xref: /openbmc/linux/drivers/mmc/core/mmc_ops.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  linux/drivers/mmc/core/mmc_ops.h
4  *
5  *  Copyright 2006-2007 Pierre Ossman
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/types.h>
11 #include <linux/scatterlist.h>
12 
13 #include <linux/mmc/host.h>
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/mmc.h>
16 
17 #include "core.h"
18 #include "card.h"
19 #include "host.h"
20 #include "mmc_ops.h"
21 
22 #define MMC_BKOPS_TIMEOUT_MS		(120 * 1000) /* 120s */
23 #define MMC_SANITIZE_TIMEOUT_MS		(240 * 1000) /* 240s */
24 
25 static const u8 tuning_blk_pattern_4bit[] = {
26 	0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
27 	0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
28 	0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
29 	0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
30 	0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
31 	0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
32 	0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
33 	0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
34 };
35 
36 static const u8 tuning_blk_pattern_8bit[] = {
37 	0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
38 	0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
39 	0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
40 	0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
41 	0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
42 	0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
43 	0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
44 	0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
45 	0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
46 	0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
47 	0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
48 	0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
49 	0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
50 	0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
51 	0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
52 	0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
53 };
54 
55 struct mmc_busy_data {
56 	struct mmc_card *card;
57 	bool retry_crc_err;
58 	enum mmc_busy_cmd busy_cmd;
59 };
60 
61 int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
62 {
63 	int err;
64 	struct mmc_command cmd = {};
65 
66 	cmd.opcode = MMC_SEND_STATUS;
67 	if (!mmc_host_is_spi(card->host))
68 		cmd.arg = card->rca << 16;
69 	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
70 
71 	err = mmc_wait_for_cmd(card->host, &cmd, retries);
72 	if (err)
73 		return err;
74 
75 	/* NOTE: callers are required to understand the difference
76 	 * between "native" and SPI format status words!
77 	 */
78 	if (status)
79 		*status = cmd.resp[0];
80 
81 	return 0;
82 }
83 EXPORT_SYMBOL_GPL(__mmc_send_status);
84 
85 int mmc_send_status(struct mmc_card *card, u32 *status)
86 {
87 	return __mmc_send_status(card, status, MMC_CMD_RETRIES);
88 }
89 EXPORT_SYMBOL_GPL(mmc_send_status);
90 
91 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
92 {
93 	struct mmc_command cmd = {};
94 
95 	cmd.opcode = MMC_SELECT_CARD;
96 
97 	if (card) {
98 		cmd.arg = card->rca << 16;
99 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
100 	} else {
101 		cmd.arg = 0;
102 		cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
103 	}
104 
105 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
106 }
107 
108 int mmc_select_card(struct mmc_card *card)
109 {
110 
111 	return _mmc_select_card(card->host, card);
112 }
113 
114 int mmc_deselect_cards(struct mmc_host *host)
115 {
116 	return _mmc_select_card(host, NULL);
117 }
118 
119 /*
120  * Write the value specified in the device tree or board code into the optional
121  * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
122  * drive strength of the DAT and CMD outputs. The actual meaning of a given
123  * value is hardware dependant.
124  * The presence of the DSR register can be determined from the CSD register,
125  * bit 76.
126  */
127 int mmc_set_dsr(struct mmc_host *host)
128 {
129 	struct mmc_command cmd = {};
130 
131 	cmd.opcode = MMC_SET_DSR;
132 
133 	cmd.arg = (host->dsr << 16) | 0xffff;
134 	cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
135 
136 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
137 }
138 
139 int mmc_go_idle(struct mmc_host *host)
140 {
141 	int err;
142 	struct mmc_command cmd = {};
143 
144 	/*
145 	 * Non-SPI hosts need to prevent chipselect going active during
146 	 * GO_IDLE; that would put chips into SPI mode.  Remind them of
147 	 * that in case of hardware that won't pull up DAT3/nCS otherwise.
