1 /* 2 * linux/drivers/mmc/core/mmc_ops.h 3 * 4 * Copyright 2006-2007 Pierre Ossman 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or (at 9 * your option) any later version. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/export.h> 14 #include <linux/types.h> 15 #include <linux/scatterlist.h> 16 17 #include <linux/mmc/host.h> 18 #include <linux/mmc/card.h> 19 #include <linux/mmc/mmc.h> 20 21 #include "core.h" 22 #include "host.h" 23 #include "mmc_ops.h" 24 25 #define MMC_OPS_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 26 27 static const u8 tuning_blk_pattern_4bit[] = { 28 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc, 29 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef, 30 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb, 31 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef, 32 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c, 33 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee, 34 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff, 35 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde, 36 }; 37 38 static const u8 tuning_blk_pattern_8bit[] = { 39 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, 40 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc, 41 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff, 42 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff, 43 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd, 44 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb, 45 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff, 46 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff, 47 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 48 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 49 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 50 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 51 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 52 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 53 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 54 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 55 }; 56 57 int mmc_send_status(struct mmc_card *card, u32 *status) 58 { 59 int err; 60 struct mmc_command cmd = {}; 61 62 cmd.opcode = MMC_SEND_STATUS; 63 if (!mmc_host_is_spi(card->host)) 64 cmd.arg = card->rca << 16; 65 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; 66 67 err = mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES); 68 if (err) 69 return err; 70 71 /* NOTE: callers are required to understand the difference 72 * between "native" and SPI format status words! 73 */ 74 if (status) 75 *status = cmd.resp[0]; 76 77 return 0; 78 } 79 80 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card) 81 { 82 struct mmc_command cmd = {}; 83 84 cmd.opcode = MMC_SELECT_CARD; 85 86 if (card) { 87 cmd.arg = card->rca << 16; 88 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 89 } else { 90 cmd.arg = 0; 91 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC; 92 } 93 94 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 95 } 96 97 int mmc_select_card(struct mmc_card *card) 98 { 99 100 return _mmc_select_card(card->host, card); 101 } 102 103 int mmc_deselect_cards(struct mmc_host *host) 104 { 105 return _mmc_select_card(host, NULL); 106 } 107 108 /* 109 * Write the value specified in the device tree or board code into the optional 110 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and 111 * drive strength of the DAT and CMD outputs. The actual meaning of a given 112 * value is hardware dependant. 113 * The presence of the DSR register can be determined from the CSD register, 114 * bit 76. 