
1396 
1397 	if (max_scatter) {
1398 		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1399 						  t->max_segs, t->max_seg_sz,
1400 				       &t->sg_len);
1401 	} else {
1402 		err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1403 				      t->max_seg_sz, &t->sg_len, min_sg_len);
1404 	}
1405 
1406 	if (err || !nonblock)
1407 		goto err;
1408 
1409 	if (max_scatter) {
1410 		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg_areq,
1411 						  t->max_segs, t->max_seg_sz,
1412 						  &sg_len);
1413 	} else {
1414 		err = mmc_test_map_sg(t->mem, sz, t->sg_areq, 1, t->max_segs,
1415 				      t->max_seg_sz, &sg_len, min_sg_len);
1416 	}
1417 	if (!err && sg_len != t->sg_len)
1418 		err = -EINVAL;
1419 
1420 err:
1421 	if (err)
1422 		pr_info("%s: Failed to map sg list\n",
1423 		       mmc_hostname(test->card->host));
1424 	return err;
1425 }
1426 
1427 /*
1428  * Transfer bytes mapped by mmc_test_area_map().
1429  */
1430 static int mmc_test_area_transfer(struct mmc_test_card *test,
1431 				  unsigned int dev_addr, int write)
1432 {
1433 	struct mmc_test_area *t = &test->area;
1434 
1435 	return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1436 					t->blocks, 512, write);
1437 }
1438 
1439 /*
1440  * Map and transfer bytes for multiple transfers.
1441  */
1442 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1443 				unsigned int dev_addr, int write,
1444 				int max_scatter, int timed, int count,
1445 				bool nonblock, int min_sg_len)
1446 {
1447 	struct timespec64 ts1, ts2;
1448 	int ret = 0;
1449 	int i;
1450 
1451 	/*
1452 	 * In the case of a maximally scattered transfer, the maximum transfer
1453 	 * size is further limited by using PAGE_SIZE segments.
1454 	 */
1455 	if (max_scatter) {
1456 		struct mmc_test_area *t = &test->area;
1457 		unsigned long max_tfr;
1458 
1459 		if (t->max_seg_sz >= PAGE_SIZE)
1460 			max_tfr = t->max_segs * PAGE_SIZE;
1461 		else
1462 			max_tfr = t->max_segs * t->max_seg_sz;
1463 		if (sz > max_tfr)
1464 			sz = max_tfr;
1465 	}
1466 
1467 	ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len, nonblock);
1468 	if (ret)
1469 		return ret;
1470 
1471 	if (timed)
1472 		ktime_get_ts64(&ts1);
1473 	if (nonblock)
1474 		ret = mmc_test_nonblock_transfer(test, dev_addr, write, count);
1475 	else
1476 		for (i = 0; i < count && ret == 0; i++) {
1477 			ret = mmc_test_area_transfer(test, dev_addr, write);
1478 			dev_addr += sz >> 9;
1479 		}
1480 
1481 	if (ret)
1482 		return ret;
1483 
1484 	if (timed)
1485 		ktime_get_ts64(&ts2);
1486 
1487 	if (timed)
1488 		mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1489 
1490 	return 0;
1491 }
1492 
1493 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1494 			    unsigned int dev_addr, int write, int max_scatter,
1495 			    int timed)
1496 {
1497 	return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1498 				    timed, 1, false, 0);
1499 }
1500 
1501 /*
1502  * Write the test area entirely.
1503  */
1504 static int mmc_test_area_fill(struct mmc_test_card *test)
1505 {
1506 	struct mmc_test_area *t = &test->area;
1507 
1508 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1509 }
1510 
1511 /*
1512  * Erase the test area entirely.
1513  */
1514 static int mmc_test_area_erase(struct mmc_test_card *test)
1515 {
1516 	struct mmc_test_area *t = &test->area;
1517 
1518 	if (!mmc_can_erase(test->card))
1519 		return 0;
1520 
1521 	return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1522 			 MMC_ERASE_ARG);
1523 }
1524 
1525 /*
1526  * Cleanup struct mmc_test_area.
1527  */
1528 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1529 {
1530 	struct mmc_test_area *t = &test->area;
1531 
1532 	kfree(t->sg);
1533 	kfree(t->sg_areq);
1534 	mmc_test_free_mem(t->mem);
1535 
1536 	return 0;
1537 }
1538 
1539 /*
1540  * Initialize an area for testing large transfers.  The test area is set to the
1541  * middle of the card because cards may have different characteristics at the
1542  * front (for FAT file system optimization).  Optionally, the area is erased
1543  * (if the card supports it) which may improve write performance.  Optionally,
1544  * the area is filled with data for subsequent read tests.
1545  */
1546 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1547 {
1548 	struct mmc_test_area *t = &test->area;
1549 	unsigned long min_sz = 64 * 1024, sz;
1550 	int ret;
1551 
1552 	ret = mmc_test_set_blksize(test, 512);
1553 	if (ret)
1554 		return ret;
1555 
1556 	/* Make the test area size about 4MiB */
1557 	sz = (unsigned long)test->card->pref_erase << 9;
1558 	t->max_sz = sz;
1559 	while (t->max_sz < 4 * 1024 * 1024)
1560 		t->max_sz += sz;
1561 	while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1562 		t->max_sz -= sz;
1563 
1564 	t->max_segs = test->card->host->max_segs;
1565 	t->max_seg_sz = test->card->host->max_seg_size;
1566 	t->max_seg_sz -= t->max_seg_sz % 512;
1567 
1568 	t->max_tfr = t->max_sz;
1569 	if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1570 		t->max_tfr = test->card->host->max_blk_count << 9;
1571 	if (t->max_tfr > test->card->host->max_req_size)
1572 		t->max_tfr = test->card->host->max_req_size;
1573 	if (t->max_tfr / t->max_seg_sz > t->max_segs)
1574 		t->max_tfr = t->max_segs * t->max_seg_sz;
1575 
1576 	/*
1577 	 * Try to allocate enough memory for a max. sized transfer.  Less is OK
1578 	 * because the same memory can be mapped into the scatterlist more than
1579 	 * once.  Also, take into account the limits imposed on scatterlist
1580 	 * segments by the host driver.
1581 	 */
1582 	t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1583 				    t->max_seg_sz);
1584 	if (!t->mem)
1585 		return -ENOMEM;
1586 
1587 	t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1588 	if (!t->sg) {
1589 		ret = -ENOMEM;
1590 		goto out_free;
1591 	}
1592 
1593 	t->sg_areq = kmalloc_array(t->max_segs, sizeof(*t->sg_areq),
1594 				   GFP_KERNEL);
1595 	if (!t->sg_areq) {
1596 		ret = -ENOMEM;
1597 		goto out_free;
1598 	}
1599 
1600 	t->dev_addr = mmc_test_capacity(test->card) / 2;
1601 	t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1602 
1603 	if (erase) {
1604 		ret = mmc_test_area_erase(test);
1605 		if (ret)
1606 			goto out_free;
1607 	}
1608 
1609 	if (fill) {
1610 		ret = mmc_test_area_fill(test);
1611 		if (ret)
1612 			goto out_free;
1613 	}
1614 
1615 	return 0;
1616 
1617 out_free:
1618 	mmc_test_area_cleanup(test);
1619 	return ret;
1620 }
1621 
1622 /*
1623  * Prepare for large transfers.  Do not erase the test area.