148 	 *
149 	 * SPI hosts ignore ios.chip_select; it's managed according to
150 	 * rules that must accommodate non-MMC slaves which this layer
151 	 * won't even know about.
152 	 */
153 	if (!mmc_host_is_spi(host)) {
154 		mmc_set_chip_select(host, MMC_CS_HIGH);
155 		mmc_delay(1);
156 	}
157 
158 	cmd.opcode = MMC_GO_IDLE_STATE;
159 	cmd.arg = 0;
160 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
161 
162 	err = mmc_wait_for_cmd(host, &cmd, 0);
163 
164 	mmc_delay(1);
165 
166 	if (!mmc_host_is_spi(host)) {
167 		mmc_set_chip_select(host, MMC_CS_DONTCARE);
168 		mmc_delay(1);
169 	}
170 
171 	host->use_spi_crc = 0;
172 
173 	return err;
174 }
175 
176 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
177 {
178 	struct mmc_command cmd = {};
179 	int i, err = 0;
180 
181 	cmd.opcode = MMC_SEND_OP_COND;
182 	cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
183 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
184 
185 	for (i = 100; i; i--) {
186 		err = mmc_wait_for_cmd(host, &cmd, 0);
187 		if (err)
188 			break;
189 
190 		/* wait until reset completes */
191 		if (mmc_host_is_spi(host)) {
192 			if (!(cmd.resp[0] & R1_SPI_IDLE))
193 				break;
194 		} else {
195 			if (cmd.resp[0] & MMC_CARD_BUSY)
196 				break;
197 		}
198 
199 		err = -ETIMEDOUT;
200 
201 		mmc_delay(10);
202 
203 		/*
204 		 * According to eMMC specification v5.1 section 6.4.3, we
205 		 * should issue CMD1 repeatedly in the idle state until
206 		 * the eMMC is ready. Otherwise some eMMC devices seem to enter
207 		 * the inactive mode after mmc_init_card() issued CMD0 when
208 		 * the eMMC device is busy.
209 		 */
210 		if (!ocr && !mmc_host_is_spi(host))
211 			cmd.arg = cmd.resp[0] | BIT(30);
212 	}
213 
214 	if (rocr && !mmc_host_is_spi(host))
215 		*rocr = cmd.resp[0];
216 
217 	return err;
218 }
219 
220 int mmc_set_relative_addr(struct mmc_card *card)
221 {
222 	struct mmc_command cmd = {};
223 
224 	cmd.opcode = MMC_SET_RELATIVE_ADDR;
225 	cmd.arg = card->rca << 16;
226 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
227 
228 	return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
229 }
230 
231 static int
232 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
233 {
234 	int err;
235 	struct mmc_command cmd = {};
236 
237 	cmd.opcode = opcode;
238 	cmd.arg = arg;
239 	cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
240 
241 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
242 	if (err)
243 		return err;
244 
245 	memcpy(cxd, cmd.resp, sizeof(u32) * 4);
246 
247 	return 0;
248 }
249 
250 /*
251  * NOTE: void *buf, caller for the buf is required to use DMA-capable
252  * buffer or on-stack buffer (with some overhead in callee).
253  */
254 int mmc_send_adtc_data(struct mmc_card *card, struct mmc_host *host, u32 opcode,
255 		       u32 args, void *buf, unsigned len)
256 {
257 	struct mmc_request mrq = {};
258 	struct mmc_command cmd = {};
259 	struct mmc_data data = {};
260 	struct scatterlist sg;
261 
262 	mrq.cmd = &cmd;
263 	mrq.data = &data;
264 
265 	cmd.opcode = opcode;
266 	cmd.arg = args;
267 
268 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
269 	 * rely on callers to never use this with "native" calls for reading
270 	 * CSD or CID.  Native versions of those commands use the R2 type,
271 	 * not R1 plus a data block.
