xref: /openbmc/linux/drivers/mmc/core/mmc_ops.c (revision b53f0bee)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  linux/drivers/mmc/core/mmc_ops.h
4  *
5  *  Copyright 2006-2007 Pierre Ossman
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/types.h>
11 #include <linux/scatterlist.h>
12 
13 #include <linux/mmc/host.h>
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/mmc.h>
16 
17 #include "core.h"
18 #include "card.h"
19 #include "host.h"
20 #include "mmc_ops.h"
21 
22 #define MMC_BKOPS_TIMEOUT_MS		(120 * 1000) /* 120s */
23 #define MMC_CACHE_FLUSH_TIMEOUT_MS	(30 * 1000) /* 30s */
24 #define MMC_SANITIZE_TIMEOUT_MS		(240 * 1000) /* 240s */
25 
26 static const u8 tuning_blk_pattern_4bit[] = {
27 	0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
28 	0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
29 	0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
30 	0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
31 	0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
32 	0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
33 	0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
34 	0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
35 };
36 
37 static const u8 tuning_blk_pattern_8bit[] = {
38 	0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
39 	0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
40 	0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
41 	0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
42 	0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
43 	0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
44 	0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
45 	0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
46 	0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
47 	0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
48 	0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
49 	0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
50 	0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
51 	0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
52 	0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
53 	0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
54 };
55 
56 int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
57 {
58 	int err;
59 	struct mmc_command cmd = {};
60 
61 	cmd.opcode = MMC_SEND_STATUS;
62 	if (!mmc_host_is_spi(card->host))
63 		cmd.arg = card->rca << 16;
64 	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
65 
66 	err = mmc_wait_for_cmd(card->host, &cmd, retries);
67 	if (err)
68 		return err;
69 
70 	/* NOTE: callers are required to understand the difference
71 	 * between "native" and SPI format status words!
72 	 */
73 	if (status)
74 		*status = cmd.resp[0];
75 
76 	return 0;
77 }
78 EXPORT_SYMBOL_GPL(__mmc_send_status);
79 
80 int mmc_send_status(struct mmc_card *card, u32 *status)
81 {
82 	return __mmc_send_status(card, status, MMC_CMD_RETRIES);
83 }
84 EXPORT_SYMBOL_GPL(mmc_send_status);
85 
86 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
87 {
88 	struct mmc_command cmd = {};
89 
90 	cmd.opcode = MMC_SELECT_CARD;
91 
92 	if (card) {
93 		cmd.arg = card->rca << 16;
94 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
95 	} else {
96 		cmd.arg = 0;
97 		cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
98 	}
99 
100 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
101 }
102 
103 int mmc_select_card(struct mmc_card *card)
104 {
105 
106 	return _mmc_select_card(card->host, card);
107 }
108 
109 int mmc_deselect_cards(struct mmc_host *host)
110 {
111 	return _mmc_select_card(host, NULL);
112 }
113 
114 /*
115  * Write the value specified in the device tree or board code into the optional
116  * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
117  * drive strength of the DAT and CMD outputs. The actual meaning of a given
118  * value is hardware dependant.
119  * The presence of the DSR register can be determined from the CSD register,
120  * bit 76.
121  */
122 int mmc_set_dsr(struct mmc_host *host)
123 {
124 	struct mmc_command cmd = {};
125 
126 	cmd.opcode = MMC_SET_DSR;
127 
128 	cmd.arg = (host->dsr << 16) | 0xffff;
129 	cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
130 
131 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
132 }
133 
134 int mmc_go_idle(struct mmc_host *host)
135 {
136 	int err;
137 	struct mmc_command cmd = {};
138 
139 	/*
140 	 * Non-SPI hosts need to prevent chipselect going active during
141 	 * GO_IDLE; that would put chips into SPI mode.  Remind them of
142 	 * that in case of hardware that won't pull up DAT3/nCS otherwise.
143 	 *
144 	 * SPI hosts ignore ios.chip_select; it's managed according to
145 	 * rules that must accommodate non-MMC slaves which this layer
146 	 * won't even know about.
