xref: /openbmc/linux/drivers/mmc/core/mmc_test.c (revision 27ab1c1c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright 2007-2008 Pierre Ossman
4  */
5 
6 #include <linux/mmc/core.h>
7 #include <linux/mmc/card.h>
8 #include <linux/mmc/host.h>
9 #include <linux/mmc/mmc.h>
10 #include <linux/slab.h>
11 
12 #include <linux/scatterlist.h>
13 #include <linux/swap.h>		/* For nr_free_buffer_pages() */
14 #include <linux/list.h>
15 
16 #include <linux/debugfs.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/module.h>
20 
21 #include "core.h"
22 #include "card.h"
23 #include "host.h"
24 #include "bus.h"
25 #include "mmc_ops.h"
26 
27 #define RESULT_OK		0
28 #define RESULT_FAIL		1
29 #define RESULT_UNSUP_HOST	2
30 #define RESULT_UNSUP_CARD	3
31 
32 #define BUFFER_ORDER		2
33 #define BUFFER_SIZE		(PAGE_SIZE << BUFFER_ORDER)
34 
35 #define TEST_ALIGN_END		8
36 
37 /*
38  * Limit the test area size to the maximum MMC HC erase group size.  Note that
39  * the maximum SD allocation unit size is just 4MiB.
40  */
41 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
42 
43 /**
44  * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
45  * @page: first page in the allocation
46  * @order: order of the number of pages allocated
47  */
48 struct mmc_test_pages {
49 	struct page *page;
50 	unsigned int order;
51 };
52 
53 /**
54  * struct mmc_test_mem - allocated memory.
55  * @arr: array of allocations
56  * @cnt: number of allocations
57  */
58 struct mmc_test_mem {
59 	struct mmc_test_pages *arr;
60 	unsigned int cnt;
61 };
62 
63 /**
64  * struct mmc_test_area - information for performance tests.
65  * @max_sz: test area size (in bytes)
66  * @dev_addr: address on card at which to do performance tests
67  * @max_tfr: maximum transfer size allowed by driver (in bytes)
68  * @max_segs: maximum segments allowed by driver in scatterlist @sg
69  * @max_seg_sz: maximum segment size allowed by driver
70  * @blocks: number of (512 byte) blocks currently mapped by @sg
71  * @sg_len: length of currently mapped scatterlist @sg
72  * @mem: allocated memory
73  * @sg: scatterlist
74  * @sg_areq: scatterlist for non-blocking request
75  */
76 struct mmc_test_area {
77 	unsigned long max_sz;
78 	unsigned int dev_addr;
79 	unsigned int max_tfr;
80 	unsigned int max_segs;
81 	unsigned int max_seg_sz;
82 	unsigned int blocks;
83 	unsigned int sg_len;
84 	struct mmc_test_mem *mem;
85 	struct scatterlist *sg;
86 	struct scatterlist *sg_areq;
87 };
88 
89 /**
90  * struct mmc_test_transfer_result - transfer results for performance tests.
91  * @link: double-linked list
92  * @count: amount of group of sectors to check
93  * @sectors: amount of sectors to check in one group
94  * @ts: time values of transfer
95  * @rate: calculated transfer rate
96  * @iops: I/O operations per second (times 100)
97  */
98 struct mmc_test_transfer_result {
99 	struct list_head link;
100 	unsigned int count;
101 	unsigned int sectors;
102 	struct timespec64 ts;
103 	unsigned int rate;
104 	unsigned int iops;
105 };
106 
107 /**
108  * struct mmc_test_general_result - results for tests.
109  * @link: double-linked list
110  * @card: card under test
111  * @testcase: number of test case
112  * @result: result of test run
113  * @tr_lst: transfer measurements if any as mmc_test_transfer_result
114  */
115 struct mmc_test_general_result {
116 	struct list_head link;
117 	struct mmc_card *card;
118 	int testcase;
119 	int result;
120 	struct list_head tr_lst;
121 };
122 
123 /**
124  * struct mmc_test_dbgfs_file - debugfs related file.
125  * @link: double-linked list
126  * @card: card under test
127  * @file: file created under debugfs
128  */
129 struct mmc_test_dbgfs_file {
130 	struct list_head link;
131 	struct mmc_card *card;
132 	struct dentry *file;
133 };
134 
135 /**
136  * struct mmc_test_card - test information.
137  * @card: card under test
138  * @scratch: transfer buffer
139  * @buffer: transfer buffer
140  * @highmem: buffer for highmem tests
141  * @area: information for performance tests
142  * @gr: pointer to results of current testcase
143  */
144 struct mmc_test_card {
145 	struct mmc_card	*card;
146 
147 	u8		scratch[BUFFER_SIZE];
148 	u8		*buffer;
149 #ifdef CONFIG_HIGHMEM
150 	struct page	*highmem;
151 #endif
152 	struct mmc_test_area		area;
153 	struct mmc_test_general_result	*gr;
154 };
155 
156 enum mmc_test_prep_media {
157 	MMC_TEST_PREP_NONE = 0,
158 	MMC_TEST_PREP_WRITE_FULL = 1 << 0,
159 	MMC_TEST_PREP_ERASE = 1 << 1,
160 };
161 
162 struct mmc_test_multiple_rw {
163 	unsigned int *sg_len;
164 	unsigned int *bs;
165 	unsigned int len;
166 	unsigned int size;
167 	bool do_write;
168 	bool do_nonblock_req;
169 	enum mmc_test_prep_media prepare;
170 };
171 
172 /*******************************************************************/
173 /*  General helper functions                                       */
174 /*******************************************************************/
175 
176 /*
177  * Configure correct block size in card
178  */
179 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
180 {
181 	return mmc_set_blocklen(test->card, size);
182 }
183 
184 static bool mmc_test_card_cmd23(struct mmc_card *card)
185 {
186 	return mmc_card_mmc(card) ||
187 	       (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
188 }
189 
190 static void mmc_test_prepare_sbc(struct mmc_test_card *test,
191 				 struct mmc_request *mrq, unsigned int blocks)
192 {
193 	struct mmc_card *card = test->card;
194 
195 	if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
196 	    !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
197 	    (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
198 		mrq->sbc = NULL;
199 		return;
200 	}
201 
202 	mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
203 	mrq->sbc->arg = blocks;
204 	mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
205 }
206 
207 /*
208  * Fill in the mmc_request structure given a set of transfer parameters.
209  */
210 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
211 	struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
212 	unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
213 {
214 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
215 		return;
216 
217 	if (blocks > 1) {
218 		mrq->cmd->opcode = write ?
219 			MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
220 	} else {
221 		mrq->cmd->opcode = write ?
222 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
223 	}
224 
225 	mrq->cmd->arg = dev_addr;
226 	if (!mmc_card_blockaddr(test->card))
227 		mrq->cmd->arg <<= 9;
228 
229 	mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
230 
231 	if (blocks == 1)
232 		mrq->stop = NULL;
233 	else {
234 		mrq->stop->opcode = MMC_STOP_TRANSMISSION;
235 		mrq->stop->arg = 0;
236 		mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
237 	}
238 
239 	mrq->data->blksz = blksz;
240 	mrq->data->blocks = blocks;
241 	mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
242 	mrq->data->sg = sg;
243 	mrq->data->sg_len = sg_len;
244 
245 	mmc_test_prepare_sbc(test, mrq, blocks);
246 
247 	mmc_set_data_timeout(mrq->data, test->card);
248 }
249 
250 static int mmc_test_busy(struct mmc_command *cmd)
251 {
252 	return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
253 		(R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
254 }
255 
256 /*
257  * Wait for the card to finish the busy state
258  */
259 static int mmc_test_wait_busy(struct mmc_test_card *test)
260 {
261 	int ret, busy;
262 	struct mmc_command cmd = {};
263 
264 	busy = 0;
265 	do {
266 		memset(&cmd, 0, sizeof(struct mmc_command));
267 
268 		cmd.opcode = MMC_SEND_STATUS;
269 		cmd.arg = test->card->rca << 16;
270 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
271 
272 		ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
273 		if (ret)
274 			break;
275 
276 		if (!busy && mmc_test_busy(&cmd)) {
277 			busy = 1;
278 			if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
279 				pr_info("%s: Warning: Host did not wait for busy state to end.\n",
280 					mmc_hostname(test->card->host));
281 		}
282 	} while (mmc_test_busy(&cmd));
283 
284 	return ret;
285 }
286 
287 /*
288  * Transfer a single sector of kernel addressable data
289  */
290 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
291 	u8 *buffer, unsigned addr, unsigned blksz, int write)
292 {
293 	struct mmc_request mrq = {};
294 	struct mmc_command cmd = {};
295 	struct mmc_command stop = {};
296 	struct mmc_data data = {};
297 
298 	struct scatterlist sg;
299 
300 	mrq.cmd = &cmd;
301 	mrq.data = &data;
302 	mrq.stop = &stop;
303 
304 	sg_init_one(&sg, buffer, blksz);
305 
306 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
307 
308 	mmc_wait_for_req(test->card->host, &mrq);
309 
310 	if (cmd.error)
311 		return cmd.error;
312 	if (data.error)
313 		return data.error;
314 
315 	return mmc_test_wait_busy(test);
316 }
317 
318 static void mmc_test_free_mem(struct mmc_test_mem *mem)
319 {
320 	if (!mem)
321 		return;
322 	while (mem->cnt--)
323 		__free_pages(mem->arr[mem->cnt].page,
324 			     mem->arr[mem->cnt].order);
325 	kfree(mem->arr);
326 	kfree(mem);
327 }
328 
329 /*
330  * Allocate a lot of memory, preferably max_sz but at least min_sz.  In case
331  * there isn't much memory do not exceed 1/16th total lowmem pages.  Also do
332  * not exceed a maximum number of segments and try not to make segments much
333  * bigger than maximum segment size.
334  */
335 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
336 					       unsigned long max_sz,
337 					       unsigned int max_segs,
338 					       unsigned int max_seg_sz)
339 {
340 	unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
341 	unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
342 	unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
343 	unsigned long page_cnt = 0;
344 	unsigned long limit = nr_free_buffer_pages() >> 4;
345 	struct mmc_test_mem *mem;
346 
347 	if (max_page_cnt > limit)
348 		max_page_cnt = limit;
349 	if (min_page_cnt > max_page_cnt)
350 		min_page_cnt = max_page_cnt;
351 
352 	if (max_seg_page_cnt > max_page_cnt)
353 		max_seg_page_cnt = max_page_cnt;
354 
355 	if (max_segs > max_page_cnt)
356 		max_segs = max_page_cnt;
357 
358 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
359 	if (!mem)
360 		return NULL;
361 
362 	mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
363 	if (!mem->arr)
364 		goto out_free;
365 
366 	while (max_page_cnt) {
367 		struct page *page;
368 		unsigned int order;
369 		gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
370 				__GFP_NORETRY;
371 
372 		order = get_order(max_seg_page_cnt << PAGE_SHIFT);
373 		while (1) {
374 			page = alloc_pages(flags, order);
375 			if (page || !order)
376 				break;
377 			order -= 1;
378 		}
379 		if (!page) {
380 			if (page_cnt < min_page_cnt)
381 				goto out_free;
382 			break;
383 		}
384 		mem->arr[mem->cnt].page = page;
385 		mem->arr[mem->cnt].order = order;
386 		mem->cnt += 1;
387 		if (max_page_cnt <= (1UL << order))
388 			break;
389 		max_page_cnt -= 1UL << order;
390 		page_cnt += 1UL << order;
391 		if (mem->cnt >= max_segs) {
392 			if (page_cnt < min_page_cnt)
393 				goto out_free;
394 			break;
395 		}
396 	}
397 
398 	return mem;
399 
400 out_free:
401 	mmc_test_free_mem(mem);
402 	return NULL;
403 }
404 
405 /*
406  * Map memory into a scatterlist.  Optionally allow the same memory to be
407  * mapped more than once.