272 	 */
273 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
274 
275 	data.blksz = len;
276 	data.blocks = 1;
277 	data.flags = MMC_DATA_READ;
278 	data.sg = &sg;
279 	data.sg_len = 1;
280 
281 	sg_init_one(&sg, buf, len);
282 
283 	if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
284 		/*
285 		 * The spec states that CSR and CID accesses have a timeout
286 		 * of 64 clock cycles.
287 		 */
288 		data.timeout_ns = 0;
289 		data.timeout_clks = 64;
290 	} else
291 		mmc_set_data_timeout(&data, card);
292 
293 	mmc_wait_for_req(host, &mrq);
294 
295 	if (cmd.error)
296 		return cmd.error;
297 	if (data.error)
298 		return data.error;
299 
300 	return 0;
301 }
302 
303 static int mmc_spi_send_cxd(struct mmc_host *host, u32 *cxd, u32 opcode)
304 {
305 	int ret, i;
306 	__be32 *cxd_tmp;
307 
308 	cxd_tmp = kzalloc(16, GFP_KERNEL);
309 	if (!cxd_tmp)
310 		return -ENOMEM;
311 
312 	ret = mmc_send_adtc_data(NULL, host, opcode, 0, cxd_tmp, 16);
313 	if (ret)
314 		goto err;
315 
316 	for (i = 0; i < 4; i++)
317 		cxd[i] = be32_to_cpu(cxd_tmp[i]);
318 
319 err:
320 	kfree(cxd_tmp);
321 	return ret;
322 }
323 
324 int mmc_send_csd(struct mmc_card *card, u32 *csd)
325 {
326 	if (mmc_host_is_spi(card->host))
327 		return mmc_spi_send_cxd(card->host, csd, MMC_SEND_CSD);
328 
329 	return mmc_send_cxd_native(card->host, card->rca << 16,	csd,
330 				MMC_SEND_CSD);
331 }
332 
333 int mmc_send_cid(struct mmc_host *host, u32 *cid)
334 {
335 	if (mmc_host_is_spi(host))
336 		return mmc_spi_send_cxd(host, cid, MMC_SEND_CID);
337 
338 	return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
339 }
340 
341 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
342 {
343 	int err;
344 	u8 *ext_csd;
345 
346 	if (!card || !new_ext_csd)
347 		return -EINVAL;
348 
349 	if (!mmc_can_ext_csd(card))
350 		return -EOPNOTSUPP;
351 
352 	/*
353 	 * As the ext_csd is so large and mostly unused, we don't store the
354 	 * raw block in mmc_card.
355 	 */
356 	ext_csd = kzalloc(512, GFP_KERNEL);
357 	if (!ext_csd)
358 		return -ENOMEM;
359 
360 	err = mmc_send_adtc_data(card, card->host, MMC_SEND_EXT_CSD, 0, ext_csd,
361 				512);
362 	if (err)
363 		kfree(ext_csd);
364 	else
365 		*new_ext_csd = ext_csd;
366 
367 	return err;
368 }
369 EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
370 
371 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
372 {
373 	struct mmc_command cmd = {};
374 	int err;
375 
376 	cmd.opcode = MMC_SPI_READ_OCR;
377 	cmd.arg = highcap ? (1 << 30) : 0;
378 	cmd.flags = MMC_RSP_SPI_R3;
379 
380 	err = mmc_wait_for_cmd(host, &cmd, 0);
381 
382 	*ocrp = cmd.resp[1];
383 	return err;
384 }
385 
386 int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
387 {
388 	struct mmc_command cmd = {};
389 	int err;
390 
391 	cmd.opcode = MMC_SPI_CRC_ON_OFF;
392 	cmd.flags = MMC_RSP_SPI_R1;
393 	cmd.arg = use_crc;
394 
395 	err = mmc_wait_for_cmd(host, &cmd, 0);
396 	if (!err)
397 		host->use_spi_crc = use_crc;
398 	return err;
399 }
400 
401 static int mmc_switch_status_error(struct mmc_host *host, u32 status)
402 {
403 	if (mmc_host_is_spi(host)) {
404 		if (status & R1_SPI_ILLEGAL_COMMAND)
405 			return -EBADMSG;
406 	} else {
407 		if (R1_STATUS(status))
408 			pr_warn("%s: unexpected status %#x after switch\n",
409 				mmc_hostname(host), status);