115 */ 116 int mmc_set_dsr(struct mmc_host *host) 117 { 118 struct mmc_command cmd = {}; 119 120 cmd.opcode = MMC_SET_DSR; 121 122 cmd.arg = (host->dsr << 16) | 0xffff; 123 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC; 124 125 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 126 } 127 128 int mmc_go_idle(struct mmc_host *host) 129 { 130 int err; 131 struct mmc_command cmd = {}; 132 133 /* 134 * Non-SPI hosts need to prevent chipselect going active during 135 * GO_IDLE; that would put chips into SPI mode. Remind them of 136 * that in case of hardware that won't pull up DAT3/nCS otherwise. 137 * 138 * SPI hosts ignore ios.chip_select; it's managed according to 139 * rules that must accommodate non-MMC slaves which this layer 140 * won't even know about. 141 */ 142 if (!mmc_host_is_spi(host)) { 143 mmc_set_chip_select(host, MMC_CS_HIGH); 144 mmc_delay(1); 145 } 146 147 cmd.opcode = MMC_GO_IDLE_STATE; 148 cmd.arg = 0; 149 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC; 150 151 err = mmc_wait_for_cmd(host, &cmd, 0); 152 153 mmc_delay(1); 154 155 if (!mmc_host_is_spi(host)) { 156 mmc_set_chip_select(host, MMC_CS_DONTCARE); 157 mmc_delay(1); 158 } 159 160 host->use_spi_crc = 0; 161 162 return err; 163 } 164 165 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr) 166 { 167 struct mmc_command cmd = {}; 168 int i, err = 0; 169 170 cmd.opcode = MMC_SEND_OP_COND; 171 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr; 172 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR; 173 174 for (i = 100; i; i--) { 175 err = mmc_wait_for_cmd(host, &cmd, 0); 176 if (err) 177 break; 178 179 /* if we're just probing, do a single pass */ 180 if (ocr == 0) 181 break; 182 183 /* otherwise wait until reset completes */ 184 if (mmc_host_is_spi(host)) { 185 if (!(cmd.resp[0] & R1_SPI_IDLE)) 186 break; 187 } else { 188 if (cmd.resp[0] & MMC_CARD_BUSY) 189 break; 190 } 191 192 err = -ETIMEDOUT; 193 194 mmc_delay(10); 195 } 196 197 if (rocr && !mmc_host_is_spi(host)) 198 *rocr = cmd.resp[0]; 199 200 return err; 201 } 202 203 int mmc_all_send_cid(struct mmc_host *host, u32 *cid) 204 { 205 int err; 206 struct mmc_command cmd = {}; 207 208 cmd.opcode = MMC_ALL_SEND_CID; 209 cmd.arg = 0; 210 cmd.flags = MMC_RSP_R2 | MMC_CMD_BCR; 211 212 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 213 if (err) 214 return err; 215 216 memcpy(cid, cmd.resp, sizeof(u32) * 4); 217 218 return 0; 219 } 220 221 int mmc_set_relative_addr(struct mmc_card *card) 222 { 223 struct mmc_command cmd = {}; 224 225 cmd.opcode = MMC_SET_RELATIVE_ADDR; 226 cmd.arg = card->rca << 16; 227 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 228 229 return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES); 230 } 231 232 static int 233 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode) 234 { 235 int err; 236 struct mmc_command cmd = {}; 237 238 cmd.opcode = opcode; 239 cmd.arg = arg; 240 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC; 241 242 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 243 if (err) 244 return err; 245 246 memcpy(cxd, cmd.resp, sizeof(u32) * 4); 247 248 return 0; 249 } 250 251 /* 252 * NOTE: void *buf, caller for the buf is required to use DMA-capable 253 * buffer or on-stack buffer (with some overhead in callee). 254 */ 255 static int 256 mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host, 257 u32 opcode, void *buf, unsigned len) 258 { 259 struct mmc_request mrq = {}; 260 struct mmc_command cmd = {}; 261 struct mmc_data data = {}; 262 struct scatterlist sg; 263 264 mrq.cmd = &cmd; 265 mrq.data = &data; 266 267 cmd.opcode = opcode; 268 cmd.arg = 0; 269 270 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we 271 * rely on callers to never use this with "native" calls for reading 272 * CSD or CID. Native versions of those commands use the R2 type, 273 * not R1 plus a data block. 