408  */
409 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
410 			   struct scatterlist *sglist, int repeat,
411 			   unsigned int max_segs, unsigned int max_seg_sz,
412 			   unsigned int *sg_len, int min_sg_len)
413 {
414 	struct scatterlist *sg = NULL;
415 	unsigned int i;
416 	unsigned long sz = size;
417 
418 	sg_init_table(sglist, max_segs);
419 	if (min_sg_len > max_segs)
420 		min_sg_len = max_segs;
421 
422 	*sg_len = 0;
423 	do {
424 		for (i = 0; i < mem->cnt; i++) {
425 			unsigned long len = PAGE_SIZE << mem->arr[i].order;
426 
427 			if (min_sg_len && (size / min_sg_len < len))
428 				len = ALIGN(size / min_sg_len, 512);
429 			if (len > sz)
430 				len = sz;
431 			if (len > max_seg_sz)
432 				len = max_seg_sz;
433 			if (sg)
434 				sg = sg_next(sg);
435 			else
436 				sg = sglist;
437 			if (!sg)
438 				return -EINVAL;
439 			sg_set_page(sg, mem->arr[i].page, len, 0);
440 			sz -= len;
441 			*sg_len += 1;
442 			if (!sz)
443 				break;
444 		}
445 	} while (sz && repeat);
446 
447 	if (sz)
448 		return -EINVAL;
449 
450 	if (sg)
451 		sg_mark_end(sg);
452 
453 	return 0;
454 }
455 
456 /*
457  * Map memory into a scatterlist so that no pages are contiguous.  Allow the
458  * same memory to be mapped more than once.
459  */
460 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
461 				       unsigned long sz,
462 				       struct scatterlist *sglist,
463 				       unsigned int max_segs,
464 				       unsigned int max_seg_sz,
465 				       unsigned int *sg_len)
466 {
467 	struct scatterlist *sg = NULL;
468 	unsigned int i = mem->cnt, cnt;
469 	unsigned long len;
470 	void *base, *addr, *last_addr = NULL;
471 
472 	sg_init_table(sglist, max_segs);
473 
474 	*sg_len = 0;
475 	while (sz) {
476 		base = page_address(mem->arr[--i].page);
477 		cnt = 1 << mem->arr[i].order;
478 		while (sz && cnt) {
479 			addr = base + PAGE_SIZE * --cnt;
480 			if (last_addr && last_addr + PAGE_SIZE == addr)
481 				continue;
482 			last_addr = addr;
483 			len = PAGE_SIZE;
484 			if (len > max_seg_sz)
485 				len = max_seg_sz;
486 			if (len > sz)
487 				len = sz;
488 			if (sg)
489 				sg = sg_next(sg);
490 			else
491 				sg = sglist;
492 			if (!sg)
493 				return -EINVAL;
494 			sg_set_page(sg, virt_to_page(addr), len, 0);
495 			sz -= len;
496 			*sg_len += 1;
497 		}
498 		if (i == 0)
499 			i = mem->cnt;
500 	}
501 
502 	if (sg)
503 		sg_mark_end(sg);
504 
505 	return 0;
506 }
507 
508 /*
509  * Calculate transfer rate in bytes per second.
510  */
511 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec64 *ts)
512 {
513 	uint64_t ns;
514 
515 	ns = timespec64_to_ns(ts);
516 	bytes *= 1000000000;
517 
518 	while (ns > UINT_MAX) {
519 		bytes >>= 1;
520 		ns >>= 1;
521 	}
522 
523 	if (!ns)
524 		return 0;
525 
526 	do_div(bytes, (uint32_t)ns);
527 
528 	return bytes;
529 }
530 
531 /*
532  * Save transfer results for future usage
533  */
534 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
535 	unsigned int count, unsigned int sectors, struct timespec64 ts,
536 	unsigned int rate, unsigned int iops)
537 {
538 	struct mmc_test_transfer_result *tr;
539 
540 	if (!test->gr)
541 		return;
542 
543 	tr = kmalloc(sizeof(*tr), GFP_KERNEL);
544 	if (!tr)
545 		return;
546 
547 	tr->count = count;
548 	tr->sectors = sectors;
549 	tr->ts = ts;
550 	tr->rate = rate;
551 	tr->iops = iops;
552 
553 	list_add_tail(&tr->link, &test->gr->tr_lst);
554 }
555 
556 /*
557  * Print the transfer rate.
558  */
559 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
560 				struct timespec64 *ts1, struct timespec64 *ts2)
561 {
562 	unsigned int rate, iops, sectors = bytes >> 9;
563 	struct timespec64 ts;
564 
565 	ts = timespec64_sub(*ts2, *ts1);
566 
567 	rate = mmc_test_rate(bytes, &ts);
568 	iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
569 
570 	pr_info("%s: Transfer of %u sectors (%u%s KiB) took %llu.%09u "
571 			 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
572 			 mmc_hostname(test->card->host), sectors, sectors >> 1,
573 			 (sectors & 1 ? ".5" : ""), (u64)ts.tv_sec,
574 			 (u32)ts.tv_nsec, rate / 1000, rate / 1024,
575 			 iops / 100, iops % 100);
576 
577 	mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
578 }
579 
580 /*
581  * Print the average transfer rate.
582  */
583 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
584 				    unsigned int count, struct timespec64 *ts1,
585 				    struct timespec64 *ts2)
586 {
587 	unsigned int rate, iops, sectors = bytes >> 9;
588 	uint64_t tot = bytes * count;
589 	struct timespec64 ts;
590 
591 	ts = timespec64_sub(*ts2, *ts1);
592 
593 	rate = mmc_test_rate(tot, &ts);
594 	iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
595 
596 	pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
597 			 "%llu.%09u seconds (%u kB/s, %u KiB/s, "
598 			 "%u.%02u IOPS, sg_len %d)\n",
599 			 mmc_hostname(test->card->host), count, sectors, count,
600 			 sectors >> 1, (sectors & 1 ? ".5" : ""),
601 			 (u64)ts.tv_sec, (u32)ts.tv_nsec,
602 			 rate / 1000, rate / 1024, iops / 100, iops % 100,
603 			 test->area.sg_len);
604 
605 	mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
606 }
607 
608 /*
609  * Return the card size in sectors.
610  */
611 static unsigned int mmc_test_capacity(struct mmc_card *card)
612 {
613 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
614 		return card->ext_csd.sectors;
615 	else
616 		return card->csd.capacity << (card->csd.read_blkbits - 9);
617 }
618 
619 /*******************************************************************/
620 /*  Test preparation and cleanup                                   */
621 /*******************************************************************/
622 
623 /*
624  * Fill the first couple of sectors of the card with known data
625  * so that bad reads/writes can be detected
626  */
627 static int __mmc_test_prepare(struct mmc_test_card *test, int write)
628 {
629 	int ret, i;
630 
631 	ret = mmc_test_set_blksize(test, 512);
632 	if (ret)
633 		return ret;
634 
635 	if (write)
636 		memset(test->buffer, 0xDF, 512);
637 	else {
638 		for (i = 0; i < 512; i++)
639 			test->buffer[i] = i;
640 	}
641 
642 	for (i = 0; i < BUFFER_SIZE / 512; i++) {
643 		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
644 		if (ret)
645 			return ret;
646 	}
647 
648 	return 0;
649 }
650 
651 static int mmc_test_prepare_write(struct mmc_test_card *test)
652 {
653 	return __mmc_test_prepare(test, 1);
654 }
655 
656 static int mmc_test_prepare_read(struct mmc_test_card *test)
657 {
658 	return __mmc_test_prepare(test, 0);
659 }
660 
661 static int mmc_test_cleanup(struct mmc_test_card *test)
662 {
663 	int ret, i;
664 
665 	ret = mmc_test_set_blksize(test, 512);
666 	if (ret)
667 		return ret;
668 
669 	memset(test->buffer, 0, 512);
670 
671 	for (i = 0; i < BUFFER_SIZE / 512; i++) {
672 		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
673 		if (ret)
674 			return ret;
675 	}
676 
677 	return 0;
678 }
679 
680 /*******************************************************************/
681 /*  Test execution helpers                                         */
682 /*******************************************************************/
683 
684 /*
685  * Modifies the mmc_request to perform the "short transfer" tests
686  */
687 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
688 	struct mmc_request *mrq, int write)
689 {
690 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
691 		return;
692 
693 	if (mrq->data->blocks > 1) {
694 		mrq->cmd->opcode = write ?
695 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
696 		mrq->stop = NULL;
697 	} else {
698 		mrq->cmd->opcode = MMC_SEND_STATUS;
699 		mrq->cmd->arg = test->card->rca << 16;
700 	}
701 }
702 
703 /*
704  * Checks that a normal transfer didn't have any errors
705  */
706 static int mmc_test_check_result(struct mmc_test_card *test,
707 				 struct mmc_request *mrq)
708 {
709 	int ret;
710 
711 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
712 		return -EINVAL;
713 
714 	ret = 0;
715 
716 	if (mrq->sbc && mrq->sbc->error)
717 		ret = mrq->sbc->error;
718 	if (!ret && mrq->cmd->error)
719 		ret = mrq->cmd->error;
720 	if (!ret && mrq->data->error)
721 		ret = mrq->data->error;
722 	if (!ret && mrq->stop && mrq->stop->error)
723 		ret = mrq->stop->error;
724 	if (!ret && mrq->data->bytes_xfered !=
725 		mrq->data->blocks * mrq->data->blksz)
726 		ret = RESULT_FAIL;
727 
728 	if (ret == -EINVAL)
729 		ret = RESULT_UNSUP_HOST;
730 
731 	return ret;
732 }
733 
734 /*
735  * Checks that a "short transfer" behaved as expected
736  */
737 static int mmc_test_check_broken_result(struct mmc_test_card *test,
738 	struct mmc_request *mrq)
739 {
740 	int ret;
741 
742 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
743 		return -EINVAL;
744 
745 	ret = 0;
746 
747 	if (!ret && mrq->cmd->error)
748 		ret = mrq->cmd->error;
749 	if (!ret && mrq->data->error == 0)
750 		ret = RESULT_FAIL;
751 	if (!ret && mrq->data->error != -ETIMEDOUT)
752 		ret = mrq->data->error;
753 	if (!ret && mrq->stop && mrq->stop->error)
754 		ret = mrq->stop->error;
755 	if (mrq->data->blocks > 1) {
756 		if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
757 			ret = RESULT_FAIL;
758 	} else {
759 		if (!ret && mrq->data->bytes_xfered > 0)
760 			ret = RESULT_FAIL;
761 	}
762 
763 	if (ret == -EINVAL)
764 		ret = RESULT_UNSUP_HOST;
765 
766 	return ret;
767 }
768 
769 struct mmc_test_req {
770 	struct mmc_request mrq;
771 	struct mmc_command sbc;
772 	struct mmc_command cmd;
773 	struct mmc_command stop;
774 	struct mmc_command status;
775 	struct mmc_data data;
776 };
777 
778 /*
779  * Tests nonblock transfer with certain parameters
780  */
781 static void mmc_test_req_reset(struct mmc_test_req *rq)
782 {
783 	memset(rq, 0, sizeof(struct mmc_test_req));
784 
785 	rq->mrq.cmd = &rq->cmd;
786 	rq->mrq.data = &rq->data;
787 	rq->mrq.stop = &rq->stop;
788 }
789 
790 static struct mmc_test_req *mmc_test_req_alloc(void)
791 {
792 	struct mmc_test_req *rq = kmalloc(sizeof(*rq), GFP_KERNEL);
793 
794 	if (rq)
795 		mmc_test_req_reset(rq);
796 
797 	return rq;
798 }
799 
800 static void mmc_test_wait_done(struct mmc_request *mrq)
801 {
802 	complete(&mrq->completion);
803 }
804 
805 static int mmc_test_start_areq(struct mmc_test_card *test,
806 			       struct mmc_request *mrq,
807 			       struct mmc_request *prev_mrq)
808 {
809 	struct mmc_host *host = test->card->host;
810 	int err = 0;
811 
812 	if (mrq) {
813 		init_completion(&mrq->completion);
814 		mrq->done = mmc_test_wait_done;
815 		mmc_pre_req(host, mrq);
816 	}
817 
818 	if (prev_mrq) {
819 		wait_for_completion(&prev_mrq->completion);
820 		err = mmc_test_wait_busy(test);
821 		if (!err)
822 			err = mmc_test_check_result(test, prev_mrq);
823 	}
824 
825 	if (!err && mrq) {
826 		err = mmc_start_request(host, mrq);
827 		if (err)
828 			mmc_retune_release(host);
829 	}
830 
831 	if (prev_mrq)
832 		mmc_post_req(host, prev_mrq, 0);
833 
834 	if (err && mrq)
835 		mmc_post_req(host, mrq, err);
836 
837 	return err;
838 }
839 
840 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
841 				      unsigned int dev_addr, int write,
842 				      int count)
843 {
844 	struct mmc_test_req *rq1, *rq2;
845 	struct mmc_request *mrq, *prev_mrq;
846 	int i;
847 	int ret = RESULT_OK;
848 	struct mmc_test_area *t = &test->area;
849 	struct scatterlist *sg = t->sg;
850 	struct scatterlist *sg_areq = t->sg_areq;
851 
852 	rq1 = mmc_test_req_alloc();
853 	rq2 = mmc_test_req_alloc();
854 	if (!rq1 || !rq2) {
855 		ret = RESULT_FAIL;
856 		goto err;
857 	}
858 
859 	mrq = &rq1->mrq;
860 	prev_mrq = NULL;
861 
862 	for (i = 0; i < count; i++) {
863 		mmc_test_req_reset(container_of(mrq, struct mmc_test_req, mrq));
864 		mmc_test_prepare_mrq(test, mrq, sg, t->sg_len, dev_addr,
865 				     t->blocks, 512, write);
866 		ret = mmc_test_start_areq(test, mrq, prev_mrq);
867 		if (ret)
868 			goto err;
869 
870 		if (!prev_mrq)
871 			prev_mrq = &rq2->mrq;
872 
873 		swap(mrq, prev_mrq);
874 		swap(sg, sg_areq);
875 		dev_addr += t->blocks;
876 	}
877 
878 	ret = mmc_test_start_areq(test, NULL, prev_mrq);
879 err:
880 	kfree(rq1);
881 	kfree(rq2);
882 	return ret;
883 }
884 
885 /*
886  * Tests a basic transfer with certain parameters
887  */
888 static int mmc_test_simple_transfer(struct mmc_test_card *test,
889 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
890 	unsigned blocks, unsigned blksz, int write)
891 {
892 	struct mmc_request mrq = {};
893 	struct mmc_command cmd = {};
894 	struct mmc_command stop = {};
895 	struct mmc_data data = {};
896 
897 	mrq.cmd = &cmd;
898 	mrq.data = &data;
899 	mrq.stop = &stop;
900 
901 	mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
902 		blocks, blksz, write);
903 