410 		if (status & R1_SWITCH_ERROR)
411 			return -EBADMSG;
412 	}
413 	return 0;
414 }
415 
416 /* Caller must hold re-tuning */
417 int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
418 {
419 	u32 status;
420 	int err;
421 
422 	err = mmc_send_status(card, &status);
423 	if (!crc_err_fatal && err == -EILSEQ)
424 		return 0;
425 	if (err)
426 		return err;
427 
428 	return mmc_switch_status_error(card->host, status);
429 }
430 
431 static int mmc_busy_cb(void *cb_data, bool *busy)
432 {
433 	struct mmc_busy_data *data = cb_data;
434 	struct mmc_host *host = data->card->host;
435 	u32 status = 0;
436 	int err;
437 
438 	if (host->ops->card_busy) {
439 		*busy = host->ops->card_busy(host);
440 		return 0;
441 	}
442 
443 	err = mmc_send_status(data->card, &status);
444 	if (data->retry_crc_err && err == -EILSEQ) {
445 		*busy = true;
446 		return 0;
447 	}
448 	if (err)
449 		return err;
450 
451 	switch (data->busy_cmd) {
452 	case MMC_BUSY_CMD6:
453 		err = mmc_switch_status_error(host, status);
454 		break;
455 	case MMC_BUSY_ERASE:
456 		err = R1_STATUS(status) ? -EIO : 0;
457 		break;
458 	case MMC_BUSY_HPI:
459 	case MMC_BUSY_EXTR_SINGLE:
460 		break;
461 	default:
462 		err = -EINVAL;
463 	}
464 
465 	if (err)
466 		return err;
467 
468 	*busy = !mmc_ready_for_data(status);
469 	return 0;
470 }
471 
472 int __mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
473 			int (*busy_cb)(void *cb_data, bool *busy),
474 			void *cb_data)
475 {
476 	struct mmc_host *host = card->host;
477 	int err;
478 	unsigned long timeout;
479 	unsigned int udelay = 32, udelay_max = 32768;
480 	bool expired = false;
481 	bool busy = false;
482 
483 	timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
484 	do {
485 		/*
486 		 * Due to the possibility of being preempted while polling,
487 		 * check the expiration time first.
488 		 */
489 		expired = time_after(jiffies, timeout);
490 
491 		err = (*busy_cb)(cb_data, &busy);
492 		if (err)
493 			return err;
494 
495 		/* Timeout if the device still remains busy. */
496 		if (expired && busy) {
497 			pr_err("%s: Card stuck being busy! %s\n",
498 				mmc_hostname(host), __func__);
499 			return -ETIMEDOUT;
500 		}
501 
502 		/* Throttle the polling rate to avoid hogging the CPU. */
503 		if (busy) {
504 			usleep_range(udelay, udelay * 2);
505 			if (udelay < udelay_max)
506 				udelay *= 2;
507 		}
508 	} while (busy);
509 
510 	return 0;
511 }
512 
513 int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
514 		      bool retry_crc_err, enum mmc_busy_cmd busy_cmd)
515 {
516 	struct mmc_busy_data cb_data;
517 
518 	cb_data.card = card;
519 	cb_data.retry_crc_err = retry_crc_err;
520 	cb_data.busy_cmd = busy_cmd;
521 
522 	return __mmc_poll_for_busy(card, timeout_ms, &mmc_busy_cb, &cb_data);
523 }
524 
525 bool mmc_prepare_busy_cmd(struct mmc_host *host, struct mmc_command *cmd,
526 			  unsigned int timeout_ms)
527 {
528 	/*
529 	 * If the max_busy_timeout of the host is specified, make sure it's
530 	 * enough to fit the used timeout_ms. In case it's not, let's instruct
531 	 * the host to avoid HW busy detection, by converting to a R1 response
532 	 * instead of a R1B. Note, some hosts requires R1B, which also means
533 	 * they are on their own when it comes to deal with the busy timeout.
