xref: /openbmc/linux/drivers/mmc/core/mmc_ops.c (revision 90f59ee4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  linux/drivers/mmc/core/mmc_ops.h
4  *
5  *  Copyright 2006-2007 Pierre Ossman
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/types.h>
11 #include <linux/scatterlist.h>
12 
13 #include <linux/mmc/host.h>
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/mmc.h>
16 
17 #include "core.h"
18 #include "card.h"
19 #include "host.h"
20 #include "mmc_ops.h"
21 
22 #define MMC_BKOPS_TIMEOUT_MS		(120 * 1000) /* 120s */
23 #define MMC_SANITIZE_TIMEOUT_MS		(240 * 1000) /* 240s */
24 
25 static const u8 tuning_blk_pattern_4bit[] = {
26 	0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
27 	0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
28 	0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
29 	0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
30 	0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
31 	0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
32 	0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
33 	0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
34 };
35 
36 static const u8 tuning_blk_pattern_8bit[] = {
37 	0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
38 	0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
39 	0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
40 	0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
41 	0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
42 	0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
43 	0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
44 	0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
45 	0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
46 	0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
47 	0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
48 	0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
49 	0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
50 	0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
51 	0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
52 	0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
53 };
54 
55 struct mmc_busy_data {
56 	struct mmc_card *card;
57 	bool retry_crc_err;
58 	enum mmc_busy_cmd busy_cmd;
59 };
60 
61 struct mmc_op_cond_busy_data {
62 	struct mmc_host *host;
63 	u32 ocr;
64 	struct mmc_command *cmd;
65 };
66 
67 int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
68 {
69 	int err;
70 	struct mmc_command cmd = {};
71 
72 	cmd.opcode = MMC_SEND_STATUS;
73 	if (!mmc_host_is_spi(card->host))
74 		cmd.arg = card->rca << 16;
75 	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
76 
77 	err = mmc_wait_for_cmd(card->host, &cmd, retries);
78 	if (err)
79 		return err;
80 
81 	/* NOTE: callers are required to understand the difference
82 	 * between "native" and SPI format status words!
83 	 */
84 	if (status)
85 		*status = cmd.resp[0];
86 
87 	return 0;
88 }
89 EXPORT_SYMBOL_GPL(__mmc_send_status);
90 
91 int mmc_send_status(struct mmc_card *card, u32 *status)
92 {
93 	return __mmc_send_status(card, status, MMC_CMD_RETRIES);
94 }
95 EXPORT_SYMBOL_GPL(mmc_send_status);
96 
97 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
98 {
99 	struct mmc_command cmd = {};
100 
101 	cmd.opcode = MMC_SELECT_CARD;
102 
103 	if (card) {
104 		cmd.arg = card->rca << 16;
105 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
106 	} else {
107 		cmd.arg = 0;
108 		cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
109 	}
110 
111 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
112 }
113 
114 int mmc_select_card(struct mmc_card *card)
115 {
116 
117 	return _mmc_select_card(card->host, card);
118 }
119 
120 int mmc_deselect_cards(struct mmc_host *host)
121 {
122 	return _mmc_select_card(host, NULL);
123 }
124 
125 /*
126  * Write the value specified in the device tree or board code into the optional
127  * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
128  * drive strength of the DAT and CMD outputs. The actual meaning of a given
129  * value is hardware dependant.
130  * The presence of the DSR register can be determined from the CSD register,
131  * bit 76.
132  */
133 int mmc_set_dsr(struct mmc_host *host)
134 {
135 	struct mmc_command cmd = {};
136 
137 	cmd.opcode = MMC_SET_DSR;
138 
139 	cmd.arg = (host->dsr << 16) | 0xffff;
140 	cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
141 
142 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
143 }
144 
145 int mmc_go_idle(struct mmc_host *host)
146 {
147 	int err;
148 	struct mmc_command cmd = {};
149 
150 	/*
151 	 * Non-SPI hosts need to prevent chipselect going active during
152 	 * GO_IDLE; that would put chips into SPI mode.  Remind them of
153 	 * that in case of hardware that won't pull up DAT3/nCS otherwise.