904 	mmc_wait_for_req(test->card->host, &mrq);
905 
906 	mmc_test_wait_busy(test);
907 
908 	return mmc_test_check_result(test, &mrq);
909 }
910 
911 /*
912  * Tests a transfer where the card will fail completely or partly
913  */
914 static int mmc_test_broken_transfer(struct mmc_test_card *test,
915 	unsigned blocks, unsigned blksz, int write)
916 {
917 	struct mmc_request mrq = {};
918 	struct mmc_command cmd = {};
919 	struct mmc_command stop = {};
920 	struct mmc_data data = {};
921 
922 	struct scatterlist sg;
923 
924 	mrq.cmd = &cmd;
925 	mrq.data = &data;
926 	mrq.stop = &stop;
927 
928 	sg_init_one(&sg, test->buffer, blocks * blksz);
929 
930 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
931 	mmc_test_prepare_broken_mrq(test, &mrq, write);
932 
933 	mmc_wait_for_req(test->card->host, &mrq);
934 
935 	mmc_test_wait_busy(test);
936 
937 	return mmc_test_check_broken_result(test, &mrq);
938 }
939 
940 /*
941  * Does a complete transfer test where data is also validated
942  *
943  * Note: mmc_test_prepare() must have been done before this call
944  */
945 static int mmc_test_transfer(struct mmc_test_card *test,
946 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
947 	unsigned blocks, unsigned blksz, int write)
948 {
949 	int ret, i;
950 	unsigned long flags;
951 
952 	if (write) {
953 		for (i = 0; i < blocks * blksz; i++)
954 			test->scratch[i] = i;
955 	} else {
956 		memset(test->scratch, 0, BUFFER_SIZE);
957 	}
958 	local_irq_save(flags);
959 	sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
960 	local_irq_restore(flags);
961 
962 	ret = mmc_test_set_blksize(test, blksz);
963 	if (ret)
964 		return ret;
965 
966 	ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
967 		blocks, blksz, write);
968 	if (ret)
969 		return ret;
970 
971 	if (write) {
972 		int sectors;
973 
974 		ret = mmc_test_set_blksize(test, 512);
975 		if (ret)
976 			return ret;
977 
978 		sectors = (blocks * blksz + 511) / 512;
979 		if ((sectors * 512) == (blocks * blksz))
980 			sectors++;
981 
982 		if ((sectors * 512) > BUFFER_SIZE)
983 			return -EINVAL;
984 
985 		memset(test->buffer, 0, sectors * 512);
986 
987 		for (i = 0; i < sectors; i++) {
988 			ret = mmc_test_buffer_transfer(test,
989 				test->buffer + i * 512,
990 				dev_addr + i, 512, 0);
991 			if (ret)
992 				return ret;
993 		}
994 
995 		for (i = 0; i < blocks * blksz; i++) {
996 			if (test->buffer[i] != (u8)i)
997 				return RESULT_FAIL;
998 		}
999 
1000 		for (; i < sectors * 512; i++) {
1001 			if (test->buffer[i] != 0xDF)
1002 				return RESULT_FAIL;
1003 		}
1004 	} else {
1005 		local_irq_save(flags);
1006 		sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
1007 		local_irq_restore(flags);
1008 		for (i = 0; i < blocks * blksz; i++) {
1009 			if (test->scratch[i] != (u8)i)
1010 				return RESULT_FAIL;
1011 		}
1012 	}
1013 
1014 	return 0;
1015 }
1016 
1017 /*******************************************************************/
1018 /*  Tests                                                          */
1019 /*******************************************************************/
1020 
1021 struct mmc_test_case {
1022 	const char *name;
1023 
1024 	int (*prepare)(struct mmc_test_card *);
1025 	int (*run)(struct mmc_test_card *);
1026 	int (*cleanup)(struct mmc_test_card *);
1027 };
1028 
1029 static int mmc_test_basic_write(struct mmc_test_card *test)
1030 {
1031 	int ret;
1032 	struct scatterlist sg;
1033 
1034 	ret = mmc_test_set_blksize(test, 512);
1035 	if (ret)
1036 		return ret;
1037 
1038 	sg_init_one(&sg, test->buffer, 512);
1039 
1040 	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1041 }
1042 
1043 static int mmc_test_basic_read(struct mmc_test_card *test)
1044 {
1045 	int ret;
1046 	struct scatterlist sg;
1047 
1048 	ret = mmc_test_set_blksize(test, 512);
1049 	if (ret)
1050 		return ret;
1051 
1052 	sg_init_one(&sg, test->buffer, 512);
1053 
1054 	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1055 }
1056 
1057 static int mmc_test_verify_write(struct mmc_test_card *test)
1058 {
1059 	struct scatterlist sg;
1060 
1061 	sg_init_one(&sg, test->buffer, 512);
1062 
1063 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1064 }
1065 
1066 static int mmc_test_verify_read(struct mmc_test_card *test)
1067 {
1068 	struct scatterlist sg;
1069 
1070 	sg_init_one(&sg, test->buffer, 512);
1071 
1072 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1073 }
1074 
1075 static int mmc_test_multi_write(struct mmc_test_card *test)
1076 {
1077 	unsigned int size;
1078 	struct scatterlist sg;
1079 
1080 	if (test->card->host->max_blk_count == 1)
1081 		return RESULT_UNSUP_HOST;
1082 
1083 	size = PAGE_SIZE * 2;
1084 	size = min(size, test->card->host->max_req_size);
1085 	size = min(size, test->card->host->max_seg_size);
1086 	size = min(size, test->card->host->max_blk_count * 512);
1087 
1088 	if (size < 1024)
1089 		return RESULT_UNSUP_HOST;
1090 
1091 	sg_init_one(&sg, test->buffer, size);
1092 
1093 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1094 }
1095 
1096 static int mmc_test_multi_read(struct mmc_test_card *test)
1097 {
1098 	unsigned int size;
1099 	struct scatterlist sg;
1100 
1101 	if (test->card->host->max_blk_count == 1)
1102 		return RESULT_UNSUP_HOST;
1103 
1104 	size = PAGE_SIZE * 2;
1105 	size = min(size, test->card->host->max_req_size);
1106 	size = min(size, test->card->host->max_seg_size);
1107 	size = min(size, test->card->host->max_blk_count * 512);
1108 
1109 	if (size < 1024)
1110 		return RESULT_UNSUP_HOST;
1111 
1112 	sg_init_one(&sg, test->buffer, size);
1113 
1114 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1115 }
1116 
1117 static int mmc_test_pow2_write(struct mmc_test_card *test)
1118 {
1119 	int ret, i;
1120 	struct scatterlist sg;
1121 
1122 	if (!test->card->csd.write_partial)
1123 		return RESULT_UNSUP_CARD;
1124 
1125 	for (i = 1; i < 512; i <<= 1) {
1126 		sg_init_one(&sg, test->buffer, i);
1127 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1128 		if (ret)
1129 			return ret;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static int mmc_test_pow2_read(struct mmc_test_card *test)
1136 {
1137 	int ret, i;
1138 	struct scatterlist sg;
1139 
1140 	if (!test->card->csd.read_partial)
1141 		return RESULT_UNSUP_CARD;
1142 
1143 	for (i = 1; i < 512; i <<= 1) {
1144 		sg_init_one(&sg, test->buffer, i);
1145 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1146 		if (ret)
1147 			return ret;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static int mmc_test_weird_write(struct mmc_test_card *test)
1154 {
1155 	int ret, i;
1156 	struct scatterlist sg;
1157 
1158 	if (!test->card->csd.write_partial)
1159 		return RESULT_UNSUP_CARD;
1160 
1161 	for (i = 3; i < 512; i += 7) {
1162 		sg_init_one(&sg, test->buffer, i);
1163 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1164 		if (ret)
1165 			return ret;
1166 	}
1167 
1168 	return 0;
1169 }
1170 
1171 static int mmc_test_weird_read(struct mmc_test_card *test)
1172 {
1173 	int ret, i;
1174 	struct scatterlist sg;
1175 
1176 	if (!test->card->csd.read_partial)
1177 		return RESULT_UNSUP_CARD;
1178 
1179 	for (i = 3; i < 512; i += 7) {
1180 		sg_init_one(&sg, test->buffer, i);
1181 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1182 		if (ret)
1183 			return ret;
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 static int mmc_test_align_write(struct mmc_test_card *test)
1190 {
1191 	int ret, i;
1192 	struct scatterlist sg;
1193 
1194 	for (i = 1; i < TEST_ALIGN_END; i++) {
1195 		sg_init_one(&sg, test->buffer + i, 512);
1196 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1197 		if (ret)
1198 			return ret;
1199 	}
1200 
1201 	return 0;
1202 }
1203 
1204 static int mmc_test_align_read(struct mmc_test_card *test)
1205 {
1206 	int ret, i;
1207 	struct scatterlist sg;
1208 
1209 	for (i = 1; i < TEST_ALIGN_END; i++) {
1210 		sg_init_one(&sg, test->buffer + i, 512);
1211 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1212 		if (ret)
1213 			return ret;
1214 	}
1215 
1216 	return 0;
1217 }
1218 
1219 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1220 {
1221 	int ret, i;
1222 	unsigned int size;
1223 	struct scatterlist sg;
1224 
1225 	if (test->card->host->max_blk_count == 1)
1226 		return RESULT_UNSUP_HOST;
1227 
1228 	size = PAGE_SIZE * 2;
1229 	size = min(size, test->card->host->max_req_size);
1230 	size = min(size, test->card->host->max_seg_size);
1231 	size = min(size, test->card->host->max_blk_count * 512);
1232 
1233 	if (size < 1024)
1234 		return RESULT_UNSUP_HOST;
1235 
1236 	for (i = 1; i < TEST_ALIGN_END; i++) {
1237 		sg_init_one(&sg, test->buffer + i, size);
1238 		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1239 		if (ret)
1240 			return ret;
1241 	}
1242 
1243 	return 0;
1244 }
1245 
1246 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1247 {
1248 	int ret, i;
1249 	unsigned int size;
1250 	struct scatterlist sg;
1251 
1252 	if (test->card->host->max_blk_count == 1)
1253 		return RESULT_UNSUP_HOST;
1254 
1255 	size = PAGE_SIZE * 2;
1256 	size = min(size, test->card->host->max_req_size);
1257 	size = min(size, test->card->host->max_seg_size);
1258 	size = min(size, test->card->host->max_blk_count * 512);
1259 
1260 	if (size < 1024)
1261 		return RESULT_UNSUP_HOST;
1262 
1263 	for (i = 1; i < TEST_ALIGN_END; i++) {
1264 		sg_init_one(&sg, test->buffer + i, size);
1265 		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1266 		if (ret)
1267 			return ret;
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1274 {
1275 	int ret;
1276 
1277 	ret = mmc_test_set_blksize(test, 512);
1278 	if (ret)
1279 		return ret;
1280 
1281 	return mmc_test_broken_transfer(test, 1, 512, 1);
1282 }
1283 
1284 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1285 {
1286 	int ret;
1287 
1288 	ret = mmc_test_set_blksize(test, 512);
1289 	if (ret)
1290 		return ret;
1291 
1292 	return mmc_test_broken_transfer(test, 1, 512, 0);
1293 }
1294 
1295 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1296 {
1297 	int ret;
1298 
1299 	if (test->card->host->max_blk_count == 1)
1300 		return RESULT_UNSUP_HOST;
1301 
1302 	ret = mmc_test_set_blksize(test, 512);
1303 	if (ret)
1304 		return ret;
1305 
1306 	return mmc_test_broken_transfer(test, 2, 512, 1);
1307 }
1308 
1309 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1310 {
1311 	int ret;
1312 
1313 	if (test->card->host->max_blk_count == 1)
1314 		return RESULT_UNSUP_HOST;
1315 
1316 	ret = mmc_test_set_blksize(test, 512);
1317 	if (ret)
1318 		return ret;
1319 
1320 	return mmc_test_broken_transfer(test, 2, 512, 0);
1321 }
1322 
1323 #ifdef CONFIG_HIGHMEM
1324 
1325 static int mmc_test_write_high(struct mmc_test_card *test)
1326 {
1327 	struct scatterlist sg;
1328 
1329 	sg_init_table(&sg, 1);
1330 	sg_set_page(&sg, test->highmem, 512, 0);
1331 
1332 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1333 }
1334 
1335 static int mmc_test_read_high(struct mmc_test_card *test)
1336 {
1337 	struct scatterlist sg;
1338 
1339 	sg_init_table(&sg, 1);
1340 	sg_set_page(&sg, test->highmem, 512, 0);
1341 
1342 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1343 }
1344 
1345 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1346 {
1347 	unsigned int size;
1348 	struct scatterlist sg;
1349 
1350 	if (test->card->host->max_blk_count == 1)
1351 		return RESULT_UNSUP_HOST;
1352 
1353 	size = PAGE_SIZE * 2;
1354 	size = min(size, test->card->host->max_req_size);
1355 	size = min(size, test->card->host->max_seg_size);
1356 	size = min(size, test->card->host->max_blk_count * 512);
1357 
1358 	if (size < 1024)
1359 		return RESULT_UNSUP_HOST;
1360 
1361 	sg_init_table(&sg, 1);
1362 	sg_set_page(&sg, test->highmem, size, 0);
1363 
1364 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1365 }
1366 
1367 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1368 {
1369 	unsigned int size;
1370 	struct scatterlist sg;
1371 
1372 	if (test->card->host->max_blk_count == 1)
1373 		return RESULT_UNSUP_HOST;
1374 
1375 	size = PAGE_SIZE * 2;
1376 	size = min(size, test->card->host->max_req_size);
1377 	size = min(size, test->card->host->max_seg_size);
1378 	size = min(size, test->card->host->max_blk_count * 512);
1379 
1380 	if (size < 1024)
1381 		return RESULT_UNSUP_HOST;
1382 
1383 	sg_init_table(&sg, 1);
1384 	sg_set_page(&sg, test->highmem, size, 0);
1385 
1386 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1387 }
1388 
1389 #else
1390 
1391 static int mmc_test_no_highmem(struct mmc_test_card *test)
1392 {
1393 	pr_info("%s: Highmem not configured - test skipped\n",
1394 	       mmc_hostname(test->card->host));
1395 	return 0;
1396 }
1397 
1398 #endif /* CONFIG_HIGHMEM */
1399 
1400 /*
1401  * Map sz bytes so that it can be transferred.