147 	 */
148 	if (!mmc_host_is_spi(host)) {
149 		mmc_set_chip_select(host, MMC_CS_HIGH);
150 		mmc_delay(1);
151 	}
152 
153 	cmd.opcode = MMC_GO_IDLE_STATE;
154 	cmd.arg = 0;
155 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
156 
157 	err = mmc_wait_for_cmd(host, &cmd, 0);
158 
159 	mmc_delay(1);
160 
161 	if (!mmc_host_is_spi(host)) {
162 		mmc_set_chip_select(host, MMC_CS_DONTCARE);
163 		mmc_delay(1);
164 	}
165 
166 	host->use_spi_crc = 0;
167 
168 	return err;
169 }
170 
171 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
172 {
173 	struct mmc_command cmd = {};
174 	int i, err = 0;
175 
176 	cmd.opcode = MMC_SEND_OP_COND;
177 	cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
178 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
179 
180 	for (i = 100; i; i--) {
181 		err = mmc_wait_for_cmd(host, &cmd, 0);
182 		if (err)
183 			break;
184 
185 		/* wait until reset completes */
186 		if (mmc_host_is_spi(host)) {
187 			if (!(cmd.resp[0] & R1_SPI_IDLE))
188 				break;
189 		} else {
190 			if (cmd.resp[0] & MMC_CARD_BUSY)
191 				break;
192 		}
193 
194 		err = -ETIMEDOUT;
195 
196 		mmc_delay(10);
197 
198 		/*
199 		 * According to eMMC specification v5.1 section 6.4.3, we
200 		 * should issue CMD1 repeatedly in the idle state until
201 		 * the eMMC is ready. Otherwise some eMMC devices seem to enter
202 		 * the inactive mode after mmc_init_card() issued CMD0 when
203 		 * the eMMC device is busy.
204 		 */
205 		if (!ocr && !mmc_host_is_spi(host))
206 			cmd.arg = cmd.resp[0] | BIT(30);
207 	}
208 
209 	if (rocr && !mmc_host_is_spi(host))
210 		*rocr = cmd.resp[0];
211 
212 	return err;
213 }
214 
215 int mmc_set_relative_addr(struct mmc_card *card)
216 {
217 	struct mmc_command cmd = {};
218 
219 	cmd.opcode = MMC_SET_RELATIVE_ADDR;
220 	cmd.arg = card->rca << 16;
221 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
222 
223 	return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
224 }
225 
226 static int
227 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
228 {
229 	int err;
230 	struct mmc_command cmd = {};
231 
232 	cmd.opcode = opcode;
233 	cmd.arg = arg;
234 	cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
235 
236 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
237 	if (err)
238 		return err;
239 
240 	memcpy(cxd, cmd.resp, sizeof(u32) * 4);
241 
242 	return 0;
243 }
244 
245 /*
246  * NOTE: void *buf, caller for the buf is required to use DMA-capable
247  * buffer or on-stack buffer (with some overhead in callee).
248  */
249 static int
250 mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host,
251 		u32 opcode, void *buf, unsigned len)
252 {
253 	struct mmc_request mrq = {};
254 	struct mmc_command cmd = {};
255 	struct mmc_data data = {};
256 	struct scatterlist sg;
257 
258 	mrq.cmd = &cmd;
259 	mrq.data = &data;
260 
261 	cmd.opcode = opcode;
262 	cmd.arg = 0;
263 
264 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
265 	 * rely on callers to never use this with "native" calls for reading
266 	 * CSD or CID.  Native versions of those commands use the R2 type,
267 	 * not R1 plus a data block.
268 	 */
269 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
270 
271 	data.blksz = len;
272 	data.blocks = 1;
273 	data.flags = MMC_DATA_READ;
274 	data.sg = &sg;
275 	data.sg_len = 1;
276 
277 	sg_init_one(&sg, buf, len);
278 
279 	if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
280 		/*
281 		 * The spec states that CSR and CID accesses have a timeout
282 		 * of 64 clock cycles.