154 	 *
155 	 * SPI hosts ignore ios.chip_select; it's managed according to
156 	 * rules that must accommodate non-MMC slaves which this layer
157 	 * won't even know about.
158 	 */
159 	if (!mmc_host_is_spi(host)) {
160 		mmc_set_chip_select(host, MMC_CS_HIGH);
161 		mmc_delay(1);
162 	}
163 
164 	cmd.opcode = MMC_GO_IDLE_STATE;
165 	cmd.arg = 0;
166 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
167 
168 	err = mmc_wait_for_cmd(host, &cmd, 0);
169 
170 	mmc_delay(1);
171 
172 	if (!mmc_host_is_spi(host)) {
173 		mmc_set_chip_select(host, MMC_CS_DONTCARE);
174 		mmc_delay(1);
175 	}
176 
177 	host->use_spi_crc = 0;
178 
179 	return err;
180 }
181 
182 static int __mmc_send_op_cond_cb(void *cb_data, bool *busy)
183 {
184 	struct mmc_op_cond_busy_data *data = cb_data;
185 	struct mmc_host *host = data->host;
186 	struct mmc_command *cmd = data->cmd;
187 	u32 ocr = data->ocr;
188 	int err = 0;
189 
190 	err = mmc_wait_for_cmd(host, cmd, 0);
191 	if (err)
192 		return err;
193 
194 	if (mmc_host_is_spi(host)) {
195 		if (!(cmd->resp[0] & R1_SPI_IDLE)) {
196 			*busy = false;
197 			return 0;
198 		}
199 	} else {
200 		if (cmd->resp[0] & MMC_CARD_BUSY) {
201 			*busy = false;
202 			return 0;
203 		}
204 	}
205 
206 	*busy = true;
207 
208 	/*
209 	 * According to eMMC specification v5.1 section 6.4.3, we
210 	 * should issue CMD1 repeatedly in the idle state until
211 	 * the eMMC is ready. Otherwise some eMMC devices seem to enter
212 	 * the inactive mode after mmc_init_card() issued CMD0 when
213 	 * the eMMC device is busy.
214 	 */
215 	if (!ocr && !mmc_host_is_spi(host))
216 		cmd->arg = cmd->resp[0] | BIT(30);
217 
218 	return 0;
219 }
220 
221 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
222 {
223 	struct mmc_command cmd = {};
224 	int err = 0;
225 	struct mmc_op_cond_busy_data cb_data = {
226 		.host = host,
227 		.ocr = ocr,
228 		.cmd = &cmd
229 	};
230 
231 	cmd.opcode = MMC_SEND_OP_COND;
232 	cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
233 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
234 
235 	err = __mmc_poll_for_busy(host, 1000, &__mmc_send_op_cond_cb, &cb_data);
236 	if (err)
237 		return err;
238 
239 	if (rocr && !mmc_host_is_spi(host))
240 		*rocr = cmd.resp[0];
241 
242 	return err;
243 }
244 
245 int mmc_set_relative_addr(struct mmc_card *card)
246 {
247 	struct mmc_command cmd = {};
248 
249 	cmd.opcode = MMC_SET_RELATIVE_ADDR;
250 	cmd.arg = card->rca << 16;
251 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
252 
253 	return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
254 }
255 
256 static int
257 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
258 {
259 	int err;
260 	struct mmc_command cmd = {};
261 
262 	cmd.opcode = opcode;
263 	cmd.arg = arg;
264 	cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
265 
266 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
267 	if (err)
268 		return err;
269 
270 	memcpy(cxd, cmd.resp, sizeof(u32) * 4);
271 
272 	return 0;
273 }
274 
275 /*
276  * NOTE: void *buf, caller for the buf is required to use DMA-capable
277  * buffer or on-stack buffer (with some overhead in callee).
278  */
279 int mmc_send_adtc_data(struct mmc_card *card, struct mmc_host *host, u32 opcode,
280 		       u32 args, void *buf, unsigned len)
281 {
282 	struct mmc_request mrq = {};
283 	struct mmc_command cmd = {};
284 	struct mmc_data data = {};
285 	struct scatterlist sg;
286 
287 	mrq.cmd = &cmd;
288 	mrq.data = &data;
289 
290 	cmd.opcode = opcode;
291 	cmd.arg = args;
292 
293 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
294 	 * rely on callers to never use this with "native" calls for reading
295 	 * CSD or CID.  Native versions of those commands use the R2 type,
296 	 * not R1 plus a data block.
