xref: /openbmc/linux/drivers/mmc/core/mmc_ops.c (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  linux/drivers/mmc/core/mmc_ops.h
4  *
5  *  Copyright 2006-2007 Pierre Ossman
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/types.h>
11 #include <linux/scatterlist.h>
12 
13 #include <linux/mmc/host.h>
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/mmc.h>
16 
17 #include "core.h"
18 #include "card.h"
19 #include "host.h"
20 #include "mmc_ops.h"
21 
22 #define MMC_BKOPS_TIMEOUT_MS		(120 * 1000) /* 120s */
23 #define MMC_CACHE_FLUSH_TIMEOUT_MS	(30 * 1000) /* 30s */
24 #define MMC_SANITIZE_TIMEOUT_MS		(240 * 1000) /* 240s */
25 
26 static const u8 tuning_blk_pattern_4bit[] = {
27 	0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
28 	0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
29 	0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
30 	0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
31 	0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
32 	0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
33 	0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
34 	0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
35 };
36 
37 static const u8 tuning_blk_pattern_8bit[] = {
38 	0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
39 	0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
40 	0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
41 	0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
42 	0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
43 	0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
44 	0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
45 	0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
46 	0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
47 	0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
48 	0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
49 	0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
50 	0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
51 	0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
52 	0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
53 	0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
54 };
55 
56 int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
57 {
58 	int err;
59 	struct mmc_command cmd = {};
60 
61 	cmd.opcode = MMC_SEND_STATUS;
62 	if (!mmc_host_is_spi(card->host))
63 		cmd.arg = card->rca << 16;
64 	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
65 
66 	err = mmc_wait_for_cmd(card->host, &cmd, retries);
67 	if (err)
68 		return err;
69 
70 	/* NOTE: callers are required to understand the difference
71 	 * between "native" and SPI format status words!
72 	 */
73 	if (status)
74 		*status = cmd.resp[0];
75 
76 	return 0;
77 }
78 EXPORT_SYMBOL_GPL(__mmc_send_status);
79 
80 int mmc_send_status(struct mmc_card *card, u32 *status)
81 {
82 	return __mmc_send_status(card, status, MMC_CMD_RETRIES);
83 }
84 EXPORT_SYMBOL_GPL(mmc_send_status);
85 
86 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
87 {
88 	struct mmc_command cmd = {};
89 
90 	cmd.opcode = MMC_SELECT_CARD;
91 
92 	if (card) {
93 		cmd.arg = card->rca << 16;
94 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
95 	} else {
96 		cmd.arg = 0;
97 		cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
98 	}
99 
100 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
101 }
102 
103 int mmc_select_card(struct mmc_card *card)
104 {
105 
106 	return _mmc_select_card(card->host, card);
107 }
108 
109 int mmc_deselect_cards(struct mmc_host *host)
110 {
111 	return _mmc_select_card(host, NULL);
112 }
113 
114 /*
115  * Write the value specified in the device tree or board code into the optional
116  * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
117  * drive strength of the DAT and CMD outputs. The actual meaning of a given
118  * value is hardware dependant.
119  * The presence of the DSR register can be determined from the CSD register,
120  * bit 76.
121  */
122 int mmc_set_dsr(struct mmc_host *host)
123 {
124 	struct mmc_command cmd = {};
125 
126 	cmd.opcode = MMC_SET_DSR;
127 
128 	cmd.arg = (host->dsr << 16) | 0xffff;
129 	cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
130 
131 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
132 }
133 
134 int mmc_go_idle(struct mmc_host *host)
135 {
136 	int err;
137 	struct mmc_command cmd = {};
138 
139 	/*
140 	 * Non-SPI hosts need to prevent chipselect going active during
141 	 * GO_IDLE; that would put chips into SPI mode.  Remind them of
142 	 * that in case of hardware that won't pull up DAT3/nCS otherwise.
143 	 *
144 	 * SPI hosts ignore ios.chip_select; it's managed according to
145 	 * rules that must accommodate non-MMC slaves which this layer
146 	 * won't even know about.