283 		 */
284 		data.timeout_ns = 0;
285 		data.timeout_clks = 64;
286 	} else
287 		mmc_set_data_timeout(&data, card);
288 
289 	mmc_wait_for_req(host, &mrq);
290 
291 	if (cmd.error)
292 		return cmd.error;
293 	if (data.error)
294 		return data.error;
295 
296 	return 0;
297 }
298 
299 static int mmc_spi_send_cxd(struct mmc_host *host, u32 *cxd, u32 opcode)
300 {
301 	int ret, i;
302 	__be32 *cxd_tmp;
303 
304 	cxd_tmp = kzalloc(16, GFP_KERNEL);
305 	if (!cxd_tmp)
306 		return -ENOMEM;
307 
308 	ret = mmc_send_cxd_data(NULL, host, opcode, cxd_tmp, 16);
309 	if (ret)
310 		goto err;
311 
312 	for (i = 0; i < 4; i++)
313 		cxd[i] = be32_to_cpu(cxd_tmp[i]);
314 
315 err:
316 	kfree(cxd_tmp);
317 	return ret;
318 }
319 
320 int mmc_send_csd(struct mmc_card *card, u32 *csd)
321 {
322 	if (mmc_host_is_spi(card->host))
323 		return mmc_spi_send_cxd(card->host, csd, MMC_SEND_CSD);
324 
325 	return mmc_send_cxd_native(card->host, card->rca << 16,	csd,
326 				MMC_SEND_CSD);
327 }
328 
329 int mmc_send_cid(struct mmc_host *host, u32 *cid)
330 {
331 	if (mmc_host_is_spi(host))
332 		return mmc_spi_send_cxd(host, cid, MMC_SEND_CID);
333 
334 	return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
335 }
336 
337 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
338 {
339 	int err;
340 	u8 *ext_csd;
341 
342 	if (!card || !new_ext_csd)
343 		return -EINVAL;
344 
345 	if (!mmc_can_ext_csd(card))
346 		return -EOPNOTSUPP;
347 
348 	/*
349 	 * As the ext_csd is so large and mostly unused, we don't store the
350 	 * raw block in mmc_card.
351 	 */
352 	ext_csd = kzalloc(512, GFP_KERNEL);
353 	if (!ext_csd)
354 		return -ENOMEM;
355 
356 	err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd,
357 				512);
358 	if (err)
359 		kfree(ext_csd);
360 	else
361 		*new_ext_csd = ext_csd;
362 
363 	return err;
364 }
365 EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
366 
367 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
368 {
369 	struct mmc_command cmd = {};
370 	int err;
371 
372 	cmd.opcode = MMC_SPI_READ_OCR;
373 	cmd.arg = highcap ? (1 << 30) : 0;
374 	cmd.flags = MMC_RSP_SPI_R3;
375 
376 	err = mmc_wait_for_cmd(host, &cmd, 0);
377 
378 	*ocrp = cmd.resp[1];
379 	return err;
380 }
381 
382 int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
383 {
384 	struct mmc_command cmd = {};
385 	int err;
386 
387 	cmd.opcode = MMC_SPI_CRC_ON_OFF;
388 	cmd.flags = MMC_RSP_SPI_R1;
389 	cmd.arg = use_crc;
390 
391 	err = mmc_wait_for_cmd(host, &cmd, 0);
392 	if (!err)
393 		host->use_spi_crc = use_crc;
394 	return err;
395 }
396 
397 static int mmc_switch_status_error(struct mmc_host *host, u32 status)
398 {
399 	if (mmc_host_is_spi(host)) {
400 		if (status & R1_SPI_ILLEGAL_COMMAND)
401 			return -EBADMSG;
402 	} else {
403 		if (R1_STATUS(status))
404 			pr_warn("%s: unexpected status %#x after switch\n",
405 				mmc_hostname(host), status);
406 		if (status & R1_SWITCH_ERROR)
407 			return -EBADMSG;
408 	}
409 	return 0;
410 }
411 
412 /* Caller must hold re-tuning */
413 int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
414 {
415 	u32 status;
416 	int err;
417 
418 	err = mmc_send_status(card, &status);
419 	if (!crc_err_fatal && err == -EILSEQ)
420 		return 0;
421 	if (err)