297 	 */
298 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
299 
300 	data.blksz = len;
301 	data.blocks = 1;
302 	data.flags = MMC_DATA_READ;
303 	data.sg = &sg;
304 	data.sg_len = 1;
305 
306 	sg_init_one(&sg, buf, len);
307 
308 	if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
309 		/*
310 		 * The spec states that CSR and CID accesses have a timeout
311 		 * of 64 clock cycles.
312 		 */
313 		data.timeout_ns = 0;
314 		data.timeout_clks = 64;
315 	} else
316 		mmc_set_data_timeout(&data, card);
317 
318 	mmc_wait_for_req(host, &mrq);
319 
320 	if (cmd.error)
321 		return cmd.error;
322 	if (data.error)
323 		return data.error;
324 
325 	return 0;
326 }
327 
328 static int mmc_spi_send_cxd(struct mmc_host *host, u32 *cxd, u32 opcode)
329 {
330 	int ret, i;
331 	__be32 *cxd_tmp;
332 
333 	cxd_tmp = kzalloc(16, GFP_KERNEL);
334 	if (!cxd_tmp)
335 		return -ENOMEM;
336 
337 	ret = mmc_send_adtc_data(NULL, host, opcode, 0, cxd_tmp, 16);
338 	if (ret)
339 		goto err;
340 
341 	for (i = 0; i < 4; i++)
342 		cxd[i] = be32_to_cpu(cxd_tmp[i]);
343 
344 err:
345 	kfree(cxd_tmp);
346 	return ret;
347 }
348 
349 int mmc_send_csd(struct mmc_card *card, u32 *csd)
350 {
351 	if (mmc_host_is_spi(card->host))
352 		return mmc_spi_send_cxd(card->host, csd, MMC_SEND_CSD);
353 
354 	return mmc_send_cxd_native(card->host, card->rca << 16,	csd,
355 				MMC_SEND_CSD);
356 }
357 
358 int mmc_send_cid(struct mmc_host *host, u32 *cid)
359 {
360 	if (mmc_host_is_spi(host))
361 		return mmc_spi_send_cxd(host, cid, MMC_SEND_CID);
362 
363 	return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
364 }
365 
366 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
367 {
368 	int err;
369 	u8 *ext_csd;
370 
371 	if (!card || !new_ext_csd)
372 		return -EINVAL;
373 
374 	if (!mmc_can_ext_csd(card))
375 		return -EOPNOTSUPP;
376 
377 	/*
378 	 * As the ext_csd is so large and mostly unused, we don't store the
379 	 * raw block in mmc_card.
380 	 */
381 	ext_csd = kzalloc(512, GFP_KERNEL);
382 	if (!ext_csd)
383 		return -ENOMEM;
384 
385 	err = mmc_send_adtc_data(card, card->host, MMC_SEND_EXT_CSD, 0, ext_csd,
386 				512);
387 	if (err)
388 		kfree(ext_csd);
389 	else
390 		*new_ext_csd = ext_csd;
391 
392 	return err;
393 }
394 EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
395 
396 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
397 {
398 	struct mmc_command cmd = {};
399 	int err;
400 
401 	cmd.opcode = MMC_SPI_READ_OCR;
402 	cmd.arg = highcap ? (1 << 30) : 0;
403 	cmd.flags = MMC_RSP_SPI_R3;
404 
405 	err = mmc_wait_for_cmd(host, &cmd, 0);
406 
407 	*ocrp = cmd.resp[1];
408 	return err;
409 }
410 
411 int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
412 {
413 	struct mmc_command cmd = {};
414 	int err;
415 
416 	cmd.opcode = MMC_SPI_CRC_ON_OFF;
417 	cmd.flags = MMC_RSP_SPI_R1;
418 	cmd.arg = use_crc;
419 
420 	err = mmc_wait_for_cmd(host, &cmd, 0);
421 	if (!err)
422 		host->use_spi_crc = use_crc;
423 	return err;
424 }
425 
426 static int mmc_switch_status_error(struct mmc_host *host, u32 status)
427 {
428 	if (mmc_host_is_spi(host)) {
429 		if (status & R1_SPI_ILLEGAL_COMMAND)
430 			return -EBADMSG;
431 	} else {
432 		if (R1_STATUS(status))
433 			pr_warn("%s: unexpected status %#x after switch\n",
434 				mmc_hostname(host), status);
435 		if (status & R1_SWITCH_ERROR)
436 			return -EBADMSG;
437 	}