534 	 */
535 	if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
536 	    (timeout_ms > host->max_busy_timeout)) {
537 		cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1 | MMC_RSP_R1;
538 		return false;
539 	}
540 
541 	cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1B | MMC_RSP_R1B;
542 	cmd->busy_timeout = timeout_ms;
543 	return true;
544 }
545 
546 /**
547  *	__mmc_switch - modify EXT_CSD register
548  *	@card: the MMC card associated with the data transfer
549  *	@set: cmd set values
550  *	@index: EXT_CSD register index
551  *	@value: value to program into EXT_CSD register
552  *	@timeout_ms: timeout (ms) for operation performed by register write,
553  *                   timeout of zero implies maximum possible timeout
554  *	@timing: new timing to change to
555  *	@send_status: send status cmd to poll for busy
556  *	@retry_crc_err: retry when CRC errors when polling with CMD13 for busy
557  *	@retries: number of retries
558  *
559  *	Modifies the EXT_CSD register for selected card.
560  */
561 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
562 		unsigned int timeout_ms, unsigned char timing,
563 		bool send_status, bool retry_crc_err, unsigned int retries)
564 {
565 	struct mmc_host *host = card->host;
566 	int err;
567 	struct mmc_command cmd = {};
568 	bool use_r1b_resp;
569 	unsigned char old_timing = host->ios.timing;
570 
571 	mmc_retune_hold(host);
572 
573 	if (!timeout_ms) {
574 		pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
575 			mmc_hostname(host));
576 		timeout_ms = card->ext_csd.generic_cmd6_time;
577 	}
578 
579 	cmd.opcode = MMC_SWITCH;
580 	cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
581 		  (index << 16) |
582 		  (value << 8) |
583 		  set;
584 	use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
585 
586 	err = mmc_wait_for_cmd(host, &cmd, retries);
587 	if (err)
588 		goto out;
589 
590 	/*If SPI or used HW busy detection above, then we don't need to poll. */
591 	if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
592 		mmc_host_is_spi(host))
593 		goto out_tim;
594 
595 	/*
596 	 * If the host doesn't support HW polling via the ->card_busy() ops and
597 	 * when it's not allowed to poll by using CMD13, then we need to rely on
598 	 * waiting the stated timeout to be sufficient.
599 	 */
600 	if (!send_status && !host->ops->card_busy) {
601 		mmc_delay(timeout_ms);
602 		goto out_tim;
603 	}
604 
605 	/* Let's try to poll to find out when the command is completed. */
606 	err = mmc_poll_for_busy(card, timeout_ms, retry_crc_err, MMC_BUSY_CMD6);
607 	if (err)
608 		goto out;
609 
610 out_tim:
611 	/* Switch to new timing before check switch status. */
612 	if (timing)
613 		mmc_set_timing(host, timing);
614 
615 	if (send_status) {
616 		err = mmc_switch_status(card, true);
617 		if (err && timing)
618 			mmc_set_timing(host, old_timing);
619 	}
620 out:
621 	mmc_retune_release(host);
622 
623 	return err;
624 }
625 
626 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
627 		unsigned int timeout_ms)
628 {
629 	return __mmc_switch(card, set, index, value, timeout_ms, 0,
630 			    true, false, MMC_CMD_RETRIES);
631 }
632 EXPORT_SYMBOL_GPL(mmc_switch);
633 
634 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
635 {
636 	struct mmc_request mrq = {};
637 	struct mmc_command cmd = {};
638 	struct mmc_data data = {};
639 	struct scatterlist sg;
640 	struct mmc_ios *ios = &host->ios;
641 	const u8 *tuning_block_pattern;