1624  */
1625 static int mmc_test_area_prepare(struct mmc_test_card *test)
1626 {
1627 	return mmc_test_area_init(test, 0, 0);
1628 }
1629 
1630 /*
1631  * Prepare for large transfers.  Do erase the test area.
1632  */
1633 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1634 {
1635 	return mmc_test_area_init(test, 1, 0);
1636 }
1637 
1638 /*
1639  * Prepare for large transfers.  Erase and fill the test area.
1640  */
1641 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1642 {
1643 	return mmc_test_area_init(test, 1, 1);
1644 }
1645 
1646 /*
1647  * Test best-case performance.  Best-case performance is expected from
1648  * a single large transfer.
1649  *
1650  * An additional option (max_scatter) allows the measurement of the same
1651  * transfer but with no contiguous pages in the scatter list.  This tests
1652  * the efficiency of DMA to handle scattered pages.
1653  */
1654 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1655 				     int max_scatter)
1656 {
1657 	struct mmc_test_area *t = &test->area;
1658 
1659 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1660 				max_scatter, 1);
1661 }
1662 
1663 /*
1664  * Best-case read performance.
1665  */
1666 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1667 {
1668 	return mmc_test_best_performance(test, 0, 0);
1669 }
1670 
1671 /*
1672  * Best-case write performance.
1673  */
1674 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1675 {
1676 	return mmc_test_best_performance(test, 1, 0);
1677 }
1678 
1679 /*
1680  * Best-case read performance into scattered pages.
1681  */
1682 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1683 {
1684 	return mmc_test_best_performance(test, 0, 1);
1685 }
1686 
1687 /*
1688  * Best-case write performance from scattered pages.
1689  */
1690 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1691 {
1692 	return mmc_test_best_performance(test, 1, 1);
1693 }
1694 
1695 /*
1696  * Single read performance by transfer size.
1697  */
1698 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1699 {
1700 	struct mmc_test_area *t = &test->area;
1701 	unsigned long sz;
1702 	unsigned int dev_addr;
1703 	int ret;
1704 
1705 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1706 		dev_addr = t->dev_addr + (sz >> 9);
1707 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1708 		if (ret)
1709 			return ret;
1710 	}
1711 	sz = t->max_tfr;
1712 	dev_addr = t->dev_addr;
1713 	return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1714 }
1715 
1716 /*
1717  * Single write performance by transfer size.
1718  */
1719 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1720 {
1721 	struct mmc_test_area *t = &test->area;
1722 	unsigned long sz;
1723 	unsigned int dev_addr;
1724 	int ret;
1725 
1726 	ret = mmc_test_area_erase(test);
1727 	if (ret)
1728 		return ret;
1729 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1730 		dev_addr = t->dev_addr + (sz >> 9);
1731 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1732 		if (ret)
1733 			return ret;
1734 	}
1735 	ret = mmc_test_area_erase(test);
1736 	if (ret)
1737 		return ret;
1738 	sz = t->max_tfr;
1739 	dev_addr = t->dev_addr;
1740 	return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1741 }
1742 
1743 /*
1744  * Single trim performance by transfer size.
1745  */
1746 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1747 {
1748 	struct mmc_test_area *t = &test->area;
1749 	unsigned long sz;
1750 	unsigned int dev_addr;
1751 	struct timespec64 ts1, ts2;
1752 	int ret;
1753 
1754 	if (!mmc_can_trim(test->card))
1755 		return RESULT_UNSUP_CARD;
1756 
1757 	if (!mmc_can_erase(test->card))
1758 		return RESULT_UNSUP_HOST;
1759 
1760 	for (sz = 512; sz < t->max_sz; sz <<= 1) {
1761 		dev_addr = t->dev_addr + (sz >> 9);
1762 		ktime_get_ts64(&ts1);
1763 		ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1764 		if (ret)
1765 			return ret;
1766 		ktime_get_ts64(&ts2);
1767 		mmc_test_print_rate(test, sz, &ts1, &ts2);
1768 	}
1769 	dev_addr = t->dev_addr;
1770 	ktime_get_ts64(&ts1);
1771 	ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1772 	if (ret)
1773 		return ret;
1774 	ktime_get_ts64(&ts2);
1775 	mmc_test_print_rate(test, sz, &ts1, &ts2);
1776 	return 0;
1777 }
1778 
1779 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1780 {
1781 	struct mmc_test_area *t = &test->area;
1782 	unsigned int dev_addr, i, cnt;
1783 	struct timespec64 ts1, ts2;
1784 	int ret;
1785 
1786 	cnt = t->max_sz / sz;
1787 	dev_addr = t->dev_addr;
1788 	ktime_get_ts64(&ts1);
1789 	for (i = 0; i < cnt; i++) {
1790 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1791 		if (ret)
1792 			return ret;
1793 		dev_addr += (sz >> 9);
1794 	}
1795 	ktime_get_ts64(&ts2);
1796 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1797 	return 0;
1798 }
1799 
1800 /*
1801  * Consecutive read performance by transfer size.
1802  */
1803 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1804 {
1805 	struct mmc_test_area *t = &test->area;
1806 	unsigned long sz;
1807 	int ret;
1808 
1809 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1810 		ret = mmc_test_seq_read_perf(test, sz);
1811 		if (ret)
1812 			return ret;
1813 	}
1814 	sz = t->max_tfr;
1815 	return mmc_test_seq_read_perf(test, sz);
1816 }
1817 
1818 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1819 {
1820 	struct mmc_test_area *t = &test->area;
1821 	unsigned int dev_addr, i, cnt;
1822 	struct timespec64 ts1, ts2;
1823 	int ret;
1824 
1825 	ret = mmc_test_area_erase(test);
1826 	if (ret)
1827 		return ret;
1828 	cnt = t->max_sz / sz;
1829 	dev_addr = t->dev_addr;
1830 	ktime_get_ts64(&ts1);
1831 	for (i = 0; i < cnt; i++) {
1832 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1833 		if (ret)
1834 			return ret;
1835 		dev_addr += (sz >> 9);
1836 	}
1837 	ktime_get_ts64(&ts2);
1838 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1839 	return 0;
1840 }
1841 
1842 /*
1843  * Consecutive write performance by transfer size.
1844  */
1845 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1846 {
1847 	struct mmc_test_area *t = &test->area;
1848 	unsigned long sz;
1849 	int ret;
1850 
1851 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1852 		ret = mmc_test_seq_write_perf(test, sz);
1853 		if (ret)
1854 			return ret;
1855 	}
1856 	sz = t->max_tfr;
1857 	return mmc_test_seq_write_perf(test, sz);
1858 }
1859 
1860 /*
1861  * Consecutive trim performance by transfer size.