422 		return err;
423 
424 	return mmc_switch_status_error(card->host, status);
425 }
426 
427 static int mmc_busy_status(struct mmc_card *card, bool retry_crc_err,
428 			   enum mmc_busy_cmd busy_cmd, bool *busy)
429 {
430 	struct mmc_host *host = card->host;
431 	u32 status = 0;
432 	int err;
433 
434 	if (host->ops->card_busy) {
435 		*busy = host->ops->card_busy(host);
436 		return 0;
437 	}
438 
439 	err = mmc_send_status(card, &status);
440 	if (retry_crc_err && err == -EILSEQ) {
441 		*busy = true;
442 		return 0;
443 	}
444 	if (err)
445 		return err;
446 
447 	switch (busy_cmd) {
448 	case MMC_BUSY_CMD6:
449 		err = mmc_switch_status_error(card->host, status);
450 		break;
451 	case MMC_BUSY_ERASE:
452 		err = R1_STATUS(status) ? -EIO : 0;
453 		break;
454 	case MMC_BUSY_HPI:
455 		break;
456 	default:
457 		err = -EINVAL;
458 	}
459 
460 	if (err)
461 		return err;
462 
463 	*busy = !mmc_ready_for_data(status);
464 	return 0;
465 }
466 
467 static int __mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
468 			       bool send_status, bool retry_crc_err,
469 			       enum mmc_busy_cmd busy_cmd)
470 {
471 	struct mmc_host *host = card->host;
472 	int err;
473 	unsigned long timeout;
474 	unsigned int udelay = 32, udelay_max = 32768;
475 	bool expired = false;
476 	bool busy = false;
477 
478 	/*
479 	 * In cases when not allowed to poll by using CMD13 or because we aren't
480 	 * capable of polling by using ->card_busy(), then rely on waiting the
481 	 * stated timeout to be sufficient.
482 	 */
483 	if (!send_status && !host->ops->card_busy) {
484 		mmc_delay(timeout_ms);
485 		return 0;
486 	}
487 
488 	timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
489 	do {
490 		/*
491 		 * Due to the possibility of being preempted while polling,
492 		 * check the expiration time first.
493 		 */
494 		expired = time_after(jiffies, timeout);
495 
496 		err = mmc_busy_status(card, retry_crc_err, busy_cmd, &busy);
497 		if (err)
498 			return err;
499 
500 		/* Timeout if the device still remains busy. */
501 		if (expired && busy) {
502 			pr_err("%s: Card stuck being busy! %s\n",
503 				mmc_hostname(host), __func__);
504 			return -ETIMEDOUT;
505 		}
506 
507 		/* Throttle the polling rate to avoid hogging the CPU. */
508 		if (busy) {
509 			usleep_range(udelay, udelay * 2);
510 			if (udelay < udelay_max)
511 				udelay *= 2;
512 		}
513 	} while (busy);
514 
515 	return 0;
516 }
517 
518 int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
519 		      enum mmc_busy_cmd busy_cmd)
520 {
521 	return __mmc_poll_for_busy(card, timeout_ms, true, false, busy_cmd);
522 }
523 
524 /**
525  *	__mmc_switch - modify EXT_CSD register
526  *	@card: the MMC card associated with the data transfer
527  *	@set: cmd set values
528  *	@index: EXT_CSD register index
529  *	@value: value to program into EXT_CSD register
530  *	@timeout_ms: timeout (ms) for operation performed by register write,
531  *                   timeout of zero implies maximum possible timeout
532  *	@timing: new timing to change to
533  *	@send_status: send status cmd to poll for busy
534  *	@retry_crc_err: retry when CRC errors when polling with CMD13 for busy
535  *
536  *	Modifies the EXT_CSD register for selected card.