642 	int size, err = 0;
643 	u8 *data_buf;
644 
645 	if (ios->bus_width == MMC_BUS_WIDTH_8) {
646 		tuning_block_pattern = tuning_blk_pattern_8bit;
647 		size = sizeof(tuning_blk_pattern_8bit);
648 	} else if (ios->bus_width == MMC_BUS_WIDTH_4) {
649 		tuning_block_pattern = tuning_blk_pattern_4bit;
650 		size = sizeof(tuning_blk_pattern_4bit);
651 	} else
652 		return -EINVAL;
653 
654 	data_buf = kzalloc(size, GFP_KERNEL);
655 	if (!data_buf)
656 		return -ENOMEM;
657 
658 	mrq.cmd = &cmd;
659 	mrq.data = &data;
660 
661 	cmd.opcode = opcode;
662 	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
663 
664 	data.blksz = size;
665 	data.blocks = 1;
666 	data.flags = MMC_DATA_READ;
667 
668 	/*
669 	 * According to the tuning specs, Tuning process
670 	 * is normally shorter 40 executions of CMD19,
671 	 * and timeout value should be shorter than 150 ms
672 	 */
673 	data.timeout_ns = 150 * NSEC_PER_MSEC;
674 
675 	data.sg = &sg;
676 	data.sg_len = 1;
677 	sg_init_one(&sg, data_buf, size);
678 
679 	mmc_wait_for_req(host, &mrq);
680 
681 	if (cmd_error)
682 		*cmd_error = cmd.error;
683 
684 	if (cmd.error) {
685 		err = cmd.error;
686 		goto out;
687 	}
688 
689 	if (data.error) {
690 		err = data.error;
691 		goto out;
692 	}
693 
694 	if (memcmp(data_buf, tuning_block_pattern, size))
695 		err = -EIO;
696 
697 out:
698 	kfree(data_buf);
699 	return err;
700 }
701 EXPORT_SYMBOL_GPL(mmc_send_tuning);
702 
703 int mmc_send_abort_tuning(struct mmc_host *host, u32 opcode)
704 {
705 	struct mmc_command cmd = {};
706 
707 	/*
708 	 * eMMC specification specifies that CMD12 can be used to stop a tuning
709 	 * command, but SD specification does not, so do nothing unless it is
710 	 * eMMC.
711 	 */
712 	if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
713 		return 0;
714 
715 	cmd.opcode = MMC_STOP_TRANSMISSION;
716 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
717 
718 	/*
719 	 * For drivers that override R1 to R1b, set an arbitrary timeout based
720 	 * on the tuning timeout i.e. 150ms.
721 	 */
722 	cmd.busy_timeout = 150;
723 
724 	return mmc_wait_for_cmd(host, &cmd, 0);
725 }
726 EXPORT_SYMBOL_GPL(mmc_send_abort_tuning);
727 
728 static int
729 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
730 		  u8 len)
731 {
732 	struct mmc_request mrq = {};
733 	struct mmc_command cmd = {};
734 	struct mmc_data data = {};
735 	struct scatterlist sg;
736 	u8 *data_buf;
737 	u8 *test_buf;
738 	int i, err;
739 	static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
740 	static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
741 
742 	/* dma onto stack is unsafe/nonportable, but callers to this
743 	 * routine normally provide temporary on-stack buffers ...
744 	 */
745 	data_buf = kmalloc(len, GFP_KERNEL);
746 	if (!data_buf)
747 		return -ENOMEM;
748 
749 	if (len == 8)
750 		test_buf = testdata_8bit;
751 	else if (len == 4)
752 		test_buf = testdata_4bit;
753 	else {
754 		pr_err("%s: Invalid bus_width %d\n",
755 		       mmc_hostname(host), len);
756 		kfree(data_buf);
757 		return -EINVAL;
758 	}
759 
760 	if (opcode == MMC_BUS_TEST_W)
761 		memcpy(data_buf, test_buf, len);
762 
763 	mrq.cmd = &cmd;
764 	mrq.data = &data;
765 	cmd.opcode = opcode;
766 	cmd.arg = 0;
767 
768 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
769 	 * rely on callers to never use this with "native" calls for reading
770 	 * CSD or CID.  Native versions of those commands use the R2 type,
771 	 * not R1 plus a data block.