1402  */
1403 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1404 			     int max_scatter, int min_sg_len, bool nonblock)
1405 {
1406 	struct mmc_test_area *t = &test->area;
1407 	int err;
1408 	unsigned int sg_len = 0;
1409 
1410 	t->blocks = sz >> 9;
1411 
1412 	if (max_scatter) {
1413 		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1414 						  t->max_segs, t->max_seg_sz,
1415 				       &t->sg_len);
1416 	} else {
1417 		err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1418 				      t->max_seg_sz, &t->sg_len, min_sg_len);
1419 	}
1420 
1421 	if (err || !nonblock)
1422 		goto err;
1423 
1424 	if (max_scatter) {
1425 		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg_areq,
1426 						  t->max_segs, t->max_seg_sz,
1427 						  &sg_len);
1428 	} else {
1429 		err = mmc_test_map_sg(t->mem, sz, t->sg_areq, 1, t->max_segs,
1430 				      t->max_seg_sz, &sg_len, min_sg_len);
1431 	}
1432 	if (!err && sg_len != t->sg_len)
1433 		err = -EINVAL;
1434 
1435 err:
1436 	if (err)
1437 		pr_info("%s: Failed to map sg list\n",
1438 		       mmc_hostname(test->card->host));
1439 	return err;
1440 }
1441 
1442 /*
1443  * Transfer bytes mapped by mmc_test_area_map().
1444  */
1445 static int mmc_test_area_transfer(struct mmc_test_card *test,
1446 				  unsigned int dev_addr, int write)
1447 {
1448 	struct mmc_test_area *t = &test->area;
1449 
1450 	return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1451 					t->blocks, 512, write);
1452 }
1453 
1454 /*
1455  * Map and transfer bytes for multiple transfers.
1456  */
1457 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1458 				unsigned int dev_addr, int write,
1459 				int max_scatter, int timed, int count,
1460 				bool nonblock, int min_sg_len)
1461 {
1462 	struct timespec64 ts1, ts2;
1463 	int ret = 0;
1464 	int i;
1465 
1466 	/*
1467 	 * In the case of a maximally scattered transfer, the maximum transfer
1468 	 * size is further limited by using PAGE_SIZE segments.
1469 	 */
1470 	if (max_scatter) {
1471 		struct mmc_test_area *t = &test->area;
1472 		unsigned long max_tfr;
1473 
1474 		if (t->max_seg_sz >= PAGE_SIZE)
1475 			max_tfr = t->max_segs * PAGE_SIZE;
1476 		else
1477 			max_tfr = t->max_segs * t->max_seg_sz;
1478 		if (sz > max_tfr)
1479 			sz = max_tfr;
1480 	}
1481 
1482 	ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len, nonblock);
1483 	if (ret)
1484 		return ret;
1485 
1486 	if (timed)
1487 		ktime_get_ts64(&ts1);
1488 	if (nonblock)
1489 		ret = mmc_test_nonblock_transfer(test, dev_addr, write, count);
1490 	else
1491 		for (i = 0; i < count && ret == 0; i++) {
1492 			ret = mmc_test_area_transfer(test, dev_addr, write);
1493 			dev_addr += sz >> 9;
1494 		}
1495 
1496 	if (ret)
1497 		return ret;
1498 
1499 	if (timed)
1500 		ktime_get_ts64(&ts2);
1501 
1502 	if (timed)
1503 		mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1504 
1505 	return 0;
1506 }
1507 
1508 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1509 			    unsigned int dev_addr, int write, int max_scatter,
1510 			    int timed)
1511 {
1512 	return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1513 				    timed, 1, false, 0);
1514 }
1515 
1516 /*
1517  * Write the test area entirely.
1518  */
1519 static int mmc_test_area_fill(struct mmc_test_card *test)
1520 {
1521 	struct mmc_test_area *t = &test->area;
1522 
1523 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1524 }
1525 
1526 /*
1527  * Erase the test area entirely.
1528  */
1529 static int mmc_test_area_erase(struct mmc_test_card *test)
1530 {
1531 	struct mmc_test_area *t = &test->area;
1532 
1533 	if (!mmc_can_erase(test->card))
1534 		return 0;
1535 
1536 	return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1537 			 MMC_ERASE_ARG);
1538 }
1539 
1540 /*
1541  * Cleanup struct mmc_test_area.
1542  */
1543 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1544 {
1545 	struct mmc_test_area *t = &test->area;
1546 
1547 	kfree(t->sg);
1548 	kfree(t->sg_areq);
1549 	mmc_test_free_mem(t->mem);
1550 
1551 	return 0;
1552 }
1553 
1554 /*
1555  * Initialize an area for testing large transfers.  The test area is set to the
1556  * middle of the card because cards may have different characteristics at the
1557  * front (for FAT file system optimization).  Optionally, the area is erased
1558  * (if the card supports it) which may improve write performance.  Optionally,
1559  * the area is filled with data for subsequent read tests.
1560  */
1561 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1562 {
1563 	struct mmc_test_area *t = &test->area;
1564 	unsigned long min_sz = 64 * 1024, sz;
1565 	int ret;
1566 
1567 	ret = mmc_test_set_blksize(test, 512);
1568 	if (ret)
1569 		return ret;
1570 
1571 	/* Make the test area size about 4MiB */
1572 	sz = (unsigned long)test->card->pref_erase << 9;
1573 	t->max_sz = sz;
1574 	while (t->max_sz < 4 * 1024 * 1024)
1575 		t->max_sz += sz;
1576 	while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1577 		t->max_sz -= sz;
1578 
1579 	t->max_segs = test->card->host->max_segs;
1580 	t->max_seg_sz = test->card->host->max_seg_size;
1581 	t->max_seg_sz -= t->max_seg_sz % 512;
1582 
1583 	t->max_tfr = t->max_sz;
1584 	if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1585 		t->max_tfr = test->card->host->max_blk_count << 9;
1586 	if (t->max_tfr > test->card->host->max_req_size)
1587 		t->max_tfr = test->card->host->max_req_size;
1588 	if (t->max_tfr / t->max_seg_sz > t->max_segs)
1589 		t->max_tfr = t->max_segs * t->max_seg_sz;
1590 
1591 	/*
1592 	 * Try to allocate enough memory for a max. sized transfer.  Less is OK
1593 	 * because the same memory can be mapped into the scatterlist more than
1594 	 * once.  Also, take into account the limits imposed on scatterlist
1595 	 * segments by the host driver.
1596 	 */
1597 	t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1598 				    t->max_seg_sz);
1599 	if (!t->mem)
1600 		return -ENOMEM;
1601 
1602 	t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1603 	if (!t->sg) {
1604 		ret = -ENOMEM;
1605 		goto out_free;
1606 	}
1607 
1608 	t->sg_areq = kmalloc_array(t->max_segs, sizeof(*t->sg_areq),
1609 				   GFP_KERNEL);
1610 	if (!t->sg_areq) {
1611 		ret = -ENOMEM;
1612 		goto out_free;
1613 	}
1614 
1615 	t->dev_addr = mmc_test_capacity(test->card) / 2;
1616 	t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1617 
1618 	if (erase) {
1619 		ret = mmc_test_area_erase(test);
1620 		if (ret)
1621 			goto out_free;
1622 	}
1623 
1624 	if (fill) {
1625 		ret = mmc_test_area_fill(test);
1626 		if (ret)
1627 			goto out_free;
1628 	}
1629 
1630 	return 0;
1631 
1632 out_free:
1633 	mmc_test_area_cleanup(test);
1634 	return ret;
1635 }
1636 
1637 /*
1638  * Prepare for large transfers.  Do not erase the test area.
1639  */
1640 static int mmc_test_area_prepare(struct mmc_test_card *test)
1641 {
1642 	return mmc_test_area_init(test, 0, 0);
1643 }
1644 
1645 /*
1646  * Prepare for large transfers.  Do erase the test area.
1647  */
1648 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1649 {
1650 	return mmc_test_area_init(test, 1, 0);
1651 }
1652 
1653 /*
1654  * Prepare for large transfers.  Erase and fill the test area.
1655  */
1656 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1657 {
1658 	return mmc_test_area_init(test, 1, 1);
1659 }
1660 
1661 /*
1662  * Test best-case performance.  Best-case performance is expected from
1663  * a single large transfer.
1664  *
1665  * An additional option (max_scatter) allows the measurement of the same
1666  * transfer but with no contiguous pages in the scatter list.  This tests
1667  * the efficiency of DMA to handle scattered pages.
1668  */
1669 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1670 				     int max_scatter)
1671 {
1672 	struct mmc_test_area *t = &test->area;
1673 
1674 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1675 				max_scatter, 1);
1676 }
1677 
1678 /*
1679  * Best-case read performance.
1680  */
1681 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1682 {
1683 	return mmc_test_best_performance(test, 0, 0);
1684 }
1685 
1686 /*
1687  * Best-case write performance.
1688  */
1689 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1690 {
1691 	return mmc_test_best_performance(test, 1, 0);
1692 }
1693 
1694 /*
1695  * Best-case read performance into scattered pages.
1696  */
1697 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1698 {
1699 	return mmc_test_best_performance(test, 0, 1);
1700 }
1701 
1702 /*
1703  * Best-case write performance from scattered pages.