1862  */
1863 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1864 {
1865 	struct mmc_test_area *t = &test->area;
1866 	unsigned long sz;
1867 	unsigned int dev_addr, i, cnt;
1868 	struct timespec64 ts1, ts2;
1869 	int ret;
1870 
1871 	if (!mmc_can_trim(test->card))
1872 		return RESULT_UNSUP_CARD;
1873 
1874 	if (!mmc_can_erase(test->card))
1875 		return RESULT_UNSUP_HOST;
1876 
1877 	for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1878 		ret = mmc_test_area_erase(test);
1879 		if (ret)
1880 			return ret;
1881 		ret = mmc_test_area_fill(test);
1882 		if (ret)
1883 			return ret;
1884 		cnt = t->max_sz / sz;
1885 		dev_addr = t->dev_addr;
1886 		ktime_get_ts64(&ts1);
1887 		for (i = 0; i < cnt; i++) {
1888 			ret = mmc_erase(test->card, dev_addr, sz >> 9,
1889 					MMC_TRIM_ARG);
1890 			if (ret)
1891 				return ret;
1892 			dev_addr += (sz >> 9);
1893 		}
1894 		ktime_get_ts64(&ts2);
1895 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1896 	}
1897 	return 0;
1898 }
1899 
1900 static unsigned int rnd_next = 1;
1901 
1902 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1903 {
1904 	uint64_t r;
1905 
1906 	rnd_next = rnd_next * 1103515245 + 12345;
1907 	r = (rnd_next >> 16) & 0x7fff;
1908 	return (r * rnd_cnt) >> 15;
1909 }
1910 
1911 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1912 			     unsigned long sz)
1913 {
1914 	unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1915 	unsigned int ssz;
1916 	struct timespec64 ts1, ts2, ts;
1917 	int ret;
1918 
1919 	ssz = sz >> 9;
1920 
1921 	rnd_addr = mmc_test_capacity(test->card) / 4;
1922 	range1 = rnd_addr / test->card->pref_erase;
1923 	range2 = range1 / ssz;
1924 
1925 	ktime_get_ts64(&ts1);
1926 	for (cnt = 0; cnt < UINT_MAX; cnt++) {
1927 		ktime_get_ts64(&ts2);
1928 		ts = timespec64_sub(ts2, ts1);
1929 		if (ts.tv_sec >= 10)
1930 			break;
1931 		ea = mmc_test_rnd_num(range1);
1932 		if (ea == last_ea)
1933 			ea -= 1;
1934 		last_ea = ea;
1935 		dev_addr = rnd_addr + test->card->pref_erase * ea +
1936 			   ssz * mmc_test_rnd_num(range2);
1937 		ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1938 		if (ret)
1939 			return ret;
1940 	}
1941 	if (print)
1942 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1943 	return 0;
1944 }
1945 
1946 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1947 {
1948 	struct mmc_test_area *t = &test->area;
1949 	unsigned int next;
1950 	unsigned long sz;
1951 	int ret;
1952 
1953 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1954 		/*
1955 		 * When writing, try to get more consistent results by running
1956 		 * the test twice with exactly the same I/O but outputting the
1957 		 * results only for the 2nd run.
1958 		 */
1959 		if (write) {
1960 			next = rnd_next;
1961 			ret = mmc_test_rnd_perf(test, write, 0, sz);
1962 			if (ret)
1963 				return ret;
1964 			rnd_next = next;
1965 		}
1966 		ret = mmc_test_rnd_perf(test, write, 1, sz);
1967 		if (ret)
1968 			return ret;
1969 	}
1970 	sz = t->max_tfr;
1971 	if (write) {
1972 		next = rnd_next;
1973 		ret = mmc_test_rnd_perf(test, write, 0, sz);
1974 		if (ret)
1975 			return ret;
1976 		rnd_next = next;
1977 	}
1978 	return mmc_test_rnd_perf(test, write, 1, sz);
1979 }
1980 
1981 /*
1982  * Random read performance by transfer size.
1983  */
1984 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1985 {
1986 	return mmc_test_random_perf(test, 0);
1987 }
1988 
1989 /*
1990  * Random write performance by transfer size.
1991  */
1992 static int mmc_test_random_write_perf(struct mmc_test_card *test)
1993 {
1994 	return mmc_test_random_perf(test, 1);
1995 }
1996 
1997 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
1998 			     unsigned int tot_sz, int max_scatter)
1999 {
2000 	struct mmc_test_area *t = &test->area;
2001 	unsigned int dev_addr, i, cnt, sz, ssz;
2002 	struct timespec64 ts1, ts2;
2003 	int ret;
2004 
2005 	sz = t->max_tfr;
2006 
2007 	/*
2008 	 * In the case of a maximally scattered transfer, the maximum transfer
2009 	 * size is further limited by using PAGE_SIZE segments.
2010 	 */
2011 	if (max_scatter) {
2012 		unsigned long max_tfr;
2013 
2014 		if (t->max_seg_sz >= PAGE_SIZE)
2015 			max_tfr = t->max_segs * PAGE_SIZE;
2016 		else
2017 			max_tfr = t->max_segs * t->max_seg_sz;
2018 		if (sz > max_tfr)
2019 			sz = max_tfr;
2020 	}
2021 
2022 	ssz = sz >> 9;
2023 	dev_addr = mmc_test_capacity(test->card) / 4;
2024 	if (tot_sz > dev_addr << 9)
2025 		tot_sz = dev_addr << 9;
2026 	cnt = tot_sz / sz;
2027 	dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2028 
2029 	ktime_get_ts64(&ts1);
2030 	for (i = 0; i < cnt; i++) {
2031 		ret = mmc_test_area_io(test, sz, dev_addr, write,
2032 				       max_scatter, 0);
2033 		if (ret)
2034 			return ret;
2035 		dev_addr += ssz;
2036 	}
2037 	ktime_get_ts64(&ts2);
2038 
2039 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2040 
2041 	return 0;
2042 }
2043 
2044 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2045 {
2046 	int ret, i;
2047 
2048 	for (i = 0; i < 10; i++) {
2049 		ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2050 		if (ret)
2051 			return ret;
2052 	}
2053 	for (i = 0; i < 5; i++) {
2054 		ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2055 		if (ret)
2056 			return ret;
2057 	}
2058 	for (i = 0; i < 3; i++) {
2059 		ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2060 		if (ret)
2061 			return ret;
2062 	}
2063 
2064 	return ret;
2065 }
2066 
2067 /*
2068  * Large sequential read performance.
2069  */
2070 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2071 {
2072 	return mmc_test_large_seq_perf(test, 0);
2073 }
2074 
2075 /*
2076  * Large sequential write performance.