772 	 */
773 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
774 
775 	data.blksz = len;
776 	data.blocks = 1;
777 	if (opcode == MMC_BUS_TEST_R)
778 		data.flags = MMC_DATA_READ;
779 	else
780 		data.flags = MMC_DATA_WRITE;
781 
782 	data.sg = &sg;
783 	data.sg_len = 1;
784 	mmc_set_data_timeout(&data, card);
785 	sg_init_one(&sg, data_buf, len);
786 	mmc_wait_for_req(host, &mrq);
787 	err = 0;
788 	if (opcode == MMC_BUS_TEST_R) {
789 		for (i = 0; i < len / 4; i++)
790 			if ((test_buf[i] ^ data_buf[i]) != 0xff) {
791 				err = -EIO;
792 				break;
793 			}
794 	}
795 	kfree(data_buf);
796 
797 	if (cmd.error)
798 		return cmd.error;
799 	if (data.error)
800 		return data.error;
801 
802 	return err;
803 }
804 
805 int mmc_bus_test(struct mmc_card *card, u8 bus_width)
806 {
807 	int width;
808 
809 	if (bus_width == MMC_BUS_WIDTH_8)
810 		width = 8;
811 	else if (bus_width == MMC_BUS_WIDTH_4)
812 		width = 4;
813 	else if (bus_width == MMC_BUS_WIDTH_1)
814 		return 0; /* no need for test */
815 	else
816 		return -EINVAL;
817 
818 	/*
819 	 * Ignore errors from BUS_TEST_W.  BUS_TEST_R will fail if there
820 	 * is a problem.  This improves chances that the test will work.
821 	 */
822 	mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
823 	return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
824 }
825 
826 static int mmc_send_hpi_cmd(struct mmc_card *card)
827 {
828 	unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
829 	struct mmc_host *host = card->host;
830 	bool use_r1b_resp = false;
831 	struct mmc_command cmd = {};
832 	int err;
833 
834 	cmd.opcode = card->ext_csd.hpi_cmd;
835 	cmd.arg = card->rca << 16 | 1;
836 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
837 
838 	if (cmd.opcode == MMC_STOP_TRANSMISSION)
839 		use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd,
840 						    busy_timeout_ms);
841 
842 	err = mmc_wait_for_cmd(host, &cmd, 0);
843 	if (err) {
844 		pr_warn("%s: HPI error %d. Command response %#x\n",
845 			mmc_hostname(host), err, cmd.resp[0]);
846 		return err;
847 	}
848 
849 	/* No need to poll when using HW busy detection. */
850 	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
851 		return 0;
852 
853 	/* Let's poll to find out when the HPI request completes. */
854 	return mmc_poll_for_busy(card, busy_timeout_ms, false, MMC_BUSY_HPI);
855 }
856 
857 /**
858  *	mmc_interrupt_hpi - Issue for High priority Interrupt
859  *	@card: the MMC card associated with the HPI transfer
860  *
861  *	Issued High Priority Interrupt, and check for card status
862  *	until out-of prg-state.