537  */
538 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
539 		unsigned int timeout_ms, unsigned char timing,
540 		bool send_status, bool retry_crc_err)
541 {
542 	struct mmc_host *host = card->host;
543 	int err;
544 	struct mmc_command cmd = {};
545 	bool use_r1b_resp = true;
546 	unsigned char old_timing = host->ios.timing;
547 
548 	mmc_retune_hold(host);
549 
550 	if (!timeout_ms) {
551 		pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
552 			mmc_hostname(host));
553 		timeout_ms = card->ext_csd.generic_cmd6_time;
554 	}
555 
556 	/*
557 	 * If the max_busy_timeout of the host is specified, make sure it's
558 	 * enough to fit the used timeout_ms. In case it's not, let's instruct
559 	 * the host to avoid HW busy detection, by converting to a R1 response
560 	 * instead of a R1B. Note, some hosts requires R1B, which also means
561 	 * they are on their own when it comes to deal with the busy timeout.
562 	 */
563 	if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
564 	    (timeout_ms > host->max_busy_timeout))
565 		use_r1b_resp = false;
566 
567 	cmd.opcode = MMC_SWITCH;
568 	cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
569 		  (index << 16) |
570 		  (value << 8) |
571 		  set;
572 	cmd.flags = MMC_CMD_AC;
573 	if (use_r1b_resp) {
574 		cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B;
575 		cmd.busy_timeout = timeout_ms;
576 	} else {
577 		cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1;
578 	}
579 
580 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
581 	if (err)
582 		goto out;
583 
584 	/*If SPI or used HW busy detection above, then we don't need to poll. */
585 	if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
586 		mmc_host_is_spi(host))
587 		goto out_tim;
588 
589 	/* Let's try to poll to find out when the command is completed. */
590 	err = __mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err,
591 				  MMC_BUSY_CMD6);
592 	if (err)
593 		goto out;
594 
595 out_tim:
596 	/* Switch to new timing before check switch status. */
597 	if (timing)
598 		mmc_set_timing(host, timing);
599 
600 	if (send_status) {
601 		err = mmc_switch_status(card, true);
602 		if (err && timing)
603 			mmc_set_timing(host, old_timing);
604 	}
605 out:
606 	mmc_retune_release(host);
607 
608 	return err;
609 }
610 
611 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
612 		unsigned int timeout_ms)
613 {
614 	return __mmc_switch(card, set, index, value, timeout_ms, 0,
615 			    true, false);
616 }
617 EXPORT_SYMBOL_GPL(mmc_switch);
618 
619 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
620 {
621 	struct mmc_request mrq = {};
622 	struct mmc_command cmd = {};
623 	struct mmc_data data = {};
624 	struct scatterlist sg;
625 	struct mmc_ios *ios = &host->ios;
626 	const u8 *tuning_block_pattern;
627 	int size, err = 0;
628 	u8 *data_buf;
629 
630 	if (ios->bus_width == MMC_BUS_WIDTH_8) {
631 		tuning_block_pattern = tuning_blk_pattern_8bit;
632 		size = sizeof(tuning_blk_pattern_8bit);
633 	} else if (ios->bus_width == MMC_BUS_WIDTH_4) {
634 		tuning_block_pattern = tuning_blk_pattern_4bit;
635 		size = sizeof(tuning_blk_pattern_4bit);