147 	 */
148 	if (!mmc_host_is_spi(host)) {
149 		mmc_set_chip_select(host, MMC_CS_HIGH);
150 		mmc_delay(1);
151 	}
152 
153 	cmd.opcode = MMC_GO_IDLE_STATE;
154 	cmd.arg = 0;
155 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
156 
157 	err = mmc_wait_for_cmd(host, &cmd, 0);
158 
159 	mmc_delay(1);
160 
161 	if (!mmc_host_is_spi(host)) {
162 		mmc_set_chip_select(host, MMC_CS_DONTCARE);
163 		mmc_delay(1);
164 	}
165 
166 	host->use_spi_crc = 0;
167 
168 	return err;
169 }
170 
171 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
172 {
173 	struct mmc_command cmd = {};
174 	int i, err = 0;
175 
176 	cmd.opcode = MMC_SEND_OP_COND;
177 	cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
178 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
179 
180 	for (i = 100; i; i--) {
181 		err = mmc_wait_for_cmd(host, &cmd, 0);
182 		if (err)
183 			break;
184 
185 		/* wait until reset completes */
186 		if (mmc_host_is_spi(host)) {
187 			if (!(cmd.resp[0] & R1_SPI_IDLE))
188 				break;
189 		} else {
190 			if (cmd.resp[0] & MMC_CARD_BUSY)
191 				break;
192 		}
193 
194 		err = -ETIMEDOUT;
195 
196 		mmc_delay(10);
197 
198 		/*
199 		 * According to eMMC specification v5.1 section 6.4.3, we
200 		 * should issue CMD1 repeatedly in the idle state until
201 		 * the eMMC is ready. Otherwise some eMMC devices seem to enter
202 		 * the inactive mode after mmc_init_card() issued CMD0 when
203 		 * the eMMC device is busy.
204 		 */
205 		if (!ocr && !mmc_host_is_spi(host))
206 			cmd.arg = cmd.resp[0] | BIT(30);
207 	}
208 
209 	if (rocr && !mmc_host_is_spi(host))
210 		*rocr = cmd.resp[0];
211 
212 	return err;
213 }
214 
215 int mmc_set_relative_addr(struct mmc_card *card)
216 {
217 	struct mmc_command cmd = {};
218 
219 	cmd.opcode = MMC_SET_RELATIVE_ADDR;
220 	cmd.arg = card->rca << 16;
221 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
222 
223 	return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
224 }
225 
226 static int
227 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
228 {
229 	int err;
230 	struct mmc_command cmd = {};
231 
232 	cmd.opcode = opcode;
233 	cmd.arg = arg;
234 	cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
235 
236 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
237 	if (err)
238 		return err;
239 
240 	memcpy(cxd, cmd.resp, sizeof(u32) * 4);
241 
242 	return 0;
243 }
244 
245 /*
246  * NOTE: void *buf, caller for the buf is required to use DMA-capable
247  * buffer or on-stack buffer (with some overhead in callee).
248  */
249 static int
250 mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host,
251 		u32 opcode, void *buf, unsigned len)
252 {
253 	struct mmc_request mrq = {};
254 	struct mmc_command cmd = {};
255 	struct mmc_data data = {};
256 	struct scatterlist sg;
257 
258 	mrq.cmd = &cmd;
259 	mrq.data = &data;
260 
261 	cmd.opcode = opcode;
262 	cmd.arg = 0;
263 
264 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
265 	 * rely on callers to never use this with "native" calls for reading
266 	 * CSD or CID.  Native versions of those commands use the R2 type,
267 	 * not R1 plus a data block.
268 	 */
269 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
270 
271 	data.blksz = len;
272 	data.blocks = 1;
273 	data.flags = MMC_DATA_READ;
274 	data.sg = &sg;
275 	data.sg_len = 1;
276 
277 	sg_init_one(&sg, buf, len);
278 
279 	if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
280 		/*
281 		 * The spec states that CSR and CID accesses have a timeout
282 		 * of 64 clock cycles.