1704  */
1705 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1706 {
1707 	return mmc_test_best_performance(test, 1, 1);
1708 }
1709 
1710 /*
1711  * Single read performance by transfer size.
1712  */
1713 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1714 {
1715 	struct mmc_test_area *t = &test->area;
1716 	unsigned long sz;
1717 	unsigned int dev_addr;
1718 	int ret;
1719 
1720 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1721 		dev_addr = t->dev_addr + (sz >> 9);
1722 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1723 		if (ret)
1724 			return ret;
1725 	}
1726 	sz = t->max_tfr;
1727 	dev_addr = t->dev_addr;
1728 	return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1729 }
1730 
1731 /*
1732  * Single write performance by transfer size.
1733  */
1734 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1735 {
1736 	struct mmc_test_area *t = &test->area;
1737 	unsigned long sz;
1738 	unsigned int dev_addr;
1739 	int ret;
1740 
1741 	ret = mmc_test_area_erase(test);
1742 	if (ret)
1743 		return ret;
1744 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1745 		dev_addr = t->dev_addr + (sz >> 9);
1746 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1747 		if (ret)
1748 			return ret;
1749 	}
1750 	ret = mmc_test_area_erase(test);
1751 	if (ret)
1752 		return ret;
1753 	sz = t->max_tfr;
1754 	dev_addr = t->dev_addr;
1755 	return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1756 }
1757 
1758 /*
1759  * Single trim performance by transfer size.
1760  */
1761 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1762 {
1763 	struct mmc_test_area *t = &test->area;
1764 	unsigned long sz;
1765 	unsigned int dev_addr;
1766 	struct timespec64 ts1, ts2;
1767 	int ret;
1768 
1769 	if (!mmc_can_trim(test->card))
1770 		return RESULT_UNSUP_CARD;
1771 
1772 	if (!mmc_can_erase(test->card))
1773 		return RESULT_UNSUP_HOST;
1774 
1775 	for (sz = 512; sz < t->max_sz; sz <<= 1) {
1776 		dev_addr = t->dev_addr + (sz >> 9);
1777 		ktime_get_ts64(&ts1);
1778 		ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1779 		if (ret)
1780 			return ret;
1781 		ktime_get_ts64(&ts2);
1782 		mmc_test_print_rate(test, sz, &ts1, &ts2);
1783 	}
1784 	dev_addr = t->dev_addr;
1785 	ktime_get_ts64(&ts1);
1786 	ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1787 	if (ret)
1788 		return ret;
1789 	ktime_get_ts64(&ts2);
1790 	mmc_test_print_rate(test, sz, &ts1, &ts2);
1791 	return 0;
1792 }
1793 
1794 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1795 {
1796 	struct mmc_test_area *t = &test->area;
1797 	unsigned int dev_addr, i, cnt;
1798 	struct timespec64 ts1, ts2;
1799 	int ret;
1800 
1801 	cnt = t->max_sz / sz;
1802 	dev_addr = t->dev_addr;
1803 	ktime_get_ts64(&ts1);
1804 	for (i = 0; i < cnt; i++) {
1805 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1806 		if (ret)
1807 			return ret;
1808 		dev_addr += (sz >> 9);
1809 	}
1810 	ktime_get_ts64(&ts2);
1811 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1812 	return 0;
1813 }
1814 
1815 /*
1816  * Consecutive read performance by transfer size.
1817  */
1818 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1819 {
1820 	struct mmc_test_area *t = &test->area;
1821 	unsigned long sz;
1822 	int ret;
1823 
1824 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1825 		ret = mmc_test_seq_read_perf(test, sz);
1826 		if (ret)
1827 			return ret;
1828 	}
1829 	sz = t->max_tfr;
1830 	return mmc_test_seq_read_perf(test, sz);
1831 }
1832 
1833 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1834 {
1835 	struct mmc_test_area *t = &test->area;
1836 	unsigned int dev_addr, i, cnt;
1837 	struct timespec64 ts1, ts2;
1838 	int ret;
1839 
1840 	ret = mmc_test_area_erase(test);
1841 	if (ret)
1842 		return ret;
1843 	cnt = t->max_sz / sz;
1844 	dev_addr = t->dev_addr;
1845 	ktime_get_ts64(&ts1);
1846 	for (i = 0; i < cnt; i++) {
1847 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1848 		if (ret)
1849 			return ret;
1850 		dev_addr += (sz >> 9);
1851 	}
1852 	ktime_get_ts64(&ts2);
1853 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1854 	return 0;
1855 }
1856 
1857 /*
1858  * Consecutive write performance by transfer size.
1859  */
1860 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1861 {
1862 	struct mmc_test_area *t = &test->area;
1863 	unsigned long sz;
1864 	int ret;
1865 
1866 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1867 		ret = mmc_test_seq_write_perf(test, sz);
1868 		if (ret)
1869 			return ret;
1870 	}
1871 	sz = t->max_tfr;
1872 	return mmc_test_seq_write_perf(test, sz);
1873 }
1874 
1875 /*
1876  * Consecutive trim performance by transfer size.
1877  */
1878 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1879 {
1880 	struct mmc_test_area *t = &test->area;
1881 	unsigned long sz;
1882 	unsigned int dev_addr, i, cnt;
1883 	struct timespec64 ts1, ts2;
1884 	int ret;
1885 
1886 	if (!mmc_can_trim(test->card))
1887 		return RESULT_UNSUP_CARD;
1888 
1889 	if (!mmc_can_erase(test->card))
1890 		return RESULT_UNSUP_HOST;
1891 
1892 	for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1893 		ret = mmc_test_area_erase(test);
1894 		if (ret)
1895 			return ret;
1896 		ret = mmc_test_area_fill(test);
1897 		if (ret)
1898 			return ret;
1899 		cnt = t->max_sz / sz;
1900 		dev_addr = t->dev_addr;
1901 		ktime_get_ts64(&ts1);
1902 		for (i = 0; i < cnt; i++) {
1903 			ret = mmc_erase(test->card, dev_addr, sz >> 9,
1904 					MMC_TRIM_ARG);
1905 			if (ret)
1906 				return ret;
1907 			dev_addr += (sz >> 9);
1908 		}
1909 		ktime_get_ts64(&ts2);
1910 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1911 	}
1912 	return 0;
1913 }
1914 
1915 static unsigned int rnd_next = 1;
1916 
1917 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1918 {
1919 	uint64_t r;
1920 
1921 	rnd_next = rnd_next * 1103515245 + 12345;
1922 	r = (rnd_next >> 16) & 0x7fff;
1923 	return (r * rnd_cnt) >> 15;
1924 }
1925 
1926 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1927 			     unsigned long sz)
1928 {
1929 	unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1930 	unsigned int ssz;
1931 	struct timespec64 ts1, ts2, ts;
1932 	int ret;
1933 
1934 	ssz = sz >> 9;
1935 
1936 	rnd_addr = mmc_test_capacity(test->card) / 4;
1937 	range1 = rnd_addr / test->card->pref_erase;
1938 	range2 = range1 / ssz;
1939 
1940 	ktime_get_ts64(&ts1);
1941 	for (cnt = 0; cnt < UINT_MAX; cnt++) {
1942 		ktime_get_ts64(&ts2);
1943 		ts = timespec64_sub(ts2, ts1);
1944 		if (ts.tv_sec >= 10)
1945 			break;
1946 		ea = mmc_test_rnd_num(range1);
1947 		if (ea == last_ea)
1948 			ea -= 1;
1949 		last_ea = ea;
1950 		dev_addr = rnd_addr + test->card->pref_erase * ea +
1951 			   ssz * mmc_test_rnd_num(range2);
1952 		ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1953 		if (ret)
1954 			return ret;
1955 	}
1956 	if (print)
1957 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1958 	return 0;
1959 }
1960 
1961 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1962 {
1963 	struct mmc_test_area *t = &test->area;
1964 	unsigned int next;
1965 	unsigned long sz;
1966 	int ret;
1967 
1968 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1969 		/*
1970 		 * When writing, try to get more consistent results by running
1971 		 * the test twice with exactly the same I/O but outputting the
1972 		 * results only for the 2nd run.
1973 		 */
1974 		if (write) {
1975 			next = rnd_next;
1976 			ret = mmc_test_rnd_perf(test, write, 0, sz);
1977 			if (ret)
1978 				return ret;
1979 			rnd_next = next;
1980 		}
1981 		ret = mmc_test_rnd_perf(test, write, 1, sz);
1982 		if (ret)
1983 			return ret;
1984 	}
1985 	sz = t->max_tfr;
1986 	if (write) {
1987 		next = rnd_next;
1988 		ret = mmc_test_rnd_perf(test, write, 0, sz);
1989 		if (ret)
1990 			return ret;
1991 		rnd_next = next;
1992 	}
1993 	return mmc_test_rnd_perf(test, write, 1, sz);
1994 }
1995 
1996 /*
1997  * Random read performance by transfer size.
1998  */
1999 static int mmc_test_random_read_perf(struct mmc_test_card *test)
2000 {
2001 	return mmc_test_random_perf(test, 0);
2002 }
2003 
2004 /*
2005  * Random write performance by transfer size.
2006  */
2007 static int mmc_test_random_write_perf(struct mmc_test_card *test)
2008 {
2009 	return mmc_test_random_perf(test, 1);
2010 }
2011 
2012 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
2013 			     unsigned int tot_sz, int max_scatter)
2014 {
2015 	struct mmc_test_area *t = &test->area;
2016 	unsigned int dev_addr, i, cnt, sz, ssz;
2017 	struct timespec64 ts1, ts2;
2018 	int ret;
2019 
2020 	sz = t->max_tfr;
2021 
2022 	/*
2023 	 * In the case of a maximally scattered transfer, the maximum transfer
2024 	 * size is further limited by using PAGE_SIZE segments.
2025 	 */
2026 	if (max_scatter) {
2027 		unsigned long max_tfr;
2028 
2029 		if (t->max_seg_sz >= PAGE_SIZE)
2030 			max_tfr = t->max_segs * PAGE_SIZE;
2031 		else
2032 			max_tfr = t->max_segs * t->max_seg_sz;
2033 		if (sz > max_tfr)
2034 			sz = max_tfr;
2035 	}
2036 
2037 	ssz = sz >> 9;
2038 	dev_addr = mmc_test_capacity(test->card) / 4;
2039 	if (tot_sz > dev_addr << 9)
2040 		tot_sz = dev_addr << 9;
2041 	cnt = tot_sz / sz;
2042 	dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2043 
2044 	ktime_get_ts64(&ts1);
2045 	for (i = 0; i < cnt; i++) {
2046 		ret = mmc_test_area_io(test, sz, dev_addr, write,
2047 				       max_scatter, 0);
2048 		if (ret)
2049 			return ret;
2050 		dev_addr += ssz;
2051 	}
2052 	ktime_get_ts64(&ts2);
2053 
2054 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2055 
2056 	return 0;
2057 }
2058 
2059 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2060 {
2061 	int ret, i;
2062 
2063 	for (i = 0; i < 10; i++) {
2064 		ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2065 		if (ret)
2066 			return ret;
2067 	}
2068 	for (i = 0; i < 5; i++) {
2069 		ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2070 		if (ret)
2071 			return ret;
2072 	}
2073 	for (i = 0; i < 3; i++) {
2074 		ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2075 		if (ret)
2076 			return ret;
2077 	}
2078 
2079 	return ret;
2080 }
2081 
2082 /*
2083  * Large sequential read performance.
2084  */
2085 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2086 {
2087 	return mmc_test_large_seq_perf(test, 0);
2088 }
2089 
2090 /*
2091  * Large sequential write performance.