2077  */
2078 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2079 {
2080 	return mmc_test_large_seq_perf(test, 1);
2081 }
2082 
2083 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2084 				struct mmc_test_multiple_rw *tdata,
2085 				unsigned int reqsize, unsigned int size,
2086 				int min_sg_len)
2087 {
2088 	unsigned int dev_addr;
2089 	struct mmc_test_area *t = &test->area;
2090 	int ret = 0;
2091 
2092 	/* Set up test area */
2093 	if (size > mmc_test_capacity(test->card) / 2 * 512)
2094 		size = mmc_test_capacity(test->card) / 2 * 512;
2095 	if (reqsize > t->max_tfr)
2096 		reqsize = t->max_tfr;
2097 	dev_addr = mmc_test_capacity(test->card) / 4;
2098 	if ((dev_addr & 0xffff0000))
2099 		dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2100 	else
2101 		dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2102 	if (!dev_addr)
2103 		goto err;
2104 
2105 	if (reqsize > size)
2106 		return 0;
2107 
2108 	/* prepare test area */
2109 	if (mmc_can_erase(test->card) &&
2110 	    tdata->prepare & MMC_TEST_PREP_ERASE) {
2111 		ret = mmc_erase(test->card, dev_addr,
2112 				size / 512, test->card->erase_arg);
2113 		if (ret)
2114 			ret = mmc_erase(test->card, dev_addr,
2115 					size / 512, MMC_ERASE_ARG);
2116 		if (ret)
2117 			goto err;
2118 	}
2119 
2120 	/* Run test */
2121 	ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2122 				   tdata->do_write, 0, 1, size / reqsize,
2123 				   tdata->do_nonblock_req, min_sg_len);
2124 	if (ret)
2125 		goto err;
2126 
2127 	return ret;
2128  err:
2129 	pr_info("[%s] error\n", __func__);
2130 	return ret;
2131 }
2132 
2133 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2134 				     struct mmc_test_multiple_rw *rw)
2135 {
2136 	int ret = 0;
2137 	int i;
2138 	void *pre_req = test->card->host->ops->pre_req;
2139 	void *post_req = test->card->host->ops->post_req;
2140 
2141 	if (rw->do_nonblock_req &&
2142 	    ((!pre_req && post_req) || (pre_req && !post_req))) {
2143 		pr_info("error: only one of pre/post is defined\n");
2144 		return -EINVAL;
2145 	}
2146 
2147 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2148 		ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2149 		if (ret)
2150 			break;
2151 	}
2152 	return ret;
2153 }
2154 
2155 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2156 				       struct mmc_test_multiple_rw *rw)
2157 {
2158 	int ret = 0;
2159 	int i;
2160 
2161 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2162 		ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2163 					   rw->sg_len[i]);
2164 		if (ret)
2165 			break;
2166 	}
2167 	return ret;
2168 }
2169 
2170 /*
2171  * Multiple blocking write 4k to 4 MB chunks
2172  */
2173 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2174 {
2175 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2176 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2177 	struct mmc_test_multiple_rw test_data = {
2178 		.bs = bs,
2179 		.size = TEST_AREA_MAX_SIZE,
2180 		.len = ARRAY_SIZE(bs),
2181 		.do_write = true,
2182 		.do_nonblock_req = false,
2183 		.prepare = MMC_TEST_PREP_ERASE,
2184 	};
2185 
2186 	return mmc_test_rw_multiple_size(test, &test_data);
2187 };
2188 
2189 /*
2190  * Multiple non-blocking write 4k to 4 MB chunks
2191  */
2192 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2193 {
2194 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2195 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2196 	struct mmc_test_multiple_rw test_data = {
2197 		.bs = bs,
2198 		.size = TEST_AREA_MAX_SIZE,
2199 		.len = ARRAY_SIZE(bs),
2200 		.do_write = true,
2201 		.do_nonblock_req = true,
2202 		.prepare = MMC_TEST_PREP_ERASE,
2203 	};
2204 
2205 	return mmc_test_rw_multiple_size(test, &test_data);
2206 }
2207 
2208 /*
2209  * Multiple blocking read 4k to 4 MB chunks
2210  */
2211 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2212 {
2213 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2214 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2215 	struct mmc_test_multiple_rw test_data = {
2216 		.bs = bs,
2217 		.size = TEST_AREA_MAX_SIZE,
2218 		.len = ARRAY_SIZE(bs),
2219 		.do_write = false,
2220 		.do_nonblock_req = false,
2221 		.prepare = MMC_TEST_PREP_NONE,
2222 	};
2223 
2224 	return mmc_test_rw_multiple_size(test, &test_data);
2225 }
2226 
2227 /*
2228  * Multiple non-blocking read 4k to 4 MB chunks
2229  */
2230 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2231 {
2232 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2233 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2234 	struct mmc_test_multiple_rw test_data = {
2235 		.bs = bs,
2236 		.size = TEST_AREA_MAX_SIZE,
2237 		.len = ARRAY_SIZE(bs),
2238 		.do_write = false,
2239 		.do_nonblock_req = true,
2240 		.prepare = MMC_TEST_PREP_NONE,
2241 	};
2242 
2243 	return mmc_test_rw_multiple_size(test, &test_data);
2244 }
2245 
2246 /*
2247  * Multiple blocking write 1 to 512 sg elements
2248  */
2249 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2250 {
2251 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2252 				 1 << 7, 1 << 8, 1 << 9};
2253 	struct mmc_test_multiple_rw test_data = {
2254 		.sg_len = sg_len,
2255 		.size = TEST_AREA_MAX_SIZE,
2256 		.len = ARRAY_SIZE(sg_len),
2257 		.do_write = true,
2258 		.do_nonblock_req = false,
2259 		.prepare = MMC_TEST_PREP_ERASE,
2260 	};
2261 
2262 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2263 };
2264 
2265 /*
2266  * Multiple non-blocking write 1 to 512 sg elements
2267  */
2268 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2269 {
2270 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2271 				 1 << 7, 1 << 8, 1 << 9};
2272 	struct mmc_test_multiple_rw test_data = {
2273 		.sg_len = sg_len,
2274 		.size = TEST_AREA_MAX_SIZE,
2275 		.len = ARRAY_SIZE(sg_len),
2276 		.do_write = true,
2277 		.do_nonblock_req = true,
2278 		.prepare = MMC_TEST_PREP_ERASE,
2279 	};
2280 
2281 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2282 }
2283 
2284 /*
2285  * Multiple blocking read 1 to 512 sg elements
2286  */
2287 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2288 {
2289 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2290 				 1 << 7, 1 << 8, 1 << 9};
2291 	struct mmc_test_multiple_rw test_data = {
2292 		.sg_len = sg_len,
2293 		.size = TEST_AREA_MAX_SIZE,
2294 		.len = ARRAY_SIZE(sg_len),
2295 		.do_write = false,
2296 		.do_nonblock_req = false,
2297 		.prepare = MMC_TEST_PREP_NONE,
2298 	};
2299 
2300 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2301 }
2302 
2303 /*
2304  * Multiple non-blocking read 1 to 512 sg elements
2305  */
2306 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2307 {
2308 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2309 				 1 << 7, 1 << 8, 1 << 9};
2310 	struct mmc_test_multiple_rw test_data = {
2311 		.sg_len = sg_len,
2312 		.size = TEST_AREA_MAX_SIZE,
2313 		.len = ARRAY_SIZE(sg_len),
2314 		.do_write = false,
2315 		.do_nonblock_req = true,
2316 		.prepare = MMC_TEST_PREP_NONE,
2317 	};
2318 
2319 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2320 }
2321 
2322 /*
2323  * eMMC hardware reset.
2324  */
2325 static int mmc_test_reset(struct mmc_test_card *test)
2326 {
2327 	struct mmc_card *card = test->card;
2328 	struct mmc_host *host = card->host;
2329 	int err;
2330 
2331 	err = mmc_hw_reset(host);
2332 	if (!err) {
2333 		/*
2334 		 * Reset will re-enable the card's command queue, but tests
2335 		 * expect it to be disabled.
2336 		 */
2337 		if (card->ext_csd.cmdq_en)
2338 			mmc_cmdq_disable(card);
2339 		return RESULT_OK;
2340 	} else if (err == -EOPNOTSUPP) {
2341 		return RESULT_UNSUP_HOST;
2342 	}
2343 
2344 	return RESULT_FAIL;
2345 }
2346 
2347 static int mmc_test_send_status(struct mmc_test_card *test,
2348 				struct mmc_command *cmd)
2349 {
2350 	memset(cmd, 0, sizeof(*cmd));
2351 
2352 	cmd->opcode = MMC_SEND_STATUS;
2353 	if (!mmc_host_is_spi(test->card->host))
2354 		cmd->arg = test->card->rca << 16;
2355 	cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2356 
2357 	return mmc_wait_for_cmd(test->card->host, cmd, 0);
2358 }
2359 
2360 static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2361 				     unsigned int dev_addr, int use_sbc,
2362 				     int repeat_cmd, int write, int use_areq)
2363 {
2364 	struct mmc_test_req *rq = mmc_test_req_alloc();
2365 	struct mmc_host *host = test->card->host;
2366 	struct mmc_test_area *t = &test->area;
2367 	struct mmc_request *mrq;
2368 	unsigned long timeout;
2369 	bool expired = false;
2370 	int ret = 0, cmd_ret;
2371 	u32 status = 0;
2372 	int count = 0;
2373 
2374 	if (!rq)
2375 		return -ENOMEM;
2376 
2377 	mrq = &rq->mrq;
2378 	if (use_sbc)
2379 		mrq->sbc = &rq->sbc;
2380 	mrq->cap_cmd_during_tfr = true;
2381 
2382 	mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2383 			     512, write);
2384 
2385 	if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2386 		ret =  mmc_host_cmd23(host) ?