283 		 */
284 		data.timeout_ns = 0;
285 		data.timeout_clks = 64;
286 	} else
287 		mmc_set_data_timeout(&data, card);
288 
289 	mmc_wait_for_req(host, &mrq);
290 
291 	if (cmd.error)
292 		return cmd.error;
293 	if (data.error)
294 		return data.error;
295 
296 	return 0;
297 }
298 
299 static int mmc_spi_send_csd(struct mmc_card *card, u32 *csd)
300 {
301 	int ret, i;
302 	__be32 *csd_tmp;
303 
304 	csd_tmp = kzalloc(16, GFP_KERNEL);
305 	if (!csd_tmp)
306 		return -ENOMEM;
307 
308 	ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd_tmp, 16);
309 	if (ret)
310 		goto err;
311 
312 	for (i = 0; i < 4; i++)
313 		csd[i] = be32_to_cpu(csd_tmp[i]);
314 
315 err:
316 	kfree(csd_tmp);
317 	return ret;
318 }
319 
320 int mmc_send_csd(struct mmc_card *card, u32 *csd)
321 {
322 	if (mmc_host_is_spi(card->host))
323 		return mmc_spi_send_csd(card, csd);
324 
325 	return mmc_send_cxd_native(card->host, card->rca << 16,	csd,
326 				MMC_SEND_CSD);
327 }
328 
329 static int mmc_spi_send_cid(struct mmc_host *host, u32 *cid)
330 {
331 	int ret, i;
332 	__be32 *cid_tmp;
333 
334 	cid_tmp = kzalloc(16, GFP_KERNEL);
335 	if (!cid_tmp)
336 		return -ENOMEM;
337 
338 	ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid_tmp, 16);
339 	if (ret)
340 		goto err;
341 
342 	for (i = 0; i < 4; i++)
343 		cid[i] = be32_to_cpu(cid_tmp[i]);
344 
345 err:
346 	kfree(cid_tmp);
347 	return ret;
348 }
349 
350 int mmc_send_cid(struct mmc_host *host, u32 *cid)
351 {
352 	if (mmc_host_is_spi(host))
353 		return mmc_spi_send_cid(host, cid);
354 
355 	return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
356 }
357 
358 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
359 {
360 	int err;
361 	u8 *ext_csd;
362 
363 	if (!card || !new_ext_csd)
364 		return -EINVAL;
365 
366 	if (!mmc_can_ext_csd(card))
367 		return -EOPNOTSUPP;
368 
369 	/*
370 	 * As the ext_csd is so large and mostly unused, we don't store the
371 	 * raw block in mmc_card.
372 	 */
373 	ext_csd = kzalloc(512, GFP_KERNEL);
374 	if (!ext_csd)
375 		return -ENOMEM;
376 
377 	err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd,
378 				512);
379 	if (err)
380 		kfree(ext_csd);
381 	else
382 		*new_ext_csd = ext_csd;
383 
384 	return err;
385 }
386 EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
387 
388 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
389 {
390 	struct mmc_command cmd = {};
391 	int err;
392 
393 	cmd.opcode = MMC_SPI_READ_OCR;
394 	cmd.arg = highcap ? (1 << 30) : 0;
395 	cmd.flags = MMC_RSP_SPI_R3;
396 
397 	err = mmc_wait_for_cmd(host, &cmd, 0);
398 
399 	*ocrp = cmd.resp[1];
400 	return err;
401 }
402 
403 int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
404 {
405 	struct mmc_command cmd = {};
406 	int err;
407 
408 	cmd.opcode = MMC_SPI_CRC_ON_OFF;
409 	cmd.flags = MMC_RSP_SPI_R1;
410 	cmd.arg = use_crc;
411 
412 	err = mmc_wait_for_cmd(host, &cmd, 0);
413 	if (!err)
414 		host->use_spi_crc = use_crc;
415 	return err;
416 }
417 
418 static int mmc_switch_status_error(struct mmc_host *host, u32 status)
419 {
420 	if (mmc_host_is_spi(host)) {
421 		if (status & R1_SPI_ILLEGAL_COMMAND)
422 			return -EBADMSG;
423 	} else {
424 		if (R1_STATUS(status))
425 			pr_warn("%s: unexpected status %#x after switch\n",
426 				mmc_hostname(host), status);
427 		if (status & R1_SWITCH_ERROR)
428 			return -EBADMSG;
429 	}
430 	return 0;
431 }
432 
433 /* Caller must hold re-tuning */