438 	return 0;
439 }
440 
441 /* Caller must hold re-tuning */
442 int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
443 {
444 	u32 status;
445 	int err;
446 
447 	err = mmc_send_status(card, &status);
448 	if (!crc_err_fatal && err == -EILSEQ)
449 		return 0;
450 	if (err)
451 		return err;
452 
453 	return mmc_switch_status_error(card->host, status);
454 }
455 
456 static int mmc_busy_cb(void *cb_data, bool *busy)
457 {
458 	struct mmc_busy_data *data = cb_data;
459 	struct mmc_host *host = data->card->host;
460 	u32 status = 0;
461 	int err;
462 
463 	if (data->busy_cmd != MMC_BUSY_IO && host->ops->card_busy) {
464 		*busy = host->ops->card_busy(host);
465 		return 0;
466 	}
467 
468 	err = mmc_send_status(data->card, &status);
469 	if (data->retry_crc_err && err == -EILSEQ) {
470 		*busy = true;
471 		return 0;
472 	}
473 	if (err)
474 		return err;
475 
476 	switch (data->busy_cmd) {
477 	case MMC_BUSY_CMD6:
478 		err = mmc_switch_status_error(host, status);
479 		break;
480 	case MMC_BUSY_ERASE:
481 		err = R1_STATUS(status) ? -EIO : 0;
482 		break;
483 	case MMC_BUSY_HPI:
484 	case MMC_BUSY_EXTR_SINGLE:
485 	case MMC_BUSY_IO:
486 		break;
487 	default:
488 		err = -EINVAL;
489 	}
490 
491 	if (err)
492 		return err;
493 
494 	*busy = !mmc_ready_for_data(status);
495 	return 0;
496 }
497 
498 int __mmc_poll_for_busy(struct mmc_host *host, unsigned int timeout_ms,
499 			int (*busy_cb)(void *cb_data, bool *busy),
500 			void *cb_data)
501 {
502 	int err;
503 	unsigned long timeout;
504 	unsigned int udelay = 32, udelay_max = 32768;
505 	bool expired = false;
506 	bool busy = false;
507 
508 	timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
509 	do {
510 		/*
511 		 * Due to the possibility of being preempted while polling,
512 		 * check the expiration time first.
513 		 */
514 		expired = time_after(jiffies, timeout);
515 
516 		err = (*busy_cb)(cb_data, &busy);
517 		if (err)
518 			return err;
519 
520 		/* Timeout if the device still remains busy. */
521 		if (expired && busy) {
522 			pr_err("%s: Card stuck being busy! %s\n",
523 				mmc_hostname(host), __func__);
524 			return -ETIMEDOUT;
525 		}
526 
527 		/* Throttle the polling rate to avoid hogging the CPU. */
528 		if (busy) {
529 			usleep_range(udelay, udelay * 2);
530 			if (udelay < udelay_max)
531 				udelay *= 2;
532 		}
533 	} while (busy);
534 
535 	return 0;
536 }
537 EXPORT_SYMBOL_GPL(__mmc_poll_for_busy);
538 
539 int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
540 		      bool retry_crc_err, enum mmc_busy_cmd busy_cmd)
541 {
542 	struct mmc_host *host = card->host;
543 	struct mmc_busy_data cb_data;
544 
545 	cb_data.card = card;
546 	cb_data.retry_crc_err = retry_crc_err;
547 	cb_data.busy_cmd = busy_cmd;
548 
549 	return __mmc_poll_for_busy(host, timeout_ms, &mmc_busy_cb, &cb_data);
550 }
551 EXPORT_SYMBOL_GPL(mmc_poll_for_busy);
552 
553 bool mmc_prepare_busy_cmd(struct mmc_host *host, struct mmc_command *cmd,
554 			  unsigned int timeout_ms)
555 {
556 	/*
557 	 * If the max_busy_timeout of the host is specified, make sure it's
558 	 * enough to fit the used timeout_ms. In case it's not, let's instruct
559 	 * the host to avoid HW busy detection, by converting to a R1 response
560 	 * instead of a R1B. Note, some hosts requires R1B, which also means
561 	 * they are on their own when it comes to deal with the busy timeout.