2387 		       RESULT_UNSUP_CARD :
2388 		       RESULT_UNSUP_HOST;
2389 		goto out_free;
2390 	}
2391 
2392 	/* Start ongoing data request */
2393 	if (use_areq) {
2394 		ret = mmc_test_start_areq(test, mrq, NULL);
2395 		if (ret)
2396 			goto out_free;
2397 	} else {
2398 		mmc_wait_for_req(host, mrq);
2399 	}
2400 
2401 	timeout = jiffies + msecs_to_jiffies(3000);
2402 	do {
2403 		count += 1;
2404 
2405 		/* Send status command while data transfer in progress */
2406 		cmd_ret = mmc_test_send_status(test, &rq->status);
2407 		if (cmd_ret)
2408 			break;
2409 
2410 		status = rq->status.resp[0];
2411 		if (status & R1_ERROR) {
2412 			cmd_ret = -EIO;
2413 			break;
2414 		}
2415 
2416 		if (mmc_is_req_done(host, mrq))
2417 			break;
2418 
2419 		expired = time_after(jiffies, timeout);
2420 		if (expired) {
2421 			pr_info("%s: timeout waiting for Tran state status %#x\n",
2422 				mmc_hostname(host), status);
2423 			cmd_ret = -ETIMEDOUT;
2424 			break;
2425 		}
2426 	} while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2427 
2428 	/* Wait for data request to complete */
2429 	if (use_areq) {
2430 		ret = mmc_test_start_areq(test, NULL, mrq);
2431 	} else {
2432 		mmc_wait_for_req_done(test->card->host, mrq);
2433 	}
2434 
2435 	/*
2436 	 * For cap_cmd_during_tfr request, upper layer must send stop if
2437 	 * required.
2438 	 */
2439 	if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2440 		if (ret)
2441 			mmc_wait_for_cmd(host, mrq->data->stop, 0);
2442 		else
2443 			ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2444 	}
2445 
2446 	if (ret)
2447 		goto out_free;
2448 
2449 	if (cmd_ret) {
2450 		pr_info("%s: Send Status failed: status %#x, error %d\n",
2451 			mmc_hostname(test->card->host), status, cmd_ret);
2452 	}
2453 
2454 	ret = mmc_test_check_result(test, mrq);
2455 	if (ret)
2456 		goto out_free;
2457 
2458 	ret = mmc_test_wait_busy(test);
2459 	if (ret)
2460 		goto out_free;
2461 
2462 	if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2463 		pr_info("%s: %d commands completed during transfer of %u blocks\n",
2464 			mmc_hostname(test->card->host), count, t->blocks);
2465 
2466 	if (cmd_ret)
2467 		ret = cmd_ret;
2468 out_free:
2469 	kfree(rq);
2470 
2471 	return ret;
2472 }
2473 
2474 static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2475 				      unsigned long sz, int use_sbc, int write,
2476 				      int use_areq)
2477 {
2478 	struct mmc_test_area *t = &test->area;
2479 	int ret;
2480 
2481 	if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2482 		return RESULT_UNSUP_HOST;
2483 
2484 	ret = mmc_test_area_map(test, sz, 0, 0, use_areq);
2485 	if (ret)
2486 		return ret;
2487 
2488 	ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2489 					use_areq);
2490 	if (ret)
2491 		return ret;
2492 
2493 	return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2494 					 use_areq);
2495 }
2496 
2497 static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2498 				    int write, int use_areq)
2499 {
2500 	struct mmc_test_area *t = &test->area;
2501 	unsigned long sz;
2502 	int ret;
2503 
2504 	for (sz = 512; sz <= t->max_tfr; sz += 512) {
2505 		ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2506 						 use_areq);
2507 		if (ret)
2508 			return ret;
2509 	}
2510 	return 0;
2511 }
2512 
2513 /*
2514  * Commands during read - no Set Block Count (CMD23).
2515  */
2516 static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2517 {
2518 	return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2519 }
2520 
2521 /*
2522  * Commands during write - no Set Block Count (CMD23).
2523  */
2524 static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2525 {
2526 	return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2527 }
2528 
2529 /*
2530  * Commands during read - use Set Block Count (CMD23).
2531  */
2532 static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2533 {
2534 	return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2535 }
2536 
2537 /*
2538  * Commands during write - use Set Block Count (CMD23).
2539  */
2540 static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2541 {
2542 	return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2543 }
2544 
2545 /*
2546  * Commands during non-blocking read - use Set Block Count (CMD23).
2547  */
2548 static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2549 {
2550 	return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2551 }
2552 
2553 /*
2554  * Commands during non-blocking write - use Set Block Count (CMD23).