434 int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
435 {
436 	u32 status;
437 	int err;
438 
439 	err = mmc_send_status(card, &status);
440 	if (!crc_err_fatal && err == -EILSEQ)
441 		return 0;
442 	if (err)
443 		return err;
444 
445 	return mmc_switch_status_error(card->host, status);
446 }
447 
448 static int mmc_busy_status(struct mmc_card *card, bool retry_crc_err,
449 			   enum mmc_busy_cmd busy_cmd, bool *busy)
450 {
451 	struct mmc_host *host = card->host;
452 	u32 status = 0;
453 	int err;
454 
455 	if (host->ops->card_busy) {
456 		*busy = host->ops->card_busy(host);
457 		return 0;
458 	}
459 
460 	err = mmc_send_status(card, &status);
461 	if (retry_crc_err && err == -EILSEQ) {
462 		*busy = true;
463 		return 0;
464 	}
465 	if (err)
466 		return err;
467 
468 	switch (busy_cmd) {
469 	case MMC_BUSY_CMD6:
470 		err = mmc_switch_status_error(card->host, status);
471 		break;
472 	case MMC_BUSY_ERASE:
473 		err = R1_STATUS(status) ? -EIO : 0;
474 		break;
475 	case MMC_BUSY_HPI:
476 		break;
477 	default:
478 		err = -EINVAL;
479 	}
480 
481 	if (err)
482 		return err;
483 
484 	*busy = !mmc_ready_for_data(status);
485 	return 0;
486 }
487 
488 static int __mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
489 			       bool send_status, bool retry_crc_err,
490 			       enum mmc_busy_cmd busy_cmd)
491 {
492 	struct mmc_host *host = card->host;
493 	int err;
494 	unsigned long timeout;
495 	unsigned int udelay = 32, udelay_max = 32768;
496 	bool expired = false;
497 	bool busy = false;
498 
499 	/*
500 	 * In cases when not allowed to poll by using CMD13 or because we aren't
501 	 * capable of polling by using ->card_busy(), then rely on waiting the
502 	 * stated timeout to be sufficient.
503 	 */
504 	if (!send_status && !host->ops->card_busy) {
505 		mmc_delay(timeout_ms);
506 		return 0;
507 	}
508 
509 	timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
510 	do {
511 		/*
512 		 * Due to the possibility of being preempted while polling,
513 		 * check the expiration time first.
514 		 */
515 		expired = time_after(jiffies, timeout);
516 
517 		err = mmc_busy_status(card, retry_crc_err, busy_cmd, &busy);
518 		if (err)
519 			return err;
520 
521 		/* Timeout if the device still remains busy. */
522 		if (expired && busy) {
523 			pr_err("%s: Card stuck being busy! %s\n",
524 				mmc_hostname(host), __func__);
525 			return -ETIMEDOUT;
526 		}
527 
528 		/* Throttle the polling rate to avoid hogging the CPU. */
529 		if (busy) {
530 			usleep_range(udelay, udelay * 2);
531 			if (udelay < udelay_max)
532 				udelay *= 2;
533 		}
534 	} while (busy);
535 
536 	return 0;
537 }
538 
539 int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
540 		      enum mmc_busy_cmd busy_cmd)
541 {
542 	return __mmc_poll_for_busy(card, timeout_ms, true, false, busy_cmd);
543 }
544 
545 /**
546  *	__mmc_switch - modify EXT_CSD register
547  *	@card: the MMC card associated with the data transfer
548  *	@set: cmd set values
549  *	@index: EXT_CSD register index
550  *	@value: value to program into EXT_CSD register
551  *	@timeout_ms: timeout (ms) for operation performed by register write,
552  *                   timeout of zero implies maximum possible timeout
553  *	@timing: new timing to change to
554  *	@send_status: send status cmd to poll for busy
555  *	@retry_crc_err: retry when CRC errors when polling with CMD13 for busy
556  *
557  *	Modifies the EXT_CSD register for selected card.