274 */ 275 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 276 277 data.blksz = len; 278 data.blocks = 1; 279 data.flags = MMC_DATA_READ; 280 data.sg = &sg; 281 data.sg_len = 1; 282 283 sg_init_one(&sg, buf, len); 284 285 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) { 286 /* 287 * The spec states that CSR and CID accesses have a timeout 288 * of 64 clock cycles. 289 */ 290 data.timeout_ns = 0; 291 data.timeout_clks = 64; 292 } else 293 mmc_set_data_timeout(&data, card); 294 295 mmc_wait_for_req(host, &mrq); 296 297 if (cmd.error) 298 return cmd.error; 299 if (data.error) 300 return data.error; 301 302 return 0; 303 } 304 305 int mmc_send_csd(struct mmc_card *card, u32 *csd) 306 { 307 int ret, i; 308 __be32 *csd_tmp; 309 310 if (!mmc_host_is_spi(card->host)) 311 return mmc_send_cxd_native(card->host, card->rca << 16, 312 csd, MMC_SEND_CSD); 313 314 csd_tmp = kzalloc(16, GFP_KERNEL); 315 if (!csd_tmp) 316 return -ENOMEM; 317 318 ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd_tmp, 16); 319 if (ret) 320 goto err; 321 322 for (i = 0; i < 4; i++) 323 csd[i] = be32_to_cpu(csd_tmp[i]); 324 325 err: 326 kfree(csd_tmp); 327 return ret; 328 } 329 330 int mmc_send_cid(struct mmc_host *host, u32 *cid) 331 { 332 int ret, i; 333 __be32 *cid_tmp; 334 335 if (!mmc_host_is_spi(host)) { 336 if (!host->card) 337 return -EINVAL; 338 return mmc_send_cxd_native(host, host->card->rca << 16, 339 cid, MMC_SEND_CID); 340 } 341 342 cid_tmp = kzalloc(16, GFP_KERNEL); 343 if (!cid_tmp) 344 return -ENOMEM; 345 346 ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid_tmp, 16); 347 if (ret) 348 goto err; 349 350 for (i = 0; i < 4; i++) 351 cid[i] = be32_to_cpu(cid_tmp[i]); 352 353 err: 354 kfree(cid_tmp); 355 return ret; 356 } 357 358 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd) 359 { 360 int err; 361 u8 *ext_csd; 362 363 if (!card || !new_ext_csd) 364 return -EINVAL; 365 366 if (!mmc_can_ext_csd(card)) 367 return -EOPNOTSUPP; 368 369 /* 370 * As the ext_csd is so large and mostly unused, we don't store the 371 * raw block in mmc_card. 372 */ 373 ext_csd = kzalloc(512, GFP_KERNEL); 374 if (!ext_csd) 375 return -ENOMEM; 376 377 err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd, 378 512); 379 if (err) 380 kfree(ext_csd); 381 else 382 *new_ext_csd = ext_csd; 383 384 return err; 385 } 386 EXPORT_SYMBOL_GPL(mmc_get_ext_csd); 387 388 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp) 389 { 390 struct mmc_command cmd = {}; 391 int err; 392 393 cmd.opcode = MMC_SPI_READ_OCR; 394 cmd.arg = highcap ? (1 << 30) : 0; 395 cmd.flags = MMC_RSP_SPI_R3; 396 397 err = mmc_wait_for_cmd(host, &cmd, 0); 398 399 *ocrp = cmd.resp[1]; 400 return err; 401 } 402 403 int mmc_spi_set_crc(struct mmc_host *host, int use_crc) 404 { 405 struct mmc_command cmd = {}; 406 int err; 407 408 cmd.opcode = MMC_SPI_CRC_ON_OFF; 409 cmd.flags = MMC_RSP_SPI_R1; 410 cmd.arg = use_crc; 411 412 err = mmc_wait_for_cmd(host, &cmd, 0); 413 if (!err) 414 host->use_spi_crc = use_crc; 415 return err; 416 } 417 418 static int mmc_switch_status_error(struct mmc_host *host, u32 status) 419 { 420 if (mmc_host_is_spi(host)) { 421 if (status & R1_SPI_ILLEGAL_COMMAND) 422 return -EBADMSG; 423 } else { 424 if (status & 0xFDFFA000) 425 pr_warn("%s: unexpected status %#x after switch\n", 426 mmc_hostname(host), status); 427 if (status & R1_SWITCH_ERROR) 428 return -EBADMSG; 429 } 430 return 0; 431 } 432 433 /* Caller must hold re-tuning */ 434 int __mmc_switch_status(struct mmc_card *card, bool crc_err_fatal) 435 { 436 u32 status; 437 int err; 438 439 err = mmc_send_status(card, &status); 440 if (!crc_err_fatal && err == -EILSEQ) 441 return 0; 442 if (err) 443 return err; 444 445 return mmc_switch_status_error(card->host, status); 446 } 447 448 int mmc_switch_status(struct mmc_card *card) 449 { 450 return __mmc_switch_status(card, true); 451 } 452 453 static int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms, 454 bool send_status, bool retry_crc_err) 455 { 456 struct mmc_host *host = card->host; 457 int err; 458 unsigned long timeout; 459 u32 status = 0; 460 bool expired = false; 461 bool busy = false; 462 463 /* We have an unspecified cmd timeout, use the fallback value. */ 464 if (!timeout_ms) 465 timeout_ms = MMC_OPS_TIMEOUT_MS; 466 467 /* 468 * In cases when not allowed to poll by using CMD13 or because we aren't 469 * capable of polling by using ->card_busy(), then rely on waiting the 470 * stated timeout to be sufficient. 471 */ 472 if (!send_status && !host->ops->card_busy) { 473 mmc_delay(timeout_ms); 474 return 0; 475 } 476 477 timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1; 478 do { 479 /* 480 * Due to the possibility of being preempted while polling, 481 * check the expiration time first. 482 */ 483 expired = time_after(jiffies, timeout); 484 485 if (host->ops->card_busy) { 486 busy = host->ops->card_busy(host); 487 } else { 488 err = mmc_send_status(card, &status); 489 if (retry_crc_err && err == -EILSEQ) { 490 busy = true; 491 } else if (err) { 492 return err; 493 } else { 494 err = mmc_switch_status_error(host, status); 495 if (err) 496 return err; 497 busy = R1_CURRENT_STATE(status) == R1_STATE_PRG; 498 } 499 } 500 501 /* Timeout if the device still remains busy. */ 502 if (expired && busy) { 503 pr_err("%s: Card stuck being busy! %s\n", 504 mmc_hostname(host), __func__); 505 return -ETIMEDOUT; 506 } 507 } while (busy); 508 509 return 0; 510 } 511 512 /** 513 * __mmc_switch - modify EXT_CSD register 514 * @card: the MMC card associated with the data transfer 515 * @set: cmd set values 516 * @index: EXT_CSD register index 517 * @value: value to program into EXT_CSD register 518 * @timeout_ms: timeout (ms) for operation performed by register write, 519 * timeout of zero implies maximum possible timeout 520 * @timing: new timing to change to 521 * @use_busy_signal: use the busy signal as response type 522 * @send_status: send status cmd to poll for busy 523 * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy 524 * 525 * Modifies the EXT_CSD register for selected card. 526 */ 527 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value, 528 unsigned int timeout_ms, unsigned char timing, 529 bool use_busy_signal, bool send_status, bool retry_crc_err) 530 { 531 struct mmc_host *host = card->host; 532 int err; 533 struct mmc_command cmd = {}; 534 bool use_r1b_resp = use_busy_signal; 535 unsigned char old_timing = host->ios.timing; 536 537 mmc_retune_hold(host); 538 539 /* 540 * If the cmd timeout and the max_busy_timeout of the host are both 541 * specified, let's validate them. A failure means we need to prevent 542 * the host from doing hw busy detection, which is done by converting 543 * to a R1 response instead of a R1B. 544 */ 545 if (timeout_ms && host->max_busy_timeout && 546 (timeout_ms > host->max_busy_timeout)) 547 use_r1b_resp = false; 548 549 cmd.opcode = MMC_SWITCH; 550 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 551 (index << 16) | 552 (value << 8) | 553 set; 554 cmd.flags = MMC_CMD_AC; 555 if (use_r1b_resp) { 556 cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B; 557 /* 558 * A busy_timeout of zero means the host can decide to use 559 * whatever value it finds suitable. 