2555  */
2556 static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2557 {
2558 	return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2559 }
2560 
2561 static const struct mmc_test_case mmc_test_cases[] = {
2562 	{
2563 		.name = "Basic write (no data verification)",
2564 		.run = mmc_test_basic_write,
2565 	},
2566 
2567 	{
2568 		.name = "Basic read (no data verification)",
2569 		.run = mmc_test_basic_read,
2570 	},
2571 
2572 	{
2573 		.name = "Basic write (with data verification)",
2574 		.prepare = mmc_test_prepare_write,
2575 		.run = mmc_test_verify_write,
2576 		.cleanup = mmc_test_cleanup,
2577 	},
2578 
2579 	{
2580 		.name = "Basic read (with data verification)",
2581 		.prepare = mmc_test_prepare_read,
2582 		.run = mmc_test_verify_read,
2583 		.cleanup = mmc_test_cleanup,
2584 	},
2585 
2586 	{
2587 		.name = "Multi-block write",
2588 		.prepare = mmc_test_prepare_write,
2589 		.run = mmc_test_multi_write,
2590 		.cleanup = mmc_test_cleanup,
2591 	},
2592 
2593 	{
2594 		.name = "Multi-block read",
2595 		.prepare = mmc_test_prepare_read,
2596 		.run = mmc_test_multi_read,
2597 		.cleanup = mmc_test_cleanup,
2598 	},
2599 
2600 	{
2601 		.name = "Power of two block writes",
2602 		.prepare = mmc_test_prepare_write,
2603 		.run = mmc_test_pow2_write,
2604 		.cleanup = mmc_test_cleanup,
2605 	},
2606 
2607 	{
2608 		.name = "Power of two block reads",
2609 		.prepare = mmc_test_prepare_read,
2610 		.run = mmc_test_pow2_read,
2611 		.cleanup = mmc_test_cleanup,
2612 	},
2613 
2614 	{
2615 		.name = "Weird sized block writes",
2616 		.prepare = mmc_test_prepare_write,
2617 		.run = mmc_test_weird_write,
2618 		.cleanup = mmc_test_cleanup,
2619 	},
2620 
2621 	{
2622 		.name = "Weird sized block reads",
2623 		.prepare = mmc_test_prepare_read,
2624 		.run = mmc_test_weird_read,
2625 		.cleanup = mmc_test_cleanup,
2626 	},
2627 
2628 	{
2629 		.name = "Badly aligned write",
2630 		.prepare = mmc_test_prepare_write,
2631 		.run = mmc_test_align_write,
2632 		.cleanup = mmc_test_cleanup,
2633 	},
2634 
2635 	{
2636 		.name = "Badly aligned read",
2637 		.prepare = mmc_test_prepare_read,
2638 		.run = mmc_test_align_read,
2639 		.cleanup = mmc_test_cleanup,
2640 	},
2641 
2642 	{
2643 		.name = "Badly aligned multi-block write",
2644 		.prepare = mmc_test_prepare_write,
2645 		.run = mmc_test_align_multi_write,
2646 		.cleanup = mmc_test_cleanup,
2647 	},
2648 
2649 	{
2650 		.name = "Badly aligned multi-block read",
2651 		.prepare = mmc_test_prepare_read,
2652 		.run = mmc_test_align_multi_read,
2653 		.cleanup = mmc_test_cleanup,
2654 	},
2655 
2656 	{
2657 		.name = "Proper xfer_size at write (start failure)",
2658 		.run = mmc_test_xfersize_write,
2659 	},
2660 
2661 	{
2662 		.name = "Proper xfer_size at read (start failure)",
2663 		.run = mmc_test_xfersize_read,
2664 	},
2665 
2666 	{
2667 		.name = "Proper xfer_size at write (midway failure)",
2668 		.run = mmc_test_multi_xfersize_write,
2669 	},
2670 
2671 	{
2672 		.name = "Proper xfer_size at read (midway failure)",
2673 		.run = mmc_test_multi_xfersize_read,
2674 	},
2675 
2676 #ifdef CONFIG_HIGHMEM
2677 
2678 	{
2679 		.name = "Highmem write",
2680 		.prepare = mmc_test_prepare_write,
2681 		.run = mmc_test_write_high,
2682 		.cleanup = mmc_test_cleanup,
2683 	},
2684 
2685 	{
2686 		.name = "Highmem read",
2687 		.prepare = mmc_test_prepare_read,
2688 		.run = mmc_test_read_high,
2689 		.cleanup = mmc_test_cleanup,
2690 	},
2691 
2692 	{
2693 		.name = "Multi-block highmem write",
2694 		.prepare = mmc_test_prepare_write,
2695 		.run = mmc_test_multi_write_high,
2696 		.cleanup = mmc_test_cleanup,
2697 	},
2698 
2699 	{
2700 		.name = "Multi-block highmem read",
2701 		.prepare = mmc_test_prepare_read,
2702 		.run = mmc_test_multi_read_high,
2703 		.cleanup = mmc_test_cleanup,
2704 	},
2705 
2706 #else
2707 
2708 	{
2709 		.name = "Highmem write",
2710 		.run = mmc_test_no_highmem,
2711 	},
2712 
2713 	{
2714 		.name = "Highmem read",
2715 		.run = mmc_test_no_highmem,
2716 	},
2717 
2718 	{
2719 		.name = "Multi-block highmem write",
2720 		.run = mmc_test_no_highmem,
2721 	},
2722 
2723 	{
2724 		.name = "Multi-block highmem read",
2725 		.run = mmc_test_no_highmem,
2726 	},
2727 
2728 #endif /* CONFIG_HIGHMEM */
2729 
2730 	{
2731 		.name = "Best-case read performance",
2732 		.prepare = mmc_test_area_prepare_fill,
2733 		.run = mmc_test_best_read_performance,
2734 		.cleanup = mmc_test_area_cleanup,
2735 	},
2736 
2737 	{
2738 		.name = "Best-case write performance",
2739 		.prepare = mmc_test_area_prepare_erase,
2740 		.run = mmc_test_best_write_performance,
2741 		.cleanup = mmc_test_area_cleanup,
2742 	},
2743 
2744 	{
2745 		.name = "Best-case read performance into scattered pages",
2746 		.prepare = mmc_test_area_prepare_fill,
2747 		.run = mmc_test_best_read_perf_max_scatter,
2748 		.cleanup = mmc_test_area_cleanup,
2749 	},
2750 
2751 	{
2752 		.name = "Best-case write performance from scattered pages",
2753 		.prepare = mmc_test_area_prepare_erase,
2754 		.run = mmc_test_best_write_perf_max_scatter,
2755 		.cleanup = mmc_test_area_cleanup,
2756 	},
2757 
2758 	{
2759 		.name = "Single read performance by transfer size",
2760 		.prepare = mmc_test_area_prepare_fill,
2761 		.run = mmc_test_profile_read_perf,
2762 		.cleanup = mmc_test_area_cleanup,
2763 	},
2764 
2765 	{
2766 		.name = "Single write performance by transfer size",
2767 		.prepare = mmc_test_area_prepare,
2768 		.run = mmc_test_profile_write_perf,
2769 		.cleanup = mmc_test_area_cleanup,
2770 	},
2771 
2772 	{
2773 		.name = "Single trim performance by transfer size",
2774 		.prepare = mmc_test_area_prepare_fill,
2775 		.run = mmc_test_profile_trim_perf,
2776 		.cleanup = mmc_test_area_cleanup,
2777 	},
2778 
2779 	{
2780 		.name = "Consecutive read performance by transfer size",
2781 		.prepare = mmc_test_area_prepare_fill,
2782 		.run = mmc_test_profile_seq_read_perf,