558  */
559 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
560 		unsigned int timeout_ms, unsigned char timing,
561 		bool send_status, bool retry_crc_err)
562 {
563 	struct mmc_host *host = card->host;
564 	int err;
565 	struct mmc_command cmd = {};
566 	bool use_r1b_resp = true;
567 	unsigned char old_timing = host->ios.timing;
568 
569 	mmc_retune_hold(host);
570 
571 	if (!timeout_ms) {
572 		pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
573 			mmc_hostname(host));
574 		timeout_ms = card->ext_csd.generic_cmd6_time;
575 	}
576 
577 	/*
578 	 * If the max_busy_timeout of the host is specified, make sure it's
579 	 * enough to fit the used timeout_ms. In case it's not, let's instruct
580 	 * the host to avoid HW busy detection, by converting to a R1 response
581 	 * instead of a R1B. Note, some hosts requires R1B, which also means
582 	 * they are on their own when it comes to deal with the busy timeout.
583 	 */
584 	if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
585 	    (timeout_ms > host->max_busy_timeout))
586 		use_r1b_resp = false;
587 
588 	cmd.opcode = MMC_SWITCH;
589 	cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
590 		  (index << 16) |
591 		  (value << 8) |
592 		  set;
593 	cmd.flags = MMC_CMD_AC;
594 	if (use_r1b_resp) {
595 		cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B;
596 		cmd.busy_timeout = timeout_ms;
597 	} else {
598 		cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1;
599 	}
600 
601 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
602 	if (err)
603 		goto out;
604 
605 	/*If SPI or used HW busy detection above, then we don't need to poll. */
606 	if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
607 		mmc_host_is_spi(host))
608 		goto out_tim;
609 
610 	/* Let's try to poll to find out when the command is completed. */
611 	err = __mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err,
612 				  MMC_BUSY_CMD6);
613 	if (err)
614 		goto out;
615 
616 out_tim:
617 	/* Switch to new timing before check switch status. */
618 	if (timing)
619 		mmc_set_timing(host, timing);
620 
621 	if (send_status) {
622 		err = mmc_switch_status(card, true);
623 		if (err && timing)
624 			mmc_set_timing(host, old_timing);
625 	}
626 out:
627 	mmc_retune_release(host);
628 
629 	return err;
630 }
631 
632 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
633 		unsigned int timeout_ms)
634 {
635 	return __mmc_switch(card, set, index, value, timeout_ms, 0,
636 			    true, false);
637 }
638 EXPORT_SYMBOL_GPL(mmc_switch);
639 
640 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
641 {
642 	struct mmc_request mrq = {};
643 	struct mmc_command cmd = {};
644 	struct mmc_data data = {};
645 	struct scatterlist sg;
646 	struct mmc_ios *ios = &host->ios;
647 	const u8 *tuning_block_pattern;
648 	int size, err = 0;
649 	u8 *data_buf;
650 
651 	if (ios->bus_width == MMC_BUS_WIDTH_8) {
652 		tuning_block_pattern = tuning_blk_pattern_8bit;
653 		size = sizeof(tuning_blk_pattern_8bit);
654 	} else if (ios->bus_width == MMC_BUS_WIDTH_4) {
655 		tuning_block_pattern = tuning_blk_pattern_4bit;
656 		size = sizeof(tuning_blk_pattern_4bit);