863  */
864 static int mmc_interrupt_hpi(struct mmc_card *card)
865 {
866 	int err;
867 	u32 status;
868 
869 	if (!card->ext_csd.hpi_en) {
870 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
871 		return 1;
872 	}
873 
874 	err = mmc_send_status(card, &status);
875 	if (err) {
876 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
877 		goto out;
878 	}
879 
880 	switch (R1_CURRENT_STATE(status)) {
881 	case R1_STATE_IDLE:
882 	case R1_STATE_READY:
883 	case R1_STATE_STBY:
884 	case R1_STATE_TRAN:
885 		/*
886 		 * In idle and transfer states, HPI is not needed and the caller
887 		 * can issue the next intended command immediately
888 		 */
889 		goto out;
890 	case R1_STATE_PRG:
891 		break;
892 	default:
893 		/* In all other states, it's illegal to issue HPI */
894 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
895 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
896 		err = -EINVAL;
897 		goto out;
898 	}
899 
900 	err = mmc_send_hpi_cmd(card);
901 out:
902 	return err;
903 }
904 
905 int mmc_can_ext_csd(struct mmc_card *card)
906 {
907 	return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
908 }
909 
910 static int mmc_read_bkops_status(struct mmc_card *card)
911 {
912 	int err;
913 	u8 *ext_csd;
914 
915 	err = mmc_get_ext_csd(card, &ext_csd);
916 	if (err)
917 		return err;
918 
919 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
920 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
921 	kfree(ext_csd);
922 	return 0;
923 }
924 
925 /**
926  *	mmc_run_bkops - Run BKOPS for supported cards
927  *	@card: MMC card to run BKOPS for
928  *
929  *	Run background operations synchronously for cards having manual BKOPS
930  *	enabled and in case it reports urgent BKOPS level.
931 */
932 void mmc_run_bkops(struct mmc_card *card)
933 {
934 	int err;
935 
936 	if (!card->ext_csd.man_bkops_en)
937 		return;
938 
939 	err = mmc_read_bkops_status(card);
940 	if (err) {
941 		pr_err("%s: Failed to read bkops status: %d\n",
942 		       mmc_hostname(card->host), err);
943 		return;
944 	}
945 
946 	if (!card->ext_csd.raw_bkops_status ||
947 	    card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
948 		return;
949 
950 	mmc_retune_hold(card->host);
951 
952 	/*
953 	 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
954 	 * synchronously. Future wise, we may consider to start BKOPS, for less
955 	 * urgent levels by using an asynchronous background task, when idle.
956 	 */
957 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
958 			 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
959 	if (err)
960 		pr_warn("%s: Error %d starting bkops\n",
961 			mmc_hostname(card->host), err);
962 
963 	mmc_retune_release(card->host);
964 }
965 EXPORT_SYMBOL(mmc_run_bkops);
966 
967 static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
968 {
969 	u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
970 	int err;
971 
972 	if (!card->ext_csd.cmdq_support)
973 		return -EOPNOTSUPP;
974 
975 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
976 			 val, card->ext_csd.generic_cmd6_time);
977 	if (!err)
978 		card->ext_csd.cmdq_en = enable;
979 
980 	return err;
981 }
982 
983 int mmc_cmdq_enable(struct mmc_card *card)
984 {
985 	return mmc_cmdq_switch(card, true);
986 }
987 EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
988 
989 int mmc_cmdq_disable(struct mmc_card *card)
990 {
991 	return mmc_cmdq_switch(card, false);
992 }
993 EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
994 
995 int mmc_sanitize(struct mmc_card *card, unsigned int timeout_ms)
996 {
997 	struct mmc_host *host = card->host;
998 	int err;
999 
1000 	if (!mmc_can_sanitize(card)) {
1001 		pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1002 		return -EOPNOTSUPP;
1003 	}
1004 
1005 	if (!timeout_ms)
1006 		timeout_ms = MMC_SANITIZE_TIMEOUT_MS;
1007 
1008 	pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1009 
1010 	mmc_retune_hold(host);
1011 
1012 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1013 			   1, timeout_ms, 0, true, false, 0);
1014 	if (err)
1015 		pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1016 
1017 	/*
1018 	 * If the sanitize operation timed out, the card is probably still busy
1019 	 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1020 	 * it with a HPI command to get back into R1_STATE_TRAN.
1021 	 */
1022 	if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1023 		pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1024 
1025 	mmc_retune_release(host);
1026 
1027 	pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1028 	return err;
1029 }
1030 EXPORT_SYMBOL_GPL(mmc_sanitize);
1031