2783 		.cleanup = mmc_test_area_cleanup,
2784 	},
2785 
2786 	{
2787 		.name = "Consecutive write performance by transfer size",
2788 		.prepare = mmc_test_area_prepare,
2789 		.run = mmc_test_profile_seq_write_perf,
2790 		.cleanup = mmc_test_area_cleanup,
2791 	},
2792 
2793 	{
2794 		.name = "Consecutive trim performance by transfer size",
2795 		.prepare = mmc_test_area_prepare,
2796 		.run = mmc_test_profile_seq_trim_perf,
2797 		.cleanup = mmc_test_area_cleanup,
2798 	},
2799 
2800 	{
2801 		.name = "Random read performance by transfer size",
2802 		.prepare = mmc_test_area_prepare,
2803 		.run = mmc_test_random_read_perf,
2804 		.cleanup = mmc_test_area_cleanup,
2805 	},
2806 
2807 	{
2808 		.name = "Random write performance by transfer size",
2809 		.prepare = mmc_test_area_prepare,
2810 		.run = mmc_test_random_write_perf,
2811 		.cleanup = mmc_test_area_cleanup,
2812 	},
2813 
2814 	{
2815 		.name = "Large sequential read into scattered pages",
2816 		.prepare = mmc_test_area_prepare,
2817 		.run = mmc_test_large_seq_read_perf,
2818 		.cleanup = mmc_test_area_cleanup,
2819 	},
2820 
2821 	{
2822 		.name = "Large sequential write from scattered pages",
2823 		.prepare = mmc_test_area_prepare,
2824 		.run = mmc_test_large_seq_write_perf,
2825 		.cleanup = mmc_test_area_cleanup,
2826 	},
2827 
2828 	{
2829 		.name = "Write performance with blocking req 4k to 4MB",
2830 		.prepare = mmc_test_area_prepare,
2831 		.run = mmc_test_profile_mult_write_blocking_perf,
2832 		.cleanup = mmc_test_area_cleanup,
2833 	},
2834 
2835 	{
2836 		.name = "Write performance with non-blocking req 4k to 4MB",
2837 		.prepare = mmc_test_area_prepare,
2838 		.run = mmc_test_profile_mult_write_nonblock_perf,
2839 		.cleanup = mmc_test_area_cleanup,
2840 	},
2841 
2842 	{
2843 		.name = "Read performance with blocking req 4k to 4MB",
2844 		.prepare = mmc_test_area_prepare,
2845 		.run = mmc_test_profile_mult_read_blocking_perf,
2846 		.cleanup = mmc_test_area_cleanup,
2847 	},
2848 
2849 	{
2850 		.name = "Read performance with non-blocking req 4k to 4MB",
2851 		.prepare = mmc_test_area_prepare,
2852 		.run = mmc_test_profile_mult_read_nonblock_perf,
2853 		.cleanup = mmc_test_area_cleanup,
2854 	},
2855 
2856 	{
2857 		.name = "Write performance blocking req 1 to 512 sg elems",
2858 		.prepare = mmc_test_area_prepare,
2859 		.run = mmc_test_profile_sglen_wr_blocking_perf,
2860 		.cleanup = mmc_test_area_cleanup,
2861 	},
2862 
2863 	{
2864 		.name = "Write performance non-blocking req 1 to 512 sg elems",
2865 		.prepare = mmc_test_area_prepare,
2866 		.run = mmc_test_profile_sglen_wr_nonblock_perf,
2867 		.cleanup = mmc_test_area_cleanup,
2868 	},
2869 
2870 	{
2871 		.name = "Read performance blocking req 1 to 512 sg elems",
2872 		.prepare = mmc_test_area_prepare,
2873 		.run = mmc_test_profile_sglen_r_blocking_perf,
2874 		.cleanup = mmc_test_area_cleanup,
2875 	},
2876 
2877 	{
2878 		.name = "Read performance non-blocking req 1 to 512 sg elems",
2879 		.prepare = mmc_test_area_prepare,
2880 		.run = mmc_test_profile_sglen_r_nonblock_perf,
2881 		.cleanup = mmc_test_area_cleanup,
2882 	},
2883 
2884 	{
2885 		.name = "Reset test",
2886 		.run = mmc_test_reset,
2887 	},
2888 
2889 	{
2890 		.name = "Commands during read - no Set Block Count (CMD23)",
2891 		.prepare = mmc_test_area_prepare,
2892 		.run = mmc_test_cmds_during_read,
2893 		.cleanup = mmc_test_area_cleanup,
2894 	},
2895 
2896 	{
2897 		.name = "Commands during write - no Set Block Count (CMD23)",
2898 		.prepare = mmc_test_area_prepare,
2899 		.run = mmc_test_cmds_during_write,
2900 		.cleanup = mmc_test_area_cleanup,
2901 	},
2902 
2903 	{
2904 		.name = "Commands during read - use Set Block Count (CMD23)",
2905 		.prepare = mmc_test_area_prepare,
2906 		.run = mmc_test_cmds_during_read_cmd23,
2907 		.cleanup = mmc_test_area_cleanup,
2908 	},
2909 
2910 	{
2911 		.name = "Commands during write - use Set Block Count (CMD23)",
2912 		.prepare = mmc_test_area_prepare,
2913 		.run = mmc_test_cmds_during_write_cmd23,
2914 		.cleanup = mmc_test_area_cleanup,
2915 	},
2916 
2917 	{
2918 		.name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2919 		.prepare = mmc_test_area_prepare,
2920 		.run = mmc_test_cmds_during_read_cmd23_nonblock,
2921 		.cleanup = mmc_test_area_cleanup,
2922 	},
2923 
2924 	{
2925 		.name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2926 		.prepare = mmc_test_area_prepare,
2927 		.run = mmc_test_cmds_during_write_cmd23_nonblock,
2928 		.cleanup = mmc_test_area_cleanup,
2929 	},
2930 };
2931 
2932 static DEFINE_MUTEX(mmc_test_lock);
2933 
2934 static LIST_HEAD(mmc_test_result);
2935 
2936 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2937 {
2938 	int i, ret;
2939 
2940 	pr_info("%s: Starting tests of card %s...\n",
2941 		mmc_hostname(test->card->host), mmc_card_id(test->card));
2942 
2943 	mmc_claim_host(test->card->host);
2944 
2945 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2946 		struct mmc_test_general_result *gr;
2947 
2948 		if (testcase && ((i + 1) != testcase))
2949 			continue;
2950 
2951 		pr_info("%s: Test case %d. %s...\n",
2952 			mmc_hostname(test->card->host), i + 1,
2953 			mmc_test_cases[i].name);
2954 
2955 		if (mmc_test_cases[i].prepare) {
2956 			ret = mmc_test_cases[i].prepare(test);
2957 			if (ret) {
2958 				pr_info("%s: Result: Prepare stage failed! (%d)\n",
2959 					mmc_hostname(test->card->host),
2960 					ret);
2961 				continue;
2962 			}
2963 		}
2964 
2965 		gr = kzalloc(sizeof(*gr), GFP_KERNEL);
2966 		if (gr) {
2967 			INIT_LIST_HEAD(&gr->tr_lst);
2968 
2969 			/* Assign data what we know already */
2970 			gr->card = test->card;
2971 			gr->testcase = i;
2972 
2973 			/* Append container to global one */
2974 			list_add_tail(&gr->link, &mmc_test_result);
2975 
2976 			/*
2977 			 * Save the pointer to created container in our private
2978 			 * structure.