657 	} else
658 		return -EINVAL;
659 
660 	data_buf = kzalloc(size, GFP_KERNEL);
661 	if (!data_buf)
662 		return -ENOMEM;
663 
664 	mrq.cmd = &cmd;
665 	mrq.data = &data;
666 
667 	cmd.opcode = opcode;
668 	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
669 
670 	data.blksz = size;
671 	data.blocks = 1;
672 	data.flags = MMC_DATA_READ;
673 
674 	/*
675 	 * According to the tuning specs, Tuning process
676 	 * is normally shorter 40 executions of CMD19,
677 	 * and timeout value should be shorter than 150 ms
678 	 */
679 	data.timeout_ns = 150 * NSEC_PER_MSEC;
680 
681 	data.sg = &sg;
682 	data.sg_len = 1;
683 	sg_init_one(&sg, data_buf, size);
684 
685 	mmc_wait_for_req(host, &mrq);
686 
687 	if (cmd_error)
688 		*cmd_error = cmd.error;
689 
690 	if (cmd.error) {
691 		err = cmd.error;
692 		goto out;
693 	}
694 
695 	if (data.error) {
696 		err = data.error;
697 		goto out;
698 	}
699 
700 	if (memcmp(data_buf, tuning_block_pattern, size))
701 		err = -EIO;
702 
703 out:
704 	kfree(data_buf);
705 	return err;
706 }
707 EXPORT_SYMBOL_GPL(mmc_send_tuning);
708 
709 int mmc_abort_tuning(struct mmc_host *host, u32 opcode)
710 {
711 	struct mmc_command cmd = {};
712 
713 	/*
714 	 * eMMC specification specifies that CMD12 can be used to stop a tuning
715 	 * command, but SD specification does not, so do nothing unless it is
716 	 * eMMC.
717 	 */
718 	if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
719 		return 0;
720 
721 	cmd.opcode = MMC_STOP_TRANSMISSION;
722 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
723 
724 	/*
725 	 * For drivers that override R1 to R1b, set an arbitrary timeout based
726 	 * on the tuning timeout i.e. 150ms.
727 	 */
728 	cmd.busy_timeout = 150;
729 
730 	return mmc_wait_for_cmd(host, &cmd, 0);
731 }
732 EXPORT_SYMBOL_GPL(mmc_abort_tuning);
733 
734 static int
735 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
736 		  u8 len)
737 {
738 	struct mmc_request mrq = {};
739 	struct mmc_command cmd = {};
740 	struct mmc_data data = {};
741 	struct scatterlist sg;
742 	u8 *data_buf;
743 	u8 *test_buf;
744 	int i, err;
745 	static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
746 	static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
747 
748 	/* dma onto stack is unsafe/nonportable, but callers to this
749 	 * routine normally provide temporary on-stack buffers ...
750 	 */
751 	data_buf = kmalloc(len, GFP_KERNEL);
752 	if (!data_buf)
753 		return -ENOMEM;
754 
755 	if (len == 8)
756 		test_buf = testdata_8bit;
757 	else if (len == 4)
758 		test_buf = testdata_4bit;
759 	else {
760 		pr_err("%s: Invalid bus_width %d\n",
761 		       mmc_hostname(host), len);
762 		kfree(data_buf);
763 		return -EINVAL;
764 	}
765 
766 	if (opcode == MMC_BUS_TEST_W)
767 		memcpy(data_buf, test_buf, len);
768 
769 	mrq.cmd = &cmd;
770 	mrq.data = &data;
771 	cmd.opcode = opcode;
772 	cmd.arg = 0;
773 
774 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
775 	 * rely on callers to never use this with "native" calls for reading
776 	 * CSD or CID.  Native versions of those commands use the R2 type,
777 	 * not R1 plus a data block.