2092  */
2093 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2094 {
2095 	return mmc_test_large_seq_perf(test, 1);
2096 }
2097 
2098 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2099 				struct mmc_test_multiple_rw *tdata,
2100 				unsigned int reqsize, unsigned int size,
2101 				int min_sg_len)
2102 {
2103 	unsigned int dev_addr;
2104 	struct mmc_test_area *t = &test->area;
2105 	int ret = 0;
2106 
2107 	/* Set up test area */
2108 	if (size > mmc_test_capacity(test->card) / 2 * 512)
2109 		size = mmc_test_capacity(test->card) / 2 * 512;
2110 	if (reqsize > t->max_tfr)
2111 		reqsize = t->max_tfr;
2112 	dev_addr = mmc_test_capacity(test->card) / 4;
2113 	if ((dev_addr & 0xffff0000))
2114 		dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2115 	else
2116 		dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2117 	if (!dev_addr)
2118 		goto err;
2119 
2120 	if (reqsize > size)
2121 		return 0;
2122 
2123 	/* prepare test area */
2124 	if (mmc_can_erase(test->card) &&
2125 	    tdata->prepare & MMC_TEST_PREP_ERASE) {
2126 		ret = mmc_erase(test->card, dev_addr,
2127 				size / 512, MMC_SECURE_ERASE_ARG);
2128 		if (ret)
2129 			ret = mmc_erase(test->card, dev_addr,
2130 					size / 512, MMC_ERASE_ARG);
2131 		if (ret)
2132 			goto err;
2133 	}
2134 
2135 	/* Run test */
2136 	ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2137 				   tdata->do_write, 0, 1, size / reqsize,
2138 				   tdata->do_nonblock_req, min_sg_len);
2139 	if (ret)
2140 		goto err;
2141 
2142 	return ret;
2143  err:
2144 	pr_info("[%s] error\n", __func__);
2145 	return ret;
2146 }
2147 
2148 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2149 				     struct mmc_test_multiple_rw *rw)
2150 {
2151 	int ret = 0;
2152 	int i;
2153 	void *pre_req = test->card->host->ops->pre_req;
2154 	void *post_req = test->card->host->ops->post_req;
2155 
2156 	if (rw->do_nonblock_req &&
2157 	    ((!pre_req && post_req) || (pre_req && !post_req))) {
2158 		pr_info("error: only one of pre/post is defined\n");
2159 		return -EINVAL;
2160 	}
2161 
2162 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2163 		ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2164 		if (ret)
2165 			break;
2166 	}
2167 	return ret;
2168 }
2169 
2170 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2171 				       struct mmc_test_multiple_rw *rw)
2172 {
2173 	int ret = 0;
2174 	int i;
2175 
2176 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2177 		ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2178 					   rw->sg_len[i]);
2179 		if (ret)
2180 			break;
2181 	}
2182 	return ret;
2183 }
2184 
2185 /*
2186  * Multiple blocking write 4k to 4 MB chunks
2187  */
2188 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2189 {
2190 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2191 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2192 	struct mmc_test_multiple_rw test_data = {
2193 		.bs = bs,
2194 		.size = TEST_AREA_MAX_SIZE,
2195 		.len = ARRAY_SIZE(bs),
2196 		.do_write = true,
2197 		.do_nonblock_req = false,
2198 		.prepare = MMC_TEST_PREP_ERASE,
2199 	};
2200 
2201 	return mmc_test_rw_multiple_size(test, &test_data);
2202 };
2203 
2204 /*
2205  * Multiple non-blocking write 4k to 4 MB chunks
2206  */
2207 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2208 {
2209 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2210 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2211 	struct mmc_test_multiple_rw test_data = {
2212 		.bs = bs,
2213 		.size = TEST_AREA_MAX_SIZE,
2214 		.len = ARRAY_SIZE(bs),
2215 		.do_write = true,
2216 		.do_nonblock_req = true,
2217 		.prepare = MMC_TEST_PREP_ERASE,
2218 	};
2219 
2220 	return mmc_test_rw_multiple_size(test, &test_data);
2221 }
2222 
2223 /*
2224  * Multiple blocking read 4k to 4 MB chunks
2225  */
2226 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2227 {
2228 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2229 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2230 	struct mmc_test_multiple_rw test_data = {
2231 		.bs = bs,
2232 		.size = TEST_AREA_MAX_SIZE,
2233 		.len = ARRAY_SIZE(bs),
2234 		.do_write = false,
2235 		.do_nonblock_req = false,
2236 		.prepare = MMC_TEST_PREP_NONE,
2237 	};
2238 
2239 	return mmc_test_rw_multiple_size(test, &test_data);
2240 }
2241 
2242 /*
2243  * Multiple non-blocking read 4k to 4 MB chunks
2244  */
2245 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2246 {
2247 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2248 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2249 	struct mmc_test_multiple_rw test_data = {
2250 		.bs = bs,
2251 		.size = TEST_AREA_MAX_SIZE,
2252 		.len = ARRAY_SIZE(bs),
2253 		.do_write = false,
2254 		.do_nonblock_req = true,
2255 		.prepare = MMC_TEST_PREP_NONE,
2256 	};
2257 
2258 	return mmc_test_rw_multiple_size(test, &test_data);
2259 }
2260 
2261 /*
2262  * Multiple blocking write 1 to 512 sg elements
2263  */
2264 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2265 {
2266 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2267 				 1 << 7, 1 << 8, 1 << 9};
2268 	struct mmc_test_multiple_rw test_data = {
2269 		.sg_len = sg_len,
2270 		.size = TEST_AREA_MAX_SIZE,
2271 		.len = ARRAY_SIZE(sg_len),
2272 		.do_write = true,
2273 		.do_nonblock_req = false,
2274 		.prepare = MMC_TEST_PREP_ERASE,
2275 	};
2276 
2277 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2278 };
2279 
2280 /*
2281  * Multiple non-blocking write 1 to 512 sg elements
2282  */
2283 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2284 {
2285 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2286 				 1 << 7, 1 << 8, 1 << 9};
2287 	struct mmc_test_multiple_rw test_data = {
2288 		.sg_len = sg_len,
2289 		.size = TEST_AREA_MAX_SIZE,
2290 		.len = ARRAY_SIZE(sg_len),
2291 		.do_write = true,
2292 		.do_nonblock_req = true,
2293 		.prepare = MMC_TEST_PREP_ERASE,
2294 	};
2295 
2296 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2297 }
2298 
2299 /*
2300  * Multiple blocking read 1 to 512 sg elements
2301  */
2302 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2303 {
2304 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2305 				 1 << 7, 1 << 8, 1 << 9};
2306 	struct mmc_test_multiple_rw test_data = {
2307 		.sg_len = sg_len,
2308 		.size = TEST_AREA_MAX_SIZE,
2309 		.len = ARRAY_SIZE(sg_len),
2310 		.do_write = false,
2311 		.do_nonblock_req = false,
2312 		.prepare = MMC_TEST_PREP_NONE,
2313 	};
2314 
2315 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2316 }
2317 
2318 /*
2319  * Multiple non-blocking read 1 to 512 sg elements
2320  */
2321 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2322 {
2323 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2324 				 1 << 7, 1 << 8, 1 << 9};
2325 	struct mmc_test_multiple_rw test_data = {
2326 		.sg_len = sg_len,
2327 		.size = TEST_AREA_MAX_SIZE,
2328 		.len = ARRAY_SIZE(sg_len),
2329 		.do_write = false,
2330 		.do_nonblock_req = true,
2331 		.prepare = MMC_TEST_PREP_NONE,
2332 	};
2333 
2334 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2335 }
2336 
2337 /*
2338  * eMMC hardware reset.
2339  */
2340 static int mmc_test_reset(struct mmc_test_card *test)
2341 {
2342 	struct mmc_card *card = test->card;
2343 	struct mmc_host *host = card->host;
2344 	int err;
2345 
2346 	err = mmc_hw_reset(host);
2347 	if (!err) {
2348 		/*
2349 		 * Reset will re-enable the card's command queue, but tests
2350 		 * expect it to be disabled.
2351 		 */
2352 		if (card->ext_csd.cmdq_en)
2353 			mmc_cmdq_disable(card);
2354 		return RESULT_OK;
2355 	} else if (err == -EOPNOTSUPP) {
2356 		return RESULT_UNSUP_HOST;
2357 	}
2358 
2359 	return RESULT_FAIL;
2360 }
2361 
2362 static int mmc_test_send_status(struct mmc_test_card *test,
2363 				struct mmc_command *cmd)
2364 {
2365 	memset(cmd, 0, sizeof(*cmd));
2366 
2367 	cmd->opcode = MMC_SEND_STATUS;
2368 	if (!mmc_host_is_spi(test->card->host))
2369 		cmd->arg = test->card->rca << 16;
2370 	cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2371 
2372 	return mmc_wait_for_cmd(test->card->host, cmd, 0);
2373 }
2374 
2375 static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2376 				     unsigned int dev_addr, int use_sbc,
2377 				     int repeat_cmd, int write, int use_areq)
2378 {
2379 	struct mmc_test_req *rq = mmc_test_req_alloc();
2380 	struct mmc_host *host = test->card->host;
2381 	struct mmc_test_area *t = &test->area;
2382 	struct mmc_request *mrq;
2383 	unsigned long timeout;
2384 	bool expired = false;
2385 	int ret = 0, cmd_ret;
2386 	u32 status = 0;
2387 	int count = 0;
2388 
2389 	if (!rq)
2390 		return -ENOMEM;
2391 
2392 	mrq = &rq->mrq;
2393 	if (use_sbc)
2394 		mrq->sbc = &rq->sbc;
2395 	mrq->cap_cmd_during_tfr = true;
2396 
2397 	mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2398 			     512, write);
2399 
2400 	if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2401 		ret =  mmc_host_cmd23(host) ?
2402 		       RESULT_UNSUP_CARD :
2403 		       RESULT_UNSUP_HOST;
2404 		goto out_free;
2405 	}
2406 
2407 	/* Start ongoing data request */
2408 	if (use_areq) {
2409 		ret = mmc_test_start_areq(test, mrq, NULL);
2410 		if (ret)
2411 			goto out_free;
2412 	} else {
2413 		mmc_wait_for_req(host, mrq);
2414 	}
2415 
2416 	timeout = jiffies + msecs_to_jiffies(3000);
2417 	do {
2418 		count += 1;
2419 
2420 		/* Send status command while data transfer in progress */
2421 		cmd_ret = mmc_test_send_status(test, &rq->status);
2422 		if (cmd_ret)
2423 			break;
2424 
2425 		status = rq->status.resp[0];
2426 		if (status & R1_ERROR) {
2427 			cmd_ret = -EIO;
2428 			break;
2429 		}
2430 
2431 		if (mmc_is_req_done(host, mrq))
2432 			break;
2433 
2434 		expired = time_after(jiffies, timeout);
2435 		if (expired) {
2436 			pr_info("%s: timeout waiting for Tran state status %#x\n",
2437 				mmc_hostname(host), status);
2438 			cmd_ret = -ETIMEDOUT;
2439 			break;
2440 		}
2441 	} while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2442 
2443 	/* Wait for data request to complete */
2444 	if (use_areq) {
2445 		ret = mmc_test_start_areq(test, NULL, mrq);
2446 	} else {
2447 		mmc_wait_for_req_done(test->card->host, mrq);
2448 	}
2449 
2450 	/*
2451 	 * For cap_cmd_during_tfr request, upper layer must send stop if
2452 	 * required.
2453 	 */
2454 	if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2455 		if (ret)
2456 			mmc_wait_for_cmd(host, mrq->data->stop, 0);
2457 		else
2458 			ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2459 	}
2460 
2461 	if (ret)
2462 		goto out_free;
2463 
2464 	if (cmd_ret) {
2465 		pr_info("%s: Send Status failed: status %#x, error %d\n",
2466 			mmc_hostname(test->card->host), status, cmd_ret);
2467 	}
2468 
2469 	ret = mmc_test_check_result(test, mrq);
2470 	if (ret)
2471 		goto out_free;
2472 
2473 	ret = mmc_test_wait_busy(test);
2474 	if (ret)
2475 		goto out_free;
2476 
2477 	if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2478 		pr_info("%s: %d commands completed during transfer of %u blocks\n",
2479 			mmc_hostname(test->card->host), count, t->blocks);
2480 
2481 	if (cmd_ret)
2482 		ret = cmd_ret;
2483 out_free:
2484 	kfree(rq);
2485 
2486 	return ret;
2487 }
2488 
2489 static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2490 				      unsigned long sz, int use_sbc, int write,
2491 				      int use_areq)
2492 {
2493 	struct mmc_test_area *t = &test->area;
2494 	int ret;
2495 
2496 	if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2497 		return RESULT_UNSUP_HOST;
2498 
2499 	ret = mmc_test_area_map(test, sz, 0, 0, use_areq);
2500 	if (ret)
2501 		return ret;
2502 
2503 	ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2504 					use_areq);
2505 	if (ret)
2506 		return ret;
2507 
2508 	return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2509 					 use_areq);
2510 }
2511 
2512 static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2513 				    int write, int use_areq)
2514 {
2515 	struct mmc_test_area *t = &test->area;
2516 	unsigned long sz;
2517 	int ret;
2518 
2519 	for (sz = 512; sz <= t->max_tfr; sz += 512) {
2520 		ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2521 						 use_areq);
2522 		if (ret)
2523 			return ret;
2524 	}
2525 	return 0;
2526 }
2527 
2528 /*
2529  * Commands during read - no Set Block Count (CMD23).