2979 			 */
2980 			test->gr = gr;
2981 		}
2982 
2983 		ret = mmc_test_cases[i].run(test);
2984 		switch (ret) {
2985 		case RESULT_OK:
2986 			pr_info("%s: Result: OK\n",
2987 				mmc_hostname(test->card->host));
2988 			break;
2989 		case RESULT_FAIL:
2990 			pr_info("%s: Result: FAILED\n",
2991 				mmc_hostname(test->card->host));
2992 			break;
2993 		case RESULT_UNSUP_HOST:
2994 			pr_info("%s: Result: UNSUPPORTED (by host)\n",
2995 				mmc_hostname(test->card->host));
2996 			break;
2997 		case RESULT_UNSUP_CARD:
2998 			pr_info("%s: Result: UNSUPPORTED (by card)\n",
2999 				mmc_hostname(test->card->host));
3000 			break;
3001 		default:
3002 			pr_info("%s: Result: ERROR (%d)\n",
3003 				mmc_hostname(test->card->host), ret);
3004 		}
3005 
3006 		/* Save the result */
3007 		if (gr)
3008 			gr->result = ret;
3009 
3010 		if (mmc_test_cases[i].cleanup) {
3011 			ret = mmc_test_cases[i].cleanup(test);
3012 			if (ret) {
3013 				pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
3014 					mmc_hostname(test->card->host),
3015 					ret);
3016 			}
3017 		}
3018 	}
3019 
3020 	mmc_release_host(test->card->host);
3021 
3022 	pr_info("%s: Tests completed.\n",
3023 		mmc_hostname(test->card->host));
3024 }
3025 
3026 static void mmc_test_free_result(struct mmc_card *card)
3027 {
3028 	struct mmc_test_general_result *gr, *grs;
3029 
3030 	mutex_lock(&mmc_test_lock);
3031 
3032 	list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3033 		struct mmc_test_transfer_result *tr, *trs;
3034 
3035 		if (card && gr->card != card)
3036 			continue;
3037 
3038 		list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3039 			list_del(&tr->link);
3040 			kfree(tr);
3041 		}
3042 
3043 		list_del(&gr->link);
3044 		kfree(gr);
3045 	}
3046 
3047 	mutex_unlock(&mmc_test_lock);
3048 }
3049 
3050 static LIST_HEAD(mmc_test_file_test);
3051 
3052 static int mtf_test_show(struct seq_file *sf, void *data)
3053 {
3054 	struct mmc_card *card = (struct mmc_card *)sf->private;
3055 	struct mmc_test_general_result *gr;
3056 
3057 	mutex_lock(&mmc_test_lock);
3058 
3059 	list_for_each_entry(gr, &mmc_test_result, link) {
3060 		struct mmc_test_transfer_result *tr;
3061 
3062 		if (gr->card != card)
3063 			continue;
3064 
3065 		seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3066 
3067 		list_for_each_entry(tr, &gr->tr_lst, link) {
3068 			seq_printf(sf, "%u %d %llu.%09u %u %u.%02u\n",
3069 				tr->count, tr->sectors,
3070 				(u64)tr->ts.tv_sec, (u32)tr->ts.tv_nsec,
3071 				tr->rate, tr->iops / 100, tr->iops % 100);
3072 		}
3073 	}
3074 
3075 	mutex_unlock(&mmc_test_lock);
3076 
3077 	return 0;
3078 }
3079 
3080 static int mtf_test_open(struct inode *inode, struct file *file)
3081 {
3082 	return single_open(file, mtf_test_show, inode->i_private);
3083 }
3084 
3085 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3086 	size_t count, loff_t *pos)
3087 {
3088 	struct seq_file *sf = (struct seq_file *)file->private_data;
3089 	struct mmc_card *card = (struct mmc_card *)sf->private;
3090 	struct mmc_test_card *test;
3091 	long testcase;
3092 	int ret;
3093 
3094 	ret = kstrtol_from_user(buf, count, 10, &testcase);
3095 	if (ret)
3096 		return ret;
3097 
3098 	test = kzalloc(sizeof(*test), GFP_KERNEL);
3099 	if (!test)
3100 		return -ENOMEM;
3101 
3102 	/*
3103 	 * Remove all test cases associated with given card. Thus we have only
3104 	 * actual data of the last run.
3105 	 */
3106 	mmc_test_free_result(card);
3107 
3108 	test->card = card;
3109 
3110 	test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3111 #ifdef CONFIG_HIGHMEM
3112 	test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3113 #endif
3114 
3115 #ifdef CONFIG_HIGHMEM
3116 	if (test->buffer && test->highmem) {
3117 #else
3118 	if (test->buffer) {
3119 #endif
3120 		mutex_lock(&mmc_test_lock);
3121 		mmc_test_run(test, testcase);
3122 		mutex_unlock(&mmc_test_lock);
3123 	}
3124 
3125 #ifdef CONFIG_HIGHMEM
3126 	__free_pages(test->highmem, BUFFER_ORDER);
3127 #endif
3128 	kfree(test->buffer);
3129 	kfree(test);
3130 
3131 	return count;
3132 }
3133 
3134 static const struct file_operations mmc_test_fops_test = {
3135 	.open		= mtf_test_open,
3136 	.read		= seq_read,
3137 	.write		= mtf_test_write,
3138 	.llseek		= seq_lseek,
3139 	.release	= single_release,
3140 };
3141 
3142 static int mtf_testlist_show(struct seq_file *sf, void *data)
3143 {
3144 	int i;
3145 
3146 	mutex_lock(&mmc_test_lock);
3147 
3148 	seq_puts(sf, "0:\tRun all tests\n");
3149 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3150 		seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3151 
3152 	mutex_unlock(&mmc_test_lock);
3153 
3154 	return 0;
3155 }
3156 
3157 DEFINE_SHOW_ATTRIBUTE(mtf_testlist);
3158 
3159 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3160 {
3161 	struct mmc_test_dbgfs_file *df, *dfs;
3162 
3163 	mutex_lock(&mmc_test_lock);
3164 
3165 	list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3166 		if (card && df->card != card)
3167 			continue;
3168 		debugfs_remove(df->file);
3169 		list_del(&df->link);
3170 		kfree(df);
3171 	}
3172 
3173 	mutex_unlock(&mmc_test_lock);
3174 }
3175 
3176 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3177 	const char *name, umode_t mode, const struct file_operations *fops)
3178 {
3179 	struct dentry *file = NULL;
3180 	struct mmc_test_dbgfs_file *df;
3181 
3182 	if (card->debugfs_root)
3183 		debugfs_create_file(name, mode, card->debugfs_root, card, fops);
3184 
3185 	df = kmalloc(sizeof(*df), GFP_KERNEL);
3186 	if (!df) {
3187 		debugfs_remove(file);
3188 		return -ENOMEM;
3189 	}
3190 
3191 	df->card = card;
3192 	df->file = file;
3193 
3194 	list_add(&df->link, &mmc_test_file_test);
3195 	return 0;
3196 }
3197 
3198 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3199 {
3200 	int ret;
3201 
3202 	mutex_lock(&mmc_test_lock);
3203 
3204 	ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3205 		&mmc_test_fops_test);
3206 	if (ret)
3207 		goto err;
3208 
3209 	ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3210 		&mtf_testlist_fops);
3211 	if (ret)
3212 		goto err;
3213 
3214 err:
3215 	mutex_unlock(&mmc_test_lock);
3216 
3217 	return ret;
3218 }
3219 
3220 static int mmc_test_probe(struct mmc_card *card)
3221 {
3222 	int ret;
3223 
3224 	if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3225 		return -ENODEV;
3226 
3227 	ret = mmc_test_register_dbgfs_file(card);
3228 	if (ret)
3229 		return ret;
3230 
3231 	if (card->ext_csd.cmdq_en) {
3232 		mmc_claim_host(card->host);
3233 		ret = mmc_cmdq_disable(card);
3234 		mmc_release_host(card->host);
3235 		if (ret)
3236 			return ret;
3237 	}
3238 
3239 	dev_info(&card->dev, "Card claimed for testing.\n");
3240 
3241 	return 0;
3242 }
3243 
3244 static void mmc_test_remove(struct mmc_card *card)
3245 {
3246 	if (card->reenable_cmdq) {
3247 		mmc_claim_host(card->host);
3248 		mmc_cmdq_enable(card);
3249 		mmc_release_host(card->host);
3250 	}
3251 	mmc_test_free_result(card);
3252 	mmc_test_free_dbgfs_file(card);
3253 }
3254 
3255 static struct mmc_driver mmc_driver = {
3256 	.drv		= {
3257 		.name	= "mmc_test",
3258 	},
3259 	.probe		= mmc_test_probe,
3260 	.remove		= mmc_test_remove,
3261 };
3262 
3263 static int __init mmc_test_init(void)
3264 {
3265 	return mmc_register_driver(&mmc_driver);
3266 }
3267 
3268 static void __exit mmc_test_exit(void)
3269 {
3270 	/* Clear stalled data if card is still plugged */
3271 	mmc_test_free_result(NULL);
3272 	mmc_test_free_dbgfs_file(NULL);
3273 
3274 	mmc_unregister_driver(&mmc_driver);
3275 }
3276 
3277 module_init(mmc_test_init);
3278 module_exit(mmc_test_exit);
3279 
3280 MODULE_LICENSE("GPL");
3281 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3282 MODULE_AUTHOR("Pierre Ossman");
3283