562 	 */
563 	if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
564 	    (timeout_ms > host->max_busy_timeout)) {
565 		cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1 | MMC_RSP_R1;
566 		return false;
567 	}
568 
569 	cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1B | MMC_RSP_R1B;
570 	cmd->busy_timeout = timeout_ms;
571 	return true;
572 }
573 
574 /**
575  *	__mmc_switch - modify EXT_CSD register
576  *	@card: the MMC card associated with the data transfer
577  *	@set: cmd set values
578  *	@index: EXT_CSD register index
579  *	@value: value to program into EXT_CSD register
580  *	@timeout_ms: timeout (ms) for operation performed by register write,
581  *                   timeout of zero implies maximum possible timeout
582  *	@timing: new timing to change to
583  *	@send_status: send status cmd to poll for busy
584  *	@retry_crc_err: retry when CRC errors when polling with CMD13 for busy
585  *	@retries: number of retries
586  *
587  *	Modifies the EXT_CSD register for selected card.
588  */
589 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
590 		unsigned int timeout_ms, unsigned char timing,
591 		bool send_status, bool retry_crc_err, unsigned int retries)
592 {
593 	struct mmc_host *host = card->host;
594 	int err;
595 	struct mmc_command cmd = {};
596 	bool use_r1b_resp;
597 	unsigned char old_timing = host->ios.timing;
598 
599 	mmc_retune_hold(host);
600 
601 	if (!timeout_ms) {
602 		pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
603 			mmc_hostname(host));
604 		timeout_ms = card->ext_csd.generic_cmd6_time;
605 	}
606 
607 	cmd.opcode = MMC_SWITCH;
608 	cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
609 		  (index << 16) |
610 		  (value << 8) |
611 		  set;
612 	use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
613 
614 	err = mmc_wait_for_cmd(host, &cmd, retries);
615 	if (err)
616 		goto out;
617 
618 	/*If SPI or used HW busy detection above, then we don't need to poll. */
619 	if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
620 		mmc_host_is_spi(host))
621 		goto out_tim;
622 
623 	/*
624 	 * If the host doesn't support HW polling via the ->card_busy() ops and
625 	 * when it's not allowed to poll by using CMD13, then we need to rely on
626 	 * waiting the stated timeout to be sufficient.
627 	 */
628 	if (!send_status && !host->ops->card_busy) {
629 		mmc_delay(timeout_ms);
630 		goto out_tim;
631 	}
632 
633 	/* Let's try to poll to find out when the command is completed. */
634 	err = mmc_poll_for_busy(card, timeout_ms, retry_crc_err, MMC_BUSY_CMD6);
635 	if (err)
636 		goto out;
637 
638 out_tim:
639 	/* Switch to new timing before check switch status. */
640 	if (timing)
641 		mmc_set_timing(host, timing);
642 
643 	if (send_status) {
644 		err = mmc_switch_status(card, true);
645 		if (err && timing)
646 			mmc_set_timing(host, old_timing);
647 	}
648 out:
649 	mmc_retune_release(host);
650 
651 	return err;
652 }
653 
654 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
655 		unsigned int timeout_ms)
656 {
657 	return __mmc_switch(card, set, index, value, timeout_ms, 0,
658 			    true, false, MMC_CMD_RETRIES);
659 }
660 EXPORT_SYMBOL_GPL(mmc_switch);
661 
662 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
663 {
664 	struct mmc_request mrq = {};
665 	struct mmc_command cmd = {};
666 	struct mmc_data data = {};
667 	struct scatterlist sg;
668 	struct mmc_ios *ios = &host->ios;
669 	const u8 *tuning_block_pattern;