636 	} else
637 		return -EINVAL;
638 
639 	data_buf = kzalloc(size, GFP_KERNEL);
640 	if (!data_buf)
641 		return -ENOMEM;
642 
643 	mrq.cmd = &cmd;
644 	mrq.data = &data;
645 
646 	cmd.opcode = opcode;
647 	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
648 
649 	data.blksz = size;
650 	data.blocks = 1;
651 	data.flags = MMC_DATA_READ;
652 
653 	/*
654 	 * According to the tuning specs, Tuning process
655 	 * is normally shorter 40 executions of CMD19,
656 	 * and timeout value should be shorter than 150 ms
657 	 */
658 	data.timeout_ns = 150 * NSEC_PER_MSEC;
659 
660 	data.sg = &sg;
661 	data.sg_len = 1;
662 	sg_init_one(&sg, data_buf, size);
663 
664 	mmc_wait_for_req(host, &mrq);
665 
666 	if (cmd_error)
667 		*cmd_error = cmd.error;
668 
669 	if (cmd.error) {
670 		err = cmd.error;
671 		goto out;
672 	}
673 
674 	if (data.error) {
675 		err = data.error;
676 		goto out;
677 	}
678 
679 	if (memcmp(data_buf, tuning_block_pattern, size))
680 		err = -EIO;
681 
682 out:
683 	kfree(data_buf);
684 	return err;
685 }
686 EXPORT_SYMBOL_GPL(mmc_send_tuning);
687 
688 int mmc_abort_tuning(struct mmc_host *host, u32 opcode)
689 {
690 	struct mmc_command cmd = {};
691 
692 	/*
693 	 * eMMC specification specifies that CMD12 can be used to stop a tuning
694 	 * command, but SD specification does not, so do nothing unless it is
695 	 * eMMC.
696 	 */
697 	if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
698 		return 0;
699 
700 	cmd.opcode = MMC_STOP_TRANSMISSION;
701 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
702 
703 	/*
704 	 * For drivers that override R1 to R1b, set an arbitrary timeout based
705 	 * on the tuning timeout i.e. 150ms.
706 	 */
707 	cmd.busy_timeout = 150;
708 
709 	return mmc_wait_for_cmd(host, &cmd, 0);
710 }
711 EXPORT_SYMBOL_GPL(mmc_abort_tuning);
712 
713 static int
714 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
715 		  u8 len)
716 {
717 	struct mmc_request mrq = {};
718 	struct mmc_command cmd = {};
719 	struct mmc_data data = {};
720 	struct scatterlist sg;
721 	u8 *data_buf;
722 	u8 *test_buf;
723 	int i, err;
724 	static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
725 	static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
726 
727 	/* dma onto stack is unsafe/nonportable, but callers to this
728 	 * routine normally provide temporary on-stack buffers ...
729 	 */
730 	data_buf = kmalloc(len, GFP_KERNEL);
731 	if (!data_buf)
732 		return -ENOMEM;
733 
734 	if (len == 8)
735 		test_buf = testdata_8bit;
736 	else if (len == 4)
737 		test_buf = testdata_4bit;
738 	else {
739 		pr_err("%s: Invalid bus_width %d\n",
740 		       mmc_hostname(host), len);
741 		kfree(data_buf);
742 		return -EINVAL;
743 	}
744 
745 	if (opcode == MMC_BUS_TEST_W)
746 		memcpy(data_buf, test_buf, len);
747 
748 	mrq.cmd = &cmd;
749 	mrq.data = &data;
750 	cmd.opcode = opcode;
751 	cmd.arg = 0;
752 
753 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
754 	 * rely on callers to never use this with "native" calls for reading
755 	 * CSD or CID.  Native versions of those commands use the R2 type,
756 	 * not R1 plus a data block.