2530  */
2531 static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2532 {
2533 	return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2534 }
2535 
2536 /*
2537  * Commands during write - no Set Block Count (CMD23).
2538  */
2539 static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2540 {
2541 	return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2542 }
2543 
2544 /*
2545  * Commands during read - use Set Block Count (CMD23).
2546  */
2547 static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2548 {
2549 	return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2550 }
2551 
2552 /*
2553  * Commands during write - use Set Block Count (CMD23).
2554  */
2555 static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2556 {
2557 	return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2558 }
2559 
2560 /*
2561  * Commands during non-blocking read - use Set Block Count (CMD23).
2562  */
2563 static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2564 {
2565 	return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2566 }
2567 
2568 /*
2569  * Commands during non-blocking write - use Set Block Count (CMD23).
2570  */
2571 static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2572 {
2573 	return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2574 }
2575 
2576 static const struct mmc_test_case mmc_test_cases[] = {
2577 	{
2578 		.name = "Basic write (no data verification)",
2579 		.run = mmc_test_basic_write,
2580 	},
2581 
2582 	{
2583 		.name = "Basic read (no data verification)",
2584 		.run = mmc_test_basic_read,
2585 	},
2586 
2587 	{
2588 		.name = "Basic write (with data verification)",
2589 		.prepare = mmc_test_prepare_write,
2590 		.run = mmc_test_verify_write,
2591 		.cleanup = mmc_test_cleanup,
2592 	},
2593 
2594 	{
2595 		.name = "Basic read (with data verification)",
2596 		.prepare = mmc_test_prepare_read,
2597 		.run = mmc_test_verify_read,
2598 		.cleanup = mmc_test_cleanup,
2599 	},
2600 
2601 	{
2602 		.name = "Multi-block write",
2603 		.prepare = mmc_test_prepare_write,
2604 		.run = mmc_test_multi_write,
2605 		.cleanup = mmc_test_cleanup,
2606 	},
2607 
2608 	{
2609 		.name = "Multi-block read",
2610 		.prepare = mmc_test_prepare_read,
2611 		.run = mmc_test_multi_read,
2612 		.cleanup = mmc_test_cleanup,
2613 	},
2614 
2615 	{
2616 		.name = "Power of two block writes",
2617 		.prepare = mmc_test_prepare_write,
2618 		.run = mmc_test_pow2_write,
2619 		.cleanup = mmc_test_cleanup,
2620 	},
2621 
2622 	{
2623 		.name = "Power of two block reads",
2624 		.prepare = mmc_test_prepare_read,
2625 		.run = mmc_test_pow2_read,
2626 		.cleanup = mmc_test_cleanup,
2627 	},
2628 
2629 	{
2630 		.name = "Weird sized block writes",
2631 		.prepare = mmc_test_prepare_write,
2632 		.run = mmc_test_weird_write,
2633 		.cleanup = mmc_test_cleanup,
2634 	},
2635 
2636 	{
2637 		.name = "Weird sized block reads",
2638 		.prepare = mmc_test_prepare_read,
2639 		.run = mmc_test_weird_read,
2640 		.cleanup = mmc_test_cleanup,
2641 	},
2642 
2643 	{
2644 		.name = "Badly aligned write",
2645 		.prepare = mmc_test_prepare_write,
2646 		.run = mmc_test_align_write,
2647 		.cleanup = mmc_test_cleanup,
2648 	},
2649 
2650 	{
2651 		.name = "Badly aligned read",
2652 		.prepare = mmc_test_prepare_read,
2653 		.run = mmc_test_align_read,
2654 		.cleanup = mmc_test_cleanup,
2655 	},
2656 
2657 	{
2658 		.name = "Badly aligned multi-block write",
2659 		.prepare = mmc_test_prepare_write,
2660 		.run = mmc_test_align_multi_write,
2661 		.cleanup = mmc_test_cleanup,
2662 	},
2663 
2664 	{
2665 		.name = "Badly aligned multi-block read",
2666 		.prepare = mmc_test_prepare_read,
2667 		.run = mmc_test_align_multi_read,
2668 		.cleanup = mmc_test_cleanup,
2669 	},
2670 
2671 	{
2672 		.name = "Proper xfer_size at write (start failure)",
2673 		.run = mmc_test_xfersize_write,
2674 	},
2675 
2676 	{
2677 		.name = "Proper xfer_size at read (start failure)",
2678 		.run = mmc_test_xfersize_read,
2679 	},
2680 
2681 	{
2682 		.name = "Proper xfer_size at write (midway failure)",
2683 		.run = mmc_test_multi_xfersize_write,
2684 	},
2685 
2686 	{
2687 		.name = "Proper xfer_size at read (midway failure)",
2688 		.run = mmc_test_multi_xfersize_read,
2689 	},
2690 
2691 #ifdef CONFIG_HIGHMEM
2692 
2693 	{
2694 		.name = "Highmem write",
2695 		.prepare = mmc_test_prepare_write,
2696 		.run = mmc_test_write_high,
2697 		.cleanup = mmc_test_cleanup,
2698 	},
2699 
2700 	{
2701 		.name = "Highmem read",
2702 		.prepare = mmc_test_prepare_read,
2703 		.run = mmc_test_read_high,
2704 		.cleanup = mmc_test_cleanup,
2705 	},
2706 
2707 	{
2708 		.name = "Multi-block highmem write",
2709 		.prepare = mmc_test_prepare_write,
2710 		.run = mmc_test_multi_write_high,
2711 		.cleanup = mmc_test_cleanup,
2712 	},
2713 
2714 	{
2715 		.name = "Multi-block highmem read",
2716 		.prepare = mmc_test_prepare_read,
2717 		.run = mmc_test_multi_read_high,
2718 		.cleanup = mmc_test_cleanup,
2719 	},
2720 
2721 #else
2722 
2723 	{
2724 		.name = "Highmem write",
2725 		.run = mmc_test_no_highmem,
2726 	},
2727 
2728 	{
2729 		.name = "Highmem read",
2730 		.run = mmc_test_no_highmem,
2731 	},
2732 
2733 	{
2734 		.name = "Multi-block highmem write",
2735 		.run = mmc_test_no_highmem,
2736 	},
2737 
2738 	{
2739 		.name = "Multi-block highmem read",
2740 		.run = mmc_test_no_highmem,
2741 	},
2742 
2743 #endif /* CONFIG_HIGHMEM */
2744 
2745 	{
2746 		.name = "Best-case read performance",
2747 		.prepare = mmc_test_area_prepare_fill,
2748 		.run = mmc_test_best_read_performance,
2749 		.cleanup = mmc_test_area_cleanup,
2750 	},
2751 
2752 	{
2753 		.name = "Best-case write performance",
2754 		.prepare = mmc_test_area_prepare_erase,
2755 		.run = mmc_test_best_write_performance,
2756 		.cleanup = mmc_test_area_cleanup,
2757 	},
2758 
2759 	{
2760 		.name = "Best-case read performance into scattered pages",
2761 		.prepare = mmc_test_area_prepare_fill,
2762 		.run = mmc_test_best_read_perf_max_scatter,
2763 		.cleanup = mmc_test_area_cleanup,
2764 	},
2765 
2766 	{
2767 		.name = "Best-case write performance from scattered pages",
2768 		.prepare = mmc_test_area_prepare_erase,
2769 		.run = mmc_test_best_write_perf_max_scatter,
2770 		.cleanup = mmc_test_area_cleanup,
2771 	},
2772 
2773 	{
2774 		.name = "Single read performance by transfer size",
2775 		.prepare = mmc_test_area_prepare_fill,
2776 		.run = mmc_test_profile_read_perf,
2777 		.cleanup = mmc_test_area_cleanup,
2778 	},
2779 
2780 	{
2781 		.name = "Single write performance by transfer size",
2782 		.prepare = mmc_test_area_prepare,
2783 		.run = mmc_test_profile_write_perf,
2784 		.cleanup = mmc_test_area_cleanup,
2785 	},
2786 
2787 	{
2788 		.name = "Single trim performance by transfer size",
2789 		.prepare = mmc_test_area_prepare_fill,
2790 		.run = mmc_test_profile_trim_perf,
2791 		.cleanup = mmc_test_area_cleanup,
2792 	},
2793 
2794 	{
2795 		.name = "Consecutive read performance by transfer size",
2796 		.prepare = mmc_test_area_prepare_fill,
2797 		.run = mmc_test_profile_seq_read_perf,
2798 		.cleanup = mmc_test_area_cleanup,
2799 	},
2800 
2801 	{
2802 		.name = "Consecutive write performance by transfer size",
2803 		.prepare = mmc_test_area_prepare,
2804 		.run = mmc_test_profile_seq_write_perf,
2805 		.cleanup = mmc_test_area_cleanup,
2806 	},
2807 
2808 	{
2809 		.name = "Consecutive trim performance by transfer size",
2810 		.prepare = mmc_test_area_prepare,
2811 		.run = mmc_test_profile_seq_trim_perf,
2812 		.cleanup = mmc_test_area_cleanup,
2813 	},
2814 
2815 	{
2816 		.name = "Random read performance by transfer size",
2817 		.prepare = mmc_test_area_prepare,
2818 		.run = mmc_test_random_read_perf,
2819 		.cleanup = mmc_test_area_cleanup,
2820 	},
2821 
2822 	{
2823 		.name = "Random write performance by transfer size",
2824 		.prepare = mmc_test_area_prepare,
2825 		.run = mmc_test_random_write_perf,
2826 		.cleanup = mmc_test_area_cleanup,
2827 	},
2828 
2829 	{
2830 		.name = "Large sequential read into scattered pages",
2831 		.prepare = mmc_test_area_prepare,
2832 		.run = mmc_test_large_seq_read_perf,
2833 		.cleanup = mmc_test_area_cleanup,
2834 	},
2835 
2836 	{
2837 		.name = "Large sequential write from scattered pages",
2838 		.prepare = mmc_test_area_prepare,
2839 		.run = mmc_test_large_seq_write_perf,
2840 		.cleanup = mmc_test_area_cleanup,
2841 	},
2842 
2843 	{
2844 		.name = "Write performance with blocking req 4k to 4MB",
2845 		.prepare = mmc_test_area_prepare,
2846 		.run = mmc_test_profile_mult_write_blocking_perf,
2847 		.cleanup = mmc_test_area_cleanup,
2848 	},
2849 
2850 	{
2851 		.name = "Write performance with non-blocking req 4k to 4MB",
2852 		.prepare = mmc_test_area_prepare,
2853 		.run = mmc_test_profile_mult_write_nonblock_perf,
2854 		.cleanup = mmc_test_area_cleanup,
2855 	},
2856 
2857 	{
2858 		.name = "Read performance with blocking req 4k to 4MB",
2859 		.prepare = mmc_test_area_prepare,
2860 		.run = mmc_test_profile_mult_read_blocking_perf,
2861 		.cleanup = mmc_test_area_cleanup,
2862 	},
2863 
2864 	{
2865 		.name = "Read performance with non-blocking req 4k to 4MB",
2866 		.prepare = mmc_test_area_prepare,
2867 		.run = mmc_test_profile_mult_read_nonblock_perf,
2868 		.cleanup = mmc_test_area_cleanup,
2869 	},
2870 
2871 	{
2872 		.name = "Write performance blocking req 1 to 512 sg elems",
2873 		.prepare = mmc_test_area_prepare,
2874 		.run = mmc_test_profile_sglen_wr_blocking_perf,
2875 		.cleanup = mmc_test_area_cleanup,
2876 	},
2877 
2878 	{
2879 		.name = "Write performance non-blocking req 1 to 512 sg elems",
2880 		.prepare = mmc_test_area_prepare,
2881 		.run = mmc_test_profile_sglen_wr_nonblock_perf,
2882 		.cleanup = mmc_test_area_cleanup,
2883 	},
2884 
2885 	{
2886 		.name = "Read performance blocking req 1 to 512 sg elems",
2887 		.prepare = mmc_test_area_prepare,
2888 		.run = mmc_test_profile_sglen_r_blocking_perf,
2889 		.cleanup = mmc_test_area_cleanup,
2890 	},
2891 
2892 	{
2893 		.name = "Read performance non-blocking req 1 to 512 sg elems",
2894 		.prepare = mmc_test_area_prepare,
2895 		.run = mmc_test_profile_sglen_r_nonblock_perf,
2896 		.cleanup = mmc_test_area_cleanup,
2897 	},
2898 
2899 	{
2900 		.name = "Reset test",
2901 		.run = mmc_test_reset,
2902 	},
2903 
2904 	{
2905 		.name = "Commands during read - no Set Block Count (CMD23)",
2906 		.prepare = mmc_test_area_prepare,
2907 		.run = mmc_test_cmds_during_read,
2908 		.cleanup = mmc_test_area_cleanup,
2909 	},
2910 
2911 	{
2912 		.name = "Commands during write - no Set Block Count (CMD23)",
2913 		.prepare = mmc_test_area_prepare,
2914 		.run = mmc_test_cmds_during_write,
2915 		.cleanup = mmc_test_area_cleanup,
2916 	},
2917 
2918 	{
2919 		.name = "Commands during read - use Set Block Count (CMD23)",
2920 		.prepare = mmc_test_area_prepare,
2921 		.run = mmc_test_cmds_during_read_cmd23,
2922 		.cleanup = mmc_test_area_cleanup,
2923 	},
2924 
2925 	{
2926 		.name = "Commands during write - use Set Block Count (CMD23)",
2927 		.prepare = mmc_test_area_prepare,
2928 		.run = mmc_test_cmds_during_write_cmd23,
2929 		.cleanup = mmc_test_area_cleanup,
2930 	},
2931 
2932 	{
2933 		.name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2934 		.prepare = mmc_test_area_prepare,
2935 		.run = mmc_test_cmds_during_read_cmd23_nonblock,
2936 		.cleanup = mmc_test_area_cleanup,
2937 	},
2938 
2939 	{
2940 		.name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2941 		.prepare = mmc_test_area_prepare,
2942 		.run = mmc_test_cmds_during_write_cmd23_nonblock,
2943 		.cleanup = mmc_test_area_cleanup,
2944 	},
2945 };
2946 
2947 static DEFINE_MUTEX(mmc_test_lock);
2948 
2949 static LIST_HEAD(mmc_test_result);
2950 
2951 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2952 {
2953 	int i, ret;
2954 
2955 	pr_info("%s: Starting tests of card %s...\n",
2956 		mmc_hostname(test->card->host), mmc_card_id(test->card));
2957 
2958 	mmc_claim_host(test->card->host);
2959 
2960 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2961 		struct mmc_test_general_result *gr;
2962 
2963 		if (testcase && ((i + 1) != testcase))
2964 			continue;
2965 
2966 		pr_info("%s: Test case %d. %s...\n",
2967 			mmc_hostname(test->card->host), i + 1,
2968 			mmc_test_cases[i].name);
2969 
2970 		if (mmc_test_cases[i].prepare) {
2971 			ret = mmc_test_cases[i].prepare(test);
2972 			if (ret) {
2973 				pr_info("%s: Result: Prepare stage failed! (%d)\n",
2974 					mmc_hostname(test->card->host),
2975 					ret);
2976 				continue;
2977 			}
2978 		}
2979 
2980 		gr = kzalloc(sizeof(*gr), GFP_KERNEL);
2981 		if (gr) {
2982 			INIT_LIST_HEAD(&gr->tr_lst);
2983 
2984 			/* Assign data what we know already */
2985 			gr->card = test->card;
2986 			gr->testcase = i;
2987 
2988 			/* Append container to global one */
2989 			list_add_tail(&gr->link, &mmc_test_result);
2990 
2991 			/*
2992 			 * Save the pointer to created container in our private
2993 			 * structure.