670 	int size, err = 0;
671 	u8 *data_buf;
672 
673 	if (ios->bus_width == MMC_BUS_WIDTH_8) {
674 		tuning_block_pattern = tuning_blk_pattern_8bit;
675 		size = sizeof(tuning_blk_pattern_8bit);
676 	} else if (ios->bus_width == MMC_BUS_WIDTH_4) {
677 		tuning_block_pattern = tuning_blk_pattern_4bit;
678 		size = sizeof(tuning_blk_pattern_4bit);
679 	} else
680 		return -EINVAL;
681 
682 	data_buf = kzalloc(size, GFP_KERNEL);
683 	if (!data_buf)
684 		return -ENOMEM;
685 
686 	mrq.cmd = &cmd;
687 	mrq.data = &data;
688 
689 	cmd.opcode = opcode;
690 	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
691 
692 	data.blksz = size;
693 	data.blocks = 1;
694 	data.flags = MMC_DATA_READ;
695 
696 	/*
697 	 * According to the tuning specs, Tuning process
698 	 * is normally shorter 40 executions of CMD19,
699 	 * and timeout value should be shorter than 150 ms
700 	 */
701 	data.timeout_ns = 150 * NSEC_PER_MSEC;
702 
703 	data.sg = &sg;
704 	data.sg_len = 1;
705 	sg_init_one(&sg, data_buf, size);
706 
707 	mmc_wait_for_req(host, &mrq);
708 
709 	if (cmd_error)
710 		*cmd_error = cmd.error;
711 
712 	if (cmd.error) {
713 		err = cmd.error;
714 		goto out;
715 	}
716 
717 	if (data.error) {
718 		err = data.error;
719 		goto out;
720 	}
721 
722 	if (memcmp(data_buf, tuning_block_pattern, size))
723 		err = -EIO;
724 
725 out:
726 	kfree(data_buf);
727 	return err;
728 }
729 EXPORT_SYMBOL_GPL(mmc_send_tuning);
730 
731 int mmc_send_abort_tuning(struct mmc_host *host, u32 opcode)
732 {
733 	struct mmc_command cmd = {};
734 
735 	/*
736 	 * eMMC specification specifies that CMD12 can be used to stop a tuning
737 	 * command, but SD specification does not, so do nothing unless it is
738 	 * eMMC.
739 	 */
740 	if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
741 		return 0;
742 
743 	cmd.opcode = MMC_STOP_TRANSMISSION;
744 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
745 
746 	/*
747 	 * For drivers that override R1 to R1b, set an arbitrary timeout based
748 	 * on the tuning timeout i.e. 150ms.
749 	 */
750 	cmd.busy_timeout = 150;
751 
752 	return mmc_wait_for_cmd(host, &cmd, 0);
753 }
754 EXPORT_SYMBOL_GPL(mmc_send_abort_tuning);
755 
756 static int
757 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
758 		  u8 len)
759 {
760 	struct mmc_request mrq = {};
761 	struct mmc_command cmd = {};
762 	struct mmc_data data = {};
763 	struct scatterlist sg;
764 	u8 *data_buf;
765 	u8 *test_buf;
766 	int i, err;
767 	static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
768 	static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
769 
770 	/* dma onto stack is unsafe/nonportable, but callers to this
771 	 * routine normally provide temporary on-stack buffers ...
772 	 */
773 	data_buf = kmalloc(len, GFP_KERNEL);
774 	if (!data_buf)
775 		return -ENOMEM;
776 
777 	if (len == 8)
778 		test_buf = testdata_8bit;
779 	else if (len == 4)
780 		test_buf = testdata_4bit;
781 	else {
782 		pr_err("%s: Invalid bus_width %d\n",
783 		       mmc_hostname(host), len);
784 		kfree(data_buf);
785 		return -EINVAL;
786 	}
787 
788 	if (opcode == MMC_BUS_TEST_W)
789 		memcpy(data_buf, test_buf, len);
790 
791 	mrq.cmd = &cmd;
792 	mrq.data = &data;
793 	cmd.opcode = opcode;
794 	cmd.arg = 0;
795 
796 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
797 	 * rely on callers to never use this with "native" calls for reading
798 	 * CSD or CID.  Native versions of those commands use the R2 type,
799 	 * not R1 plus a data block.