560 */ 561 cmd.busy_timeout = timeout_ms; 562 } else { 563 cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1; 564 } 565 566 if (index == EXT_CSD_SANITIZE_START) 567 cmd.sanitize_busy = true; 568 569 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 570 if (err) 571 goto out; 572 573 /* No need to check card status in case of unblocking command */ 574 if (!use_busy_signal) 575 goto out; 576 577 /*If SPI or used HW busy detection above, then we don't need to poll. */ 578 if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) || 579 mmc_host_is_spi(host)) 580 goto out_tim; 581 582 /* Let's try to poll to find out when the command is completed. */ 583 err = mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err); 584 if (err) 585 goto out; 586 587 out_tim: 588 /* Switch to new timing before check switch status. */ 589 if (timing) 590 mmc_set_timing(host, timing); 591 592 if (send_status) { 593 err = mmc_switch_status(card); 594 if (err && timing) 595 mmc_set_timing(host, old_timing); 596 } 597 out: 598 mmc_retune_release(host); 599 600 return err; 601 } 602 603 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value, 604 unsigned int timeout_ms) 605 { 606 return __mmc_switch(card, set, index, value, timeout_ms, 0, 607 true, true, false); 608 } 609 EXPORT_SYMBOL_GPL(mmc_switch); 610 611 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error) 612 { 613 struct mmc_request mrq = {}; 614 struct mmc_command cmd = {}; 615 struct mmc_data data = {}; 616 struct scatterlist sg; 617 struct mmc_ios *ios = &host->ios; 618 const u8 *tuning_block_pattern; 619 int size, err = 0; 620 u8 *data_buf; 621 622 if (ios->bus_width == MMC_BUS_WIDTH_8) { 623 tuning_block_pattern = tuning_blk_pattern_8bit; 624 size = sizeof(tuning_blk_pattern_8bit); 625 } else if (ios->bus_width == MMC_BUS_WIDTH_4) { 626 tuning_block_pattern = tuning_blk_pattern_4bit; 627 size = sizeof(tuning_blk_pattern_4bit); 628 } else 629 return -EINVAL; 630 631 data_buf = kzalloc(size, GFP_KERNEL); 632 if (!data_buf) 633 return -ENOMEM; 634 635 mrq.cmd = &cmd; 636 mrq.data = &data; 637 638 cmd.opcode = opcode; 639 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; 640 641 data.blksz = size; 642 data.blocks = 1; 643 data.flags = MMC_DATA_READ; 644 645 /* 646 * According to the tuning specs, Tuning process 647 * is normally shorter 40 executions of CMD19, 648 * and timeout value should be shorter than 150 ms 649 */ 650 data.timeout_ns = 150 * NSEC_PER_MSEC; 651 652 data.sg = &sg; 653 data.sg_len = 1; 654 sg_init_one(&sg, data_buf, size); 655 656 mmc_wait_for_req(host, &mrq); 657 658 if (cmd_error) 659 *cmd_error = cmd.error; 660 661 if (cmd.error) { 662 err = cmd.error; 663 goto out; 664 } 665 666 if (data.error) { 667 err = data.error; 668 goto out; 669 } 670 671 if (memcmp(data_buf, tuning_block_pattern, size)) 672 err = -EIO; 673 674 out: 675 kfree(data_buf); 676 return err; 677 } 678 EXPORT_SYMBOL_GPL(mmc_send_tuning); 679 680 int mmc_abort_tuning(struct mmc_host *host, u32 opcode) 681 { 682 struct mmc_command cmd = {}; 683 684 /* 685 * eMMC specification specifies that CMD12 can be used to stop a tuning 686 * command, but SD specification does not, so do nothing unless it is 687 * eMMC. 688 */ 689 if (opcode != MMC_SEND_TUNING_BLOCK_HS200) 690 return 0; 691 692 cmd.opcode = MMC_STOP_TRANSMISSION; 693 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 694 695 /* 696 * For drivers that override R1 to R1b, set an arbitrary timeout based 697 * on the tuning timeout i.e. 150ms. 698 */ 699 cmd.busy_timeout = 150; 700 701 return mmc_wait_for_cmd(host, &cmd, 0); 702 } 703 EXPORT_SYMBOL_GPL(mmc_abort_tuning); 704 705 static int 706 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode, 707 u8 len) 708 { 709 struct mmc_request mrq = {}; 710 struct mmc_command cmd = {}; 711 struct mmc_data data = {}; 712 struct scatterlist sg; 713 u8 *data_buf; 714 u8 *test_buf; 715 int i, err; 716 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 }; 717 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 }; 718 719 /* dma onto stack is unsafe/nonportable, but callers to this 720 * routine normally provide temporary on-stack buffers ... 