778 	 */
779 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
780 
781 	data.blksz = len;
782 	data.blocks = 1;
783 	if (opcode == MMC_BUS_TEST_R)
784 		data.flags = MMC_DATA_READ;
785 	else
786 		data.flags = MMC_DATA_WRITE;
787 
788 	data.sg = &sg;
789 	data.sg_len = 1;
790 	mmc_set_data_timeout(&data, card);
791 	sg_init_one(&sg, data_buf, len);
792 	mmc_wait_for_req(host, &mrq);
793 	err = 0;
794 	if (opcode == MMC_BUS_TEST_R) {
795 		for (i = 0; i < len / 4; i++)
796 			if ((test_buf[i] ^ data_buf[i]) != 0xff) {
797 				err = -EIO;
798 				break;
799 			}
800 	}
801 	kfree(data_buf);
802 
803 	if (cmd.error)
804 		return cmd.error;
805 	if (data.error)
806 		return data.error;
807 
808 	return err;
809 }
810 
811 int mmc_bus_test(struct mmc_card *card, u8 bus_width)
812 {
813 	int width;
814 
815 	if (bus_width == MMC_BUS_WIDTH_8)
816 		width = 8;
817 	else if (bus_width == MMC_BUS_WIDTH_4)
818 		width = 4;
819 	else if (bus_width == MMC_BUS_WIDTH_1)
820 		return 0; /* no need for test */
821 	else
822 		return -EINVAL;
823 
824 	/*
825 	 * Ignore errors from BUS_TEST_W.  BUS_TEST_R will fail if there
826 	 * is a problem.  This improves chances that the test will work.
827 	 */
828 	mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
829 	return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
830 }
831 
832 static int mmc_send_hpi_cmd(struct mmc_card *card)
833 {
834 	unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
835 	struct mmc_host *host = card->host;
836 	bool use_r1b_resp = true;
837 	struct mmc_command cmd = {};
838 	int err;
839 
840 	cmd.opcode = card->ext_csd.hpi_cmd;
841 	cmd.arg = card->rca << 16 | 1;
842 
843 	/*
844 	 * Make sure the host's max_busy_timeout fit the needed timeout for HPI.
845 	 * In case it doesn't, let's instruct the host to avoid HW busy
846 	 * detection, by using a R1 response instead of R1B.
847 	 */
848 	if (host->max_busy_timeout && busy_timeout_ms > host->max_busy_timeout)
849 		use_r1b_resp = false;
850 
851 	if (cmd.opcode == MMC_STOP_TRANSMISSION && use_r1b_resp) {
852 		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
853 		cmd.busy_timeout = busy_timeout_ms;
854 	} else {
855 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
856 		use_r1b_resp = false;
857 	}
858 
859 	err = mmc_wait_for_cmd(host, &cmd, 0);
860 	if (err) {
861 		pr_warn("%s: HPI error %d. Command response %#x\n",
862 			mmc_hostname(host), err, cmd.resp[0]);
863 		return err;
864 	}
865 
866 	/* No need to poll when using HW busy detection. */
867 	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
868 		return 0;
869 
870 	/* Let's poll to find out when the HPI request completes. */
871 	return mmc_poll_for_busy(card, busy_timeout_ms, MMC_BUSY_HPI);
872 }
873 
874 /**
875  *	mmc_interrupt_hpi - Issue for High priority Interrupt
876  *	@card: the MMC card associated with the HPI transfer
877  *
878  *	Issued High Priority Interrupt, and check for card status
879  *	until out-of prg-state.
880  */
881 static int mmc_interrupt_hpi(struct mmc_card *card)
882 {
883 	int err;
884 	u32 status;
885 
886 	if (!card->ext_csd.hpi_en) {
887 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
888 		return 1;
889 	}
890 
891 	err = mmc_send_status(card, &status);
892 	if (err) {
893 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
894 		goto out;
895 	}
896 
897 	switch (R1_CURRENT_STATE(status)) {
898 	case R1_STATE_IDLE:
899 	case R1_STATE_READY:
900 	case R1_STATE_STBY:
901 	case R1_STATE_TRAN:
902 		/*
903 		 * In idle and transfer states, HPI is not needed and the caller
904 		 * can issue the next intended command immediately
905 		 */
906 		goto out;
907 	case R1_STATE_PRG:
908 		break;
909 	default:
910 		/* In all other states, it's illegal to issue HPI */
911 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
912 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
913 		err = -EINVAL;
914 		goto out;
915 	}
916 
917 	err = mmc_send_hpi_cmd(card);
918 out:
919 	return err;
920 }
921 
922 int mmc_can_ext_csd(struct mmc_card *card)
923 {
924 	return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
925 }
926 
927 static int mmc_read_bkops_status(struct mmc_card *card)
928 {
929 	int err;
930 	u8 *ext_csd;
931 
932 	err = mmc_get_ext_csd(card, &ext_csd);
933 	if (err)
934 		return err;
935 
936 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
937 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
938 	kfree(ext_csd);
939 	return 0;
940 }
941 
942 /**
943  *	mmc_run_bkops - Run BKOPS for supported cards
944  *	@card: MMC card to run BKOPS for
945  *
946  *	Run background operations synchronously for cards having manual BKOPS
947  *	enabled and in case it reports urgent BKOPS level.