800 	 */
801 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
802 
803 	data.blksz = len;
804 	data.blocks = 1;
805 	if (opcode == MMC_BUS_TEST_R)
806 		data.flags = MMC_DATA_READ;
807 	else
808 		data.flags = MMC_DATA_WRITE;
809 
810 	data.sg = &sg;
811 	data.sg_len = 1;
812 	mmc_set_data_timeout(&data, card);
813 	sg_init_one(&sg, data_buf, len);
814 	mmc_wait_for_req(host, &mrq);
815 	err = 0;
816 	if (opcode == MMC_BUS_TEST_R) {
817 		for (i = 0; i < len / 4; i++)
818 			if ((test_buf[i] ^ data_buf[i]) != 0xff) {
819 				err = -EIO;
820 				break;
821 			}
822 	}
823 	kfree(data_buf);
824 
825 	if (cmd.error)
826 		return cmd.error;
827 	if (data.error)
828 		return data.error;
829 
830 	return err;
831 }
832 
833 int mmc_bus_test(struct mmc_card *card, u8 bus_width)
834 {
835 	int width;
836 
837 	if (bus_width == MMC_BUS_WIDTH_8)
838 		width = 8;
839 	else if (bus_width == MMC_BUS_WIDTH_4)
840 		width = 4;
841 	else if (bus_width == MMC_BUS_WIDTH_1)
842 		return 0; /* no need for test */
843 	else
844 		return -EINVAL;
845 
846 	/*
847 	 * Ignore errors from BUS_TEST_W.  BUS_TEST_R will fail if there
848 	 * is a problem.  This improves chances that the test will work.
849 	 */
850 	mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
851 	return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
852 }
853 
854 static int mmc_send_hpi_cmd(struct mmc_card *card)
855 {
856 	unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
857 	struct mmc_host *host = card->host;
858 	bool use_r1b_resp = false;
859 	struct mmc_command cmd = {};
860 	int err;
861 
862 	cmd.opcode = card->ext_csd.hpi_cmd;
863 	cmd.arg = card->rca << 16 | 1;
864 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
865 
866 	if (cmd.opcode == MMC_STOP_TRANSMISSION)
867 		use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd,
868 						    busy_timeout_ms);
869 
870 	err = mmc_wait_for_cmd(host, &cmd, 0);
871 	if (err) {
872 		pr_warn("%s: HPI error %d. Command response %#x\n",
873 			mmc_hostname(host), err, cmd.resp[0]);
874 		return err;
875 	}
876 
877 	/* No need to poll when using HW busy detection. */
878 	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
879 		return 0;
880 
881 	/* Let's poll to find out when the HPI request completes. */
882 	return mmc_poll_for_busy(card, busy_timeout_ms, false, MMC_BUSY_HPI);
883 }
884 
885 /**
886  *	mmc_interrupt_hpi - Issue for High priority Interrupt
887  *	@card: the MMC card associated with the HPI transfer
888  *
889  *	Issued High Priority Interrupt, and check for card status
890  *	until out-of prg-state.