721 */ 722 data_buf = kmalloc(len, GFP_KERNEL); 723 if (!data_buf) 724 return -ENOMEM; 725 726 if (len == 8) 727 test_buf = testdata_8bit; 728 else if (len == 4) 729 test_buf = testdata_4bit; 730 else { 731 pr_err("%s: Invalid bus_width %d\n", 732 mmc_hostname(host), len); 733 kfree(data_buf); 734 return -EINVAL; 735 } 736 737 if (opcode == MMC_BUS_TEST_W) 738 memcpy(data_buf, test_buf, len); 739 740 mrq.cmd = &cmd; 741 mrq.data = &data; 742 cmd.opcode = opcode; 743 cmd.arg = 0; 744 745 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we 746 * rely on callers to never use this with "native" calls for reading 747 * CSD or CID. Native versions of those commands use the R2 type, 748 * not R1 plus a data block. 749 */ 750 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 751 752 data.blksz = len; 753 data.blocks = 1; 754 if (opcode == MMC_BUS_TEST_R) 755 data.flags = MMC_DATA_READ; 756 else 757 data.flags = MMC_DATA_WRITE; 758 759 data.sg = &sg; 760 data.sg_len = 1; 761 mmc_set_data_timeout(&data, card); 762 sg_init_one(&sg, data_buf, len); 763 mmc_wait_for_req(host, &mrq); 764 err = 0; 765 if (opcode == MMC_BUS_TEST_R) { 766 for (i = 0; i < len / 4; i++) 767 if ((test_buf[i] ^ data_buf[i]) != 0xff) { 768 err = -EIO; 769 break; 770 } 771 } 772 kfree(data_buf); 773 774 if (cmd.error) 775 return cmd.error; 776 if (data.error) 777 return data.error; 778 779 return err; 780 } 781 782 int mmc_bus_test(struct mmc_card *card, u8 bus_width) 783 { 784 int width; 785 786 if (bus_width == MMC_BUS_WIDTH_8) 787 width = 8; 788 else if (bus_width == MMC_BUS_WIDTH_4) 789 width = 4; 790 else if (bus_width == MMC_BUS_WIDTH_1) 791 return 0; /* no need for test */ 792 else 793 return -EINVAL; 794 795 /* 796 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there 797 * is a problem. This improves chances that the test will work. 798 */ 799 mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width); 800 return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width); 801 } 802 803 int mmc_send_hpi_cmd(struct mmc_card *card, u32 *status) 804 { 805 struct mmc_command cmd = {}; 806 unsigned int opcode; 807 int err; 808 809 if (!card->ext_csd.hpi) { 810 pr_warn("%s: Card didn't support HPI command\n", 811 mmc_hostname(card->host)); 812 return -EINVAL; 813 } 814 815 opcode = card->ext_csd.hpi_cmd; 816 if (opcode == MMC_STOP_TRANSMISSION) 817 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 818 else if (opcode == MMC_SEND_STATUS) 819 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 820 821 cmd.opcode = opcode; 822 cmd.arg = card->rca << 16 | 1; 823 824 err = mmc_wait_for_cmd(card->host, &cmd, 0); 825 if (err) { 826 pr_warn("%s: error %d interrupting operation. " 827 "HPI command response %#x\n", mmc_hostname(card->host), 828 err, cmd.resp[0]); 829 return err; 830 } 831 if (status) 832 *status = cmd.resp[0]; 833 834 return 0; 835 } 836 837 int mmc_can_ext_csd(struct mmc_card *card) 838 { 839 return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3); 840 } 841 842 static int mmc_cmdq_switch(struct mmc_card *card, bool enable) 843 { 844 u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0; 845 int err; 846 847 if (!card->ext_csd.cmdq_support) 848 return -EOPNOTSUPP; 849 850 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN, 851 val, card->ext_csd.generic_cmd6_time); 852 if (!err) 853 card->ext_csd.cmdq_en = enable; 854 855 return err; 856 } 857 858 int mmc_cmdq_enable(struct mmc_card *card) 859 { 860 return mmc_cmdq_switch(card, true); 861 } 862 EXPORT_SYMBOL_GPL(mmc_cmdq_enable); 863 864 int mmc_cmdq_disable(struct mmc_card *card) 865 { 866 return mmc_cmdq_switch(card, false); 867 } 868 EXPORT_SYMBOL_GPL(mmc_cmdq_disable); 869