757 	 */
758 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
759 
760 	data.blksz = len;
761 	data.blocks = 1;
762 	if (opcode == MMC_BUS_TEST_R)
763 		data.flags = MMC_DATA_READ;
764 	else
765 		data.flags = MMC_DATA_WRITE;
766 
767 	data.sg = &sg;
768 	data.sg_len = 1;
769 	mmc_set_data_timeout(&data, card);
770 	sg_init_one(&sg, data_buf, len);
771 	mmc_wait_for_req(host, &mrq);
772 	err = 0;
773 	if (opcode == MMC_BUS_TEST_R) {
774 		for (i = 0; i < len / 4; i++)
775 			if ((test_buf[i] ^ data_buf[i]) != 0xff) {
776 				err = -EIO;
777 				break;
778 			}
779 	}
780 	kfree(data_buf);
781 
782 	if (cmd.error)
783 		return cmd.error;
784 	if (data.error)
785 		return data.error;
786 
787 	return err;
788 }
789 
790 int mmc_bus_test(struct mmc_card *card, u8 bus_width)
791 {
792 	int width;
793 
794 	if (bus_width == MMC_BUS_WIDTH_8)
795 		width = 8;
796 	else if (bus_width == MMC_BUS_WIDTH_4)
797 		width = 4;
798 	else if (bus_width == MMC_BUS_WIDTH_1)
799 		return 0; /* no need for test */
800 	else
801 		return -EINVAL;
802 
803 	/*
804 	 * Ignore errors from BUS_TEST_W.  BUS_TEST_R will fail if there
805 	 * is a problem.  This improves chances that the test will work.
806 	 */
807 	mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
808 	return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
809 }
810 
811 static int mmc_send_hpi_cmd(struct mmc_card *card)
812 {
813 	unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
814 	struct mmc_host *host = card->host;
815 	bool use_r1b_resp = true;
816 	struct mmc_command cmd = {};
817 	int err;
818 
819 	cmd.opcode = card->ext_csd.hpi_cmd;
820 	cmd.arg = card->rca << 16 | 1;
821 
822 	/*
823 	 * Make sure the host's max_busy_timeout fit the needed timeout for HPI.
824 	 * In case it doesn't, let's instruct the host to avoid HW busy
825 	 * detection, by using a R1 response instead of R1B.
826 	 */
827 	if (host->max_busy_timeout && busy_timeout_ms > host->max_busy_timeout)
828 		use_r1b_resp = false;
829 
830 	if (cmd.opcode == MMC_STOP_TRANSMISSION && use_r1b_resp) {
831 		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
832 		cmd.busy_timeout = busy_timeout_ms;
833 	} else {
834 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
835 		use_r1b_resp = false;
836 	}
837 
838 	err = mmc_wait_for_cmd(host, &cmd, 0);
839 	if (err) {
840 		pr_warn("%s: HPI error %d. Command response %#x\n",
841 			mmc_hostname(host), err, cmd.resp[0]);
842 		return err;
843 	}
844 
845 	/* No need to poll when using HW busy detection. */
846 	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
847 		return 0;
848 
849 	/* Let's poll to find out when the HPI request completes. */
850 	return mmc_poll_for_busy(card, busy_timeout_ms, MMC_BUSY_HPI);
851 }
852 
853 /**
854  *	mmc_interrupt_hpi - Issue for High priority Interrupt
855  *	@card: the MMC card associated with the HPI transfer
856  *
857  *	Issued High Priority Interrupt, and check for card status
858  *	until out-of prg-state.
859  */
860 static int mmc_interrupt_hpi(struct mmc_card *card)
861 {
862 	int err;
863 	u32 status;
864 
865 	if (!card->ext_csd.hpi_en) {
866 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
867 		return 1;
868 	}
869 
870 	err = mmc_send_status(card, &status);
871 	if (err) {
872 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
873 		goto out;
874 	}
875 
876 	switch (R1_CURRENT_STATE(status)) {
877 	case R1_STATE_IDLE:
878 	case R1_STATE_READY:
879 	case R1_STATE_STBY:
880 	case R1_STATE_TRAN:
881 		/*
882 		 * In idle and transfer states, HPI is not needed and the caller
883 		 * can issue the next intended command immediately
884 		 */
885 		goto out;
886 	case R1_STATE_PRG:
887 		break;
888 	default:
889 		/* In all other states, it's illegal to issue HPI */
890 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
891 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
892 		err = -EINVAL;
893 		goto out;
894 	}
895 
896 	err = mmc_send_hpi_cmd(card);
897 out:
898 	return err;
899 }
900 
901 int mmc_can_ext_csd(struct mmc_card *card)
902 {
903 	return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
904 }
905 
906 static int mmc_read_bkops_status(struct mmc_card *card)
907 {
908 	int err;
909 	u8 *ext_csd;
910 
911 	err = mmc_get_ext_csd(card, &ext_csd);
912 	if (err)
913 		return err;
914 
915 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
916 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
917 	kfree(ext_csd);
918 	return 0;
919 }
920 
921 /**
922  *	mmc_run_bkops - Run BKOPS for supported cards
923  *	@card: MMC card to run BKOPS for
924  *
925  *	Run background operations synchronously for cards having manual BKOPS
926  *	enabled and in case it reports urgent BKOPS level.