891  */
892 static int mmc_interrupt_hpi(struct mmc_card *card)
893 {
894 	int err;
895 	u32 status;
896 
897 	if (!card->ext_csd.hpi_en) {
898 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
899 		return 1;
900 	}
901 
902 	err = mmc_send_status(card, &status);
903 	if (err) {
904 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
905 		goto out;
906 	}
907 
908 	switch (R1_CURRENT_STATE(status)) {
909 	case R1_STATE_IDLE:
910 	case R1_STATE_READY:
911 	case R1_STATE_STBY:
912 	case R1_STATE_TRAN:
913 		/*
914 		 * In idle and transfer states, HPI is not needed and the caller
915 		 * can issue the next intended command immediately
916 		 */
917 		goto out;
918 	case R1_STATE_PRG:
919 		break;
920 	default:
921 		/* In all other states, it's illegal to issue HPI */
922 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
923 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
924 		err = -EINVAL;
925 		goto out;
926 	}
927 
928 	err = mmc_send_hpi_cmd(card);
929 out:
930 	return err;
931 }
932 
933 int mmc_can_ext_csd(struct mmc_card *card)
934 {
935 	return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
936 }
937 
938 static int mmc_read_bkops_status(struct mmc_card *card)
939 {
940 	int err;
941 	u8 *ext_csd;
942 
943 	err = mmc_get_ext_csd(card, &ext_csd);
944 	if (err)
945 		return err;
946 
947 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
948 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
949 	kfree(ext_csd);
950 	return 0;
951 }
952 
953 /**
954  *	mmc_run_bkops - Run BKOPS for supported cards
955  *	@card: MMC card to run BKOPS for
956  *
957  *	Run background operations synchronously for cards having manual BKOPS
958  *	enabled and in case it reports urgent BKOPS level.
959 */
960 void mmc_run_bkops(struct mmc_card *card)
961 {
962 	int err;
963 
964 	if (!card->ext_csd.man_bkops_en)
965 		return;
966 
967 	err = mmc_read_bkops_status(card);
968 	if (err) {
969 		pr_err("%s: Failed to read bkops status: %d\n",
970 		       mmc_hostname(card->host), err);
971 		return;
972 	}
973 
974 	if (!card->ext_csd.raw_bkops_status ||
975 	    card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
976 		return;
977 
978 	mmc_retune_hold(card->host);
979 
980 	/*
981 	 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
982 	 * synchronously. Future wise, we may consider to start BKOPS, for less
983 	 * urgent levels by using an asynchronous background task, when idle.
984 	 */
985 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
986 			 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
987 	/*
988 	 * If the BKOPS timed out, the card is probably still busy in the
989 	 * R1_STATE_PRG. Rather than continue to wait, let's try to abort
990 	 * it with a HPI command to get back into R1_STATE_TRAN.
991 	 */
992 	if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
993 		pr_warn("%s: BKOPS aborted\n", mmc_hostname(card->host));
994 	else if (err)
995 		pr_warn("%s: Error %d running bkops\n",
996 			mmc_hostname(card->host), err);
997 
998 	mmc_retune_release(card->host);
999 }
1000 EXPORT_SYMBOL(mmc_run_bkops);
1001 
1002 static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
1003 {
1004 	u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
1005 	int err;
1006 
1007 	if (!card->ext_csd.cmdq_support)
1008 		return -EOPNOTSUPP;
1009 
1010 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
1011 			 val, card->ext_csd.generic_cmd6_time);
1012 	if (!err)
1013 		card->ext_csd.cmdq_en = enable;
1014 
1015 	return err;
1016 }
1017 
1018 int mmc_cmdq_enable(struct mmc_card *card)
1019 {
1020 	return mmc_cmdq_switch(card, true);
1021 }
1022 EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1023 
1024 int mmc_cmdq_disable(struct mmc_card *card)
1025 {
1026 	return mmc_cmdq_switch(card, false);
1027 }
1028 EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1029 
1030 int mmc_sanitize(struct mmc_card *card, unsigned int timeout_ms)
1031 {
1032 	struct mmc_host *host = card->host;
1033 	int err;
1034 
1035 	if (!mmc_can_sanitize(card)) {
1036 		pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1037 		return -EOPNOTSUPP;
1038 	}
1039 
1040 	if (!timeout_ms)
1041 		timeout_ms = MMC_SANITIZE_TIMEOUT_MS;
1042 
1043 	pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1044 
1045 	mmc_retune_hold(host);
1046 
1047 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1048 			   1, timeout_ms, 0, true, false, 0);
1049 	if (err)
1050 		pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1051 
1052 	/*
1053 	 * If the sanitize operation timed out, the card is probably still busy
1054 	 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1055 	 * it with a HPI command to get back into R1_STATE_TRAN.
1056 	 */
1057 	if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1058 		pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1059 
1060 	mmc_retune_release(host);
1061 
1062 	pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1063 	return err;
1064 }
1065 EXPORT_SYMBOL_GPL(mmc_sanitize);
1066