2994 			 */
2995 			test->gr = gr;
2996 		}
2997 
2998 		ret = mmc_test_cases[i].run(test);
2999 		switch (ret) {
3000 		case RESULT_OK:
3001 			pr_info("%s: Result: OK\n",
3002 				mmc_hostname(test->card->host));
3003 			break;
3004 		case RESULT_FAIL:
3005 			pr_info("%s: Result: FAILED\n",
3006 				mmc_hostname(test->card->host));
3007 			break;
3008 		case RESULT_UNSUP_HOST:
3009 			pr_info("%s: Result: UNSUPPORTED (by host)\n",
3010 				mmc_hostname(test->card->host));
3011 			break;
3012 		case RESULT_UNSUP_CARD:
3013 			pr_info("%s: Result: UNSUPPORTED (by card)\n",
3014 				mmc_hostname(test->card->host));
3015 			break;
3016 		default:
3017 			pr_info("%s: Result: ERROR (%d)\n",
3018 				mmc_hostname(test->card->host), ret);
3019 		}
3020 
3021 		/* Save the result */
3022 		if (gr)
3023 			gr->result = ret;
3024 
3025 		if (mmc_test_cases[i].cleanup) {
3026 			ret = mmc_test_cases[i].cleanup(test);
3027 			if (ret) {
3028 				pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
3029 					mmc_hostname(test->card->host),
3030 					ret);
3031 			}
3032 		}
3033 	}
3034 
3035 	mmc_release_host(test->card->host);
3036 
3037 	pr_info("%s: Tests completed.\n",
3038 		mmc_hostname(test->card->host));
3039 }
3040 
3041 static void mmc_test_free_result(struct mmc_card *card)
3042 {
3043 	struct mmc_test_general_result *gr, *grs;
3044 
3045 	mutex_lock(&mmc_test_lock);
3046 
3047 	list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3048 		struct mmc_test_transfer_result *tr, *trs;
3049 
3050 		if (card && gr->card != card)
3051 			continue;
3052 
3053 		list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3054 			list_del(&tr->link);
3055 			kfree(tr);
3056 		}
3057 
3058 		list_del(&gr->link);
3059 		kfree(gr);
3060 	}
3061 
3062 	mutex_unlock(&mmc_test_lock);
3063 }
3064 
3065 static LIST_HEAD(mmc_test_file_test);
3066 
3067 static int mtf_test_show(struct seq_file *sf, void *data)
3068 {
3069 	struct mmc_card *card = (struct mmc_card *)sf->private;
3070 	struct mmc_test_general_result *gr;
3071 
3072 	mutex_lock(&mmc_test_lock);
3073 
3074 	list_for_each_entry(gr, &mmc_test_result, link) {
3075 		struct mmc_test_transfer_result *tr;
3076 
3077 		if (gr->card != card)
3078 			continue;
3079 
3080 		seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3081 
3082 		list_for_each_entry(tr, &gr->tr_lst, link) {
3083 			seq_printf(sf, "%u %d %llu.%09u %u %u.%02u\n",
3084 				tr->count, tr->sectors,
3085 				(u64)tr->ts.tv_sec, (u32)tr->ts.tv_nsec,
3086 				tr->rate, tr->iops / 100, tr->iops % 100);
3087 		}
3088 	}
3089 
3090 	mutex_unlock(&mmc_test_lock);
3091 
3092 	return 0;
3093 }
3094 
3095 static int mtf_test_open(struct inode *inode, struct file *file)
3096 {
3097 	return single_open(file, mtf_test_show, inode->i_private);
3098 }
3099 
3100 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3101 	size_t count, loff_t *pos)
3102 {
3103 	struct seq_file *sf = (struct seq_file *)file->private_data;
3104 	struct mmc_card *card = (struct mmc_card *)sf->private;
3105 	struct mmc_test_card *test;
3106 	long testcase;
3107 	int ret;
3108 
3109 	ret = kstrtol_from_user(buf, count, 10, &testcase);
3110 	if (ret)
3111 		return ret;
3112 
3113 	test = kzalloc(sizeof(*test), GFP_KERNEL);
3114 	if (!test)
3115 		return -ENOMEM;
3116 
3117 	/*
3118 	 * Remove all test cases associated with given card. Thus we have only
3119 	 * actual data of the last run.
3120 	 */
3121 	mmc_test_free_result(card);
3122 
3123 	test->card = card;
3124 
3125 	test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3126 #ifdef CONFIG_HIGHMEM
3127 	test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3128 #endif
3129 
3130 #ifdef CONFIG_HIGHMEM
3131 	if (test->buffer && test->highmem) {
3132 #else
3133 	if (test->buffer) {
3134 #endif
3135 		mutex_lock(&mmc_test_lock);
3136 		mmc_test_run(test, testcase);
3137 		mutex_unlock(&mmc_test_lock);
3138 	}
3139 
3140 #ifdef CONFIG_HIGHMEM
3141 	__free_pages(test->highmem, BUFFER_ORDER);
3142 #endif
3143 	kfree(test->buffer);
3144 	kfree(test);
3145 
3146 	return count;
3147 }
3148 
3149 static const struct file_operations mmc_test_fops_test = {
3150 	.open		= mtf_test_open,
3151 	.read		= seq_read,
3152 	.write		= mtf_test_write,
3153 	.llseek		= seq_lseek,
3154 	.release	= single_release,
3155 };
3156 
3157 static int mtf_testlist_show(struct seq_file *sf, void *data)
3158 {
3159 	int i;
3160 
3161 	mutex_lock(&mmc_test_lock);
3162 
3163 	seq_puts(sf, "0:\tRun all tests\n");
3164 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3165 		seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3166 
3167 	mutex_unlock(&mmc_test_lock);
3168 
3169 	return 0;
3170 }
3171 
3172 DEFINE_SHOW_ATTRIBUTE(mtf_testlist);
3173 
3174 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3175 {
3176 	struct mmc_test_dbgfs_file *df, *dfs;
3177 
3178 	mutex_lock(&mmc_test_lock);
3179 
3180 	list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3181 		if (card && df->card != card)
3182 			continue;
3183 		debugfs_remove(df->file);
3184 		list_del(&df->link);
3185 		kfree(df);
3186 	}
3187 
3188 	mutex_unlock(&mmc_test_lock);
3189 }
3190 
3191 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3192 	const char *name, umode_t mode, const struct file_operations *fops)
3193 {
3194 	struct dentry *file = NULL;
3195 	struct mmc_test_dbgfs_file *df;
3196 
3197 	if (card->debugfs_root)
3198 		debugfs_create_file(name, mode, card->debugfs_root, card, fops);
3199 
3200 	df = kmalloc(sizeof(*df), GFP_KERNEL);
3201 	if (!df) {
3202 		debugfs_remove(file);
3203 		return -ENOMEM;
3204 	}
3205 
3206 	df->card = card;
3207 	df->file = file;
3208 
3209 	list_add(&df->link, &mmc_test_file_test);
3210 	return 0;
3211 }
3212 
3213 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3214 {
3215 	int ret;
3216 
3217 	mutex_lock(&mmc_test_lock);
3218 
3219 	ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3220 		&mmc_test_fops_test);
3221 	if (ret)
3222 		goto err;
3223 
3224 	ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3225 		&mtf_testlist_fops);
3226 	if (ret)
3227 		goto err;
3228 
3229 err:
3230 	mutex_unlock(&mmc_test_lock);
3231 
3232 	return ret;
3233 }
3234 
3235 static int mmc_test_probe(struct mmc_card *card)
3236 {
3237 	int ret;
3238 
3239 	if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3240 		return -ENODEV;
3241 
3242 	ret = mmc_test_register_dbgfs_file(card);
3243 	if (ret)
3244 		return ret;
3245 
3246 	if (card->ext_csd.cmdq_en) {
3247 		mmc_claim_host(card->host);
3248 		ret = mmc_cmdq_disable(card);
3249 		mmc_release_host(card->host);
3250 		if (ret)
3251 			return ret;
3252 	}
3253 
3254 	dev_info(&card->dev, "Card claimed for testing.\n");
3255 
3256 	return 0;
3257 }
3258 
3259 static void mmc_test_remove(struct mmc_card *card)
3260 {
3261 	if (card->reenable_cmdq) {
3262 		mmc_claim_host(card->host);
3263 		mmc_cmdq_enable(card);
3264 		mmc_release_host(card->host);
3265 	}
3266 	mmc_test_free_result(card);
3267 	mmc_test_free_dbgfs_file(card);
3268 }
3269 
3270 static void mmc_test_shutdown(struct mmc_card *card)
3271 {
3272 }
3273 
3274 static struct mmc_driver mmc_driver = {
3275 	.drv		= {
3276 		.name	= "mmc_test",
3277 	},
3278 	.probe		= mmc_test_probe,
3279 	.remove		= mmc_test_remove,
3280 	.shutdown	= mmc_test_shutdown,
3281 };
3282 
3283 static int __init mmc_test_init(void)
3284 {
3285 	return mmc_register_driver(&mmc_driver);
3286 }
3287 
3288 static void __exit mmc_test_exit(void)
3289 {
3290 	/* Clear stalled data if card is still plugged */
3291 	mmc_test_free_result(NULL);
3292 	mmc_test_free_dbgfs_file(NULL);
3293 
3294 	mmc_unregister_driver(&mmc_driver);
3295 }
3296 
3297 module_init(mmc_test_init);
3298 module_exit(mmc_test_exit);
3299 
3300 MODULE_LICENSE("GPL");
3301 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3302 MODULE_AUTHOR("Pierre Ossman");
3303