927 */
928 void mmc_run_bkops(struct mmc_card *card)
929 {
930 	int err;
931 
932 	if (!card->ext_csd.man_bkops_en)
933 		return;
934 
935 	err = mmc_read_bkops_status(card);
936 	if (err) {
937 		pr_err("%s: Failed to read bkops status: %d\n",
938 		       mmc_hostname(card->host), err);
939 		return;
940 	}
941 
942 	if (!card->ext_csd.raw_bkops_status ||
943 	    card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
944 		return;
945 
946 	mmc_retune_hold(card->host);
947 
948 	/*
949 	 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
950 	 * synchronously. Future wise, we may consider to start BKOPS, for less
951 	 * urgent levels by using an asynchronous background task, when idle.
952 	 */
953 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
954 			 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
955 	if (err)
956 		pr_warn("%s: Error %d starting bkops\n",
957 			mmc_hostname(card->host), err);
958 
959 	mmc_retune_release(card->host);
960 }
961 EXPORT_SYMBOL(mmc_run_bkops);
962 
963 /*
964  * Flush the cache to the non-volatile storage.
965  */
966 int mmc_flush_cache(struct mmc_card *card)
967 {
968 	int err = 0;
969 
970 	if (mmc_card_mmc(card) &&
971 			(card->ext_csd.cache_size > 0) &&
972 			(card->ext_csd.cache_ctrl & 1)) {
973 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
974 				 EXT_CSD_FLUSH_CACHE, 1,
975 				 MMC_CACHE_FLUSH_TIMEOUT_MS);
976 		if (err)
977 			pr_err("%s: cache flush error %d\n",
978 					mmc_hostname(card->host), err);
979 	}
980 
981 	return err;
982 }
983 EXPORT_SYMBOL(mmc_flush_cache);
984 
985 static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
986 {
987 	u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
988 	int err;
989 
990 	if (!card->ext_csd.cmdq_support)
991 		return -EOPNOTSUPP;
992 
993 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
994 			 val, card->ext_csd.generic_cmd6_time);
995 	if (!err)
996 		card->ext_csd.cmdq_en = enable;
997 
998 	return err;
999 }
1000 
1001 int mmc_cmdq_enable(struct mmc_card *card)
1002 {
1003 	return mmc_cmdq_switch(card, true);
1004 }
1005 EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1006 
1007 int mmc_cmdq_disable(struct mmc_card *card)
1008 {
1009 	return mmc_cmdq_switch(card, false);
1010 }
1011 EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1012 
1013 int mmc_sanitize(struct mmc_card *card)
1014 {
1015 	struct mmc_host *host = card->host;
1016 	int err;
1017 
1018 	if (!mmc_can_sanitize(card)) {
1019 		pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1020 		return -EOPNOTSUPP;
1021 	}
1022 
1023 	pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1024 
1025 	mmc_retune_hold(host);
1026 
1027 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1028 			 1, MMC_SANITIZE_TIMEOUT_MS);
1029 	if (err)
1030 		pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1031 
1032 	/*
1033 	 * If the sanitize operation timed out, the card is probably still busy
1034 	 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1035 	 * it with a HPI command to get back into R1_STATE_TRAN.
1036 	 */
1037 	if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1038 		pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1039 
1040 	mmc_retune_release(host);
1041 
1042 	pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1043 	return err;
1044 }
1045 EXPORT_SYMBOL_GPL(mmc_sanitize);
1046