948 */
949 void mmc_run_bkops(struct mmc_card *card)
950 {
951 	int err;
952 
953 	if (!card->ext_csd.man_bkops_en)
954 		return;
955 
956 	err = mmc_read_bkops_status(card);
957 	if (err) {
958 		pr_err("%s: Failed to read bkops status: %d\n",
959 		       mmc_hostname(card->host), err);
960 		return;
961 	}
962 
963 	if (!card->ext_csd.raw_bkops_status ||
964 	    card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
965 		return;
966 
967 	mmc_retune_hold(card->host);
968 
969 	/*
970 	 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
971 	 * synchronously. Future wise, we may consider to start BKOPS, for less
972 	 * urgent levels by using an asynchronous background task, when idle.
973 	 */
974 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
975 			 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
976 	if (err)
977 		pr_warn("%s: Error %d starting bkops\n",
978 			mmc_hostname(card->host), err);
979 
980 	mmc_retune_release(card->host);
981 }
982 EXPORT_SYMBOL(mmc_run_bkops);
983 
984 /*
985  * Flush the cache to the non-volatile storage.
986  */
987 int mmc_flush_cache(struct mmc_card *card)
988 {
989 	int err = 0;
990 
991 	if (mmc_card_mmc(card) &&
992 			(card->ext_csd.cache_size > 0) &&
993 			(card->ext_csd.cache_ctrl & 1)) {
994 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
995 				 EXT_CSD_FLUSH_CACHE, 1,
996 				 MMC_CACHE_FLUSH_TIMEOUT_MS);
997 		if (err)
998 			pr_err("%s: cache flush error %d\n",
999 					mmc_hostname(card->host), err);
1000 	}
1001 
1002 	return err;
1003 }
1004 EXPORT_SYMBOL(mmc_flush_cache);
1005 
1006 static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
1007 {
1008 	u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
1009 	int err;
1010 
1011 	if (!card->ext_csd.cmdq_support)
1012 		return -EOPNOTSUPP;
1013 
1014 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
1015 			 val, card->ext_csd.generic_cmd6_time);
1016 	if (!err)
1017 		card->ext_csd.cmdq_en = enable;
1018 
1019 	return err;
1020 }
1021 
1022 int mmc_cmdq_enable(struct mmc_card *card)
1023 {
1024 	return mmc_cmdq_switch(card, true);
1025 }
1026 EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1027 
1028 int mmc_cmdq_disable(struct mmc_card *card)
1029 {
1030 	return mmc_cmdq_switch(card, false);
1031 }
1032 EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1033 
1034 int mmc_sanitize(struct mmc_card *card)
1035 {
1036 	struct mmc_host *host = card->host;
1037 	int err;
1038 
1039 	if (!mmc_can_sanitize(card)) {
1040 		pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1041 		return -EOPNOTSUPP;
1042 	}
1043 
1044 	pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1045 
1046 	mmc_retune_hold(host);
1047 
1048 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1049 			 1, MMC_SANITIZE_TIMEOUT_MS);
1050 	if (err)
1051 		pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1052 
1053 	/*
1054 	 * If the sanitize operation timed out, the card is probably still busy
1055 	 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1056 	 * it with a HPI command to get back into R1_STATE_TRAN.
1057 	 */
1058 	if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1059 		pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1060 
1061 	mmc_retune_release(host);
1062 
1063 	pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1064 	return err;
1065 }
1066 EXPORT_SYMBOL_GPL(mmc_sanitize);
1067